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1 INTRODUCTION

Proponents of Bayesian confirmation theory believe that they have the solution to
a significant, recalcitrant problem in philosophy of science. It is the identification
of the logic that governs evidence and its inductive bearing in science. That is the
logic that lets us say that our catalog of planetary observations strongly confirms
Copernicus’ heliocentric hypothesis; or that the fossil record is good evidence for
the theory of evolution; or that the 3oK cosmic background radiation supports big
bang cosmology. The definitive solution to this problem would be a significant
achievement. The problem is of central importance to philosophy of science, for,
in the end, what distinguishes science from myth making is that we have good
evidence for the content of science, or at least of mature sciences, whereas myths
are evidentially ungrounded fictions.

The core ideas shared by all versions of Bayesian confirmation theory are, at
a good first approximation, that a scientist’s beliefs are or should conform to a
probability measure; and that the incorporation of new evidence is through con-
ditionalization using Bayes’ theorem. While the burden of this chapter will be
to inventory why critics believe this theory may not be the solution after all, it
is worthwhile first to summarize here the most appealing virtues of this simple
account. There are three. First, the theory reduces the often nebulous notion of
a logic of induction to a single, unambiguous calculus, the probability calculus.
Second, the theory has proven to be spacious, with a remarkable ability to absorb,
systematize and vindicate what elsewhere appear as independent evidential tru-
isms. Third is its most important virtue, an assurance of consistency. The larger
our compass, the more we must digest evidence of diverse form and we must do
it consistently. Most accounts of evidence provide no assurance of consistency in
their treatment of larger bodies of evidence.1 Bayesian confirmation theory affords
us a simple picture: the entire bearing of evidence at any moment is captured by a
probability distribution. No matter how large a body of evidence we contemplate,

1Some even fail in simple cases. Consider an enumerative induction on the white swans of
Europe, which lets us conclude that all swans are white; and an enumerative induction on the
black swans of Western Australia, which leads us to the contradictory conclusion that all swans
are black.
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we will not be led to contradictions in our evidential judgments as long as we form
and update our beliefs in conformity with the probability calculus.

Perhaps because of these virtues, Bayesian confirmation theory now enjoys the
status of the leading account of induction and confirmation in the philosophy of
science literature. Those who expect this circumstance to persist should recall
that the present success of Bayesianism is relatively momentary. The probability
calculus was born over 350 years ago in the seventeenth century in correspondence
between Pascal and Fermat. One hundred years later, in the eighteenth century,
the Reverend Thomas Bayes published his theorem as part of a proposal that
probability theory be used to answer Hume’s inductive skepticism. Nonetheless,
the idea that the probability calculus afforded the right way to understand in-
ductive inference remained a minority view. The dominant view of induction in
the nineteenth century followed in the tradition of Bacon and his tables, with its
most influential expression in John Stuart Mills’ System of Logic (1891). This
dominance persisted through to the mid twentieth century.2 It competed with
the hypothetico-deductive approach to inductive inference. That view’s venerable
history can be traced through Descartes’ method of hypothesis to ancient Athens
were astronomers were, as legend has it, asked by Plato to find the geometrical
planetary constructions that would “save the phenomena” of astronomy [Duhem,
1969]. As recently as a few decades ago, the philosophy of science literature was
filled with proposals for dealing with Hempel’s [1945] notorious “paradox of the
raven.” That paradox arose within a development of Hempel’s “satisfaction” cri-
terion of confirmation, that was itself merely the ancient notion of enumerative
induction transported from the context of Aristotle’s syllogistic logic to modern,
first order predicate logic. These differing approaches played out against persis-
tent claims by Popper [1959] and his followers that the very notion of a logic of
induction is mistaken. The Bayesian approach to induction and confirmation rose
to dominance in philosophy of science only slowly in the course of the second half
of the twentieth century,3 with its importance codified by such works as Howson
and Urbach [2006].

Given this history of competing traditions in induction and confirmation rising
and falling over the centuries, it seems only prudent to expect that the Bayesian
approach will recede from its present prominence and once again be merely one of
several useful instruments for assessing inductive inference relations. The goal of
this chapter is to review the weaknesses recounted in the literature that may drive
this decline. It will draw on two sources. First are those outside the Bayesian fold
who present direct challenges; second are shortcomings identified by Bayesians,
who in turn have sought modifications within the Bayesian system. These two

2Mill’s methods remain to this day the single most important methodological idea for com-
puter repair people and auto mechanics seeking to diagnose problems. Their reach persists in the
methodological literature at least to Skyrms [1975], whose Ch. IV gives a detailed development.
See the historical survey of Blake, Ducasse and Madden [1960] for a broader sense of the minor
role probability theory has played in the longer term history of ideas of scientific methodology.

3Glymour [1980, p. 64] identifies the influence of Carnap [1950] as decisive.
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literatures overlap sufficiently for it to be impractical for me to disentangle them.4

The survey will proceed from larger to smaller issues. Section 2 will review
global challenges to Bayesian confirmation theory. These challenges derive from
differences in the basic conception of inductive inference and the principles that
govern it. They include the view that notions of inductive inference are merely
artifacts subservient to whatever methods may reliably get us to the truth; and
the proposal that there is no universally valid logic of induction, but only localized
logics adapted to individual domains. Sections 3, 4 and 5 are based on a decom-
position of Bayesian confirmation theory into independent components, which are
presented as intuitive notions pertaining to confirmation. Additivity amounts to
a decision that degrees of probability span belief and disbelief, not belief and ig-
norance; the essence of Bayesian dynamics is glossed as the incorporation of new
evidence by a simple rule of “refute and rescale” prior belief. This decomposition
supports a catalog of challenges to the specific Bayesian commitment. Among
them is “the problems of the priors,” which proves to be multiple problems ag-
gregated under one label. One — here called first problem — is that additivity
precludes prior probabilities that represent a state of complete ignorance. The
second problem derives from the simplicity of refute and rescale dynamics. It
precludes specification of a neutral prior probability distribution that exerts little
influence on the future course of conditionalization. Section 6 reports some further
challenges and Section 7 is a brief conclusion.

Some topics lie largely outside the compass of this chapter. In statistical
practice, as opposed to philosophy of science, an epochal battle continues to be
waged between proponents of traditional Neyman-Pearson hypothesis testing and
Bayesian approaches. That debate has been of far less importance in philosophy of
science and will be addressed by Deborah Mayo and Aris Spanos (this volume).5

Within the Bayesian literature itself, the dominant problem has been to find the
correct interpretation of probability: subjective, objective or logical? To someone
who is at a slight distance from Bayesianism, the debate seems misdirected in set-
ting standards of precision for the interpretation of a central term of a theory that
are rarely achieved elsewhere and are probably unachievable for probability. Its
energy is reminiscent of an internecine feud among sect members who agree vastly
more than they differ, but nonetheless tolerate no doctrinal deviations. This topic
will be addressed only in so far as it arises in broader challenges to the Bayesian
approach. These debates are addressed by Sandy Zabell (This Volume) and Philip
Dawid (This Volume) as well as survey volumes [Galavotti, 2005; Gillies, 2000;
Mellor, 2005].

4Hence I apologize in advance to Bayesians who feel that their work has been mischaracterized
as a challenge to Bayesianism.

5For a brief account from the perspective of a philosopher sympathetic with the Bayesian
approach, see [Howson, 1997]; and for a brief history from someone with opposing sympathies,
see [Mayo, manuscript].
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2 COMPETING ACCOUNTS OF THE NATURE OF INDUCTIVE
INFERENCE

Any theory of inductive inference depends upon one or more principles or presump-
tions that distinguish the right inductive inference relations. These principles must
be there, whether they are made explicit, or, as is the more usual case, left tacit.
The most fundamental of the challenges to Bayesian confirmation theory come
from differing views of these principles.

2.1 Alternatives

Given the large number of approaches to inductive inference, one might imagine
that there is a plethora of competing principles. A recent survey [Norton, 2005],
however, shows that most accounts of inductive inference can be grouped into one
of three families, there called “inductive generalization,” “hypothetical induction”
and “probabilistic induction.” Each family is based upon a distinct inductive
principal and the different members emerge from efforts to remedy the deficiencies
of the principle.

While it is impossible to give detailed descriptions of each family, it is useful
here to indicate the breadth and longevity of the first two, which compete with
the third probabilistic family. Accounts of induction belonging to inductive gen-
eralization depend on the principle that the instance of a hypothesis confirms the
generalization. This ancient notion was implemented in syllogistic logic as enumer-
ative induction: an A that is B confirms that all As are B. The principal weakness
of this archetype of the family is that it may allow rather little to be inferred. We
cannot use it to pass from the evidence of a 3oK cosmic background radiation
to the theory of big bang cosmology. The embellishments of the archetype are
devoted to extending the reach of enumerative induction. Hempel’s satisfaction
criterion reformulates the basic notion within the richer, first order predicate logic.
Mill’s methods extend it by licensing the inference to a new notion, cause. In the
Method of Agreement, if A is seen to follow a, then we infer this pattern will
persist generally and label a as the cause of A. Glymour’s “bootstrap” account of
confirmation uses instance confirmation to enable evidence to confirm hypotheses
that employ theoretical notions than are not explicitly mentioned in the evidence.
For our purposes, what matters is that all these approaches to induction depend
upon the basic principle that an instance confirms the generalization.

Accounts of induction belonging to hypothetical induction depend on the princi-
ple that the ability of an hypothesis deductively to entail the evidence is a mark of
its truth. The archetype of accounts is this family is the saving of the phenomena
in astronomy. That some model of planetary motions correctly fits and predicts
the observed positions of the planets is a mark of its truth. The principal weakness
of this principle is that it assigns the mark too indiscriminately. There are many
planetary systems — geocentric, heliocentric and more — that can save the phe-
nomena of astronomical appearances. They are all equally assigned the mark of
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truth, even though there must be some sense in which one saves the appearances
better than another. Embellishments of this basic notion are intended to rein in
the reach of hypothetical induction by adding further conditions that must be met
to earn the mark. The hypothesis that saves the phenomena must be simple, or
simpler than its competitors; or we must in addition be assured of an exclusionary
clause: that were the hypothesis that saves the phenomena false, then it would
be unlikely for the phenomena to obtain.6 Other versions require hypotheses not
just deductively to entail the evidence, but also to explain it. Ptolemy’s model of
planetary motion entails that Venus and Mercury will always appear close to the
sun. Copernicus’ model explains why: these planets orbit the sun. Finally, another
sort of embellishment enjoins us to take into account the historical process through
which the hypothesis was generated. It must be generated by a method known
to be reliable. Generating hypotheses ad hoc is not judged reliable. Parapsychol-
ogists hypothesize retrospectively that their experiments failed in the presence
of skeptics because of the unintended obstructive influence emanating from the
skeptics. We are free to discount this as an ad hoc hypothesis.

2.2 Bayesian Annexation

All these accounts represent challenges to Bayesian confirmation theory in that
they are grounded in and can be developed in a framework that does not need
the familiar structures of Bayesian confirmation theory. The natural Bayesian
rejoinder is that the two basic principles and their embellishments can be absorbed
and vindicated by the Bayesian system.

Whether one finds this possibility compelling depends on whether one finds
this gain worth the cost of adopting the extra structures and commitments that
Bayesian confirmation theory requires (such as will be discussed in Sections 3-5
below). The absorption and vindication can sometimes be quite successful. The
clearest case is the success of the Bayesian analysis of when the success of an
hypothesis H entailing true evidence E should count as inductive support for H
[Earman and Salmon, 1992, §2.7]. A familiar application of Bayes’ theorem7

P (H|E)

P (∼H|E)
=

P (E|H)

P (E| ∼H)

P (H)

P (∼H)

shows that the degree of support is controlled essentially by the likelihood ratio
P (E|H)/P (E| ∼H). If it is high, so that the evidence is much less likely to come

6One important form of this is Mayo’s [1996] error statistical approach to inductive infer-
ence in science. It requires evidence to provide a “severe test” of an hypothesis. The above
exclusionary clause is realized in Mayo’s [1996, p. 180] severity requirement: “There is a very
low probability that test procedure T would yield such a passing result, if [the hypothesis] H is
false.” It of special interest here since its debate with Bayesian confirmation theory replicates
in philosophy of inductive logic the tensions between Neyman-Pearson hypothesis testing and
Bayesian approaches in statistics. For a Bayesian rejoinder, see [Howson, 1997, §4].

