
2 The probabilistic turn

Discussion of parsimony took a probabilistic turn in the twentieth century.1

The project was to use probability theory to analyze and justify Ockham’s

razor. Not all of these efforts succeeded, but two of them did. I think there

are two “parsimony paradigms” in which probability ideas show that parsi-

mony is epistemically relevant. The two paradigms were developed within

two different philosophical frameworks for understanding probability; one

paradigm finds its home in Bayesianism, the other in frequentism. To set the

stage for investigating probabilistic approaches to Ockham’s razor, I’ll start

this chapter by providing a brief (and I hope accessible) primer on probability.

But first I want to say a little about Bayesianism and frequentism.

Two philosophies of probability

Bayesianism is a philosophy of inference that traces back to a mathemati-

cal result (a theorem) obtained by Thomas Bayes (1701–1761). Bayes’s (1764)

theorem describes how the probability you assign to a hypothesis should be

influenced by the new evidence you acquire. Bayesianism is now a general phi-

losophy of scientific reasoning that has grown richer and more detailed than

its eighteenth-century beginnings. This philosophy says that scientific reason-

ing has the attainable goal of figuring out how probable different scientific

hypotheses are, given the evidence at hand. Or more modestly, it maintains

that science is in the business of figuring out which hypotheses are more

probable than which others, again in the light of the evidence. Either way,

science crucially involves thinking about the probabilities of hypotheses.

1 I borrow this phrase from Richard Rorty’s influential anthology of 1967, The Linguistic
Turn, which documented the emphasis on language as a philosophical subject in the
previous eighty years. Rorty got the expression from Gustav Bergmann (1906–1987).
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Bayesianism was not the dominant philosophy of probabilistic inference

that scientists themselves embraced in the twentieth century. Rather, the

dominant mode of thought was frequentism. Frequentism does not have the

simple unity that Bayesianism exhibits; rather, it is a varied collection of ideas

about how observations should be used to evaluate hypotheses. Frequentism

uses probability ideas in this enterprise just as Bayesianism does, but its

basic idea is different. The first commandment of frequentism is: thou shalt

not talk about the probabilities that hypotheses have! The claim that science has

the job of assessing how probable different theories are may sound like an

unremarkable truism, but this innocent-sounding remark is something that

frequentists categorically reject.

The difference between frequentism and Bayesianism is often character-

ized in terms of what each philosophy takes the concept of probability to

mean. The standard picture is that Bayesians think that probability means

rational degree of certainty whereas frequentists define probability in terms

of frequency. When you think about your probability of getting lung cancer,

given that you smoked lots of cigarettes over many years, Bayesians take this

probability to represent how confident you should be that you’ll get cancer,

given your history of smoking, whereas frequentists take the probability to

represent how frequently heavy smokers get lung cancer. Viewed in this way,

Bayesianism is about something subjective (= in the mind of a rational sub-

ject) and frequentism is about something objective (= out there in the external

world). If the two philosophies have different subject matters, why is there

conflict between them?2 Why can’t these partisan schools see that probability

has both a subjective and an objective meaning (as Carnap 1950 recognized)

with each ism going its own way? Why can’t people just get along? The answer

is that Bayesianism and frequentism fundamentally disagree about what the

goals of science ought to be. There is more to the debate than a question about

the meaning of the word “probability.” But even the idea that each school is

wedded to a single interpretation of probability is too simple.

On the one hand, there are situations in which Bayesian inferences can be

carried out by using probabilities that are as objective as any frequentist could

wish. If I tell you what the frequency is of tuberculosis in Wisconsin, that Susan

2 There is another usage of this terminology, as when people claim that various norms
are objective. Here the thought is that the norms are correct and non-arbitrary. Many
Bayesians are objectivists in this sense.
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lives in that state, and that her tuberculosis test came out positive (where the

test procedure produces erroneous results with a certain frequency), you can

calculate the probability that Susan has tuberculosis, given her test result.

We’ll see in a moment how Bayesians do this calculation. The present point is

that the probabilities used in this Bayesian calculation are all about objective

matters of fact. Bayesians can go to work on frequencies!

On the other hand, there are good reasons why the probabilities that fre-

quentists discuss often should not be interpreted as frequencies. Frequentists

are happy to talk about the probability that a fair coin has of landing heads

if it is tossed. Fairness means that the value of this probability is ½. But fair

coins often fail to have frequencies that match this probability. For example,

suppose you toss a fair coin three times and then destroy it. The frequency

of heads in the short lifetime of this coin will not equal 50 percent. For this

simple reason, you can’t equate probability with actual frequency. You may

reply that the relevant frequency idea is hypothetical long-run frequency.

Although a fair coin won’t land heads 50 percent of the time if it is tossed just

once, the suggestion is that if a coin is fair, then the frequency of heads will

converge on 50 percent if you toss the coin again and again. What’s wrong

with that? Let us consider what “converge” means. Here is one interpretation:

A coin has a probability of landing heads of ½ precisely when the frequency of

heads will get closer and closer to 50 percent as the coin is tossed repeatedly.

This is false. It is possible for a fair coin to produce two heads in the first four

tosses and three heads in the first five. There need be no lockstep, monotonic

approach to 50 percent. We can replace this flawed suggestion with something

that is true. Consider any small positive number you please; call it ε (“epsilon”).

A coin has a probability of landing heads of ½ precisely when the probability

approaches 1 that the frequency of heads will be within ε of 50 percent as the

number of tosses approaches infinity.

This is one version of the law of large numbers. Notice that the concept of

probability appears on both sides of this biconditional. This is not a proper

definition; it is circular. For this reason, the law of large numbers, though

true, does not provide an interpretation of probability in the required sense.3

3 Here’s a third suggestion for defining probability in terms of frequency: a coin has a
probability of landing heads of ½ precisely when the coin would have to land heads
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Despite its name, frequentism as a philosophy of scientific inference has no

commitment to interpreting probability in terms of the idea of frequency –

either actual or hypothetical.

Although defining Bayesianism and frequentism in terms of their differ-

ent interpretations of probability is too simple, it does contain an ounce of

truth. Bayesians often equate probability with rational degree of certainty

and frequentists always want probability to be more objective than this. But

the heart of the matter is that the two philosophies propose different episte-

mologies, not different semantics. Frequentists want assignments of values

to probabilities to have an “objective justification.” It should be possible to

defend one’s assignments by citing frequency data or an empirically justi-

fied theory, for example. It isn’t good enough to say “well, my probability

assignment simply reflects how certain I am in the proposition in question.”

