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Infinite Pains:
The Trouble with Supertasks

John Earman and John D. Norton

1 Introduction

A supertask is a task which requires that an infinite number of acts or
operations be performed in a finite span of time. Supertasks have tor-
mented us ever since Zeno noticed that a runner must traverse an infinite
number of cver smaller intervals if he is to complete the race. The
torment has proven immensely profitable, since it has forced us to clarify
our notions of infinity, continuity and continuum, a process that has been
signiflicantly furthered even within the last century. However, in spitc of
millennia of work, the literature on supertasks, to which Paul Benacerraf
(1962) made a seminal contribution, remains in an unfinished and un-
satisfactory state.

Our purpose in this paper is pessimistic and optimistic. On the one
hand we wish 1o indicate a direction of research on supertasks which we
believe is no longer philosophically informative. On the other we will
indicate a new dircction which promises to be revealing in so far as it
succeeds in drawing together notions of infinity and logic with some of
the most vexing, outstanding problems in spacetime physics. And we
shall indicate how Paul Benacerraf’s work has pointed towards both our
conclusions.

Our pessimistic conclusion is that our notions of infinity and continu-
ity are now so well developed that supertasks have lost their power (o
force refinement of these notions. That is not to say that supertasks arc
now unworthy of study, for puzzling contradictions are still delivered by
them. Our point is that the contradictions they deliver no longer reveal
deficiencies in our concepts. We shall urge that the contradiclions arising
in known supertasks derive from fallacious reasoning or indefensible
assumptions and these contradictions can be removed without requiring
us to assume some conceptual incoherence in the very notion of
supertask. In sections 2 to 7, in order to make good this claim, we will
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review and defuse a selection of supertask paradoxes which, by general
consensus, represent the most serious challenges to the coherence of
supertasks. In section 8 we will then try to identily some patterns of
fallacious reasoning that have contributed to the notion that supcrtasks
arc incoherent.

Our optimism pertains to a ncw specics of supertask that can be used
to address within the philosophy of mathematics finitist scruples indi-
cated by Weyl in section 9. Traditionally we conceive of the finite time
duration of the supertask as experienced by the person or machine
attempting to carry out the infinite number of acts. These we call “proper
supertasks.” If an infinity of time is allowed to the agent that carries out
the infinity of tasks but a separate observer witnesses the completion of
the infinity of acts in a finite time, then we have a “bifurcated supertask.™
We will show in section 10 how bifurcated supertasks may be carried out
in certain relativistic spacetimes. In such spacetimes, we may build an
infinity machine which would allow an observer to witness the comple-
tion of an infinite computation. In section 11 we will indicate how these
may be used o construct computing machines that transcend the normal
boundaries of finite computation and, in section 12, we will explore the
computational limits of these machines. In section 13 we will consider
the implications of these machines for the philosophy of mathcmatics.
Finally, section 14 offers some concluding remarks.

2 Zeno’s Dichotomy

The archetype of the supertask is Zeno's celebrated “Dichotomy.”
According to it, a runncr can never complete the race since he must
first run to the half way point, and then to the hall way point of
the remainder and so on indefinitely. The standard resolution simply
accepts as unobjectionable Zeno's notion that to complete a journey
from A to B, a runner must complete an infinite number of subjourncys
-~ from A to the midpoint of AR, then from there to the threc-quarter
point, etc. but claims that this of itself does not prevent completion of
the journey.

Max Black (1950-51) was unconvinced. Like most modern skeptics of
the standard resolution, he accepted that the total distance traversed
1/2+1/4 + 1/8 + . . . approaches the finite value of unity in some suitable
sense of the limit. The difficulty he identified lay deeper. He reasoned
that it is logically impossible to complete an infinite number of journcys
in a finite time, no matter how much faster or casier cach successive
journey becomes. John Wisdom (1951-52) agreed in the main with
Black but added his own alternative resolution which appealed to the
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idea that points of physical space have a finite extension. Whitrow (1980,
section 4.4) sought a similar escape in the assumption that time is not
continuous.

Black’s fallacy lies in confusion of two senses of “incomplctable™ and
its allure lics in the case with which we can shide between the two senses.”
An infinite sequence of acts is incomplctable in the sense that we can
nominatc no last act, the act that completes it. An infinite scquence of
acts may also be incompletable in the sense that we cannot carry out the
totality of all its acts, even though cach act individually may be exccul-
able. This may become the case, for example, in the runner’s journey, if
the runner is required to spend equal time in cach of the infinitely many
intervals. An infinite sequence of acts cannot be completed in the Arst
sense, but that certainly does not entail that it cannot be completed in the
sccond sense.

The deeper problem with Black and Wisdom’s conclusion is that it
preempts the use of continua in physical theories involving motion. if
Wisdom’s escape were correct, we would have a philosophical demon-
stration of the falsity of the major theories of modern physics, all of
which take for granted that spacetime is a continuum. Of course, it is
conceivable that attempts to marry quantum physics and the gencral
theory of relativity will force the abandonment of the continuum concept
for spacc and time. But the notion that armchair philosophizing — and
not very good armchair philosophizing at that - can achiceve the same aim
gives philosophy a bad name.

While this unhappy outcome would scem to protect Zeno's runner
from charges of logical inconsistency, that protection nced not extend to
all supertasks. Such was Jamcs Thomson’s (1954-55) claim. He agreed
with Black that it is logically impossible to complete an infinity of acts —
as long as they are honest-to-goodness acts and not the debased imita-
tions that Zeno has tried to slip by us in the Dichotomy. Here is
Benacerral's admirable summary of Thomson's position.

If we have made a continuous uninterrupted journcy from A to
B ... [then] our motion can be analyzed as covering in turn AA’ [172 of
ABL A'A” [1/4 of ABJ, etc. [But] to say of someonc that he has completed
an infinite number of journeys (in rhis sense) is just to describe in a
different (and possibly somewhat peculiar) way the act he performed in
completing the single continuous journey from A to B. No absurdity is
involved with the feal. If, however, we think of “completing an infinite
number of journeys™ as completing an infinitc number of physically dis-
tinct acts, each with a beginning and an end, and with, say, a pausc of finite
duration between any two, then according to Thomson . .. it is logically
absurd that one should have completed an infinite number of journeys.
(Benacerraf, 1962, p. 105)
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Thomson’s idea is that a genume supertask involves an infinity of
“physically distinct acts™ and that genuine proper supertasks are logically
impossible.

This attempt to separate the genuine and impossible supertasks from
the fake and achicvable fails in so far as it turns out to be possible to
represent the journcy of Zeno's runner as an infinite sequence of distinet
acts. Thercforc any inhcrent impossibility of a supertask would still be
inherited by motion in continua. To see this, supposc that finite pauses
between subtasks are required of “physically distinct acts,” ¢.g. the run-
ner is required to run in a staccato fashion, pausing at the onc-half mark,
the three-quarter mark, etc. Mathematically there is no problem in con-
structing such an example, the most obvious prescription being that the
runner traverses 1/2 of AB in 1/4 second and then rests for 1/4 second,
traverses the next 1/4 of AB in 1/8 second and then rests for 1/8 second,
etc. However, as Griinbaum (1969, p. 212; 1970, p. 212) notes, since this
prescription has the runner complete cach of the staccato runs at the
same average speed, at the terminal instant his velocity will have a finite
discontinuity while his acceleration will have an infinite discontinuity.
Since there are no hard and fast criteria for what counts as kincmatically
and dynamically possible in the Newtonian sctting, it is unclear whether
such discontinuitics disqualify the staccato runner from such a status.
Fortunately there is no need to dwell on this matter since Richard
Fricdberg (as reported by Griinbaum 1969, pp. 213-14: 1970, pp. 215-16)
has shown how the constant average velocity of the above simple minded
staccato runncr can be replaced with diminishing average velocitics in
such a way that his velocity and acceleration functions display no
discontinuitics. If a(r) is the acceleration function of this sophisticated
staccato runncr and i is his mass, then the force function is defined to be
F(1) =: ma(r). We can imaginc that in some possible Newtonian world
F(1r) is the force that the runner experiences, say, as a result of being in an
anti-Eleatian ficld. Newton’s laws of motion then guarantee that the
runner performs a supertask.