7The terms have their obvious meanings. For example, P (H|E) is the (posterior) probability
of H conditioned on E; P (H) is the (prior) probability of H against the tacit background. See
Section 5 below.
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about if H is false than if it is true, then the posterior probability P (H|E) increases
correspondingly with respect to the prior probability P (H). If the likelihood ratio
is close to one so that E is pretty much as likely to come about whether or not H
is true, then P (H|E) enjoys no such increase. The analysis is appealing in that it
vindicates the basic principle of hypothetical induction, as well as going beyond it
in indicating when it will not work.

Other efforts at absorption have been less successful. In Section 5 below, we
shall the difficulties facing Bayesian efforts to explicate notions like predictive
power and simplicity. The problem is that the simple structures of the Bayesian
theory do not have enough resources to distinguish the case of an hypothesis H
merely entailing evidence E from it entailing it in a virtuous way that merits
confirmatory rewards.

There also seems to be some troubling elasticity in the way that a Bayesian
vindication of independent inductive norms is achieved. Sometimes it seems that
almost any norm could be justified. The problem is illustrated by difficulties
faced in a simple example due to Carnap, as summarized by Earman and Salmon
[1992, pp. 85-89]. The traditional form of inductive inference called “example” is a
weakening of enumerative induction that merely infers from instances to instances:
these cases of x are X; so that new case of x will also be X. The illustration deals
with finitely many individuals a, b, c, . . . that may carry a property F (written
“Fa” etc.) or fail to carry it (written “∼ Fa” etc.) The individual possibilities
are described by state descriptions, such as Fa&Fb& ∼Fc&. . .. Carnap initially
assigned equal probability to each state description. The immediate outcome was
that the argument form “example” failed. Learning that Fa and Fb are true leaves
the probabilities of Fc and ∼Fc unaffected. That could be offered as a proof of
the failure of “example,” if one was inclined against the argument form. Carnap,
however, was not so inclined. He chose to readjust the probabilities on the state
descriptions in a way that favored correlations between the properties, so that
“example” ends up being vindicated.

Closer reflection on Carnap’s illustration shows that the vindication (or oth-
erwise) of the inductive argument form “example” does not depend on anything
inherent in the probability calculus. Rather it depends upon additional assump-
tions we make. In this case it is our determination of whether the individuals
under consideration are correlated in the loose sense that one individual carrying
F tends to go with another also doing so. If we decide they are so correlated,
then “example” is vindicated, whether we express the vindication formally within
a probabilistic analysis or merely as a restatement of the informal notion of cor-
relation.

This suggests that the Bayesian vindication of inductive norms is less a matter
of extracting them from the probability calculus and more one of our introducing
them as independent assumptions that can be expressed in probabilistic language.8

8Other examples are easy to find. The Bayesian analysis of hypothetical induction
above depended essentially on our specifying as an independent assumption that the ratio
P (E|H)/P (E| ∼ H) is large. That amounts to the external assumption that E would much
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That makes them far less impressive than they initially seemed. One virtue does
persist: since we are likely to want to combine many possibly competing inductive
principles, if we do it within the framework of the probability calculus, we have
some assurance that they will be combined consistently.

2.3 Bayesian Foundational Principles

The strongest response to these challenges of other principled accounts would be
for Bayesian confirmation theory to display its own principled foundation, justify
it and argue for its superiority. However prospects here are not strong. Bayesian
confirmation theory is distinctive among accounts of confirmation theory in that
a great deal of effort as been expended in seeking to justify it. These efforts are
usually associated with different interpretations of probability and vary markedly
in character according to the interpretation. While the literature on this problem is
enormous, there seems to be no vindication that is widely agreed to be successful.
Rather the agreement lies only with the conclusion that has to be reached — that
the probability calculus is the logic of induction. Each Bayesian seems to find his
or her own path to this conclusion, often from widely diverging starting points
and with critical dismissal of other starting points.

A few examples will illustrate the divergences in the starting points and their
difficulties. The most promising approach is associated with a relative frequency
interpretation of probability, such as sought in [Salmon, 1966, pp. 83-96]. In it,
the probability of a scientific hypothesis would simply be the relative frequency of
true hypotheses in a reference class of hypotheses of the appropriate type. Since
relative frequencies behave mostly like probabilities, it is easy to conclude that the
probability calculus is the natural logic of induction, which is largely reduced to
the simple task keeping count of truth in relevant reference classes. The proposal
fails because of the insurmountable difficulty of defining which are the appropriate
reference classes, let alone assuring that the appropriate relative frequencies are
unique and well defined in the resulting infinite sets.

Another popular approach seeks to identify necessary conditions that any in-
ductive logic must meet. A version has recently been developed by Jaynes [2003]
following Cox [1961]. The attendant interpretation of probability is objective,
in the sense that, in any one circumstance, there is one correct probability as-
signment, even though we may not know it; and is “logical” in the sense that
the probabilities are treated as degrees of a logical relationship of support. The
approach is strong in that, if there is a unique logic of induction to be found,
circumscribing it by an ever-narrowing fence of necessary conditions will isolate
it. Its difficulty is that it needs to convince the reader of the necessity of a list
of conditions: that belief comes in numerical degrees that are always comparable;
that the degree of belief assigned some proposition must be a function of those
assigned to its disjunctive parts; and further, more specialized suppositions. We

more likely likely come about if H is the case than if it is not, which already pretty much gives
us the principle wanted.
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shall dissect these sorts of conditions in Sections 3, 4 and 5 below and find that
they seem necessary only if one believes from the start that degrees of belief are
probabilities.9

Finally, in association with a subjective approach to probability, there are ar-
guments that arrive at the probability calculus by urging that any distribution of
belief not in accord with the probability calculus exposes us to the danger of a
combination of wagers that assure a loss. These are the Dutch book arguments,
best known from the work of de Finetti [1937]. In a related approach, such as
Savage [1972], natural conditions on our actions are translated into conditions on
beliefs. The first and most evident weakness of these proposals is that they require
a quite substantial body of presumptions on our actions and preferences and the
rules that should be used to relate them to our beliefs. The arguments can be
defeated by denying a major presumption. I may simply be unwilling to bet; or
I may never find a bet such that I am indifferent to which side I take; or I may
harbor intransitive preferences.10

However there is a deeper problem. These approaches fundamentally change the
question asked. It was: when is this observation good evidence for that hypothesis?
The presumption of the question is that evidential support obtains independently
of our beliefs and actions. These arguments then change the question in two steps
that introduce dependencies on our beliefs and actions. First, the question of
evidential support (Does the fossil record support evolutionary theory?) is replaced
by the question of distributions of belief (How do we distribute our belief over
evolutionary theory and its competitors?). At this stage, prior to consideration of

9For example, the belief assigned to A&B is assumed to be a function of the belief assigned to
A and to B given A. It is natural to assume this if one imagines all along that “belief” is just a
code word for probabilities or frequencies. However, if one does not prejudge what “belief” must
be, the assumption of this specific functional dependency is alien and arbitrary. For a natural
counterexample that violates the rule, see [Norton, 2007, p. 144, fn. 6]. Similar difficulties arise
for attempts to use “loss functions” or “scoring rules” as a means of vindicating the Bayesian
system, such as in [Joyce, 1998]. They depend on using a scoring rule that picks out the subspace
of additive measures as local optima in the larger space of all belief functions. Any such scoring
rule must be selected carefully so as to enforce a coupling between belief in an outcome A and its
negation ∼A; for an arbitrary change in the belief assigned to A must force a suitable change in
the belief in ∼A to ensure that optimal scoring occurs only in the subspace of additive measures.
That coupling is just the sort of dependency noted in Section 4.1 and in (A′) that is tantamount
to choosing additivity. However natural they may seem, the specific conditions chosen to endow
scoring rules with this particular property amount to a prior decision to interpret low belief
values as disbelief rather than ignorance or some mix of disbelief and ignorance. In the latter
case, belief in an outcome is no longer closely coupled to the belief in its negation.

10Hájek [2008]) argues that four of the principal means of vindicating Bayesianism fail, each in
the same way. The means are the Dutch book arguments, representation theorem arguments, cal-
ibration arguments and gradational accuracy arguments. Each depends on displaying a theorem
that is interpreted to show that rationality forces Bayesianism. Each vindication, Hájek urges,
overlooks a “mirror-image” theorem that shows the reverse, that rationality requires degrees of
belief not to be probabilities. For example, the Dutch book theorem assures the existence of a
combination of fair bets that forces a sure loss for you if your numerical beliefs are not probabil-
ities. Its mirror-image is the “Czech book theorem.” It assures that a benevolent Czech bookie
can find a combination of fair bets that assures a certain gain for you just if your numerical
degrees of belief are not probabilities.
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actions, we are to accept that there is no one right distribution of belief. Yours
is presumed as good as mine. Second, rules are provided for translating beliefs
into actions, so that the consequences of our actions can be assessed and used
to restrict how we distribute our beliefs, while in general never eliminating the
possibility of different belief distributions. These rules make most sense if we are
at a racetrack or engaged in an engineering project where beliefs must be translated
into design decisions. They are strained if our concern is the question originally
asked: whether, for example, the observed motion of the galaxies provides good
evidence for the hypothesized heat death of the universe, billions of years in the
future — a circumstance independent of our beliefs and actions. The two-step
process has produced an answer to a question, but it is not the question with
which we started.11

2.4 Is There a Unique Logic of Inductive Inference?

So far, all the approaches considered — Bayesian and otherwise — have presumed
that there is a unique logic of induction to be found. Another type of challenge
to Bayesian confirmation theory denies this. Rather these challenges portray the
conditions surrounding individual problems as determining which are the appro-
priate inductive strategies and, from this perspective, it turns out that there is no
single logic of induction to be identified. Rather than having principled grounds
for identifying the right inductive logic, these approaches offer principled grounds
for denying that such a thing is possible.

A well articulated version of this approach is the learning theoretic paradigm, as
developed in [Kelly, 1996]. It presumes that our goal is getting to the truth through
some reliable method of discovery. At its simplest, an agent receives a potentially
unlimited stream of data and must formulate hypotheses expressing the pertinent
truths of the world, as the data accumulates. The central problem of the literature
is to discern the sorts of strategies that will lead to convergence to the truth in the
hypotheses formulated successively, with more rapid convergence prized. In certain
simple worlds, these methods can be governed by familiar inductive notions. A
data stream “day, night, day, night, day, . . . ” rapidly succumbs to the hypothesis
that day follows night and night follows day. In this case, enumerative induction
is all that an agent needs to formulate the true hypothesis quite early. Matters
get more complicated as the problems get harder. Looking for regularities in
what follows what, leads to limited statistical success if the problem is weather
prediction at one location and the data stream is “rain, shine, shine, shine, rain,
. . . ”; or stock market prediction with a data stream “up 3 points, up 2 points,
down 20 points, up 3 points, . . . ” There is a small amount of inertia in both the
weather and the stock market, so that conditions one day tend somewhat to be

11For a spirited assault on Dutch book arguments, see [Bacchus et al., 1990]. They urge these
arguments fail since an agent should simply refuse to accept a combination of bets that assures
a loss; it is (pp. 504-505) “a matter of deductive logic and not of propriety of belief.” Schick’s
[1986] view is similar.
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replicated the next. These methods fail completely in inhospitable worlds. If the
data stream is derived from a well-designed roulette wheel, “red, black, black, red,
red, . . . ,” no hypotheses on when red will follow black (other than chance) can
succeed. And matters can be worse in a demonic universe, which delivers data
maliciously tailored to deceive the particular agent in question.