When I talk about objectivity in what follows, I have in mind this epistemic

usage.

A probability primer and the basics of Bayesianism

Before discussing the partisan worlds of Bayesianism and frequentism, I’ll

begin with the mathematical core of the probability concept itself. This is

something on which Bayesians and frequentists agree.

Probability assignments always rest on assumptions. For example, if you

assume that the deck of cards before you is standard and that the dealer is

dealing you cards “at random,” you can conclude that the probability that the

first card you are dealt will be an ace of spades is 1
52 and that the probability

that the first card you receive is either an ace or a jack is 8
52 . Without the

assumptions mentioned, these probability assignments can be incorrect. I

will make the role of assumptions explicit in my description of probability by

adding a subscript “A” to the canonical axioms of probability theory described

50 percent of the time if it were tossed an infinite number of times. Although this
biconditional is not circular, there still is a problem. It is not impossible for a fair
coin to land heads each time it is tossed, even if it is tossed an infinite number of
times. True, the probability of the infinite sequence HHHH . . . is zero. However, you
can’t equate impossibility with a probability of zero. The probability of any infinite
sequence (including the alternating sequence HTHTHT . . . ) is zero if the coin is
fair.
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by Kolmogorov (1950):

0 ≤ PrA(H ) ≤ 1.

PrA(H ) = 1 if A logically entails H .

PrA(H or J )

= PrA(H ) + PrA( J ) if A logically entails that H and J are incompatible.

PrA(H) represents the probability of the proposition H under the assumptions

codified in the propositions A. Applying probability to a problem involves iso-

lating a class of propositions that are to be evaluated. In the card example, the

propositions concern the different cards you may be dealt, not whether it will

rain tomorrow. Notice that probability in the above axioms is a mathemat-

ical function: it maps propositions onto numbers. Two different probability

functions may assign different numbers to the same proposition. The model

I just described says that the deck is standard and that cards are dealt at

random, with the result that PrA(the first card you are dealt will be an ace of

spades) = 1
52 . If we thought the deck was made of fifty-two such aces, we would

use a different probability function, PrB(−) according to which PrB(the first

card you are dealt will be an ace of spades) = 1.

Here are three consequences of the axioms just stated that do not depend

on what assumptions go into A: (i) Tautologies have a probability of 1 and

contradictions have a probability of 0; (ii) If propositions H and J are logically

equivalent, then PrA(H ) = PrA( J ); (iii) PrA(H ) = PrA(H &J ) + PrA(H &not J ). This

last equality follows from (ii) and the third axiom; it is called the theorem of

total probability.

The third axiom describes how the probability of a disjunction is settled by

the probabilities of the disjuncts if the disjuncts are incompatible with each

other. But what if the disjuncts are not mutually exclusive? There is a general

principle available here that you can visualize by thinking about probabilities

in terms of the diagrams that John Venn (1834–1923) invented. Figure 2.1

shows a square in which each side has a length of one unit. Let’s suppose

that each point in the square represents a possible way the world might

be. Each proposition that we might want to talk about can be associated

with a set of points in the square – the set of possible situations in which

the proposition is true. The area of the square is 1, which conveniently is

also the maximum value that a probability can have. Tautologies are true in
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H J

Figure 2.1

all possible situations; they fill the whole unit square. The figure represents

propositions H and J as two ovals. The intersection of the two ovals – their

area of overlap – represents the conjunction H&J. Since there is a region

of overlap, the two propositions are compatible with each other; there are

situations in which both are true. I hope the Venn diagram makes it obvious

that

Pr(H or J ) = Pr(H ) + Pr( J ) − Pr(H &J ).

The reason for subtracting Pr(H &J ) is to insure that the area of overlap is not

double-counted. When Pr(H &J ) = 0, the above equality reduces to the special

case described in Axiom 3.

What can be said about the probability of conjunctions? This is where we

need to define the concept of probabilistic independence:

Propositions H and J are probabilistically independent in probability model A

precisely when PrA(H &J ) = PrA(H ) × PrA( J ).

When you flip a fair coin twice, the probability of getting a head on the first

toss is 1
2 and the probability of getting a head on the second is also 1

2 . The

tosses are probabilistically independent; the probability of getting heads on

both tosses is 1
4 . That is a contingent empirical fact about coin tossing; it

is logically possible for tosses to be probabilistically dependent. Suppose we

lived in a world in which there are two kinds of coins: 50 percent of the

coins have two heads and 50 percent have two tails. You select a coin at

random and toss it repeatedly. Under the assumptions stated, PrA(Heads on

the first toss) = PrA(Heads on the second toss) = 1
2 . However, it’s also true that
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PrA(heads on both the first and second tosses) = 1
2 . Independence fails. In

this fanciful world, knowing the outcome on the first toss would give you

information about what will happen on the second. In the real world, the

tosses are independent; knowing the outcome of the first toss doesn’t change

the probability you assign to the second.

Probabilistic independence and logical independence are different. Propo-

sitions X and Y are logically independent precisely when all four conjunc-

tions of the form ±X&±Y are logically possible (i.e., non-contradictory). For

example, “it is raining” and “you are carrying an umbrella” are logically inde-

pendent of each other. However, if you follow the advice of accurate weather

forecasts, these two propositions will be probabilistically dependent on each

other. Consider any two propositions that are neither tautologies nor con-

tradictions: if they are probabilistically independent, then they are logically

independent, but the converse implication does not hold.

color of boat on Tuesday

green (p = 0.2) red (p = 0.3) blue (p = 0.5)

color of boat
on Monday

green
(p = 0.2)

red
(p = 0.3)

blue
(p = 0.5)

Here’s a little exercise that involves thinking about how the probability

of a conjunction is related to the probability of its conjuncts. It involves the

example about sailboats mentioned in the previous chapter in the section on

Copernicus and Ptolemy. My friend Susan saw a red sailboat on Lake Mendota

on Monday, and on Tuesday she also saw a red sailboat. In the accompanying

table I’ve listed probabilities for some sailboat colors on each of the two days.

Note that the three probabilities for each day sum to one; I’m assuming that

sailboats on the lake have no chance of being yellow. These probabilities are

called marginal probabilities because they are written along the margins of the

table. Now consider these hypotheses:

(ONE) Susan saw the same boat on both days.