What this example and the one in the following section furnish are
relative consistency proofs — proofs of the consistency of the proposition
that a genuine proper supertask is completed. relative to the assumption
that Newtonian mechanics harbors no internal contradictions. We can
offer no proof of the latter assumption and. hence, no absolute proof of
the consistency of genuine proper supertasks. At the same time, we see
no reason to think that the completability of supertasks within the
Newtonian framework gives any reason to suspect that the framework is
not consistent.

Of course, by loading demands onto the runner, we can assure that his
staccalo run is incompatible with plausible constraints for kinematical or
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dynamical possibility within the Newtonian framework. For example.
Griinbaum (1969, 1970) notes that requiring the runncr not only to pause
between successive subruns but also to plant a flag, which must be
rotated cach time through a minimal angle, leads at the terminal instant
to an infinite discontinuity in the velocity of his hands* But the fact that
some supertasks are kinematically or dynamically imp()s:%ible is no more
surprising or disturbing than the fact that some ordinary tasks are
kincmatically or dynamically impossible.

3 The Bouncing Ball

Can an infinity of physically distinct actions be completed in a finite
time? The analysis of the staccato run scems Lo suggest i} can. Howcv_cr
our imagination may balk at the problem of conceiving c1rcumstanges in
which the anti-Eleatic force function F(¢) may arise. That problem disap-
pears if we consider the bouncing ball, which scems to give as compact an
illustration as we can expect of the logical consistency of comp'lcll.ng an
infinity of acts in a finite time, even when there are discontinuities in the
physical quantitics. .

A ball bounces on a hard surface. The successive bounces are, we
submit, “physically distinct” even though there is no pause hchCW
them. With each bounce its speed on rebound is reduced to a fracl;on k
of its specd immediately prior to the bounce, where 0 <k < 1 (sec I.Tlgure
11.1). We assume a somewhat idealized ball which is perfectly elastic and

Figure 11.1  The bouncing ball
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for which each bounce takes no time. Under these assumptions, the ball
cannot come to (vertical) rest after finitely many bounces. For no bounce
can be the last; cach is followed by another with a fraction & of its initial
speed. In classical mechanics, the time between bounces is directly pro-
portional to the initial speed of the ball. Therefore il we assume that the
time between the first and second bounce is unit time, the times between
the successive bounces will form a geometric serics, 1, k, k2, k*, ... The
sum of the series is 1/(1 — k), which is finite. So the ball completes an
infinite number of bounces in coming to rest in a finite time, thereby
completing a supertask.

The bouncing ball is not paradoxical in any obvious way. unless one is
simply offended by the notion that it will complete infinitely many
bounces in a finite time. Of course, only an idcalized ball can behave in
this way. All real balls are deformed somewhat on bouncing and will
cease to bounce off the table's surface after some finitc number of
bounces. However, the issue is not whether the idealized ball could be
realized in our world. It is whether there is some consistent sctling in
which it can execute its behavior. Our claim is that there is a consistent
selting and, moreover, one that is noi all that far away in possibility space
from the actual world.

4 The Thomson Lamp

There seems little prospect Zeno's Dichotomy hides genuine paradox or
that the very notion of completing an infinite scquence of acts is logically
contradictory. Yet, in his quest to prove the latter, Thomson (1954-55)
generated a supertask that purports to be logically contradictory.’

Starting at 11:59 PM a lamp is switched ON and OFF morc and more
rapidly according to the following schedule:

Stage Operation Tinie of completion

1 Switch the lamp to the 11:59.5 PM
ON position

2 Switch the lamp to the 11.59.75 PM
OFF position

3 Switch the lamp to the 11.59.875 PM

ON position

etc. clc. clc.

At12:00 PM the lamp must be cither be in the ON state or the OFF state.
Thomson argued that neither state is possible. The lamp cannot be ON
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(he reasoned) because for every time 7 <2 12:00 PM such that the lamp is
ON there is a 1" such that 1 < ' < 12:00 PM such that the lamp is OFF.
For the exactly similar reason the lamp can’t be OFF at 12:00 PM.
Contradiction.

The argument is seductive, but fallacious and Benacerraf (1962)
showed how. From Thomson’s schedule of switching

it follows only that there is no time between [11.59 PM] and {12:00 PM} at
which the lamp was on and which was not followed by a time also before
[12:00 PM] at which it was off. Nothing whatever has been said about the
lamp at [12:00 PM] or later. (p. 107)

Indced if the supertask is to force a contradiction then we must

suppose that a description of the physical state of the lamp at [12:00 PM|
(with respect to the property of being on or off) is a logical consequence of
a description of its state (with respect to the same property) at times prior
to {12:00 PM]. (p. 108)

To put it another way, the lamp is not paradoxical since any lamp
sctting at 12:00 PM is compatible with the schedule of switching prior to
12:00 PM.

The point is made by observing that we can conceive of plausible
consistent mechanisms which execute the above supertask and Icave
the lamp in any nominated sctting at 12:00 PM. Grinbaum (1970,
pp- 233-7) gave an cxample of how such a mechanism can be con-
structed. where the details of the switching mechanism arc filled in so
that the outcome is that the lamp is ON at 12:00 PM. The idea is to have
the distance the moving part of the switeh has to travel to make clectrical
contact diminish with cach successive punch in such a way that at
12:00 PM the switch is in, and remains in, the contact position. The
mechanism can be generalized by using the bouncing ball to cffect the
switching in a way compatible with Newtonian dynamics. Morcover
slight alterations in the mechanism allow it to leave the lamp cither ON
or OFF at 12:00 PM. Sce Figure 11.2 in which the ball cxceutes and
infinite series of bounces that are completed at 12:00 PM exactly. The
ball has a conductive coating and makes electrical contact with the plate
upon each bounce. In the first circuit depicted, contact with the plate
conducts electricity 1o the lamp, switching it ON, so that the final state of
the lamp at 12:00 PM is ON. In the second circuit depicted, contact with
the plate diverts current from the famp switching it OFF, so that the [inal
state at 12:00 PM is OFF.

If Benacerraf is right that the history of switching prior (o 12:00 PM
lails to specify the lamp state at 12:00 PM, then what remains to be
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Contact switches lamp ON
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Contact switches lamp OFF

Figure 11.2  Alternative switching mechanisms for Thompson’s lamp

explained is why so many naturally conclude otherwise and as a result
believe that a contradiction is straining to emerge. This conclusion, we
urge, depends upon tacitly introducing an assumption about the familiar
behavior of lamps. That assumption is benign in normal circumstances
but invites disaster when supertask switching is invoked. Informally we
assume that if a lamp is left unswitched, it persists in its current state.
Therefore the state of the lamp at a time when it is not switched is
automatically fixed by the prior history of switching.

To see why this persistence property fails, represent the lamp state
numerically at time ¢ as lamp(7) = 0 or 1 according to whether the lamp
is OFF or ON. This persistence property amounts

to requiring that lamp(+) = Lim lamp(1") at the time ¢ at

[y

which there is no switching. If this persistence property is to determine
the state of the lamp at r = 12:00 PM from the history of prior switching,
then clearly we arrive at a contradiction. That history of swilching has
been contrived preciscly to ensure that the limit invoked in the property
fails to exist. Our conclusion is not that the completion of the infinite
schedule of switching is contradictory. Rather it is contradictory when
coupled with the assumption of the persistence property. Notice that the
infinite switching machines such as in Figure 11.2 arc able (o yield a
definite lamp state at 12:00 PM exactly because a propertly other than
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persistence fixes their state at 12:00 PM. Any attempt to construct a
mechanism for Thomson's lamp that uses the persistence property to set
the lamp at 12:00 PM must fail. The machine must be constructed to
satisfy an inconsistent specification. This is clearly impossible in any
consistent physical setting

§ Ross’ Paradox

While the Thomson lamp depends on the non-existence of a limit, an-
other supertask purports to be paradoxical * precisely because a limit
exists — but itis not the one we expect! Imagine an urn of infinite capacity
and an infinite pile of balls labeled 1,2, 3,. ... Starting at 11:59 PM the
balls are put into and taken out of the urn according to the following
schedule:

Stages Operation Completion time

] Put in balls {-10; 11:59.5 PM
remove ball |

2 Put in balls 11-20; 11:59.75 PM
remove ball 2

3 Put in balls 21-30; 11:59.875 PM

remove ball 3

cle. elc. clc.