In this reliabilist paradigm, inductive norms are parasitic on convergence to the
truth. It is simply a matter of ingenuity to conceive universes in which a given
inductive norm will be fruitful or harmful. For example, a standard supposition
of scientific methodology is that we should only advance hypotheses that are con-
sistent with the data at hand. However it turns out that, once we allow for the
computational limitations of agents, a demand for consistency can conflict with
reliability. So it may be efficient for us to offer an hypothesis inconsistent with the
evidence, even though most accounts of induction, including the Bayesian, insists
the hypothesis has been refuted. For a critique of Bayesian confirmation theory
from the reliabilist perspective, see [Kelly and Glymour, 2004].

The idea that inductive strategies will vary according to the domain at hand
is the central idea of the “material theory of induction” [Norton, 2003]. Its name
derives from the idea that the license of an inductive inference does not come
from the form of the sentences involved, as it does in deductive logic. Rather the
license comes from the subject matter of the inference. Therefore the inductive
logic applicable will vary from domain to domain as the licensing facts change;
there is no universally applicable logic of induction.

In one restricted area, this notion of material facts fixing the inductive logic is
already familiar to subjective Bayesians through Lewis’ [1980] “principal princi-
ple.” For processes for which objective chances are available, the principle enjoins
subjective Bayesians to match their subjective degrees of belief to the physical
chances. Quantum mechanical laws deliver chances for the timing of the decay
of a radioactive atom. If we match our subjective degrees of belief concerning
those timings to the quantum mechanical chances, then we are assured high belief
in outcomes that are most likely to happen and low belief in those unlikely to
happen. A by-product is that our degrees of belief automatically conform to the
probability calculus.12

The principal principle naturally generalizes to the central claim of the material
theory of induction: that the factual properties of the system under consideration
will determine the appropriate inductive logic. It follows that there may be sys-
tems whose facts dictate that the applicable logic of induction is not probabilistic.
Norton [2007, §8.3; forthcoming] describes certain physical systems whose gov-
erning laws are indeterministic in the sense that the complete specification of

12The facts that license probabilistic inferences need not be the sorts of physical chances
recovered from stochastic theories like quantum mechanics. For example, imagine that one is
a bookmaker accepting wagers on a definite matter of presently unknown fact: say, whether
some recently discovered infectious illness is viral or bacterial in origin. If the factual conditions
surrounding the bookmaking conform to all those assumed in Dutch book arguments, then those
facts determine that one’s degree of belief ought to conform to the probability calculus, on pain
of exposure to a sure loss.
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the present state of the system does not fix the future state; yet these governing
laws provide no probabilities for the various possible futures. They simply tell
us that, given such-and-such a present state, this or that future state is possible.
In the corresponding inference problem, we are required to distribute beliefs over
these possible futures, knowing the state of the present. If we distributed beliefs
as probabilities rather than in some weaker form, we end up with beliefs that
outstrip the full physical specification as given by the initial conditions and the
applicable physical laws. We must assert that one possible outcome is twice as
probable as another; or as probable as another; or half as probable. That is, we
must pretend to know more than the physical laws, which are only able to assert
that each outcome is possible, without any sense of “twice as possible” or “half as
possible.”

3 CHALLENGES TO FRAMEWORK ASSUMPTIONS

The challenges considered so far in Section 2 above have been global in the sense
that they arise from tensions between Bayesian confirmation theory as a whole
and other approaches to inductive inference. If we recall that Bayesian confirma-
tion theory is a composite of many assumptions, then another class of challenges
to Bayesian confirmation theory is identifiable. These are challenges to specific
assumptions of Bayesian confirmation theory. In order to structure the inventory
of these challenges, the assumptions comprising Bayesian confirmation theory will
be divided into three parts, called: “Framework,” to be discussed in this section;
“Additivity,” to be discussed in Section 4; and “Bayes’ dynamics: to be discussed
in Section 5.13

3.1 Framework Assumptions

What is common to all versions of Bayesian confirmation theory is the assumption
that there is a real-valued magnitude, P (H|E), that is one’s subjective degree of
belief or some objective measure of support for the hypothesis H from evidence E.
This apparently simple assumption of a real valued magnitude can be decomposed
further into a series of assumptions, each of which presumes the one before:

Precision. There is a magnitude P (A|B) that represents the degree of
belief or support accrued to A given B.

Universal comparability. It is always possible to compare two such
degrees, finding one to be less than, equal to or greater than the other.

Partial order. The comparison relation “no less than” ≤ is a partial

13This disassembly is similar to the one effected in [Norton, 2007], which in turn draws on an
extensive literature in qualitative probability. For surveys see [Fine, 1973; Fishburn, 1986].
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order: it is reflexive14, antisymmetric15 and transitive16.

Real values. The degrees are real-valued.

Different challenges would require us to halt at different stages as we pass up this
hierarchy. Lest that seem odd, the notion that a cautious ascent is needed may
be more palatable if we consider an analogous problem of assigning degrees of
simplicity to hypotheses. The same hierarchy can be formed, but few are likely to
ascend all the way to the idea of single real value that measures the degree of sim-
plicity of all hypotheses we encounter. We may stall at the start, judging the very
idea of a degree of simplicity inadmissible. Or we may allow comparison among
closely related hypotheses only. Jeffreys [1961, p.47], for example, wished to assign
greater prior probability to simpler hypotheses. So he defined the complexity m
of certain differential equations as the sum of their order, degree and the absolute
values of their coefficients. Unit prior probability was then distributed over the
resulting complexity classes as a decreasing function of m, such as 2−m or 6/π2m2.
Jeffreys’ degree is defined only for a specific class of equations. It would not sus-
tain universal comparability in that we could not compare the degree of simplicity
of the hypothesis of a linear relationship between the velocity and distance to the
galaxies with that of the hypothesis of the germ theory of disease.

3.2 The Very Idea.

The most fundamental objection is that there is something mistaken about the
very idea of a degree of belief or support that evidence lends to a hypothesis.
This objection can rest on the visceral sense that such assignments are simply
spurious precision: that we can conjure up a number does not mean that we are
measuring something. A colorful statement of the mismatch of Bayesian analysis
with diagnostic clinical practice is Feinstein’s [1977] “The haze of Bayes, the aerial
palaces of decision analysis, and the computerized Ouija board.”

In a different direction, Glymour’s [1980, Ch. III] “problem of old evidence”
speaks against the idea that the fundamental quantity P (A|B) presumed in the
framework is an adequate basis for an account of inductive inferences. The im-
port of evidence E on hypothesis H is gauged by comparing the prior probability
P (H|B) with the posterior P (H|E&B), where B is the totality of background
knowledge. It frequently happens that the evidence E is already part of our back-
ground knowledge. The celebrated case concerns the motion of Mercury, which,
at the start of the 20th century, was know to deviate slightly from the predictions
of Newtonian gravitation theory. In November 1915, Einstein found that his new-
born general theory of relativity “H” predicted exactly the observed deviations

14For all admissible A, B, P (A|B) ≤ P (A|B).
15For all admissible A, B, C and D, if P (A|B) ≤ P (C|D) and P (C|D) ≤ P (A|B), then

P (A|B) = P (C|D).
16For all admissible A, B, C, D, E and F , if P (A|B) ≤ P (C|D) and P (C|D) ≤ P (E|F ), then

P (A|B) ≤ P (E|F ).
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“E”. The universal agreement is that E provided strong support for H. However,
since E is part of the background then known to Einstein, we have

E&B = B

so that

P (H|E&B) = P (H|B)

which shows that E is evidentially inert.
If this objection is sustained, it means that a confirmation theory employing

only the quantities P (H|E) and P (H|E&B) cannot support the judgment that
E is good evidence for H.17 The obvious escape is to replace the prior P (H|B)
with an adjusted prior P (H|B′), where B′ is the background B with E somehow
excised. Glymour’s original presentation sought to block this escape by urging
that it is quite unclear how this excision could be effected. Other, more elaborate
escapes are reviewed in [Earman, 1992, Ch. 5], including the notion that we assign
evidential value to learning the logical relation between some hypothesis H and
the evidence E that is already, unbeknown to us, part of our background B.

3.3 Universal Comparability

Once we allow that the degree P (A|B) is always defined, it may still not follow
that all degrees are comparable. Keynes [1921, pp. 37-40] allows that all degrees
will lie between those assigned to impossibility and certainty, but urges that not
all intermediate degrees are mutually comparable.

The clearest way that comparability can fail is when we conditionalize on very
different sorts of backgrounds so that we are distributing belief over incommen-
surable possibilities. For example, Norton [2007, pp. 147-48] expands a concern
expressed by Humphreys [1985] in the context of propensity interpretations to
suggest that the direct degrees P (E|H) and the inverse P (H|E) may measure
very different things. P (E|H) may be derived from the computing of a quantity
in a stochastic theory: the chance of E, the decay of some particular radioactive
atom in some time as deduced from H, the laws of quantum physics. The inverse
P (H|E) assigns degrees to different physical laws on the basis of the evidence of
radioactive decay. The first deals with possibilities licensed by a known theory and
is grounded in the science; the second deals with speculation on how the world
might admit different laws whose range is delimited by our imagination. Even
if we can find protocols that allow us to assign numbers in each case, it is not
clear that there is anything meaningful in the comparison of those numbers —
just as it is meaningless to compare degree of temperature and degrees Baumé
of specific gravity, even though both are real numbers and arithmetic allows the

17Glymour’s original presentation used Bayes’ theorem to deduce P (H|E&B) = P (H|B),
although the problem is independent of Bayes’ theorem.
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comparison.18

That there are different sorts of uncertainty even in decision theoretic contexts
is illustrated by Ellsberg’s [1961] urns. Consider two urns, each containing 100
balls. The first has some combination of red and black balls. Any ratio from 0-
100% red is possible and we are completely uncertain over which. The second urn
has exactly 50 red and 50 black balls. A ball will be drawn from each urn. What
is our belief that it will be red? For both urns, the symmetry of the arrangements
requires that we be equally certain of a red or a black, so, in drawing from both
urns we should be indifferent to making bets on red or on black. Any protocol
for converting these inclinations to bet into degrees of belief must respect that
symmetry. Therefore, if the protocol generates probabilities solely on the basis of
these inclinations, in each case it will return a probability of 0.5. However Ellsberg
suggests that most of us prefer the bet on the urn of known composition, so that
the degrees of belief assigned to red ought to differ in the two cases. For our
purposes, this illustrates the possibility of different senses of uncertainty that may
not be readily comparable if we try to characterize them in a single magnitude.
These different senses reflect a distinction to be made in Section 4 below between
disbelief and ignorance.

Jaynes [2003, pp. 658-59] regards such quibbles over different senses of uncer-
tainty with characteristic, entertaining distain. He makes an analogy to a miner-
alogist who may classify rocks with different parameters but can still find a way
to trade off changes in one parameter against the other to recover a single scale of
comparison.

The idea that universal comparability must be discarded is a consequence of a
significant development of the Bayesian approach that has adopted several forms.
What they have in common is the notion that a single number may not be rich
enough to capture the extent of belief. That concern is readily motivated whenever
we are pressed to assign a definite probability to some outcome — say, whether it
will rain tomorrow. Assigning a probability 0.6 is too precise. Our belief is better
represented by something vaguer, a probability somewhere around 0.6. In one
approach, we might replace definite values by intervals of values; the probability
of rain is 0.5 to 0.7. In another we might take set of probability measures as
representing our belief states — say the set of all probability measures that assign
a probability of 0.5 to 0.7 to rain tomorrow. Developing these proposals into well
functioning theories is not straightforward. For developments of these notions, see
[Kaplan, 1998; Kyburg, 1959; Kyburg and Teng, 2001; Levi, 1974; 1980, Ch. 9;
Walley, 1991].

For our purposes, what matters is that these proposals break with the framework
sketched in that they deny universal comparability. Take the simplest case of
interval-valued degrees of belief. The belief in some outcome represented by the

18On the basis of their being “sufficiently disparate,” Fishburn [1986, p. 339] offers the follow-
ing pair as candidates for failure of comparability: “A=Mexico’s City’s population will exceed
20,000,000 by 1994; B=The first card drawn from this old and probably incomplete bridge deck
will be a heart.”
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interval [0.8, 0.9] is greater (in the sense of being closer to certainty) than the
interval [0.1, 0.2]. But the intervals [0.3, 0.7] and [0.4, 0.6] are none of greater
than, less than or equal to each other. Analogous effects arise for richer structures
that dispense with single valued degrees of belief.