(TWO) Susan saw one boat on Monday and a different boat on Tuesday.
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The cells in the table represent conjunctions. For example, the cell in the upper

right-hand corner represents the possibility that the sailboat seen on the first

day is green and the one sighted on the second is blue. What probabilities

does the TWO hypotheses dictate for the cells? What cell entries does ONE say

are correct? Assume in both cases that sailboats don’t change color from day

to day. How does the concept of probabilistic dependence apply to what the

two hypotheses say?

The truth value of a conjunction H &J is determined by the truth value of H

and the truth value of J. The conjunction is true if H is true and J is true, and it

is false otherwise. This is what logicians mean when they say that conjunction

is a “truth-functional operator.” We have just seen that the probability of the

conjunction H &J isn’t settled by the probability of H and the probability of J.

If anything, it is the probabilities of conjunctions that settle the probability

of a conjunct. Here I have in mind a fact I mentioned earlier, the theorem of

total probability, which says that Pr(H ) = Pr(H &J ) + Pr(H &not J ).

Another concept that will be useful in what follows is mathematical expec-

tation. You’ve encountered this before when you’ve heard discussion of the

“life expectancy” of a baby born this year. As a first pass, this quantity can be

understood as an average. If you say that the life expectancy for a baby born

this year in the United States is 80 years, this means that 80 years will be the

average lifespan of the individuals born this year. Let’s get more precise by

talking about probabilities and coin tosses. If you toss a fair coin ten times,

there are eleven possible outcomes (0 heads, 1 head, 2 heads, . . . , 10 heads)

and each of these has its own probability. The expected number of heads is

defined as follows:

ExpectedA(number of heads)

= (0)PrA(exactly 0 heads) + (1)PrA(exactly 1 head)

+ (2)PrA(exactly 2 heads) + · · · + (10)PrA(exactly 10 heads)

=
∑10

i=0
(i )PrA(exactly i heads).

Here A is the assumption that the coin is fair and you toss the coin ten times.

It turns out that the expected value is 5. As you do this ten-toss experiment

again and again, you can be more and more certain that the average number

of heads across the different ten-toss repetitions is close to 5. This is the law

of large numbers I mentioned earlier.
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The expected number is often not the number you should expect. If you

toss a fair coin three times, the expected number of heads is 1.5, but this

doesn’t mean that you should expect there to be 1.5 heads when you perform

this experiment just once. In the experiment I described five paragraphs ago

concerning a world in which all coins either have two heads or two tails,

what is the expected frequency of heads if you toss a randomly chosen coin

ten times? What is the frequency you should expect?

Although the axioms of probability that I have described always involve

a relation between the assumptions that define the probability function and

this or that proposition, I have yet to define the idea of “conditional probabil-

ity.” I have been talking about PrA(H ), not about PrA(H | E ). The latter is read

as “the probability of H given E.” Take care to understand what this means. It

doesn’t mean that E is true and that H therefore has a certain probability. Just

as “if you toss the coin then it will land heads” does not assert that you toss

the coin, so “PrA(the coin lands heads ! you toss the coin) = 1
2 ” does not say

that you actually toss the coin. What it means is this: suppose for the moment

that you have tossed the coin. You then are asked how probable it is that

the coin will land heads, given that supposition. The value of the conditional

probability is the answer to this question.

The concept of conditional probability can be introduced by saying how

it is related to the notion of unconditional probability that is defined by our

axioms:

PrA(H | E ) = PrA(H &E )
PrA(E )

if PrA(E ) > 0.

This is called the ratio formula. If A says that E has a probability of zero, this

“definition” of conditional probability offers no advice on what conditional

probability means. I put “definition” in scare quotes because a (full) definition

should provide necessary and sufficient conditions; the above statement pro-

vides only the latter. Some think that the conditional probability PrA(H | E )

has no meaning when PrA(E ) = 0. I disagree. A coin can be fair even if you lock

it in an impregnable safe so that the coin can never be tossed. Here PrA(the

coin lands heads ! you toss the coin) = 1
2 even though PrA(you toss the coin) =

0 (Rényi 1970; Hájek 2003; Sober 2008b). There is a second qualification that

needs to be registered in connection with the ratio formula, which I’ll discuss

later. But for now it’s worth noting that if PrA(H | E ), PrA(H &E ), and PrA(E )

all have values and PrA(E ) > 0, then the ratio formula must hold.
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To illustrate the idea of conditional probability, let’s return to the example

of the deck of cards. As before, I’ll assume that the deck is standard and that

you are dealt cards at random. What is the value of PrA(the card you were

just dealt is a heart ! the card you were just dealt is red)? On the supposition

that the card is red, the probability of its being a heart is 1
2 . The ratio formula

delivers this result. Here’s the argument:

Pr(the card is a heart and the card is red) = 1
4 .

Pr(the card is red) = 1
2 .

Therefore, Pr(the card is Heart | the card is red) = 1
2 .

As an exercise, I suggest that you draw a Venn diagram of this example.

You need to have an area of the diagram representing “the card is red” and

another area representing “the card is a heart.” And of course you need to

consider the intersection of these two areas, which represents the conjunc-

tion of the two propositions. When you consider the conditional probability,

you focus on the area of the diagram in which the card is red and deter-

mine what proportion of that area is occupied by the card’s being a heart.

Notice how hard this would be if the card had a probability of zero of being

red!

I have used the word “assumption” to describe probability functions and

the word “supposition” to describe conditional probabilities. These two terms

may sound like synonyms but I am using them to pick out different things.

In the example just described, I assumed that the deck is standard and that

cards are dealt at random. I did not assign probabilities to those assumptions.

With those assumptions in place, I asked you to consider the conditional

probability PrA(the card you were just dealt is a heart ! the card you were

just dealt is red), which requires you to consider the supposition that the

card is red. Assumptions define probability functions whereas suppositions

come up within a given probability function when a conditional probability

is being evaluated. We often use models that we believe are true and we

often entertain suppositions that we think are false. I believe that the deck

is standard and that the cards are dealt at random. In contrast, I do not

believe that the card you were just dealt is red, though I wish to entertain

that supposition in evaluating a conditional probability. Now that I have

separated assumptions from suppositions, let me bring them back together.