AL 12:00 PM the system will have passed through an infinity of stages. In
each of the stages a net of 9 balls has been added to the urn. So we can
reason that at 12:00 PM the urn will contain 9 X % = == balls. However,
we can also reason that at 12:00 PM the urn will be empty, since for every
ball there is a stage at which it was removed. (All the balls are numbcred,
and ball # was removed at stage n.)

As matters stand, it is meaningless to speak of the resolution of Ross’
paradox since the problem is underdescribed. (This is a not uncommon
feature of the discussion of supertasks.) The difficulty is that there are
two natural conditions cach of which fix the number of bails in the vase
at 12:00 PM, but at different values. And the account of the paradox does
not clearly allow a choice between them. First is the assumption that the
history of each ball can be represented in a spacetime by a world line (or
world tube). These world lines are assumed to be continuous and once
the world line (or world tube) of a ball exits the spacctime region corre-
sponding to the urn, it ncver reenters. It follows that at 12:00 PM the urn
is empty. Sccond, we can consider the number function N(1) which
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counts the number of balls in the urn at time ¢ and require this function
to bc continuous at any time ¢ at which no ball is added or removed
from the vase. That is. at such a 1, N(r) = lim N(/'). Since 1 = 12:00 PM
is such an instant and the appropriate limit diverges, it would lollow that
the urn contains infinitely many balis at [2:00 PM.

We follow Allis and Koetsier (1991) in choosing the condition of
world line continuity which entails that the urn is empty at 12:00 PM.
This choice is favored by the numbering of the balls, which suggests that
they retain their individual identity through time. It also follows from
choosing the simplest spacctime picture for the kinematics of the balls.?
The condition of world line continuity can be maintained consistently
provided we allow the failure of the requirement of continuity of the
number function N(f) at 12:00 PM. That is, the number function in-
creases without limit with each stage as 12:00 PM is approached, where-
upon it falls discontinuously to zero.

Suppose that the above schedule is changed so that at cach stage
10 balls are added whilc at stage n ball number 10# is removed. Then
on the analysis we favor, the urn will contain an infinitc number of
balls at 12:00 PM. So some schediles of adding a net of 9 balls at
cach stage lead ultimately to an empty urn while others lead 1o a stulfed
urn. This makes it interesting to ask what will happen if at cach stage
the ball to be removed is chosen randomly. Ross (1988, pp. 68-70)
shows that with probability 1 the urn will be empty at 12:00 PM.

Van Bendegem (1994) has been unable to resist the charms of cach of
the conditions of world line and number function continuity. He accepts
both and concludes that Ross’ paradox represents an impossible
supertask. He altempts to explain the contradiction by showing that the
operations involved are incompatible with the following assumptions:
(K1) Infinite speeds are not allowed, (K2) Infinite accelerations are not
allowed, and (K3) There is a largest speed L. However, the invocation of
the relativistic constraint (K3) seems to us inappropriate since what is
being claimed is not that Ross's paradox represents a physically impossi-
ble supertask in the actual world but a conceptually impossible
supertask.

What remains is to make more plausible the possibility of failure of
continuity of the number function N(r). What is puzziing is that
the number count, which one moment is growing without bound,
suddenly evaporates the next. In brief this evaporation is simply an
artefact of our subtraction of one infinite set from another. It is
surprising but not contradictory. Such evaporation cannot happen
with the subtraction of finite scts, where our intuitions arc developed.
Perhaps we can make this evaporation more comfortable by considering
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a structurally similar case in which it occurs — but in which the evapora-
tion is anxiously anticipated.

6 The Pyramid Marketing Scam

This common scam involves the sale of dealerships in a product whosc
naturc is incidental to the scheme. To initiate the scam, an agent sclls a
dealership to two new agents for some unit amount — say $1.000. At the
end of this first stage, the first agent has made a net profit of $2,000. The
two new agents have a net loss of $1.000 cach. To recoup their losses,
the two new agents cach sell a dealership to two more agents, introduc-
ing four new agents in total. The three old agents cach now show a profit
individually and a net total profit of $4.000: the four new agents show a
loss totaling $4,000. At the nth stage 2" new agents arc sold dealerships.
The 20 — 1 old agents from stages 1..... n — 1, have a total prolit of
$2" X 1,000. The 2" new agents a total loss of $20 X 1.000. See Figure 11.3.
The scheme proceeds in this way.

New agents center, willing (o pay their $1,000 for the certainty of
regaining $2.000 in the next stage. This is where the scheme becomes a
scam. The prolfit of cach new level of agents can be sccured only il the
pyramid of agents can be allowed to grow exponentially and with it a
huge, exponentially growing debt in the form of losses of agents on the
newest fevel. The scheme collapses in debt as the exponential growth
rapidly exhausts the pool of new agents willing (o join.

Stage 1 Stage 2 Stage o
(1)+$2000 (1) +$2000 s (1) +$2000

NN N

® 06 @ +$1000  (3)+$1000 @+$1000  (3)+$1000

Figure 1.3 Pyramid marketing scam
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Consider, however, what would happen if this pool were infinitely
large and if the addition of new agents is accelerated so that the infinite
pyramid is completed in finite time as a supertask. As the stages forming
the pyramid proceed. the total debt will balloon without limit. Yet at the
complction of the pyramid, this debt would evaporate. Fach agent in the
pyramid would now show a net profit, for cach would have recouped his
loss in recruiting two more agents. The debt evaporation is the result
eagerly forescen in the propaganda used (o recruit new, honest agents.,
who must only be convinced that the availability of a very large pool of
agents is somehow close enough to an infinite pool for the evaporation to
be realized.* The naturalness of the evaporation is precisely what enables
these schemes to flourish.

7 Black’s Transfer Machine

While continuity of world lines allowed cscape from Ross’ paradox, in
this case, it becomes the sticking point.’ Imagine (wo trays, one on the
left (“L”) and one on the right (“R™), which may move further apart
from onc another as time goes on but which may not come closer to one
another than some finite distance." Starting at 11:59 PM a marble is
shuttled back and forth between the two according (o the following
schedule:

Stage Operation Time of completion
1 Move the marble from L to R 11:59.5 PM
Move the marble from R to L 11:59.75 PM
Move the marble from L to R 11:59.875 PM
etc. cte. cle.

There are various ways to try to show that an antinomy results from
this schedule. The analogy to the Thomson lamp is obvious (substitute L
for ON and R for OFF), so those arguments of scction 4 could be
rehearsed in suitably translated form. Black gave an argument with a
novel twist. In its most elementary form, it exploits symmeltries in the
scquence of transfers. Assume that the sequence of transfers indicated
above results in the marble resting in some definite tray at 12:00 PM, say,
the right tray:

R LLRLLR L ...-R

Since the trays are alike, this opcration is the mirror image of the
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sequence of transfers which begins with the marble in the night tray
and which therefore must result in a marble in the left tray at
12:00 PM:

L.RILLRI.R, ...> L

The outcome of the first series of exchanges would surcly be unchanged
il we began with the second stage, so that the marble began in the
right tray and was first moved left. But then the sequence of transfers
would be identical with the second sequence (exceptling minor altera-
tions in timing) and that scquence results in a marble in the left tray.
contradiction!

As with the other examples, this contradiction can be resolved with-
out us having to renounce the logical possibility of a supertask. The
resolution is essentially Benacerraf's resolution of the Thomson lamp.
All Black’s argument shows is that the history of transfers prior to
12:00 PM cannot determince the position of the marble at 12:00 PM. The
arguments that yicld a contradiction are merely reductio demonstrations
of the untenability of assuming otherwise.

However, this example is more perplexing than the ones we have seen
so far. Black (1951-52) suggested that the completion of an infinite
number of trans{ers is impossible on the grounds that the ball “would be
committed to performing a motion that was discontinuous and therefore
impossible™ (p. 81). On Black’s behalf. we can put the argument this way.
To resolve Ross’ paradox we invoked continuity in the form of the
postulate that the world line of a particle must be continuous. Bul sauce
for the goosc is sauce for the gander. So applying the world line postulate
to the transfer machinc we get the conclusion that at 12:00 PM the
marble cannot be in the L tray, nor can it be in the R tray. But the ball
has to be someplace. Contradiction.