3.4 Transitivity

If we allow that the degrees are always comparable, it does not yet follow that
they form a partial order, which is reflexive, antisymmetric and transitive. Of
these three properties, transitivity is of the greatest concern. Norton [2007, §3.2.2]
has suggested that transitivity may fail in certain complicated cases if common
wisdoms on inductive support obtain. That is, if we have a case of evidence entailed
by several different hypotheses, it is routine to say that the evidence supports
one of these hypotheses more than another if the first hypothesis displays more
of some relevant virtue, such as greater simplicity, greater explanatory power or
greater fecundity. Using three hypotheses and three virtues, it is easy to envisage
structures in which the first hypothesis is better confirmed than the second, the
second better than the third and the third better than the first. This violates
transitivity.19

3.5 Real Values

Once it is allowed that the degrees may be partially ordered, it is still not assured
that they must be real valued, or isomorphic to the reals or some interval of
real numbers. A great deal of effort has been expended in determining what
additional assumptions are needed to assure that the degrees are real valued.
These additional assumptions have been given many forms and are generally known
as “Archimedean axioms.” [Fishburn, 1986, pp. 341-42]. Their function is to
block the possibility of value sets that extend beyond real values in admitting
infinitesimally small or infinitely large values.

The familiar illustration in this literature of how partially ordered degrees may
fail to be real valued is generate by degrees that are ordered pairs ⟨x, y⟩ of reals x
and y [Jeffreys, 1961, pp. 19-20]. They are partially ordered by the rule

⟨X,Y ⟩ > ⟨x, y⟩ when X > x, no matter the values of Y, y
or, if X = x, when Y > y

There is no way to map these degrees ⟨x, y⟩ onto the reals so that the partial order
is preserved.

We could imagine a two parameter family of hypotheses Hx,y such that our
degrees of belief in the various hypotheses may be ordered according to the rule

19For the example of a slightly bent coin, Fishburn [1986, p. 339] describes three propositions
for which intransitivity “do[es] not seem unreasonable”: “A=The next 101 flips will give at least
40 heads; B=The next 100 flips will give at least 40 heads; C=The next 1000 flips will give at
least 460 heads.” The suggestion is that we could have the same belief in A and in C; the same
belief in C and in B, but that we must have more belief in A than B.
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just sketched. One might doubt whether such a family could arise in realistic
problems and take that doubt as a reason to discount the challenge. Or one
might be concerned that adopting a Bayesian confirmation theory presumes in
advance that such a distribution of belief is inadmissible. Such a presumption is
not compatible with the universal applicability supposed for the theory.

4 ADDITIVITY

4.1 The Property

Probability measures are additive measures. That means that they conform to the
condition:

If A and B are mutually exclusive then, for any C,
P (A ∨ B|C) = P (A|C) + P (B|C).

(A)

Additivity is the most distinctive feature of the probability calculus. In the con-
text of confirmation theory, it amounts to assigning a particular character to the
degrees of belief of the theory. The degrees of this additive measure will span from
a maximum value for an assured outcome (conventionally chosen as one) to a min-
imum value for an impossible outcome (which must be zero20). If the high values
are interpreted as belief with unit probability certainty, then it follows that the
low values must represent disbelief, with zero probability complete disbelief. To
see this, recall that near certain or certain belief in A corresponds to near complete
or complete disbelief in its negation, ∼A.21 If we assign high probability 0.99 or
unit probability to some outcome A, then by additivity the probability assigned
to the negation ∼A is 0.01 or zero, so that these low or zero values correspond to
near complete disbelief or complete disbelief.

This interpretation of low probability as disbelief is already expressed in the
functional dependency between the probabilities of outcomes and those of their
negations. We have P (∼A|C) = 1 − P (A|C), which entails

P (∼A|C) is a strictly decreasing function of P (A|C) (A′)

More generally, taking relative negations, P (∼A&B|C) = P (B|C) − P (A&B|C),
we recover the more functional dependency

P (∼A&B|C) is a strictly decreasing function of P (A&B|C) (A′′)

and a strictly increasing function of P (B|C).
These dependencies tell us that a high probability assigned to an outcome cor-

responds to a low probability assigned to its negation or relative negation, which is
the characteristic property of a scale of degrees that spans from belief to disbelief.

20If Imp is an impossible outcome, we have Imp = Imp ∨ Imp. Since Imp and Imp are mutually
exclusive in the sense that Imp & Imp = Imp, additivity applies so that P (Imp) = P (Imp) +
P (Imp), from which we have P (Imp)=0.

21I take it as a definition that disbelief in A is the same thing as belief in not-A.
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While additivity (A) entails weaker functional dependencies (A′) and (A′′), the
gap between them and (A) is not great. If the functional dependencies (A′) and
(A′′) are embedded in a natural context, it is a standard result in the literature
that the resulting degrees can be rescaled to an additive measure satisfying (A).
(See [Aczel, 1966, pp. 319-24; Norton, 2007, §7].)

4.2 Non-Additive Measures: Disbelief versus Ignorance

Once it is recognized that the additivity (A) of the probability calculus amounts
to selecting a particular interpretation of the degrees, then the ensuing challenge
becomes inevitable. In many epistemic situations, we may want low degrees to rep-
resent ignorance or some mix of ignorance and disbelief, where ignorance amounts
to a failure to commit to belief or, more simply, an absence of belief or disbe-
lief. Shafer [1976, pp. 22-25] considers how we might assign degrees of belief to
the proposition that there are living beings in orbit around Sirius, an issue about
which we should suppose we know nothing. No additive measure is appropriate.
If we assign low probability to “life,” additivity then requires us to assign high
probability to “no-life.” That asserts high certainty in there being no life, some-
thing we do know. The natural intermediate of probability 1/2 for each of the two
outcomes “life” and “no-life” fails to be a usable ignorance value since it cannot
be used if we are ignorant over more than two mutually exclusive outcomes.

This example makes clear that introducing an element of ignorance requires a
relaxation of the functional dependencies (A′) and (A′′). It must be possible to
assign a low degree of belief to some outcome without being thereby forced to
assign a high degree to its negation. Measures that allow this sort of violation
of additivity are “superadditive”: if A and B are mutually exclusive then, for
any C,P (A ∨ B|C) ≥ P (A|C) + P (B|C). The extent to which the equality is
replaced by an inequality is the extent to which the measure allows representation
of ignorance.

The best-known superadditive calculus is the Shafer-Dempster calculus. In it,
an additive measure m, called a “ basic probability assignment,” is defined over
the power set of the “frame of discernment” Θ, so that ΣA⊆Θm(A) = 1, where the
summation extends overall all subsets of Θ, and m({}) = 0. This basic measure
probability assignment is used to generate the quantity of interest, the “belief
function” Bel, which is defined as

Bel(A) = ΣB⊆ABel(B)

for any A in Θ, where the summation is taken over all subsets B of A. These
belief functions allow blending of disbelief and ignorance. For example, that we
are largely ignorant over the truth of “life” can be represented by

m(life) = 0.1 m(∼ life) = 0.1 m(life∨ ∼ life) = 0.8

which induces the belief function

Bel(life) = 0.1 Bel(∼ life) = 0.1 Bel(life∨ ∼ life) = 1
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4.3 Complete Ignorance: The First Problem of the Priors

In Bayesian confirmation theory, prior probability distributions are adjusted by
Bayes’ theorem to posterior probability distributions that incorporate new evi-
dence learned. As we trace this chain back, the prior probability distributions
represent states of greater ignorance. Bayesian confirmation theory can only give
a complete account of this learning process if it admits an initial state representing
complete ignorance. However representing ignorance is a long-standing difficulty
for Bayesian confirmation theory and the case of complete ignorance has been
especially recalcitrant. It is designated here as the first problem of the priors,
to distinguish it from another problem with prior probability delineated below in
Section 5.6 below.

There are two instruments already in the probability literature that are able
to delimit the representation of this extreme case, the epistemic state of complete
ignorance. Norton [2008] has given an extended analysis of how the two may be
used to do this. The first instrument is the principle of indifference. It asserts
that if we have no grounds for preferring one outcome to a second, then we should
assign equal belief to both. This platitude of evidence is routinely used to ground
the classical interpretation of probability and famously runs into trouble when we
redescribe the outcome space. Complete ignorance in one description is equivalent
to complete ignorance in another. That fact allows one to infer quite rapidly that
the degree of belief assigned to some compound proposition A ∨ B should be the
same as the degree of belief assigned to each of the disjunctive parts A and B, even
though A and B may be mutually exclusively.22 Since no probability distribution
can have this property, it is generally concluded that there is something wrong
with the principle of indifference.

The difficulty is that the principle of indifference is not so easily discarded. It is
a platitude of evidence. If beliefs are grounded in reasons and we have no reasons
to distinguish two outcomes, then we should have the same belief in each. The
alternative is to retain the principle of indifference and discard the notion that a
probability distribution can adequately represent complete ignorance. Instead we
are led to a representation of complete ignorance by a non-probabilistic distribution
with three values: Max and Min for the extreme values of certainty and complete
disbelief and Ig (“ignorance”) for everything in between

Degree (A) = Max, for A an assuredly true outcome
= Min, for A an assuredly false outcome
= Ig, for A any contingent23 outcome

(I)

22An example is von Mises’ famous wine-water problem. We have a glass with a mixture of
wine and water, knowing only that the ratio of wine to water lies in 1/2 to 2. So we are indifferent
to each of the intervals wine to water: (a) 1/2 to 1, (b) 1 to 1 1/2, (c) 1 1/2 to 2; and assign
equal probability of 1/3 to each. However if we redescribe the problem in terms of the ratio of
water to wine, we end up assigning equal probability of 1/3 to the intervals water to wine (a′)
1/2 to 1, (b′) 1 to 1 1/2, (c′) 1 1/2 to 2. Now the interval (a) describes the same outcome as
the disjunction (b′) ∨ (c′). So we assign probability 1/3 to the disjunction (b′) ∨ (c′) and also
to each of its parts.
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The essential property here is that we can assign the ignorance degree Ig to
some contingent outcome A ∨ B and that same ignorance degree to each of its
mutually exclusive, disjunctive parts, A and B. This is the only distribution for
which this is true over all contingent outcomes.

The second instrument used to delineate the epistemic state of complete igno-
rance is the notion of invariance, used so effectively by objective Bayesians, but
here used in a way that objective Bayesians may not endorse. The notion ulti-
mately produces serious problems for Bayesian confirmation theory. The greater
our ignorance, the more symmetries we have under which the epistemic state
should be invariant. It is quite easy to accumulate so many symmetries that the
epistemic state cannot be a probability distribution. For example, let us say we
know only

x is a real number the interval (0,1). (DATUM)

This information (DATUM) remains true if x is replaced by x′ = 1 − x, where
the function x′(x) is self-inverting. It also remains true if x is replaced by x′′ =
1− (1− (1− x)2)1/2, where once again the function x”(x) is self-inverting. So our
epistemic state must remain unchanged under each of these transformations. It is
easy to show that no probability distribution can be invariant under both. (See
[Norton, 2008, §3.2].)

Invariance requirements can be used to pick out the unique state of complete
ignorance, which turns out to be (I) above. To see the relevant invariance, consider
some proposition A over whose truth we may be completely ignorant. Our belief
would be unchanged were A replaced by ∼A.24 That is, the state of complete ig-
norance remains unchanged under a transformation that replaces every contingent
proposition with its negation. It can readily be seen that the ignorance distribution
(I) satisfies this invariance requirement. Each contingent proposition and its nega-
tion are assigned the same degree Ig.25 That this ignorance distribution (I) is the
only distribution satisfying this invariance that we are likely to encounter is made
more precise by the demonstration that it is the only monotonic26 distribution of
belief with the requisite invariance [Norton, 2008, §6].