There is a numerical identity that connects the assumptions that a probability
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model makes and the suppositions that one entertains within a model. It is

this:

PrA&B (H ) = PrA (H | B ).

The values are the same, but the epistemic status of B is subtly different.

The “definition” of conditional probability makes it clear why PrA(H &J ) ≤
PrA( J ), no matter what A is. Assuming that PrA( J ) > 0, the inequality can be

rewritten as PrA(H | J )PrA( J ) ≤ PrA( J ). Since probabilities are numbers between

0 and 1, the product of two probabilities cannot be greater than the value of

either of them. This fact is relevant to the razor of silence that I discussed

in the previous chapter. If you consider a conjunction H &J and slice away

H (not by denying that H is true, but simply by declining to assert or deny

it), the probability of what remains (J) cannot be less than the probability of

the conjunction with which you began. In fact, if PrA(H ) and PrA( J ) are both

positive and PrA(H | J ) is less than 1, the slicing away will increase probability.

Silence reduces your risk of error. The razor of silence has a simple Bayesian

rationale.

The fact that a conjunction can’t be more probable than its conjuncts is

anything but obvious to many people. In a much-cited psychology exper-

iment, Tversky and Kahneman (1982) told their subjects the following

story:

Linda is 31 years old, single, outspoken and very bright. She majored in

philosophy. As a student, she was deeply concerned with issues of

discrimination and social justice, and also participated in anti-nuclear

demonstrations.

The subjects then were asked which of the following statements is more

probable:

• Linda is a bank teller.

• Linda is a bank teller and is active in the feminist movement.

Well over half of the subjects in the experiment said that the second statement

is more probable than the first. This example is a warning: when you use

the mathematical concept of probability, don’t stumble into the mistake of

committing “the conjunction fallacy”!

We now can use the ratio formula to derive Bayes’s theorem. To sim-

plify notation, I’ll drop the subscript “A,” but don’t forget that a probability
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function is always built on a set of assumptions. Whenever I talk about a

conditional probability Pr(X | Y ), I’ll assume that Pr(Y ) > 0. So let’s start by

describing each of Pr(H | E ) and Pr(E | H ) in terms of ratios of unconditional

probabilities:

Pr(H | E ) = Pr(H &E )
Pr(E )

Pr(E | H ) = Pr(E &H )
Pr(H )

These two equations can be rearranged to yield:

Pr(H &E ) = Pr(H | E )Pr(E ) Pr(E &H ) = Pr(E | H )Pr(H )

The left-hand sides of these two equations are equal, since H&E is logically

equivalent to E&H , which means that the right-hand sides must be equal to

each other. Setting the right-hand sides of these equations equal and perform-

ing a little algebra yields Bayes’s theorem:

Pr(H | E ) = Pr(E | H ) Pr(H )
Pr(E )

.

Although the derivation of Bayes’s theorem works for any propositions H and

E you please, the typical application involves H’s being a “hypothesis” and E’s

being “observational evidence.” Bayes’s theorem shows how the conditional

probability Pr(H | E ) can be computed from three other quantities. Notice that

one of them is the unconditional probability Pr(H ).

At the start of this chapter, I said that Bayesianism and frequentism are

different philosophies of scientific inference. Does accepting Bayes’s theorem

place you knee deep in the former philosophy? Not so! The theorem is a math-

ematical truth – it follows from the axioms of probability and the “definition”

of conditional probability. Frequentists do not challenge the correctness of

this derivation. Rather, they challenge its usefulness. Frequentists think that

it often isn’t possible to think about Pr(E | H ), Pr(H ), and Pr(E ) as objective

quantities. However, they agree that if these three probabilities had objective

values, the value of Pr(H | E ) could be calculated by using Bayes’s theorem.

They also agree that if lions could fly, then zebras would need to watch out

for aerial lion attacks.

In thinking about the probabilities that figure in Bayes’s theorem, it is

important to recognize that Pr(H | E ) and Pr(E | H ) are different quantities

and therefore may have different values. Much heartache will be avoided by

attending to this difference! In logic it is a familiar idea that a conditional
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and its converse are different, and that one can be true while the other is

false. For example, consider

• If noisy gremlins are bowling in your attic, then you hear noise coming

from your attic.

• If you hear noise coming from your attic, then noisy gremlins are bowling

in your attic.

It is obvious that the first can be true while the second is false. In just the same

way the following two conditional probabilities can have different values:

• Pr(you hear noise coming from your attic ! noisy gremlins are bowling in

your attic)

• Pr(noisy gremlins are bowling in your attic ! you hear noise coming from

your attic)

Personally, I think that the first probability has a high value and the second

has a low one.

The quantity Pr(E ) on the right-hand side of Bayes’s theorem deserves a

comment. Pr(E ) is the unconditional probability of the evidence E. In our

gremlin example, E is the proposition that you hear noises coming from your

attic. You might think that Pr(E ) should be high if there frequently are noises

coming from up there and that it should be low if such noises are rare. I agree

that frequencies often provide evidence that is relevant to estimating the value

of Pr(E ). But, as noted earlier, I don’t want to define probability as frequency.

So what does the unconditional probability of E mean? The theorem of total

probability tells us that

Pr(E ) = Pr(E&H ) + Pr(E &notH).

Using the “definition” of conditional probability (and assuming that all the

relevant probabilities are positive), we can rewrite this as

Pr(E ) = Pr(E | H )Pr(H ) + Pr(E | notH)Pr(notH).

This characterization of Pr(E ) shows that the value of this quantity will some-

times be very different from the frequency with which E is true. The example

of the world in which half the coins have two heads and half have two tails

provides an example. You choose a coin at random and toss it repeatedly.

Use the above equality to convince yourself that Pr(Heads) = 0.5. Yet, when
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you do the experiment, you obtain either 100 percent heads or 100 percent

tails.4

When I explained earlier what probabilistic independence means, I did so

by describing a relation among unconditional probabilities. Now that the idea

of conditional probability has been introduced, I can define the idea of condi-

tional independence. It parallels the unconditional concept already explained:

X and Y are probabilistically independent of each other conditional on C in

probability function PrA(−) if and only if PrA(X&Y | C ) = PrA(X | C )PrA(Y | C ).

Here’s an example from Mendelian genetics: the genotypes of two full

siblings are independent of each other, conditional on the genotypes of their

parents. For example,

PrM(sib 1 has AA & sib 2 has AA ! mom has AA & dad has Aa) = PrM(sib 1 has

AA ! mom has AA & dad has Aa) PrM(sib 2 has AA ! mom has AA & dad has Aa).