Morcover, it may seem uscless to try to use Newtonian mechanics to
dissolve this paradox, for the marble’s velocity increases without limit,
as docs the kinetic energy that must be supplied to enable its motion.
Yet. it has been proven that Newtonian mechanics allows a closely
related infinite transfer for idealized point mass particles! Consider
four point mass particles confined to a line in Euchdean space. When
the particles have positive separation they are assumed to interact
via Newton’s 1/r? law. If there is a binary collision the singularity is
regularized on the model of the clastic bounce. If there is a triple
collision the solution ceases to exist. Mather and McGhee (1975)
established that there is a non-empty set of initial conditions for the
particles such that as t+ — 12:00 PM, the particle positions obey the
following conditions: x,(t) — —», x,(f), x,({) = +, and the coordinate
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x,(1) of the messenger particle passes through O an infinite number of
times, each time covering a larger distance than before. because it
bounces back and forth an infinitc number of times between binary
collisions with particles | and 3. At 12:00 PM positions arc no longer
specified for the four particles. They have, so to speak, escaped to
infinity.

In a sense these particles violate world line continuity, but it is
important to be clear about what this sense is. There is no violation of
the basic postulate — used above in our resolution of Ross’ paradox
and assumed routinely in classical physics — that world lines of particles
do not have breaks or endpoints. But there is a violation of the condition
that the position of a particle at any instant can be obtained by taking
the limit of its position at 1 as ¢ approaches the instant in qucstion; for
at 12:00 PM the limits of the positions of the Mather-McGhee particles
diverge. In the case of particles 1, 3 and 4, we have a ready answer to
the question of where the particles went: 1 went to negative infinity; 3
and 4 went to positive infinity. But these infinitics arc not bona
fide places in space. The notion that the particle 3 is “at spatial infinity”
is an intuitively comflorting fable that tannot bear scrutiny. By the same
reasoning, particle 2 would have to be at both positive and negative
infinity at 12:00 PM. The correct answer to where arc the particles at
12:00 PM is that their positions arc indeterminate, or, more precisely,
that the second condition of world line continuity fails to specify them.
In this regard they are exactly akin to the position of the marble in
Black's transfer machine at 12:00 PM. Further, particle 2 has mimicked
the marble in so far as it has crossed the origin infinitely often in a
finite time.

In the version of Black’s transfer machine where the particle is con-
fined to a finite box there is a violation of a third condition of continuity,
which states that if y is a world line of a particle satisfying the basic
continuity postulate (no breaks or end points) then v is not trapped in a
compact set K of spacetime, i.c. if y enters K it must reemerge. It is worth
noting that this requirement can be violated in general relativistic
spacetimes even for a geodesic y (see Hawking and Ellis, 1973 {or cxam-
ples). But the price to be paid for the violation is the presence of “almost
closed™ causal curves (in the form of a violation of strong causality - sce
Hawking and Ellis 1973, p. 195). This lcads onc to wonder whether in
Newtonian mechanics 1//? interactions for point mass particles can be
used to violate the no trapping condition, say, by having the particles
spiral around each other at an cver faster rate. We think that the answer
is negative since we conjecture that in order to have a non-collision
singularity of Newton's equations for 1/r2 interactions at least one of the
particles must escape to infinity.

INFINFIE PAINS: THE TROUBLE WITH SUPERTASKS 245

8 The Pervasive Persuasiveness of Supertask Paradoxes

The supertasks we have examined here are representative of the types of
supertask paradoxes presently in the literature. They point to the same
moral. The contradictions that inhere in them do not arise from any
intrinsic impossibility of supertasks. Each contradiction can be removed
by careful excision of fallacies or unwarranted assumptions in a way that
leaves the possibility of supertasks intact. In this analysis some further
patterns begin to form. In particular, there is one major [allacy
which appears to contribute materially to the seductiveness of supertask
paradoxes.

We can conceive of the time development of a supertask as cffected
by a sequence of operations that carry us from one stage to the next. Any
finitc stage results from a finitc composition of these opcrations. The
final stage results from an infinite composition. Now it is a commonplace
of mathematics that finite and infinite compositions differ in their prop-
ertics (¢.g. a finite intersection of open sets always yiclds an open set; but
an infinite intersection of open sets can yield a closed sct). Thus if some
property is preserved at any finile stage of the supertask, that is no
guarantce that it will be preserved in the transition to the infinitc stage.
Many of the trouble-making assumptions that we eliminated in analyzing
the supertasks can be introduced exactly by this illegitimate projection.
We take properties preserved as we step from finite to finite stage and
illicitly assume they will be preserved in the transition to the final, infinite
stage.

In the Dichotomy, for example, we saw a confusion of two senses of
completable. At any finite stage, the two senses coincide. They fail to do
s0, however, in the infinite stage. In Thomson's lamp. at any finite stage
the setting of the lamp is fixed by the history of switching; it fails to be at
the infinite stage. In Ross’s paradox, the condition of number count
continuity obtains at any finite stage. Tt can fail at the infinite stage.
Finally in Black’s transfer machine, the marble’s position is determined
by its prior history at any finitc stage; it fails to be at the infinitc stage.
Once these assumptions are made cxplicit, we become less likely to
project them illicitly. While they remain tacit, as is usually the case, the
projection is casy to fall into.

Many paradoxes of the infinite depend upon the case with which we
fall into projecting incorrectly properties from finiic to infinite composi-
tion. The “proof” that 2 = m is a classic example from the paradox
litcrature (sce Northrup 1971, pp. 135-6). Consider the straight line
segment AB of unit length of Figure 11.4. We can approximale it
somewhat clumsily by a semicircular arc C,. We can improve the
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approximation by an operation which replaces the arc €, by two con-
nected semicircular arcs to yield C,. The operation can be repeated
indefinitely as indicated yielding arcs C.. C,, . . . until, in the limit, the arc
C. will consist of a set of points that coincides exactly with AB.

Now the fallacious inference: the curves of family C,, C,, . .. approxi-
mate the interval AB better and better, achieving coincidence in the
limit. Thercfore the lengths of the curves C), C,, ... must approach
the length of AB in the limil. Elementary geometry however (clls us that
the length of each semicircular arc is just =/2 times that part ol the
interval AB that the arc spans. It now follows that all of C,, C,, . .. have
the same length:

Length C, = Length C, = Length Co = Length C, = ... = n/2

so that if we insist that the limiting length of C,, C,, . . . is equal to the unit
length of AB we arrive at the “result”™ 2 = 7.

The problem concerns the operation that replaces a semicircular arc
with two connected semicircular arcs. Under this operation, the length of
the curve is preserved. Under finitely many of these operations the length
of the curve is preserved. But under infinitelv many. the length of the
curve is not preserved. To understand why, we recall that the length of a
curve is not fixed directly by the locus of the curve, but by an integration
over the tangent vectors to the curve. The locus of C, C,, ... approach
AB in the limit. But the tangents to C,, C,,...do not approach the
tangent vectors of AB in the limit, As it turns out, this limit is undefined.
Thercfore we have no basis for expecting the limit of the lengths of €,
C,....to approach AB."

9 Supertasks and Infinite Computation

Black and Wisdom were not alone in their willingness to draw conclu-
sions about the continuum from a contemplation of supertasks. They
were preceded by the distinguished mathematician and physicist,
Hermann Weyl. In a remarkable passage in Philosophy of Mathematics
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and Natural Science, Weyl (1949) also drew infinite computation into the
web of supertasks:

If the segment of leagth 1 really consists of infinitcly many subsegments of
length 1/2, 1/4, 1/8, .. .. as “chopped-off” wholes, then it is incompatible
with the character of the infinite as “incompletable™ that Achilles should
have been able to traverse it all. If one admits this possibility, then therc is
no rcason why a machine should not be capable of completing an infinite
sequence of distinct acts of decision within a finite amount of time; say, by
supplying the first result after 1/2 minute, the second after 1/4 minute, the
third 1/8 minutc later than the second, etc. In this way it would be possible,
provided the receptive power of the brain would function similarly, to
achieve a traversal of all the natural numbers and thereby a sure yes-or-no
decision regarding any cxistential question about natural aumbers!
(1949, p. 42)

The exclamation point indicates a silent modus tollens. Weyl secks to use
the presumed impossibility of the traversal of all natural numbers to
reject the notion that a segment of length 1 really consists of infinitcly
many “chopped-off” wholes. We shall return shortly to the broader
views behind Weyl's remarks.