23Contingent propositions are defined here as propositions that may be either true of false.
24Describing this transformation more figuratively makes the invariance intuitive. Imagine

that the content of proposition A has been written in a normal English sentence by a scribe on
a slip of paper, folded before us on the table. We form our belief over the truth of the sentence
on the paper: it is complete ignorance because we have no idea what the sentence says. We are
now told that the scribe erred and mistakenly wrote the content of ∼ A on the paper instead.
That new information would not change our belief state at all.

25It is assumed that the ignorance does not extend to logical truths, so that we know which
propositions are assuredly true and false and we assign Max and Min to them. We could define
a broader ignorance state in which logical truths are presumed unknown as well by assigning the
same value Ig to all propositions.

26A distribution of belief “degree (.)” is monotonic if, whenever A logically entails B,
degree(A) ≤ degree(B).
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The negation map — the transformation that replaces each contingent proposi-
tion with its negation — is a little more complicated than it may initially seem. To
see the difficulty, imagine that the outcome space is exhausted by n mutually ex-
clusive atomic propositions, A1, A2, . . . , An. The transformation replaces atomic
propositions, such as A1 by compound propositions, such as A2 ∨A3 ∨ . . .∨An, so
it may not be evident that the transformation is a symmetry of the outcome space.
It is, in the sense that it maps the outcome space back to itself and is self-inverting;
A2∨A3∨. . .∨An is mapped to A1. However, it does not preserve additive measures.
The transformation takes an additive measure m to what Norton [2007a] describes
as a “dual additive measure” M . These dual additive measures have properties
that are, on first acquaintance, odd looking. They are additive, but their additiv-
ity is attached to conjunctions. If we have propositions A and B such that A ∨B
is always true, then we can add their measures as M(A&B) = M(A) + M(B).
The notion of a dual measure allows a simple characterization of the ignorance
distribution (I): it is the unique, monotonic measure that is self-dual.

If one does not see that an epistemic state of complete ignorance is represented
by the non-probabilistic (I), one is susceptible to the “inductive disjunctive fallacy”
[Norton, forthcoming a]. Let a1, a2, a3, . . . be a large number of mutually exclusive
outcomes over which we are in complete ignorance. According to (I), we remain in
that state of complete ignorance for any contingent disjunction of these outcomes,
a1∨a2∨a3∨. . . If one applies probabilities thoughtlessly, one might try to represent
the state of complete ignorance by a broadly spread probability distribution over
the outcomes. Then the probability of the disjunction can be brought close to
unity merely by adding more outcomes. Hence one would infer fallaciously to near
certainty for a sufficiently large contingent disjunction of outcomes over which we
are individually in complete ignorance. The fallacy is surprisingly widespread. A
striking example is supplied by van Inwagen [1996] in answer to the cosmic question
“Why is there anything at all?” There is, he asserts, one way for no thing to be,
but infinitely many ways for different things to be. Distributing probabilities over
these outcomes fairly uniformly, we infer that the disjunction representing the
infinitely many ways things can be must attract all the probability mass so that
we assign probability one to it.

4.4 Bayesian Responses

The literature in Bayesian confirmation theory has long grappled with this problem
of representing ignorance. That is especially so for prior probability distributions,
where the presumption that ignorance must be representable is most pressing.
Perhaps the most satisfactory response comes through the basic supposition of
subjective Bayesians that the probabilities are subjective and may vary from per-
son to person as long as the axioms of the probability calculus are respected. So
the necessary deviation from the non-probabilistic ignorance distribution (I) in
some agent’s prior probability distribution is discounted as an individual aberra-
tion not reflecting the true evidential situation. The price paid in adopting this
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response, the injection of subjectivity and necessity of every prior being aberrant,
is too high a price for objective Bayesians, who are committed to there being one
probability distribution appropriate for each circumstance.

However objective Bayesian methods have not proven able to deliver true “ig-
norance priors,” even though the term does appear over-optimistically in the ob-
jective Bayesian literature [Jaynes, 2003, Ch.12]. One approach is to identify the
ignorance priors by invariance properties. That meets only with limited success,
since greater ignorance generates more invariances and, as we saw in Section 4.3
above, eventually there are so many invariances that no probability measure is
admissible. An alternative approach is to seek ignorance priors in distributions
of maximum entropy.27 Maximum entropy distributions do supply what are, in
an intuitive sense, the most uniform distributions admissible. If, for example, we
have an outcome space comprising n atomic propositions, without further con-
straints, the maximum entropy distribution is the one uniform distribution that
assigns probability 1/n to each atomic proposition. However, if there is sufficient
ignorance, there will be invariances under which the property of having attainted
maximum entropy will not be preserved. In the end, it is inevitable that these
methods cannot deliver the ignorance distribution (I), for (I) is not a probability
distribution. So the best that can be expected is that they will deliver a dis-
tribution that captures ignorance over one aspect of the problem, but not all.
The tendency in the literature now is to replace the misleading terminology of
“ignorance prior” by more neutral terms such as “noninformative priors,” “refer-
ence priors” or, most clearly “priors constructed by some formal rule” [Kass and
Wasserman, 1996].

Another popular approach to representing ignorance with Bayesian confirmation
theory is to allow that an agent’s epistemic state is not given by any one probability
measure, but by a set of them, possibly convex. (See for example [Levi, 1980, Ch.
9].) The deepest concern with this strategy is that it amounts to an attempt
to simulate the failure of additivity that is associated with the representation of
ignorance. Something like the complete ignorance state (I) can be simulated, for
example, by taking the set of all probability measures over the same outcome
space. The resulting structure is vastly more complicated than (I), the state it
tries to simulate. It has become non-local in the sense that a single ignorance value
is no longer attributed to an outcome. Each of the many probabilities assigned to
some outcome must be interpreted in the context of the other values assigned to
other propositions and in cognizance that there are many other distributions in
the set.28

Finally, as pointed out in Norton [2007a; 2008], a set of probability measures
necessarily falls short of simulating (I). For no set of additive measures can have
the requisite invariance property of a complete ignorance state — invariance under
the negation map. For a set of additive measures is transformed by the negation

27For further objections to maximum entropy methods, see [Seidenfeld, 1979].
28For a discussion of convex sets of probability measures and the how they contain the Shafer

Dempster belief functions as a special case, see [Kyburg, 1987].
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map into a set of dual additive measures. In informal terms, any set of additive
measures on an outcome space preserves a directedness. For each measure in the
set, as one proceeds from the assuredly false proposition to the assuredly true
by taking disjunctions, the measures assigned are non-decreasing and must, at
some point, increase strictly. Invariance under the negation map precludes such
directedness.

4.5 Ignorance over a Countable Infinity of Outcomes

The difficulties of representing ignorance have been explored in the literature in
some detail in the particular problem of identifying a state of ignorance over a
countable infinity of outcomes. It has driven Bayesians to some extreme proposals
none of which appear able to handle the problem in its most intractable form.29

The traditional starting place — already “well-known” when de Finetti [1972,
p.86] outlined it– is to determine our beliefs concerning a natural number “chosen
at random.” Its more figurative version is “de Finetti’s Lottery” [Bartha, 2004]
in which a lottery ticket is picked at random from a countable infinity of tickets.
If we write the prior probability for numbers 1, 2, 3, . . . as p1, p2, p3, . . ., we cannot
reconcile two conditions. First, since we have no preference for any number over
any other, we assign the same probability to each number

pi = pk all i, k

Second, the sum of all probabilities must be unity

p1 + p2 + p3 + . . . = 1 (CA)

No set of values for pi can satisfy both conditions.30

De Finetti’s own solution was to note that the condition (CA), “countable
additivity” (as applied to this example), is logically stronger than finite additivity
(A). The latter applies only to a finite set of outcomes — say, that the number
chosen is a number in {1, 2, . . ., n}. It asserts that the probability of this finite set
is the finite sum p1 +p2 +p3 + . . .+pn. Condition (CA) adds the requirement that
this relation continues to hold in the limit of n→ ∞. De Finetti asserted that the

29The problem of ignorance over a countable infinity of outcomes is actually no worse than
the corresponding problem with a continuum outcome space. The latter problem contains the
former in that a continuum outcome space can be partitioned into a countable infinity of subsets.
Perhaps the countable case is deemed more problematic since outcomes can still be counted so it
appears (incorrectly) that there will be a unique, natural probability measure recoverable from
ratios of counts. In the continuum case, no such illusions are possible. The continuum case is
more problematic in the sense that in it non-zero probabilities cannot be assigned to individual
outcomes. Instead a probability density is used to assign probabilities to certain sets of outcomes.
That presumes the outcome space has a topology that admits an additive measure. This device
of a probability density becomes harder to use as the outcome space becomes larger. If the space
consists of all real numbers, then the only uniform probability density is an improper density
that cannot be normalized to unity.

30Let p = pi = pk, then p1 +p2 +p3 + . . . = 0 or ∞, according to whether p is zero or non-zero,
both of which contradict (CA).



Challenges to Bayesian Confirmation Theory 413

probability distribution representing our epistemic state in this problem need only
be finitely additive, not countably additive. That allows us to set pi = 0 for all i,
without forcing the probability of infinite sets of outcomes to be zero. So if odd
= {1, 3, 5, . . .} and even = {2, 4, 6, . . .} we can still set P (odd) = P (even) = 0.5.

Solving the problem by dropping countable additivity has proven to be a pop-
ular and well-understood solution. While proponents of the restriction to finite
additivity are typically not frequentists (who identify probabilities with relative
frequencies), the connection to frequentism is natural. The frequency of any par-
ticular natural number among all is zero and the frequency of even numbers is 1/2,
in a naturally defined limit. Kadane and O’Hagan [1995] have mapped out which
uniform, finitely additive probability distributions are possible over the natural
numbers, noting how these are delimited by natural conditions such as agreement
with limiting frequencies and invariance of probability under translation of a set
of numbers. There are also variant forms of the proposal, such as the use of Pop-
per functions and the notion of “relative probability” [Bartha, and Johns, 2001,
Bartha, 2004]. However dropping countable additivity is not without disadvan-
tages and enthusiasm for it is not universal. There are Dutch book arguments that
favor countable additivity; and important limit theorems, including Bayesian con-
vergence of opinion theorems, depend upon countable additivity. See [Williamson,
1999; Howson and Urbach, 2006, pp. 26-29; Kelly, 1996, Ch. 13].31 Other ap-
proaches explore the possibility of assigning infinitesimally small probabilities to
what would otherwise be zero probability outcomes [McGee, 1994].

While all these solutions come at some cost, they are eventually unavailing. For
they have not addressed the problem in its most acute form. They deal only with
the case of ignorance over natural numbers, where this set of a countable infinity
of outcomes has a natural order. If we presume that we know of no such natural
order, then all these solutions fail, as has been shown in a paradox reported by
Bartha [2004, §5.1] and in the work of Arntzenius [manuscript].

Imagine that we have a countable infinity of outcomes with no way to order
them. If we have some labeling of the outcomes by natural numbers, that number-
ing is completely arbitrary.32 Let us pick some arbitrary labeling of the outcomes,
1, 2, 3, . . . , and seek an ignorance distribution over these labels. That ignorance
distribution should be unaffected by any one-to-one relabeling of the outcomes;
that is, the ignorance distribution is invariant under a permutation of the labels,
for permutations are a symmetry of this system. Consider the outcomes odd =
{1, 3, 5, . . . } and even = {2, 4, 6, . . . }. There is a permutation that simply

31To someone with an interest in physics, where probabilities are routinely summed over in-
finitely many outcomes, the restriction to finite additivity appears ruinous to ordinary phys-
ical theorizing. Countable additivity is hidden in many places. It is presumed whenever we
normalize a probability distribution p(x) over some real-valued parameter x. For example

1 =
R 1
0 p(x)dx =

R 1/2
0 p(x)dx+

R 3/4
1/2 p(x)dx+

R 7/8
3/4 p(x)dx+ . . .