The “M” subscript on the probability function indicates that probabilities

are assigned on the basis of the usual Mendelian model of inheritance. The

probability on the left has a value of ¼ and the two probabilities on the right

each have a value of ½. Notice that the above equality holds more generally;

it holds for any genotypes that the two siblings, mom, and dad might have:

For any genotypes G1, G2, G3, and G4, PrM(sib 1 has G1 & sib 2 has G2 ! mom has

G3 & dad has G4) = PrM(sib 1 has G1 ! mom has G3 & dad has G4) PrM(sib 2 has G2 !

mom has G3 & dad has G4).

When this more general relation obtains, the parental genotype is said to

screen-off each offspring genotype from the other. We can generalize from this

genetics example and define screening-off as a relation that might obtain

among any three variables X, Y, and Z:

4 In this example, the unconditional probability of the evidence involves two
possibilities – either H is true or notH is. But suppose there are n possible hypotheses
H1, H2, . . . , Hn, which are mutually exclusive and collectively exhaustive. What would
Pr(E) mean in that case? The answer is a generalization of what I just said for the
dichotomous case:

Pr(E ) = Pr(E | H1) Pr(H1) + Pr(E | H2) Pr(H2) + · · · + Pr(E | Hn) Pr(Hn)

=
∑n

i=1
Pr(E | Hi ) Pr(Hi ).
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Z screens-off X from Y precisely when, for any values i, j, k,

Pr(X = i & Y = j | Z = k) = Pr(X = i | Z = k) Pr(Y = j | Z = k).

Here I’m using a notation that is standard in probability theory; “X = i”

means that the variable X has the value i. As the genetics example suggests, Z

screens-off Y from X precisely when Z screens-off X from Y. There is another,

equivalent, definition of screening-off that you should know about. It says that

Z screens-off Y from X if and only if Pr(X = i | Z = k) = Pr(X | Z = k & Y = j ),

for all i, j, k. You can prove the equivalence of these two ways of describing

screening-off by using the “definition” of conditional probability (and

assuming that all the conditioning propositions have positive probabilities).

Just as parental genotype screens-off offspring genotypes from each other,

it’s also true that parental genotype screens-off grandparental genotype

from offspring genotype. Screening-off often applies when a common cause

has two (or more) effects, and it often comes up when you talk about a

causal chain from Y to Z to X. “Often” does not mean always. Mom’s genotype

is a common cause of the genotypes of her two offspring. However, her

genotype does not screen-off each from the other. See if you can figure out

why this is so. And see if you can think of an example of a causal chain

in which the proximate cause doesn’t screen-off the distal cause from the

effect.

Screening-off can be described informally in informational terms. If you

know the parental genotype, the probability you assign to one offspring’s

genotype shouldn’t be affected by learning the genotype of the other. And

if you know the parental genotype, the probability you assign to an off-

spring’s genotype shouldn’t be affected by your learning the genotypes of the

grandparents.

Conditional independence and unconditional dependence may sound like

they are incompatible, but in fact they are not. Once again, genetics furnishes

an example. As noted, the two offspring genotypes are independent of each

other, conditional on the parental genotype. However, the fact that the two

siblings have the same parents means that their genotypes will be uncondi-

tionally dependent:

Pr(sib 1 has A A & sib 2 has A A) > Pr(sib 1 has A A) Pr(sib 2 has A A).

Notice that this inequality makes no mention of what the parental geno-

type is. If you conditionalize on the parental genotype, the inequality turns
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into an equality! Not only are unconditional dependence and conditional

independence not in conflict; I’ll explain later in this chapter how conditional

independence can be part of the explanation of unconditional dependence.

Translating the last displayed inequality into the language of conditional

probability, we get both of the following:

Pr(sib 1 has A A | sib 2 has A A) > Pr(sib 1 has A A)

Pr(sib 2 has A A | sib 1 has A A) > Pr(sib 2 has A A).

This is what it means for the two genotypes to be correlated. Bayesians take

these two inequalities to have an important epistemological significance.

They gloss these inequalities by saying that the AA genotype of each sibling

provides confirmation that the other sibling has the AA genotype. Bayesians

define confirmation as follows:

Observation E confirms hypothesis H if and only if Pr(H | E ) > Pr(H ).5

Disconfirmation gets defined in tandem:

Observation E disconfirms hypothesis H if and only if Pr(H | E ) < Pr(H ).

If confirmation means probability raising and disconfirmation means proba-

bility lowering, then evidential irrelevance means that the observation leaves the

probability of the hypothesis unchanged.6 The Bayesian ideas of confirmation

and disconfirmation entail that there is a symmetry between confirmation

and disconfirmation:

E confirms H if and only if notE disconfirms H.

Convince yourself that this biconditional is correct when confirmation

and disconfirmation are given Bayesian interpretations. And then convince

5 Following Carnap (1950), Bayesians sometimes contrast the “incremental” concept of
confirmation just described with one that is “absolute.” The idea is that E absolutely
confirms H precisely when Pr(H | E ) is high. Notice that this can be true when E
incrementally disconfirms H or is evidentially irrelevant to it in the incremental
sense. I think it is unfortunate that the word “confirm” is used to denote a high
value for Pr(H | E ). I won’t do so in what follows.

6 In view of the fact that assigning a value to Pr(H ! E) does not require that E be true, it
is better to read the Bayesian definition of confirmation as explicating the following
proposition: E, if true, would confirm H. A parallel point holds for disconfirmation.
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yourself, by using Bayes’s theorem, that confirmation is a symmetrical

relation – if X confirms Y, then Y confirms X.7

The Bayesian definition of confirmation can be used to underscore my

earlier point that Pr(E ) should not be defined as the frequency with which E

is true. Suppose Susan takes a tuberculosis test several times and it comes out

positive every time. This might lead you to think that Pr(E ) = 1, where E says

that Susan’s test outcome is positive. However, if Pr(E ) = 1, E cannot confirm

the hypothesis T, which says that Susan has tuberculosis. This entailment can

be verified by consulting Bayes’s theorem. To get things right, you need to

see that Pr(E ) is an average whose value is described by the theorem of total

probability:

Pr(E ) = Pr(E | T )Pr(T ) + Pr(E | notT)Pr(notT).