Clearly we scc no problem in either the infinite traversal of the natural
numbers of Zeno's runner completing his run, cven if a unit length is
conceived as composed of infinitely many parts. The possibility of a
traversal of all natural numbers has implications for the philosophy of
mathematics, as noted by Benacerraf and Putnam in their introduction to
The Philosophy of Mathematics:

Il we take the stand that “non-constructive™ procedures - i.c. procedures
that require us to perform infinitely many operations in a finite time - are
conceivable . .. then we can say that there docs “in principle™ exist a
verification/refutation  procedure for number theory...[and hence
that] the notion of “truth” in number theory is not a dubious onc.
(1989, p. 20)

In the remainder of the paper, we will (ry Lo put flesh on the bones of the
idca that a supertask may be used to generate a decision procedure flor
number theory and then try to understand somc of its consequences.

10 Bifurcated Supertasks in Relativistic Spacetimes

The core of our infinite computing machines are bifurcated supertasks.
One part — the Slave — consists of a computer which can devote infinite
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time to a computation that need not halt after finitely many steps. The
Slave computer may, for example, run through all quadruples of integers
(x, v, z. n) seeking a quadruple with n > 2 for which x" 4 y" = z. The
second component is an external obscrver — the Master — who has causal
access (0 the entire slave computer’s history but experiences only a finite
lapse of time. If, for example, the Slave computer agrees to signal the
Master if a quadruple satisfying x" + v* = z" (1 > 2} is found. then upon
receiving a signal the Master will know that Fermat’s last thcorem
(“FLT7) is false. If the Master receives no signal, then she will know after
a finite time that the theorem is truc.

But is it rcally possible for a Master to profit from the infinite labors
of a Slave? Relativistic spacetimes provide a context for rcalizing such
possibilities and their pursuit leads one to some of the most interesting
foundations problems in general relativity.

Pictured in Figure 11.5 are two timelike hall-curves? yg and vy in
Minkowski spacetime. The Slave v, undergoes constant (“Born™) accel-
eration, and as a resull [y dtv = »."* The Master contrives to accelerate
in such a way she keeps the Slave in her causal shadow - I(yy) O v —
and such that she ages only a finitc amount since fYM dv < . For this it
suffices that the Master accelerate so that her proper time is related (o
coordinate time ¢ by dv = exp(—1)dt.

There arc (wo sorts of problems with this scenario, some physical,
some conceptual. In the former category, there is the fact that the total

space

Figure 11.5 Slave and Master in Minkowski Spacctime
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integrated acceleration of yg is infinite, which means that 1f the Slave
trics to accomplish his journcy by means of a rocket ship, an infinite
fucl-to-payload ratio would be required.! Then there is the fact that vy,
experiences unbounded acceleration and, thus, any physical embodi-
ment of the Master would eventually be crushed to death by g-forces.
But even leaving aside such problems about physical realizations of vy,
and vs. there is the conceptual objection that at no point on her world
line does the Master have direct causal access to all of the labors of her
Stave. Thus, if FLT is true, there is no definite moment at which the
Master can be said to have attained knowledge of the truth of FLUT as a
result of the Slave’s labors.

This last objcction suggests that in order to have a successful bifur-
cated computing machine, the above construction has to be modified so
that there is a p e vy, such that /(p) D v, That is. the entire world line of
the Slave is contained within the chronological past of a single ¢vent on
the Master’s world line. I'rom that event on the Master can know the
outcome of the Slave’s infinite labors. Such a construction cannot be
donc in Minkowski spacetime. But it can be done in some general rela-
tivistic spacctime which we have dubbed Malament-Hogarth spacetimes
(see Larman and Norton, 1993). Some of these spacetimes also escape
the above worries about physical embodiment of the Master and Slave
since their world lines can be chosen to be geodesics. that is, world lines
of free fall.

The reader who is suspicious that this is too good (o be truc is right
to be suspicious. Some Malament-Hogarth spaccetimes involve acausal
features; for example, they allow an observer to travel into his own past,
raising worries such as the “grandfather paradox.” (What if the observer
traveled into his distant past and shot his grandfather before grandpa
became a father?') Other Malament-Hogarth spacctimes are causally
nice™ but they all involve nasty clfects such as divergent blue-shifts,
indicating a kind of instability (see Earman and Norton, 1993).
Malament-Hogarth spacetimes violate Roger Penrose’s cosmic censor-
ship hypothesis which holds that general relativity contains mechanisms
to prevent the occurrence of “naked singularitics.” The validity of this
hypothesis has been called the most important unresolved problem in
classical general relativity (see Earman, 1994b for a discussion). In this
way philosophical concerns about supertasks are linked to important
research problems in physics.

Docs this mecan that in trying to pull off bifurcated supcertasks in
general relativistic spacctimes we have simply traded worrics about
doing an infinite number of tasks in a finite amount of time for worries
aboul spacetime structure? Even if that is all we have accomplished, it
still scems to us a non-trivial accomplishment. As we have scen, there is
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a longstanding philosophical tradition to the effect that supertasks are
logically or conceptually impossible. Bifurcated supertasks are surely
neither since they use mathematically well-defined spacetimes. But
additionally these spacetimes are more than mere conceptual possibili-
ties. Among them are ones that satisfy Einstein’s field equations of
gravitation and standard energy conditions (guaranteeing, for example,
non-negative energy densities). Though such spacetimes arc problematic
in various ways, they are, we contend, not beyond the pale of physical
possibility. If the Creator had a taste for the bizarre we might find that we
are inhabiting one of them.

11 Simple Infinity Machines

There is a clear moral in our earlier analysis of supertask paradoxcs.
While relativistic spacetimes provide a consistent arcna for bifurcated
supertasks, they cannot protect us from paradox if we insist on assuming
impossible properties for machines that cxecute the supertasks. Indeed
infinite computing machines must resort to a device like a bifurcated
supertask exactly to avoid such paradoxes. Thomson (1954-55, p. 95)
already foreshadowed what may happen otherwise. If we assume a super
computer able to complete an infinity of computations and then continue
as normal, nothing would prevent it computing the complete decimal
expansion of m and, as cach decimal was generated, setting a register
according o its parity, When the computation was complete, that
register would indicate the parity of the last digit of & — and paradoxically
s0, since there is no last digit!

If further such paradoxes are to be avoided, we must carcfully specily
precisely what our super compulter is assumed capable of doing. To this
end we introduce what is intended to be the simplest use ol a bilurcated
supertask in computation. In particular, it will exploit just onc supertask.
(We shall return briefly to cascs of machines that exploit compounded
supertasks, once the properties of the simple casc have been investi-
gated.) A simple infinity machine is just a Turing machine that is allowed
to complete a countable infinity of steps and compriscs the Slave part of
the bifurcated supertask; the outcome of the caleulation is read by the
Master through signals from the Slave. The extra power of the machine
derives solely from the fact that failure of the Slave Turing machine to
halt is no longer uninformative. It no longer means that the machine is
either about to halt or will ncver halt. In a simple infinity machine, 1t
means the latter.

There are only two mecans available for the Slave to signal results to
the Master. It may report them as:
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I A signal that the machine has halted after hnitely many steps and
(optionally) the signal may contain the code number of an output.
(This is the usual output of an ordinary Turing machinc on halting.)

2 A failure to halt, which the Master will recognize from the lack of
transmission of the signal of (1).

We must rule out stronger possibilitics, at lcast in the first case, on pain
ofl paradox:

e The Slave cannot leave a tape for inspection by the Master as output.
Otherwisc, if the Slave program simply alternates 0 and I indefinitely
in some cell, then the final statc of the cell fails to reflect the limiting
result of the computation — since there is no limit."” To assumec other-
wisc reproduces the Thomson lamp paradox. Known examples of
Malament-Hogarth spacetimes automatically implement this form of
censorship. They do not permit survival of the Slave’s tape, sending
the tape falling into a spacetime singularity or off to infinity.

e The Masler may not infer results of computation by rcading the
limiting behavior of an infinite sequence of signals emitted by the
Slave in the course of computation. To assume otherwise would
violate the assumption that a simple infinity machinc cxploits just one
supertask, for the reading of the infinite sequence of signals by the
Mastcer amounts to a second supertask.