32For a concrete example, imagine that an infinite space is partitioned into a countable infinity
of geometrically identical cubes and that our cosmology tells us that a single hydrogen atom will
appear in one of them without favoring any one of them. We arbitrarily labeling the cubes as 1,
2, 3, . . . .
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switches the labels of the two sets (1 ↔ 2, 3 ↔ 4, 5 ↔ 6, . . .), so that outcomes
in each set are exchanged. Since our belief distribution is invariant under such a
permutation, it follows that the permutation does not alter our belief and we must
have the same belief in each outcome set odd and even. Now consider the four
outcome sets

one = {1, 5, 9, 13, . . .} = {4i + 1 : i = 0, 1, 2, 3, . . .}
two = {2, 6, 10, 14, . . .} = {4i + 2 : i = 0, 1, 2, 3, . . .}
three = {3, 7, 11, 15, . . .} = {4i + 3 : i = 0, 1, 2, 3, . . .}
three = {4, 8, 12, 16, . . .} = {4i + 4 : i = 0, 1, 2, 3, . . .}

There is a permutation that switches labels of one and two; so we have equal belief
in one and two. Proceeding pairwise through the sets, we find we must have equal
belief in each of one, two, three and four. Now there is also a pairwise permutation
that switches the labels of one with those of two ∪ three ∪ four, where

two ∪ three ∪ four = {2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, . . .}

It is just the obvious permutation read off the above sets

1 ↔ 2, 5 ↔ 3, 9 ↔ 4, 13 ↔ 6, 17 ↔ 7, 21 ↔ 8, . . .

So we now infer that we must have the same belief in one as in two ∪ three ∪ four.
Combining we find: we must have the same belief in two ∪ three ∪ four and in
each of its disjunctive parts two, three and four. This requirement cannot be met
by a probability distribution for it contradicts (finite) additivity.33 It is however
compatible with the ignorance distribution (I).

Finally, it is sometimes remarked that the very idea of uniform ignorance over
a countable set is somehow illicit for there is no mechanical contrivance that could
select outcomes so that they have equal chances. No lottery commission could
build a device that would implement the de Finetti lottery. For references to these
concerns, see [Bartha, 2004, pp. 304-305], who correctly objects that the inevitable
non-unformity of probabilities of the lottery machine does not force non-uniformity
of beliefs. What needs to be added is that the entire objection is based on a circu-
larity. In it, the notion of a mechanical contrivance tacitly supposes a contrivance
whose outcomes are governed by a probability distribution. So it amounts to say-
ing that no machine whose outcomes are governed by a probability distribution
can generate outcomes governed by a non-probabilistic distribution. Recent work
in philosophy of physics has identified idealized physical mechanisms that produce
indeterministic outcomes that are not governed by a probability distribution. An
example is the “dome,” described in [Norton, 2007, §8.3; forthcoming], where it is
shown that the dome’s outcomes are governed by a non-probabilistic distribution

33Another possibility is the improper probability distribution that assigns some small proba-
bility ε to each, individual outcome and infinite probability to the total outcome space. This
improper distribution is badly behaved under conditionalization. For example P (2|even) = 0,
not ε/2; and P (two|even) = ∞/∞ = undefined, not 1/2.
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with the same structure as (I). There are many more examples of these sorts of
indeterministic systems in the “supertask” literature. (For a survey, see [Larau-
dogoitia, 2004].) Many of these mechanisms conform with Newtonian mechanics,
but depend on idealizations some find “unphysical” for their distinctive behav-
ior.34 These processes could be the physical basis of an idealized contrivance that
implements something like the de Finetti lottery.

5 BAYESIAN DYNAMICS

5.1 The Property: Refute and Rescale

The properties investigated so far — framework and additivity — are essential
to Bayesian confirmation theory. However we are still missing the essential part
of the theory from which its name is derived. For so far, we have no means to
relate probability measures conditioned on different propositions, so that we cannot
yet relate the posterior probability P (H|E) of some hypothesis H conditioned
on evidence E with its prior probability P (H) = P (H|B), for some background
B. (Here and henceforth, for notational convenience, “P (A)” will be written as
shorthand for “P (A|B)”, for some assumed background B.)

These means for relating prior and posterior probabilities are supplied by two
properties. The first property is “narrowness” and asserts for any A and C that

P (A&C|C) = P (A|C) (N)

The second property is “multiplication,” which asserts for any A and C that

P (A&C) = P (A&C|C).P (C) = P (C&A|A).P (C) (M)

These properties combined entail35

P (A|C) = P (A&C)/P (C)

when P (C) is not zero. That this formula arises through compounding the two
properties (N) and (M) is not generally reported. That compounding is important
in the discussion that follows, since these two properties make distinct assertions
in the context of confirmation theory and require separate analysis.

These two properties (N) and (M) can also be combined to yield Bayes’ theo-
rem. For hypothesis H and evidence E:

P (H&E) = P (H&E|E).P (E) = P (H|E).P (E)
= P (E&H) = P (E&H|H).P (H) = P (E|H).P (H)

34For an analysis of the notion of “physical” in this context and the suggestion that we discount
these concerns, see [Norton, 2008a].

35The combined formula is sometimes regarded as the definition of conditional probability in
terms of unconditional probability. That view is not taken here since P (A) is not unconditional,
but shorthand for P (A|B). Hájek [2003] has objected that this candidate definition fails to yield
an everywhere serviceable notion of conditional probability.
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so that when P (E) is not zero we have Bayes’ theorem

P (H|E) =
P (E|H)

P (E)
P (H) (B)

It tells us how learning evidence E should lead us to update our beliefs, as ex-
pressed in the transition from the prior P (H) to the posterior probability P (H|E).

Bayes’ theorem embodies a very simple model of belief dynamics whose two
steps essentially correspond to the two properties (N) and (M) above.

Refute. When evidence E is learned, those parts of the hypothesis H
logically incompatible with the evidence are discarded as irrelevant to
the bearing of evidence. That is, the hypothesis H has two parts in
relation to evidence E : H = (H&E) ∨ (H& ∼E). The second part
(H& ∼E) is that part which is refuted by E. The first part (H&E) is
the part of H that entails E. H can only accrue support through this
part, since we have from (N) that P (H|E) = P (H&E|E).

Rescale. The import of evidence E on competing hypotheses H,H ′, . . .
is then simply the prior probability P (H&E), P (H ′&E), . . . of those
parts of the hypotheses logically compatible with the evidence, linearly
rescaled so as to preserve normalization to unity; for, we have from (B)
and (N) that

P (H|E)

P (H ′|E)
=

P (H&E|E)

P (H ′&E|E)
=

P (E|H&E).P (H&E)

P (E|H ′&E).P (H ′&E)
=

P (H&E)

P (H ′&E)

since P (E|H&E) = 1 = P (E|H ′&E).

A figurative model of this dynamics underscore its very great simplicity. In his
“muddy Venn diagram,” Van Fraassen’s [1990. p. 161-62] pictures the total out-
come space as a surface, such as a table top, and the degrees of belief assigned to
outcome sets are represented by volumes of mud piled over the areas corresponding
to each outcome. Conditionalization on evidence E occurs in two steps, as shown
in Figure 1. First (“refute”), all the mud piled outside E is carefully swept away.
Second (“rescale”), that swept-away mud is redeposited on E in such a way that
the proportions in the contours over E are retained.36

It is informally evident that this qualitative notion of refute and rescale dynam-
ics captures the essence of Bayesian dynamics. That informal idea has been made
more precise in [Norton, 2007, §4], where the dependencies of refute and rescale
dynamics are used to generate an axiom system for degrees, which turn out to be
ordinary probabilities up to monotonic rescalings.

36For example, if the mud is twice as high at one spot in relation to another prior to the
redepositing of the mud, it will be piled twice as high after, as well.
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Figure 1. Muddy Venn diagram illustrates rescale and refute dynamics

5.2 Non- Bayesian Shifts

Under refute and rescale dynamics, the import of evidence is always to modify
prior beliefs. Earman [1992, pp. 195-198] and Brown [1996] state the obvious dif-
ficulty. The dynamics cannot apply if there is no prior belief since the hypothesis
or outcome in question is not in the outcome space. Just such a circumstance oc-
curs at decisive moments in the history of science. At moments of rapid change —
best known through Thomas Kuhn’s notion of a scientific revolution — the incon-
ceivable becomes conceivable and, we are told, that evidence compels us to believe
it. When Einstein proposed his special theory of relativity in 1905, he urged that
there is no absolute fact as to whether spatially separated events are simultaneous;
the simultaneity of events depends upon the inertial reference frame from which
they are assessed. That notion was regarded as bizarre by Einstein’s critics, many
of whom continued to refuse to take it seriously long after 1905. Another example
is Bohr’s theory of the atom of 1913. That theory seemed to require commitment
to an inconsistency: in different processes, accelerated electrons bound in an atom
would be supposed to radiate, as classical electrodynamics required, or would be
supposed not to radiate, in contradiction with classical electrodynamics, according
to which supposition was expedient for the recovery of the results Bohr needed.

Closely connected to the problem of outcomes not in the space are those to which
it is natural to assign zero probability. A logical inconsistency, such as Bohr’s
theory, is a natural candidate. It follows immediately from Bayes’ theorem that,
once we have assigned a zero prior probability to any hypothesis, conditionalization
cannot change its probability from zero. The only recovery is to reassign a non-zero
probability to the hypothesis by a process that contradicts Bayes’ theorem.

We might discount as rarities these inversions of what is conceivable and the
oddity of accepting inconsistencies as established law. However even if they are
rarities, they are important rarities that reappear throughout the history of our
science and cannot be neglected by a comprehensive account of scientific rational-
ity. The natural Bayesian rejoinder is to protest that too much is being asked of it.
The formation of new outcome spaces belongs to Reichenbach’s context of discov-



418 John D. Norton

ery. Bayesian confirmation theory, indeed any logic at all, cannot be responsible
both for logical relations among propositions and also for the discovery methods
used to create new outcome spaces.

5.3 Is Bayes’ Theorem Sensitive Enough to the Connections between
Evidence and Theory?

The simplicity of refute and rescale dynamics invites the next challenge: the dy-
namics is too simple and too insensitive to the ways that evidence and theory can
relate.

5.3.1 Problems Arising from “Refute. . . .”

The first “refute” step of Bayesian conditionalization depends essentially on the
idea that the disjunctive part of H = (H&E) ∨ (H& ∼E) that extends beyond
the total evidence E, that is H& ∼E, does not affect the bearing of evidence E
on H. That is, “narrowness” directly asserts that P (H|E) = P (H&E|E). While
this idea is so familiar as generally to pass without comment, it does represent a
blindness in Bayesian confirmation theory. As an illustration of it, imagine that we
seek to identify some animal. Our evidence is that it is a bird. What support does
that evidence lend to the possibility that the animal is a canary or, alternatively,
a canary or a whale? Narrowness asserts that it lends the same support:

P (canary or whale | bird) = P (canary | bird)

In some scenarios, this can make sense. As we check instances of birds, we will
find the frequency of “canary or whale” to arise exactly as often as “canary.” If
these frequencies are all that matters, then we would say the two outcomes are
equally supported. However few would halt there. We would discount the “whale”
disjunct as a nuisance embellishment that should be dismissed as a distraction
precisely because it is deductively refuted by the evidence “bird.” The frequency
count just mentioned is blind to its nuisance character in so far as it assigns the
same frequency of success to “canary” as to “canary or whale.”

It is possible to devise a logic that is sensitive to this problem and punishes an
hypothesis in the degree that it extends beyond the evidence. An example37 is the
“specific conditioning” logic defined in [Norton, forthcoming b, Section 10.2]. In a
formulation compatible with developments here, the logic amounts to a new defi-
nition for the conditional probability P (H|E). It starts with an additive measure

37Specific conditioning resembles some of the measures of incremental support that have been
investigated in the Bayesian literature, such as the ratio measure r(H, E) = P (H|E)/P (H) =
P (H&E)/(P (E).P (H)). (See [Eels and Fitelson, 2002].) The two differ essentially. The incre-
mental measures are functions of three arguments, H, E and B, that represent the incremental
support accorded H by evidence E alone with respect to a tacit background B. PSC(H|E) is
a function of two arguments, H and E&B, that measures the total support accorded to H by
evidence E conjoined with the background B, that is, by the total evidence E&B.
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P (.) on the background and defines the alternative

PSC(H|E) = P (H&E)2/(P (E).P (H)) = P (H&E)/(P (E).P (H&E)/(P (H)
(SC)

This alternative rule of conditionalization rewards hypotheses H with more support
the closer they come to the total evidence E = (E and background) — hence the
term “specific conditioning.” PSC(H|E) = 1 only when H = E excepting measure
zero differences. H can differ from E in two ways and the logic of (SC) penalizes it
for both. In the first way, H can fail to exhaust E in measure. Then the first factor
of (SC), that is, P (H&E)/(P (E), is less than one (which alone would correspond
to the usual case of Bayesian conditionalization). In the second way, H can extend
beyond E in measure. Then the second factor of (SC), that is P (H&E)/(P (H), is
less than one. Deviations in both ways are penalized equally and it turns out that
this is expressed in a striking symmetry in PSC . That is PSC(H|E) = PSC(E|H).