Doing so allows you to see that Pr(E ) is less than one, which means that E can

confirm H.

The next distinctively Bayesian idea I need to describe concerns how agents

should change their probability assignments as new evidence rolls in. All the

probabilities described in Bayes’s theorem use the same probability function

PrA(−). The assumptions in A can be thought of as the assumptions that an

agent is prepared to make at a given time. Suppose the agent learns (with

certainty) that a proposition N is true, where N isn’t something she already

believed; N is news to her. Her set of assumptions has thereby been augmented.

We need a rule that describes how the probabilities she assigned under her

earlier probability function PrA(−) are related to the probabilities she should

assign under her later probability function PrA&N (−). A rule that describes

this relationship is called an updating rule.

Before you are dealt a card from the standard deck of cards that I keep

talking about, you assign PrA(the card will be the Ace of hearts ! the card

is red) = 1
26 . Suppose you then learn that the card is red. Call this new piece

of information N; N gets added to what you already assumed, namely A. So

7 Bayesians have proposed different measures of degree of confirmation. These agree with
the Bayesian definition of confirmation just described, but go beyond it, in that they
assign numbers to represent how much the evidence confirms the hypothesis. These
measures disagree with each other in that they are ordinally non-equivalent (Fitelson
1999). This means that there are Bayesian measures X and Y of degree of confirmation
that have this property: X (H1, E ) > X (H2, E ) while Y (H1, E ) ≤ Y (H2, E ).
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what value should you assign to PrA&N(the card will be the Ace of Hearts)?

The rule of updating by strict conditionalization says that your new unconditional

probability should be 1
26 . More generally, the idea is this:

The Rule of Updating by Strict Conditionalization: Prt2(H ) = Prt1(H | N ) if the

totality of what you learned between t1 and t2 is that N is true.

This updating rule has two major limitations. First, it characterizes learn-

ing as the discovery that some proposition N is true. However, if I tell you

that N has a probability of, say, 0.6, that new information isn’t something

that the machinery of strict conditionalization tells you how to take into

account.8 Second, strict conditionalization describes how you should change

your assignments of probability when you add a proposition to your assump-

tions, but it doesn’t tell you what to do if something you previously assumed

turns out to be false. The rule of strict conditionalization represents learn-

ing as gaining certainties, where a certainty, once gained, can never be

lost.9

The simple updating rule just described allows me to explain some stan-

dard vocabulary that is used in connection with Bayes’s theorem. I have

described PrA(H | E ) and PrA(H ) as the conditional and the unconditional

probability of H, but it is customary to describe the former as H’s posterior

probability and the latter as H’s prior probability. This temporal terminol-

ogy is a bit misleading; it suggests that PrA(H | E ) is a probability assignment

made later (after you’ve learned that E is true) whereas PrA(H ) is a probabil-

ity assignment made earlier (before you learn that E is true). In fact, the A

subscript shows that both these probability assignments hold true under a

single set of assumptions – the assumptions that an agent makes at a given

time. And remember that you don’t need to think that E is true to consider

the value of PrA(H | E )! What is true is that the old conditional probability

PrA(H | E ) is where the new unconditional probability PrA&E (H ) comes from

(under the rule of strict conditionalization) when you learn that E is true.

The old conditional probability gives rise to a new unconditional probability.

Don’t let the temporal labels “posterior” and “prior” confuse you. PrA(H | E )

is the posterior probability of H in the sense that its value is the same as

the value of PrA&E (H ), once you learn that E is true. Notice that the former

8 Jeffrey (1965) develops a theory of updating for this more general notion of learning.
9 Titelbaum (2013) develops a Bayesian model for losing certainties.
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probability doesn’t involve the assumption that E is true, but the latter one

does.

Bayes’s theorem allows you to compute how gaining new evidence E should

lead you to change your degree of confidence in the hypothesis H. The posterior

probability may have a different value from the prior. However, there are two

cases in which no such change is possible. If Pr(H ) = 1 (or 0), then Pr(H | E ) = 1

(or 0), no matter what E is. The two extreme probability values (0 and 1) are

“sticky.” This is why Bayesians advise you to be extremely circumspect about

assigning a hypothesis a prior of 0 or 1. In doing so, you are saying that no

future experience could make it reasonable for you to change how confident

you are in H.

One more bit of terminology can now be introduced. I used the gremlin

example to illustrate the difference between Pr(H | E ) and Pr(E | H ). We are

now calling the first of these H’s posterior probability. The second also has

a name – it is called H’s likelihood. This terminology, due to R. A. Fisher, is

unfortunate. In ordinary English, talking about the probability of H and the

likelihood of H are two ways of saying the same thing. In the technical parlance

that is now canonical, the two come apart. To avoid confusing them, keep

gremlins firmly in mind; when you hear the noise in your attic, the gremlin

hypothesis has a high likelihood but a low probability. In what follows, when

I say “likelihood,” I will be using the term’s technical meaning.

I now can complete my sketch of Bayesianism by describing an important

consequence of Bayes’s theorem. Suppose hypotheses H1 and H2 are competing

hypotheses. We have some observational evidence E and we want to know

which of these hypotheses has the higher posterior probability. If you write

Bayes’s theorem for each of these hypotheses (please do so!), you can derive

the following equation, which is called the odds formulation of Bayes’s theorem:

Pr(H1| E )
Pr(H2| E )

= Pr(E | H1)
Pr(E | H2)

Pr(H1)
Pr(H2)

.10

This says that the ratio of posterior probabilities equals the likelihood ratio

multiplied by the ratio of prior probabilities. Notice that the unconditional

probability of the observations, Pr(E ), has dropped out. Notice also that this

version of Bayes’s theorem says that there is exactly one way that an obser-

vation E can lead you to change how confident you are in H1 as compared

10 “Odds” is a word from gambling; it refers to the ratio of posterior probabilities. If
this ratio is, say, 20-to-1, that means that H1 is twenty times as probable as H2.
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with H2. If the ratio of posteriors is to differ from the ratio of priors, this must

be because the likelihoods differ. And the more the likelihood ratio departs

from 1, the more the ratio of posterior probabilities departs from the ratio of

priors.