While we do not admit it for a simple infinity machine, we should not
be too hasty in judging the reading of an infinite sequence of signals as
inherently paradoxical. We may avoid paradox if we arc modest in
our assumplions over what the reader could do. It could accommodate
an infinitcly altcrnating sequence of signals, 0, 1, 0, 1.... without
Thomson lamp paradoxes if it could sense the failure to converge of
such a sequence.® However, this escape may be short lived. It may well
be that the idealizations needed to admit such convergence sensing
devices will also admit paradoxical consequences. For example, if the
resources are sufficient to allow the device to store the latest signal in a
register that faithfully records, then we do recreate a Thomson lamp
paradox.

12 The Power of a Simple Infinity Machine
A simple infinity machine can decide the truth of any proposition

of number theory that is purely existentially or purely univcrsally
quantified in prenex normal form, where the relation quantified over is
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recursive. Its Slave simply checks the relation in the scope of the quanti-
fiers sequentially for all values of its arguments, looking for a
counterexample of the former or for a verifier for the latter. Thus
Fermat’s last theorem, whose status at the time of writing remains unre-
solved, would succumb to a simple infinity machine, since it has the
prenex normal form (Vx)(Vy)(Vz)(Vn) = F(x, v, z, n) and Fis recursive.

Of course, even if Fermat's last thcorem is verified as true, this does

not seltle the status of its theormhood in your favorite axiomatization of

arithmetic. But this too can be resolved by a simple infinity machine,
which can be used to check whethier an arbitrarily given integer s is
a member of a recursively enumerable (r.e.) sct of integers. Thus,
Church’s theorem notwithstanding, it would scem that a simple infinity
machine can be used to check for theoremhood in anything that deserves
to be called a formal system. a system for which there is a recursive
method for determining whether a sequence of formulas constitutes a
proof and, hence, for which the thcorems are r.c. Applying this to your
favorite system of formal arithmetic, if it was found that neither FLT nor
~FFL.T is a thcorem, we would have a mathematically interesting example
of Godel incompleteness. ‘

It may well seem that a simple infinity machince is capable of overcom-
ing all the usual barriers to computation. The celebrated halting prob-
lem, for example. succumbs. A simple infinity machine can simulate the
behavior of any Turing machine on any input and decide whether it will
halt or not. However simple infinity machines turn out only to carve off
the smallest slice of the great turkey of the uncomputable. This is already
suggested if we attempt to decide propositions with mixed quantificrs.
Consider, for example. the proposition that there is some ultimate
number n that stands in (recursive) relation R to all numbers. That is,
(3n)(V)R(n. x). A simple infinity machine may seek to decide this
proposition by sequentially checking each n. For cach #, it proceeds to
run through values of x, computing R(n, x), until a falsificr is found,
whereupon it moves on to the next value of s, This program fails since
the failure of the program to halt will be ambiguous. It may either mean
that the Slave has found the ultimate number and is running through all
values of x; or it may mean that no ultimate number is found and the
machine is trapped in checking unsuccessfully the infinite candidate
values for n. The Master has no way (o decide which.

Since the procedure sketched is just one of infinitcly many that we
could cmploy to decide (In)(Vx)R(n, x), we may well wonder if its
failure to decide such propositions derives from our incompetence or
lack of imagination at programming simple infinity machines at this
type of task. We can quickly convince ourselves that this is not so in so
far as “most™ (in a natural sense) Turing uncomputable tasks remain
uncomputable for simple infinity machines. To sce this, consider a family
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of propositions S(z) =: (A)(Vy)R(, y, <) in number theory, whcr.c Ris
a recursive relation. It turns out that there arc Rs such that no simple
infinity machine can decide the truth of an arbitrary sentence of the
corrcéponding family $(0), S(1). . ... To sec this assume olhgrwisc. That
is. assume that there is a simple infinity machine that can decide the truth
of S(z) for any valuc of z. In accord with out carlicr discussion, il the
simple infinity machine is to succeed, its Slave Turing program must
perform one of the following four ways:

(a) for all z, the program halts finitely:

(b) for all z, failure to halt means that S(z) is lalsc;

(¢} for all z, failure to halt mcans that $(z) ts trug;

(d) for some z. failure to halt means that 5(z) is true and, for some z,
failurc 1o halt means that S(z) is falsc.

In case (d), the meaning of faiture to halt must be linitely compul.ablc. for
cach z. That s, the sct of all numbers z must be recursively divisible into
two scts such that if the program [ails to halt on input z, then, if lies in
the first set, S(z) is false and, if z lies in the sccond set, 5(z) is truc.
Otherwise failure to halt of the Slave program cannot be interpreted
unambiguously by the Master, so that the simplc infinity machine would
fail to decide S(z) for all 2.2

In case (a). the formula S(z) will be expressible as §,(z) = R (z) where
R, is a recursive predicate. o

In casc (b), the Slave program is guaranteed to halt only when S(‘z ). is
truc. That is, when S(z2) is true, a halting condition is satislicd in a finite
number of steps. The satisfaction of the halting condition appcars most
generally as the confirmation that some recursive relation

Ri(u,u',...,2)18 satisfied for some values of «, u',. .. so that
S(z) will have the general form

(Fu) Bu'y ... R'(u ', ..., 7). Projecting the tuple
(i, u',...) onto a unique single number by the usual methods,

we find that S(z) is expressible as Si(z) = (3V)Ru(y, z) for some
recursive relation R,

In case (c), the Slave program is guaranteed to halt only when S(z) is
false, that is, when ~S(z) is true. It follows similarly to case (b) that
~S(z) can be expressed by (Ix)R'(x, z) for some recursive rclalion R
Setting R, =: "R’ we have that §(z) can be expressed as S(z) = S(z) =
(V)R (x, 2). ,

In case (d), S(z) will be expressible by sentences of the lorms §,,(z) or
S.(z) according as to whether z lies in the set in which the .fmlurc to
halt of the Slave machine means that S(z) is false or S(z) 1s truc. It
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follows that S(z) is expressible as S(z) = [(@Y)Ruly, 2)v(VX)R (1, 2)]
where _Rm and R, are recursive relations. We have hssﬁmcd lh:;': il,c:m
be decided finitely for each z which of the two sets it lies in. In f()rmi;lg
Sd(z): we assume that the code that decides this is incorporated into
the 1.11r1|1g machines computing the relations Ry, and R, so that cach
machme. will only seek to verify that it is satisfied by z(.Lif zis of (lhc
appropriate type.? ‘

The. final result follows immediately from the result that there is a
recursive relation R such that the corresponding family of scnlcnécs
.?(z) = (x)(Vy)R(x, y, z) cannot be expressed in any of the forms S (-)&
‘Sh(z),‘ S.(z), or $4z).* Therefore, in these cascs, no simple mh|n|<tv
rnachn?e can decide the truth of the family of sentences 5(z).# '

Whnllc this limitation to the power of simple infinity ‘machincs is
severe, it can !76 broken if we arc prepared to sct infinitely many sim\plé
mﬁmt'y machmes to a task - and even infinitc hicrarchics of such
_ma‘c}']mcs. For example (3n)(Vx)R(n, x) could be decided if wui sel
lnflmlc.ly' many simple infinity machines to decide the infinitely maan
pr()p(mtnf)ns (V)R(1, x), (VX)R(2, x). ... . and collected the results with
another infinity machine. These prospects have been invcsligal@ b
Hoge.mh (1994), who finds that the infinitely bifurcated supcrtask}s/
required can be realized in relativistic spacetimes. 7 ‘