Returning to the bird example, with plausible values for PSC(.), we will have

PSC(canary or whale | bird) < PSC(canary | bird)

Indeed we will have

PSC(canary or whale | canary) < PSC(canary | canary) = 1

That is, even though “canary” deductively entails “canary or whale,” the latter
is not accorded full support from “canary.” The logic of (SC) judges “canary or
whale” to be supported less specifically by the evidence “canary.” In the case of
Bayesian confirmation theory, evidence accords unit support to any of its deductive
consequences, no matter how much they are weakened logically. PSC reduces the
support accorded to these deductive consequences according to how much they are
weakened logically.

5.3.2 Problems Arising from “. . .Rescale”

In the special case in which they hypothesis H deductively entails the evidence
E, the first “refute” step of Bayesian conditionalization is not invoked and the
process reduces to rescaling only by means of the property “multiplication” (M).
This special case provides a means of isolating the second step and plumbing its
problems.

Consider two hypotheses H and H ′ both of which entail the evidence E. In that
case, it follows from Bayes’ theorem that the ratio of the posterior probabilities
P (H|E)/P (H ′|E) is the same as the ratio of the priors. It now follows that
the incremental confirmation, as measured by the ratio of posterior and prior
P (H|E)/P (H), is the same in both cases. That is, when two hypotheses both
entail the same true evidence, they get the same confirmatory boost. In particular,
if H is more probable than, less probable than or just as probable as H ′ prior to
conditionalization, it will remain so afterwards.
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This failure to separate H and H ′ evidentially, according to critics, is to overlook
that their entailments of the evidence E can differ in more subtle qualities that
have epistemic import. For example, recall efforts in the late 19th century to detect
the earth’s motion through the luminiferous ether. These experiments yielded a
null result (E). We may entertain two hypotheses:

H: There is no ether state of rest against which the earth can move.

H ′: There is an ether state of rest but we happen to be motionless
with respect to it each time the experiments are performed.

Each of H and H ′ entail the evidence E, but it seems wrong that both should
receive the same support from E. H succeeds, as it were, by honest toil; but
H ′ by theft. There are many ways that this metaphor of honest toil and theft is
explicated.

One way notes that H succeeds because it explains why the experiments yielded
null results, where as H’ does not. Considerations like this lead Achinstein [2001,
Ch. 7] to argue that it is not sufficient to count as evidence that some datum
incrementally increases the probability of an hypothesis or that the probability of
the hypothesis conditioned on the datum is high.38 In addition there must be an
explanatory connection.

Other approaches are variants of this idea that some successful entailments
are virtuous and others not. The hypothesis H makes the prediction that all
ether current experiments will fail and that prediction is verified by the evidence.
Since H ′ supposes that it is by happenstance that we were at rest in the ether
just at the moment of the experiments, H ′ simply accommodates the evidence
in the sense that it has been adjusted to accommodate experimental reports at
hand. Predictions, for example, are virtuous and their success merits an increase in
belief; accommodations are not virtuous and are epistemically inert. See [Horwich,
1982, Ch. 5] for discussion and an argument that we should not differentially
reward prediction and accommodation. Another way of expressing these concerns
is to note that H ′ (but not H) was cooked up “ad hoc” specifically to match
the evidence. A classic example is the creationist hypothesis that the world was
created in 4004 BC, complete with a fossil record that perfectly simulates a more
ancient, evolutionary past. It is an evidential truism that such ad hoc hypotheses
gain no support from the observations they accommodate. For an account of how
ad hoc hypotheses can be treated in a Bayesian context, see [Howson and Urbach,
2006, pp. 121-126], who also suggest that sometimes there are “good” ad hoc
hypotheses that deserve support.

The literature on these evidential virtues in Bayesian confirmation theory is
large and convoluted. In general, however, there are two broad strategies that
Bayesian confirmation theory can employ when faced with a virtuous and non-
virtuous pair of hypotheses. The first is to expand the outcome space so that there

38See [Achinstein, 2001, Ch.7]and passim) for numerous examples. For example, learning that
most lottery tickets were unsold may increase greatly my belief that mine is the winning ticket,
even though the absolute probability may remain small. See also [Laudan, 1997].
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are more resources available to pick the hypotheses apart.39 That risks merely
postponing the problem since it may now return for another pair of hypotheses
in the larger space. The second is to use prior probabilities to reward virtuous
hypotheses and punish non-virtuous ones. That is, since the ratio of the posterior
probabilities P (H|E)/P (H ′|E) equals the ratio of the priors P (H)/P (H ′), we
may reward the explanatory, predictive or non-ad hoc H by making the ratio
P (H)/P (H ′) very large, so that there is a corresponding advantage for H in the
posterior probabilities. As observed in [Norton, 2007, §5.3.3], this use of prior
probabilities requires a curious prescience: we are to penalize the prior probability
of an ad hoc hypothesis in advance in just the right degree so that the punishment
perfectly cancels the as yet unknown confirmatory reward that will be accorded to
the hypotheses by Bayes’ theorem. Further, prior probabilities for hypotheses or
theories are assigned once, globally, whereas virtues are manifested locally and may
differ from domain to domain. So we may find a theory explanatory in one domain
and want to reward it with a high prior probability; but may find it explanatorily
deficient in another, and may want to punish it with a low prior probability.

5.4 The “Likelihood Theory of Evidence” and “Likelihoodism”

The above discussion has dealt with the case of hypotheses that entail the evi-
dence. Matters are slightly more complicated when the hypothesis only makes the
evidence more or less probable. In that case, Bayes’ theorem allows us to compare
the import of evidence E for two hypotheses H and H ′ as

P (H|E)

P (H ′|E)
=

P (E|H)

P (E|H ′)

P (H)

P (H ′)
(B′)

It follows that the relative import of the evidence E is fully determined by the
two likelihoods, P (E|H) and P (E|H ′). For the ratio of the prior probabilities
P (H)/P (H ′) reflects our comparative belief in H and H ′ prior to any consideration
of evidence E; the ratio of the posteriors P (H|E)/P (H|E′) reflects our comparative
belief in H and H ′ after the import of evidence E has been accommodated. The
ratio of the likelihoods P (E|H)/P (E|H ′) is what takes us from the ratio of the
prior to the ratio of the posteriors. Therefore, it expresses the relative import of
evidence E on these two hypotheses.

That the likelihoods capture all needed information for evaluating the bearing
of evidence is the core notion of a “likelihood theory of evidence.” (In the special
case in which the hypotheses entail the evidence, P (E|H) = P (E|H ′) = 1. Then
the ratio of the posteriors equals the ratio of the priors and E cannot discriminate
evidentially between H and H ′.)

Since so many of the problems of Bayesian confirmation theory focus on prior
probabilities, an attractive modification to the theory is a view that excises prior

39For example Maher treats prediction and accommodation by supposing that hypotheses are
generated by methods that may or may not have certain items of evidence available to them
when they generate the hypotheses. He then shifts assessment to the credibility of the methods.
See [Achinstein, 2001, pp. 215-221] for discussion.
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probabilities but leaves the rest intact. The view, popularly known as “likelihood-
ism,” has been advocated by Edwards [1972] and Royall [1997]. As we have just
seen, in Bayes’ theorem (B′), the evidence E favors the hypothesis H over H ′ just
in the ratio of their likelihoods, P (E|H)/P (E|H ′). The proposal is that this con-
sequence of Bayes’ theorem be extracted and elevated to an independent principle,
the “law of likelihood.” The judgment of evidential import is always comparative
— evidence favors this hypothesis more or less than that — and the troublesome
prior probabilities never need enter.

The principal difficulty for likelihoodism is that it faces all the problems of the
Bayesian refute and rescale dynamics recounted here, but without the resources
of prior probabilities to ameliorate them. In particular, likelihoodists must say
that evidence entailed by two hypotheses is equally favorable to both hypotheses
no matter what their virtues or vices. For likelihoodists have lost the Bayesian
mechanism of using prior probabilities to reward simpler hypotheses or ones with
anticipated predictive power and to penalize ad hoc or contrived hypotheses. Roy-
all [1997, §1.7] considers and offers likelihoodist rejoinders to such concerns.

5.5 Model Selection, Prediction and Simplicity

While the notion that the likelihoods capture the incremental import of evidence
has enjoyed notable successes, its overall history has been troubled. There are
recalcitrant cases in which the likelihoods alone are clearly too coarse a measure of
the import of evidence. Likelihood rewards only accuracy in fitting data at hand.
It has difficulty accommodating our common preference for simpler hypotheses
that may be less accurate. In rewarding fit to the data at hand, likelihood may be
a weaker guide to the greater truth sought that extends beyond these data; that is,
likelihood tends to favor accommodation to present data as opposed to predictive
success with future data.

The familiar and long-standing illustration of these difficulties comes in the
problem of curve fitting. Let us say that we wish to find the relationship between
variables x and y:40

⟨x1, y1⟩ = ⟨0.7, 1.0⟩, ⟨x2, y2⟩ = ⟨1.5, 1.8⟩, ⟨x3, y3⟩ = ⟨2.1, 2.0⟩, . . ., (DATA)

which are shown on the graph of Figure 2 below. Our presumption is that these
data were generated by the relation

yi = f(xi) + errori

where errori is a random error term affecting the i-th pair of x − y values. (It
is common to assume that these error terms are normally distributed and inde-
pendent of one another.) The goal of our analysis is identification of the function

40The full data set is ⟨0.7, 1.0⟩, ⟨1.5, 1.8⟩, ⟨2.1, 2.0⟩, ⟨2.3, 0.6⟩, ⟨2.6, 1.0⟩, ⟨3.8, 2.1⟩, ⟨4.5, 3.1⟩,
⟨4.7, 6.0⟩, ⟨5.6, 6.9⟩, ⟨5.6, 7.7⟩, ⟨5.8, 4.9⟩, ⟨6.2, 4.4⟩, ⟨7.1, 7.7⟩, ⟨7.6, 6.7⟩, ⟨8.8, 10.1⟩, ⟨8.9, 8.2⟩,
⟨9.1, 8.1⟩, ⟨9.3, 7.4⟩.
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f(x). The standard method is to find that function that generates a curve of best
fit to the data. For data such as in Figure 2, we would normally seek a straight
line. That is, we would assume that the unknown function is linear, so that the
data was generated by

yi = A + Bxi + errori (LIN)

That straight line turns out to be

yi = −0.332 + 0.997xi + errori (LINbest)

The straight line LINbest is the best fit to the data in the sense that it is the
straight line drawn from LIN that makes the DATA most probable. That is, its
values of A and B maximize the likelihood P (DATA | LINbest); and A = −0.332
and B = 0.997 are the “maximum likelihood estimators” of A and B.

Figure 2. Linear and cubic curves of best fit

The complication is that we can find other functions f(x) that fit the data more
closely and make it even more probable. Consider, for example, cubic functions

yi = A + Bxi + Cx2
i + Dx3

i + errori (CUB)

The particular cubic plotted in Figure 2 against the background of the same
data,

yi = 1.952 − 1.377xi + 0.581x2
i − 0.0389x3

i + errori (CUBbest)

maximizes the likelihood P (DATA | CUBbest).
As one can see from comparing the two curves visually, the cubic CUBbest fits

the data more closely that the linear LINbest and it turns out that

P (DATA| CUBbest) > P (DATA | LINbest)
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Therefore, according to the likelihood theory of evidence, we should conclude
that the data better supports the cubic CUBbest over the linear LINbest.