The odds formulation of Bayes’s theorem makes it easy to see how a hypoth-

esis with a very low prior probability can have its probability driven above

0.5 by several favorable observations, even when one such observation is not

enough to push the hypothesis over the top. Consider Susan and her positive

tuberculosis test. Suppose the prior probability of Susan’s having tuberculosis

is 0.001. She then takes a tuberculosis test that has the following property:

Pr(positive test outcome | Susan has tuberculosis) = 0.96

Pr(positive test outcome | Susan does not have tuberculosis) = 0.02

The odds formulation of Bayes’s theorem allows you to compute the ratio of

posterior probabilities from the numbers we have at hand. The likelihood ratio

is 48. The ratio of the priors is 1
999 . So the ratio of the posterior probabilities is

48
999 . This last number means that the posterior probability of Susan’s having

tuberculosis is 48
999+48 . This is way less than 1

2 , but it is bigger than 1
1000 . The

positive test result has increased Susan’s probability of having tuberculosis,

but not by a whole lot. Now suppose that Susan takes the test a second time

and again gets a positive result. Since the two test results are independent of

each other, conditional on each of the two hypotheses, the odds formulation

of Bayes’s theorem will take the following form:

Pr(H1 | E 1&E 2)
Pr(H2 | E 1&E 2)

= Pr(E 1 | H1)
Pr(E 1 | H2)

Pr(E 2 | H1)
Pr(E 2 | H2)

Pr(H1)
Pr(H2)

.

The product of the two likelihood ratios is (48)(48) = 2304. Given the ratio of

the priors, the ratio of the posterior probabilities is now 2304
999 , so the proba-

bility of tuberculosis is now 2304
999+2304 , which is about 0.69. The single positive

test outcome doesn’t entail that Susan probably has the disease, but the two

positive outcomes together have that implication. People often think that if

they take a reliable tuberculosis test and get a positive outcome, then they

probably have tuberculosis. Kahneman and Tversky (1985) call this the base

rate fallacy; the mistake is the failure to take account of the prior probability

of tuberculosis.

When I introduced the odds version of Bayes’s theorem, I mentioned that

the likelihood ratio represents the sole vehicle in the Bayesian framework
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whereby new evidence can modify your relative confidence in competing

hypotheses. It will be useful to have a principle that isolates this unique role.

Hacking (1965) calls the following the law of likelihood:

Evidence E favors hypothesis H1 over hypothesis H2 if and only if

Pr(E | H1) > Pr(E | H2).

When the evidence favors H1 over H2 in this sense, the ratio of posterior

probabilities exceeds the ratio of priors.

The law of likelihood isn’t a deductive consequence of the odds formula-

tion of Bayes’s theorem. The theorem is a mathematical fact, but the law

is not a truth of mathematics; favoring isn’t a concept that gets used in

the axioms of probability. So perhaps we should regard the law as a pro-

posed explication of the ordinary language concept of favoring. If we do so,

we must conclude that the law is flawed. Suppose a talented weather fore-

caster looks at today’s weather conditions and concludes that there probably

will be snow tomorrow. The forecaster might summarize this finding by say-

ing that the present weather conditions favor snow tomorrow over no snow

tomorrow. Here the word “favoring” is being used to describe an inequality

between probabilities, not a likelihood inequality; what is being claimed is that

Pr(snow tomorrow ! today’s weather conditions) > Pr(no snow tomorrow !

today’s weather conditions). So if the law of likelihood is an explication of

the word “favoring,” it is flawed (Sober 2008b). An alternative interpretation

of the law of likelihood is better. We can regard the law as a stipulation; the

term “favoring” is being used to mark the fact that likelihood inequalities

have a special epistemic significance, with no pretense that the law captures

every proper use of the word “favoring” in ordinary English.11 It is not for

nothing that Bayesians have come to call the likelihood ratio “the Bayes

factor.”12

It is a consequence of the law of likelihood that the evidence at hand

may favor an implausible hypothesis over a sensible one. When you observe

11 Stipulations are often said to be “arbitrary.” But within the Bayesian framework,
there is nothing arbitrary about the claim that the likelihood ratio plays a special
epistemic role. What is arbitrary is using the word “favoring” to name that role.
This, by the way, reveals one limitation of the idea that philosophy’s sole aim is to
explicate concepts that already have names in ordinary language.

12 Fitelson (2011) argues that Bayesians should reject the law of likelihood; I reply in
Sober (2011d).
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that the card you are dealt is an ace, the law says that this observation

favors the hypothesis that the deck is made entirely of aces over the hypothe-

sis that the deck is normal (since 1 > 4/52). This may sound like an objection

to the law, but there is a reply. Your doubts about the first hypothesis stem

from information you had before you observed the ace, not from what you

just observed (Edwards 1972). Likelihood comparisons are supposed to isolate

what the evidence says, not to settle which hypotheses are more probable

than which others.

Another feature of the law of likelihood is that it says that an observation

can favor one hypothesis over another even when neither hypothesis predicts

the observation. Suppose Pr(E | H1) = 0.001 and Pr(E | H2) = 0.000001. Neither

hypothesis “predicts” E in the sense of saying that E is more probable than

not, but the fact remains that E discriminates between the two hypotheses.

Asking what a hypothesis “predicts” is a highly imperfect guide to interpreting

evidence.

To keep things simple, I have treated the law of likelihood as a Bayesian

idea, and I have talked about two philosophies of scientific inference –

Bayesianism and frequentism. In fact there is a third camp; there are non-

frequentists who are critical of Bayesianism (Edwards 1972; Royall 1997).

These “likelihoodists” think that the law of likelihood stands on its own; they

think that its justification does not depend on the role that likelihoods play

in the odds formulation of Bayes’s theorem. The motivation for likelihood-

ism is illustrated by the following example. When Arthur Stanley Eddington

observed the bending of light during a solar eclipse, this was widely regarded

as strong evidence favoring Einstein’s general theory of relativity over the

classical physics of Newton. Likelihoodists represent this in terms of the rela-

tionship between two likelihoods:

Pr(Eddington’s data on the solar eclipse | general relativity theory)

> Pr(Eddington’s data on the solar eclipse | classical mechanics).

You don’t need to think about the prior probability of either theory to see

that this inequality is true.13

13 You can see here why likelihoodists don’t like the “definition” of conditional prob-
ability as a ratio of unconditional probabilities. Likelihoodists want likelihoods to
“make sense” even when priors do not.
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Although likelihoodists aren’t Bayesians, there is a formal connection

between the law of likelihood and Bayesian confirmation theory:

Pr(E | H ) > Pr(E | notH) if and only if Pr(H | E ) > Pr(H ).