13 Implications for the Philosophy of Mathematics

As we mentioned, Benacerraf and Putnam (1989) held that if it is con-
c‘eptually possible to perform an infinite number of operations in a finite
time, then there is a verification/refutation procedure for arithmetic
and, ’hence, the notion of truth in arithmetic cannot be held to be dub‘i-
ous. The ;?l'pblcm is that this conditional has little polemical force; for
thosc‘: intuitionists whose scruples make them dubious about trulh’ are
.prccx.sely tl_msc who deny the conceptual coherence of completing an
mﬁ[}lte series of acts. Weyl is a prime example. ¢
The remarks we quoted earlicr from Weyl's magisterial Philosophy of
Mathemat@s and Natural Science are but a fragment of a finitism hat
pc.rvades his philosophical writing. His skeplicism about an in[iliit mil—
chine that cpuld decide any existential question in number thcory W‘(lS
not a reﬂ'ccllon of the uncomputability of certain tasks. His wordsywe;c
first published in 1927 prior to the work of Church, Turing and others on
uncomput.abilily.z" Rather his core claim is that arithmetic asscrtiong are
not meaningful if their truth conditions require the complétc run\n(in
through of an infinite sequence of numbers. Thus, considerin Somg‘
freely chosen sequence of numbers, he insisted thatv s
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statements concerning this sequence have meaning only if their truth can
be decided at a finite stage of the development. For example, we may ask
if the number 1 occurs among the numbers of the sequence up to the 10th
stage, but not whether 1 oceurs at all, since the scquence never reaches
completion. (Weyl, 1932, p. 66)

What justifies this claim and claims like it”, according to Weyl, is that
they “spring from the nature of the infinite™ (1932, p. 73). Here he
presumably refers to the “the essence of the infinite, the ‘incomple-
table’.” (1932, p. 59). Thus, where we may be untroubled to think of an
infinity machine deciding Fermat's last theorem, Weyl held that

mathematics owes is greatness precisely to the fact that in nearly all its
theorems what is essentially infinite is given finite resolution. . . . “Fermat’s
last theorem.” is intrinsically meaningful and cither truc or false. But I
cannot rule on its truth or falsity by employing a systematic procedure for
sequentially inserting all numbers in both sides of Fermat's equation. Even
though, viewed in this light, this task is infinite. it will be reduced to a finite
one by the mathematical proof (which, of course, in this notorious casc,

still eludes us.) (1994, p. 48)

These finitist scruples extend to his treatment of the continuum. The
reals are to be constructed by finitist methods, essentially using
Dedekind cuts, and he rejected the conception of the continuum as
composed of the infinitely many “‘chopped off’ wholes™ of the Zeno
Dichotomy. (Sce also Weyl (1932, p. 59: 1994, Chapter 2).) In sum,
Weyl abandons the “infinite totality of numbers” as meaningless, as
“a realm of absolute cxistences which is ‘not of this world™™ (1929,
p. 154).%
We believe that the bifurcated infinity machines discussed in section
10 provide an effective response to Weyl. In the first place, the bifurca-
tion obviates the nced to perform a proper supertask, and it lcaves Weyl
and his fellow travelers free to think of the infinity of tasks assigned to
the Slave as belonging to the uncompletable. The verification/falsifica-
tion procedure comes not from completing an infinitc number of checks
in a finite time but in having direct causal access to the fruits of all of
these acts. In the sccond place, as a leading proponent of and contributor
to general relativity, Weyl was hardly in a position to claim that the
spacetime structures needed to implement the bifurcated supertasks are
not conceptually well-defined possibilities. Furthermore, in hindsight,
Weyl might well have agreed that these spacetimes arc more than mere
conceptual possibilities. Weyl produced a family of axisymmetric solu-
tions to Einstein’s field equations, a subfamily of which is called the
Curzon solution. Recently Scott and Szckeres (1986) constructed the
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maxupal extension of the monopole Curzon solution, which turns out to
C()m?‘un a ring-like singularity. Some of the timelike half curves that
terminate on the singularity have infinite proper length. We mniéclurc
that t!lcrc are spacetime points p such that I(p) contains such curves. If
so, this spacetime supports bifurcated supertasks. '

It may scem extraordinary that facts about spacetime structure can
ha'vc implications for the concept of truth in mathematics. We too
think that this is extraordinary — so much so that we would prefer to
say that what has been learned is not somcthing about the concept of
::EIE but about the implausibility of certain philosophical scruplcs about

Do bifurcated supertasks have implications for Church’s thesis (or
l?ctter.. proposal) that effective/mechanical computability is to be id‘cnlr
ficd with recursiveness or Turing computability? Our answer is: some but
no profoupd ones. In the context of bifurcated supertasks, Church’s
prop(?sal is most plausibly construed as applying to whal’lh’c SIavL‘
machine can do, the thesis being that Turing computability serves ;19 an
upper bound for any such machine.> (It is an upper bound bcca‘usc\‘ 1(10
gclua.l machine has an unlimited mcmo'ry storage or unlimited C()l;l Jis
ing n.mc. Nor can the machine be speeded up indefinitely willz()ul
VFo'latlng the relativistic prohibition against superluminal velocities.)
This proposal is not unchallengeable - indeed, one of us thinks that lhcxrvc
are successful challenges — but that is a matter to be reserved for
fln()lhcr occasion. The relevant point here is that realizability of simple
infinity machines in gencral relativistic spacetimes is compatible wilh aln
aF:C()unt. of effective/mechanical computability for the Slave machinc)f
1 hfen, given an account — Church’s or other — that implies that some scts
of lnlcg.crs are effectively/mechanically enumerable but not effectivel ‘/
mechanically decidable, the Slave-Master arrangement in Malamcnlyf
H()garth spacetimes provides a procedure that plausibly can be said to
cffcc}lve.ly/mechanicalIy decide membership in the set and thus l(; outdo
any Turing machine. But the core of Church's proposal a; we have
construed it, remains untouched. o (

14 Conclusion

Tllc dls.cussion of the paradoxical infinity machines has led to some
interesting facets of motion in a Newtonian selting. But as far as wlc can
'lell, _SL_lch machines have nothing new to tcach us about the n‘aturc (of
infinities or the continuum, This may be a little disappointing but it is
hardly surprising. Over the centurics paradoxes of infinity have pla C(\l
an honor(flble role in pointing to fundamental questions in lo)éic
mathematics, and the physics of motion. That they no longer have lhc:

i
]
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power 1o generate new knowledge is duc to the fact that they have
fulfilled the function of good paradoxes all too well.

We are not so naive as to think that we have had the last word on
supertasks. Since it is the business of philosophers to uncover logical and
conceptual difficultics, we would not be surprised if there were to be
continued assertions that supertasks arc by their very nature contradic-
tory. paradoxical, or puzzling - not surprised, but certainly disappointed.
We take it as established as clearly as anything can be in this arca that
some non-trivial supertasks arc unproblematic. Others are paradoxical
in the proper sense of that word. But they arc not paradoxical becausc
of any inherent incoherence in the notion of a supertask. To assume
otherwise is to preclude consideration of conceptual devices that have
most interesting consequences in arcas that transcend the simple domain
of lamps and urns. The infinitc computing machines of Malament-
IHogarth spacetimes may well just be one example.

Notes

We are grateful to Ulrich Maier. Robert Nola, and Wesley Salmon for
helpful discussion. John Earman would like to take the liberty of mentioning
that during his junior year at Princeton, Paul Benacerraf handed him a reprint of
his just published article “Tasks, Super-Tasks, and Modern Eleatics™ (1962). It
has taken him a third of a century to make (what he hopes is) an advance on
this article.

1 In his review of Zeno's paradoxes, Salmon (1970, pp. 9-10) considers a
second form of the dichotomy according to which the runner cannot even
get started. He must first run Lo the half way point. but before that he must
run half way to the half way point and so on indefinitely. The original form
of the dichotomy is cssentially equivatent to the “Achilles™ paradox of Z¢no
according to which the faster runner cannot overtake the slower. The faster
would first have to run to the place the slower had just feft, and then to the
place to which the slower had moved and so on indefinitely.

2 For further discussion, see Viastos (1967, pp. 372-4).

3 This assumes that the runner’s hands don't “fly off to spatial infinity,” an
assumption that is plausible if they remain attached to his body and don’t
stretch beyond all bounds. The relevance of this caveat will emerge below.