E favors H over notH (in the sense of the law of likelihood) precisely when

E confirms H (in the sense of Bayesianism). I suggest that you prove this

biconditional. Doesn’t this formal connection of the two ism’s force likeli-

hoodists to admit that they are Bayesians under the skin? Not really. Besides

eschewing prior probabilities, likelihoodists think that assigning a value to

Pr(E | notH) often lacks an objective justification. It is clear enough what the

probability was of Eddington’s observations of the solar eclipse, given general

relativity. However, the probability of those observations, given the negation

of general relativity, is more opaque. The negation of general relativity is a

vast disjunction, covering all possible alternatives to general relativity, even

ones that have not yet been formulated. The likelihood of notGTR therefore

takes the following form:

Pr( O | notGTR) =
∑

i
Pr(O | Ai ) Pr( Ai | notGTR).

The likelihood of notGTR is a weighted average of the likelihoods of all the

alternatives (the Ai’s) to GTR; to compute this average, you need to know

how probable each Ai is, given notGTR. The negation of the general theory

of relativity is an example of what philosophers of science call a “catchall

hypothesis.” Likelihoodists restrict their epistemology to “specific” theories –

to general relativity and Newtonian mechanics, for example. So there are two

reasons why likelihoodists aren’t Bayesians: they don’t want to talk about the

prior and posterior probabilities of theories, and they don’t want to talk about

the likelihoods of catchalls (Sober 2008b).14

14 Can the objection to Bayesianism that focuses on its need for prior probabilities be
dealt with by appealing to various theorems concerning “the washing out of priors”?
The idea here is that agents who start with very different prior probabilities and
then interpret the evidence in the same way (because they agree on the values of
the likelihoods) will end up agreeing on the posterior probabilities; their different
starting points don’t matter in the long run. The mathematical arguments being
appealed to here are correct, but the problem is that they are asymptotic. When
agents who have different priors confront a finite data set, they will disagree about
the posteriors, often dramatically; what would happen in the infinite long run
doesn’t change that point. Think about Susan’s single tuberculosis test.
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It may be helpful to think of the difference between Bayesianism and like-

lihoodism in terms of the distinction between private and public. Bayesianism

is a philosophy for individual agents who each want to decide how confident

they should be in various hypotheses. Likelihoodism is an epistemology for

the public world of science; it aims to isolate something objective on which

agents can agree despite the fact that they differ in terms of their prior degrees

of confidence in the hypotheses under consideration. Agents need prior and

posterior probabilities to live their lives, but science needs something that

in an important way transcends individual differences. This suggestion does

not deny that scientists are agents.

Bayesianism comes in many forms, but to organize ideas let’s lump these

variants together under a single banner: computing the posterior probabilities

of hypotheses is always an attainable goal. Likelihoodists claim that this is often

impossible to achieve. When Bayesianism fails, likelihoodists hold that discov-

ering which of several specific hypotheses the evidence favors is an attainable

goal. Likelihoodism’s goal is more modest than Bayesianism’s. In a sense, like-

lihoodism is an attenuated Bayesianism; likelihoodism describes what remains

of Bayesianism when some of it is stripped away. I have yet to describe what

frequentism embraces as its attainable goal. In fact, I think there is no such

thing; frequentism is too big a tent for that to be true. However, I have men-

tioned that frequentists have something negative in common. They want to

use probabilistic tools in scientific inference without ever assigning probabil-

ities to hypotheses. Later in this chapter I’ll discuss one variety of frequentism

and outline its goals and methods.

The present lay of the land is that most theorists about inference are

monists; they sign up under a single ism and swear allegiance to it 100 percent

of the time. I am inclined to be more pluralistic. I think that Bayesian, like-

lihoodist, and frequentist ideas all have their place. The attainable goals in

scientific inference vary from problem to problem.

Ockham’s razor for Bayesians

The odds formulation of Bayes’s theorem has great significance for our inves-

tigation of Ockham’s razor. For Bayesians, parsimony is not rock bottom;

rather it is Bayes’s theorem that is fundamental. This means that if Bayesians

are going to show that a simpler theory S has a higher posterior probability

than a theory C that is more complex, they must show that S has the higher
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likelihood or that it has the higher prior probability (or both). In saying this, I

am not endorsing Bayesianism as a true and complete epistemology of science.

Rather, I am stating an if: if you are a Bayesian and you think that simplicity

is epistemically relevant, there are just two stories you can tell about why

this is so. Bayesians of course have the option of scoffing at the relevance of

parsimony, and some have done so.

Two kinds of prior probability

When Bayesians talk about prior probabilities, this often involves substantive

empirical background assumptions. For example, when Susan takes a tuber-

culosis test and the test comes out positive, you may want to figure out how

probable it is that she has tuberculosis, given this observation. Calculating

this posterior probability requires that you assign a value to a prior probabil-

ity. What probability should you assign to her having tuberculosis before you

take account of her test outcome?

As already noted, what is a prior probability at one time is often identical

in value to an earlier posterior probability. The prior probability at time t2,

Prt2(S has tuberculosis), will have the same value as the posterior probability

at the earlier time t1, Prt1(S has tuberculosis ! S lives in Wisconsin) if the only

relevant fact you learn between t1 and t2 is that Susan lives in Wisconsin. If

you also know that the frequency of tuberculosis in the state this year is about

0.00001 (approximately 60 cases in a population of about 6000000), you may

want to assign your prior at t2 a value of 0.00001. This sort of prior probability

is different from what Bayesians term a “first prior.” The first prior of Susan’s

having tuberculosis must be based on no empirical evidence at all. Some

Bayesians think that a proper theory of scientific inference requires that one

assign first priors to hypotheses. Here the assumptions that constitute the

probability function PrA(−) are merely the logical truths. Although it isn’t

weird to assign a prior probability to Susan’s having tuberculosis on the

assumption that Susan lives in a state where the frequency of tuberculosis is

0.00001, it is hard to understand how a prior probability can be assigned to

this proposition on the assumption of tautologies alone. Yet, many Bayesians

think this is necessary.

The traditional solution to this problem, which many Bayesians now reject,

is to appeal to the principle of indifference. This principle says that if there are

n exclusive and exhaustive propositions (called a partition), and you have no