4 Thomson (1954-55). For critical discussions. scc¢ Benacerraf (1962).
Chihara (1965), and Griinbaum (1969, 1970).

5 Thus Griinbaum (1970, pp. 239-40). at Al Janis’ suggestion. describes a
switching mechanism in which the lamp state depends on the direction of
approach of a pointer that executes infinitely many oscillations about a mid

point in a finite time, ending, let us say, at 12:00 PM. The direction of
approach is undefined at 12:00 PM and the directions prior approach no
limit. Therefore no consistent mechanism can continue faithfully to set the
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13
14

15
16

Ia_mp smlc. from the direction of approach at 12:00 PM. either by using the
direction immediately prior or projecting it via the persistcncé pmpgcrtv
Any .attemp.t to construct such a mechanism will either fail (but po‘;sihl'.
Temain consistent) or be wracked with inconsistency. o
This paradox is due to Ross (1988). It is discussed in Allis and Koetsicr
(19‘.)1).'vz.m Bendegem (1994) and Holgate (1994). ‘
Mam't:‘nnmg the continuity of the number function instcad would require
(f)rfcutmg ().f this simple spacetime picture. It would be an interesting (Ixcr»
cise to devise a kinematics of ball transfers that would allow tl;e number
condition to he maintained. It may prove incompatible with the numbering
schcme used for the balls. unless the identity of the balls cannot be m'\in%
lalpcq or unless a plausible mechanism for gencerating new balls C‘ll]‘ be
built in, (()rv none of the original numbered balls can remain in th‘ v;lsc at
12:00 PM. This calls to mind the failure of world line continuity l;w be
explored in Black's transfer machine below. We also think of the particles of
.qua‘nyum ficld theory for they are not conscrved and need not rpc(t'lin ll‘ i
individual identitics in the course of interactions. ( o
Of course the dishonest agents necd only be convinced that their stage is
f;;fﬂcrentl{frcmole from the stage at which the scheme collapses! e
s machine was introduce ¢ ¢ is. dist
Grtmbam (1970, & 240)'duccd by Black (1950-51). It is discusscd by
This precludes a less interesting variant of the paradox in which the dis-
tances (‘:overed by the marble in each transfer diminish to zero just as dﬁ ll; >
successive bounces of the bouncing ball. S )
To see this in more detail, describe a curve in the usual manner as some
funclfon Y{x) in a Euclidean space with Cartesian coordinates (x \) The
funcq(ms y(x). v(x), ... that correspond to C,, C.,...do app-r(.)-qcl.l the
function _\'A!,(x) that corresponds to AB in the limit. ilowcvcr the Ic:nglh of
each curve is T\()l given dircctly as a function of y(x); it is given as a lunction
‘olf‘thde dACFIV'alIVC ,""(-") = dv(x)/dx; that is, the Iehglh is [o(b + v?(x))dx. But
“:z Ii]c]‘]ril‘vnlltlxr(c;isl(_:'\lvi,\l‘il.'{\(yl’l(].x‘)l.j. .. (IJ() not ‘am?much the derivative v, (x) in
it b ¢lengths of €. C,. ... need not approach that of
A Flmglike hall-curve is a timelike curve which has a past endpoint and
which is extended as far as possible in the future direction " o
Here v stands for proper time. .
For a spz.lcctime point p. I( p) denotes the chronoiogical past of p,i.e. the sct
of all points g such that there is a non-trivial future dirccted lirn‘lelik.c cu;v
from g to p. If X is a set of spacetime points, (X)) = U I(p) ‘
T‘hlS assumes that biological aging is proportional to pr(:[;::r lin;e
.Thc total a§cc]eration TA(y) of y is defined 1o be TA(y) =: [ ildt. where a
is the magnitude of the four-acceleration of Y. g and m .aré rcs‘ cclivell
the ﬁn.al mass of the rocket and the mass of the fucl cx;l)uélnded tl?cn cvcz
assuming perfectly efficient rocket motors. a rocket propelied )‘urel by it
motors must satisfy (Malament 1985) l P

ml (g + my,) < exp(—TA(Y))
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For an attempt to dispel the air of paradox here, see Earman (1994a).
At least they can satisly what is called the condition of stablc causality which
implics that there is a global time function which increases along cvery
future directed timelike curve (sce Hawking and Llis, 1973, p. 198). How-
ever. they cannot be causal in the sense of allowing for global Laplacian
determinism: technically, they cannot be globally hyperbolic.
To assume that the Slave machine incorporates a device that inserts a special
no-convergence code in the cell is to assume that the machine employs a
second supertask, contrary to our assumption. This sccond supertask may
also invite paradox: see below.
Such devices may be possible il we arc prepared to admit sufficient
idealizations, including infinitely fine discrimination in pointer readings.
Consider. for example, a reader with a pointer scale from - 1 to +1. The
pointer starts at 1 and its position is reset to £ 172, = 1/4, £1/8, ... cach time
the data stream flips from 0 to | or from 1 to 0 the former flip rescts to
positive values and the latter flip to negative values. With the completion of
the supertask, a positive pointer reading corresponds to a convergenee to 1.
a negative pointer reading to a convergence to 0, and a zero reading 1o a
failure to converge.
Of coursc, in general in case (b) there will be some 2 for which S(z) is falsc
but whose falsity is determined in finitcly many steps by the program. For
such z, 8(z) = R'(z). for some recursive R'. This trivially has the existentially
quantified form required since R'(z) is equivalent to (3y)(R'(2) & {y = ¥))-
The Turing machine for Ry, will only attempt to complete its calculation for
those z in the set for which failure to halt entails that S(2) 13 false. Similarly.
the Turing machine for R, will only attempt to complete its calculation for
those 7 in the set for which failure to halt entails that S(z} is true.
This result follows from the structure of the Kleenc arithmetic hicrarchy
(sce Rogers. 1987, Chapter 14; Enderton, 1972, Chapter 3). The set of
numbers that satisfies S(z), {z: $(z)}, lies in £, of the hicrarchy. Correspond-
ingly, {z: $.(2)} lies in I, {z: ()} lies in X, {z: S.(2)) ies in T, and {z: S,(2)}
lics in T1.. To see the last case. we need only add dummy variables to
the sentence Sy(z) [3y)R,(y, 2)v(V)Re(x, )] to get it into the
form [(V0)@)(Ry(y. 2) & (x = )WIN)ERe(x. 2) & (v = V)] =
(Vo)3yY)R,(x, v, z) for a recursive relation K, Thus, S,(z) has thc
quantifier structurc of “¥3" so the corresponding set lics in IT,. The core
result for our purposes is that there are sets in X, that fail to lic in any of £,
%, I, or I,
The arithmetic hierarchy gives a precise sense in which “most” Turing
uncomputable tasks remain uncomputable for a simple infinity machine.
The I, sets are recursive. I, scts arc recursively enumerable. Simple infinity
machines extend the power of Turing machines up just onc level of the
hicrarchy in so far as they enable sets of £, to be decided. They fail to decide
%, sets and higher in the hierarchy.
Subject, as we now must observe, to the restrictions mapped out in the last
section. A simple infinity machine suffices to decide purely universal or
purely existential propositions.
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26 The same pass: i
: passage appears in the original G iti
s al German editio J
o3 4 n, Weyl (1921,
27 Similar el i . -
§|mllf.1r claims appeal elsewhere in his writings. Wevl (1921, p. 224) finds it
m > H ‘unni y nd if ‘
?mnn%lfnss to ?p?dk of running through all numbers to find if there is a
prime of form 27 - {Isewhere i i i :
!m CVL‘( orm 2 - b 1. Elsewhere the simple existential claim “(here exists
‘ en nunllhcr is denounced on Brouwer’s ever present authority as an
in > ' ation™ “ it 5 |
mnite If)ﬂltdl summation™ and “not a proposition in (he proper sense that
asserts a fact™ (194¢ orr i ven ‘
" 18 a ld-Ll (1949, p. 50). ( orrespondingly “Al numbers are even™ is an
1 ~ e S A H 1 .
“n inite logical product 1 is even, and 2 is even. and 3 is even ... which
obviously has no meaning.” (1929 p. 152) h
28 ¢ : . ( 381932, 1oy, 67
See ](I]Sf) Weyl (1949, p. 38: 1932, pPp- 02-3) and (1932, p. 83) for the
*ONnce . . “ NN . ) ) )
(,I ncluslon 'Ih(ll the completed. the actual infinite as a closed realm of
abs e e e 1 y H N N
. Vll:.lﬁu ute LX{L\[LI]LL 15 not within its Jthe ninds intuitive] reach.”
2 ns way of construing Church’ Si i I :
A s s thesis al is > i
(ory g /proposal is to be found in Enderton
30 See Earman (1986): sce also Pitowsky (1990).
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