It is evident from a cursory scan of the data that this is most likely a mistake.
Whatever trend f(x) may be embodied within the data, it is heavily confounded
by noise from the error term. While the data definitely gives us warrant to believe
that f(x) is an increasing function of x, we have no warrant for the specifics of the
cubic CUBbest.41 We should be much more modest in what we infer from data this
noisy. The better fit of the cubic CUBbest has been achieved by the greater ability
of a cubic to conform to random fluctuations from the trend induced by noise;
that is, the curve is “overfitted.” This overfitting is most evident around x = 1,
where the curve reverses direction; and again around x = 9, where the curve also
reverses direction. Given the sparsity and scattering of the data, cubic CUBbest is
merely tracking noise at these places, whereas the linear LINbest is responding to
a real increase with x in the trend.

The informal discussion of the last paragraph captures the practical thinking
of curve fitting. It is grounded tacitly in the considerations of simplicity and
prediction at issue here. We know that we can always find a curve that fits the
data better by looking to more complicated functional forms, such as higher order
polynomials. However, at some stage, we judge that we should prefer the simpler
curve over the more complicated one that fits the data better. The reason is that
our interests extend beyond the narrow problem of finding a curve that merely
fits this particular data set well. Our data is only a sample of many more values
of x and y; and we are interested in finding a function f(x) that will also fit
these other as yet unseen values. That is, our goal is to find a function f(x)
that will support prediction. We expect that we can best achieve that goal by
forgoing some accuracy of fit with the present data of an overfitted curve in favor
of a simpler functional form for f(x) that will enable future data to be fitted
better. For an overfitted curve responds to random noise whose specific patterns
of deviations will probably not reappear in future data; however a curve drawn
from the simpler model responds more to the real relation that drives present and,
we suppose, future data as well.

The challenge to a Bayesian analysis is to find a way of capturing these last
informal thoughts in a more precise analysis. The natural way to do this is to
break up the inference problem into two parts.42 The first part requires us to
consider only models. These are sets of hypotheses indexed by parameters. For
example, LIN above is the set of linear functions with parameters A and B taking
all real values. CUB above is the set of all cubic functions with the parameters
A,B,C and D taking all real values. In the first part we decide which model is

41Perhaps it is unfair to introduce a more elevated perspective that affirms this judgment
against the cubic CUBbest. The data plotted was generated artificially from the model yi = xi

+ errori, so the linear LINbest has actually done a very good job of identifying the trend y = x.
42Traditional non-Bayesian statistical methodology implements this two part procedure by

testing whether deviations in the coefficients B and C of CUB from zero are statistically signif-
icant. If they are not, the null hypothesis of B=C=0 is accepted and estimation proceeds with
the simple model LIN.
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appropriate to the data. For DATA above, we presume that would turn out to be
LIN and not CUB. In the second part of the inference problem, we then find the
curve that fits the data best just within that selected model.

Implementing this program within Bayesianism runs into several difficulties.
The functions of LIN are a subset of those of CUB, for CUB reverts to LIN if we
set C = D = 0. So if we compute the posterior probabilities of the models on the
DATA, we will always find

P(LIN | DATA) ≤ P(CUB | DATA)

from which it follows that that the model LIN can never be more probable on the
DATA than the model CUB. So it seems that we cannot have a straightforward
Bayesian justification for preferring LIN over CUB.

Slightly less than straightforward grounds can be found. We compare not
the posterior probabilities of models, but the boosts in probability each model
sustains upon conditionalizing on the data. That is, in this modified approach,
we would prefer LIN over CUB if the ratio P (LIN | DATA) / P (LIN) exceeds
P (CUB | DATA) / P (CUB). The ratio of these two ratios is itself called the
“Bayes’ factor.”

This modified criterion of the Bayes’ factor has some plausibility since it con-
forms to the spirit of the likelihood theory in that we consider changes in prob-
ability under conditionalization, not absolute values of the posterior probability.
However the modified criterion rapidly runs into difficulties with prior probabil-
ities. To compute P (LIN | DATA), for example, we would use Bayes’ theorem,
in which the likelihood P (DATA | LIN) appears. This likelihood is really a com-
pound quantity. It is a summation over the infinitely many curves that appear in
the model LIN, corresponding to all possible values of A and B. That is,

P (DATA|LIN) =

∫

allA,B
p(DATA|A,B)p(A,B)dAdB

The problematic term is p(A,B), which is the prior probability density for the
parameters A and B given that LIN is the correct model. Since it expresses our
distribution of belief over different values of A and B prior to evidence, p(A,B)
should favor no particular values of A or B. However it is familiar problem that
no probability distribution can do this. If p(A,B) is any non-zero constant, then
it cannot be normalized to unity when we integrate over all possible values of A
and B.

While no unqualified solution to these problems has emerged, it has proven
possible to show that, for large data sets, the Bayes factor depends only weakly on
the choice of the prior probability density. In that case, the model favored by the
Bayes factor is the one that maximizes what is known as the Bayes Information
Criterion (BIC):

BIC = log Lbest – (k/2) log n
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where the maximum likelihood Lbest is the likelihood of the data when condition-
alized on the best fitting curve in the model, k is the number of parameters in the
model and n is the size of the data set. (For LIN, k is 2; for CUB, k is 4.) For
further discussion, see [Wasserman, 2000].

In maximizing BIC, we tradeoff accuracy of fit (expressed in the maximizing
of likelihood) against the simplicity of the model (expressed in the number of pa-
rameters k). This was not the goal in constructing BIC; it was generated from an
analysis that seeks the most probable model on the evidence. An analogous crite-
rion can be generated by directly seeking the model with the greatest predictive
power, as opposed to the one that is most probable. This criterion, the Akaike
Information Criterion (AIC), advocated by Forster and Sober [1994], is given by

AIC = log Lbest − k

The rationale is that overtly seeking predictive power is a surer way to get to a
truth that extends beyond the particular data at hand. Seeking the most probable
model risks favoring the vagaries of the particular data at hand.

The connection to prediction is achieved through the notion of “cross-validation.”
While we cannot now test the predictive powers of a model against presently un-
known data, we can simulate such a test by dividing the data at hand into two
parts. We use the first part to generate a best fitting hypothesis in the model and
then we check how well the resulting hypothesis fits the remaining data. In a large
set of N data, we leave out one datum and use the remaining N − 1 to generate
hypotheses from the model. We then average the errors in fitting the original
datum. If we allow each datum successively to be left out in the procedure and
average the resulting scores, we recover an estimate of the predictive powers of
the model. That estimate turns out to approach the AIC statistic for large N .
[Forster, 2002, p. S128; Browne, 2000]. The presumption is that predictive powers
manifested within a known data set in this computation will persist beyond the
confines of that data set.

It remains an open question whether likelihoods may be used as the basis of
assessment of models when we need to find an appropriate accommodation of
accuracy, simplicity and predictive power. That all the proposals above fail has
been suggested recently by Forster [2006; 2007]. He has devised examples of pairs of
models with the same number of parameters k that also deliver the same likelihood
and maximum likelihood for a specified set of data. As a result, considerations
of likelihood alone or the more refined BIC or AIC are unable to discriminate
between the models. However it is evident from informal considerations that one
model is predictively superior to the other.

Forster’s simplest example43 draws on a set of data with three points ⟨xi, yi⟩:

⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩ (DATA′)

43This example was presented in a talk by Malcolm Forster, “Is Scientific Reasoning Really
that Simple?” in “Confirmation, Induction and Science” London School of Economics, March 8
– March 10, 2007, on March 8.
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The first model, Ha : yi = axi, comprises four functions

H1/2 : yi = (1/2)xi H1 : yi = xi H2 : yi = 2xi H3 : yi = 3xi

corresponding to the parameter values a = 1/2, 1, 2, 3. The relation of this model
to DATA’ is shown in Figure 3.

Figure 3. Models H and K

The second model, Ka : yi = xi/a + (a − 1)2/a, comprises four functions

K1 : yi = xi K2 : yi = xi/2 + 1/2 K3 : yi = xi/3 + 4/3 K4 : yi = xi/4 + 9/4

corresponding to parameter values a = 1, 2, 3, 4. The relation of this model to
DATA’ is shown in Figure 3.

Which model does DATA’ favor? The computation of the likelihoods of the
individual functions is easy since they are all zero or one. The only non-zero
likelihoods are

P(DATA’ | H1) = 1 P(DATA’ | K1) = 1

We assume that the prior probabilities of functions within each model is the same.
That is44

P (Ha|H) = 1/4 for a = 1/2, 1, 2, 3
P (Ka|K) = 1/4 for a = 1, 2, 3, 4

Thus the likelihood associated with each model is the same

P (DATA′|H) = P (DATA′|H1) × P (H1|H) = 1/4
P (DATA′|K) = P (DATA′|K1) × P (H1|K) = 1/4

44In these formulae, read H = H1/2 ∨ H1 ∨ H2 ∨ H3 and K = K1 ∨ K2 ∨ K3 ∨ K4.
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Hence, we cannot use DATA’ to discriminate between the two models H and K by
means of their maximum likelihoods or the likelihoods of the models. Moreover,
we cannot discriminate between them by means of BIC or AIC; for both models
agree on the maximum likelihood and the number of parameters, k = 1.

While all the likelihood based instruments fail to discriminate between the mod-
els, informal considerations favor the model H. For it requires only one datum
from DATA’, such as ⟨1, 1⟩, to fix the function y = x in H that fits the remaining
data. The remaining two data points act as tests of the model; or, we may view
them as successful predictions. However it takes two data points from DATA’ to
fix the function in K that fits the remaining data. The datum ⟨1, 1⟩, for example,
is compatible with both K1 and K2. A second datum is needed to decide between
them. Hence only one datum remains to test the function fitted; or the model
needs more data before it can make successful predictions. As a result we infor-
mally judge that the model H is better tested and predictively stronger and thus
better warranted by the evidence. (For discussion of this aspect of curve fitting,
see [Glymour, 1980, Ch. VIII.])45

For further discussion of Bayesian and Likelihood based analyses of this prob-
lem, see [Howson and Urbach, 2006, 288-96] and [Forster and Sober, 2004] (which
includes commentary by Michael Kruse and Robert J. Boik).

5.6 A Neutral Starting Point: The Second Problem of the Priors

Bayesian confirmation theory depicts learning from evidence as the successive con-
ditionalization of a prior probability distribution on evidence so that the resulting
posterior probability distributions increasingly reflect just the evidence learned.
As we trace back along this chain of conditionalization, we expect to come to epis-
temically more neutral probability distributions, reflecting our lesser knowledge
earlier in the process. The problem of the priors in both forms developed here is
that the structure of Bayeisan confirmation theory essentially precludes neutral
probability distributions. In the first problem of the priors (Section 4.3 above), we
saw that the additivity of probability measures precludes their representing epis-
temic states of complete ignorance. Here we shall see that the Bayesian dynamics
of refute and rescale also precludes a different sort of neutrality of the probability
distribution. Bayesian dynamics makes it impossible to select a prior probability
distribution that does not exercise a controlling influence on subsequent course of
conditionalization.46

The essential problem is suggested by the notion of refute and rescale dynamics.
The results of conditionalization must already be present in the prior probability;
all that conditionalization does is to remove those parts of the prior probability

45The informal considerations invoked here may appear more familiar if we vary the example
slightly. Imagine that we are to choose between the model H : y = ax and L : y = ax + b for
DATA′. Then we would allow that H is better warranted since a single datum is needed to fix
the parameter a in H; whereas two data are needed to fix the two parameters a and b in L.

46The phrase “problem of the priors” seems to mean somewhat different to things to different
authors. For further discussion, see [Earman, 1992, pp. 57-59; Mellor, 2005, pp. 94-95].
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distribution attached to outcomes refuted by the evidence to reveal the pre-existing
distribution of belief between the unrefuted outcomes. This same point is evident
if we recall the formula governing conditional probabilities

P (H|E) = P (H&E)/P (H)

This formula tells us that P (H|E), the degree of belief we should have in H
given that we have learned E, is fixed by the two prior probabilities P (H&E)
and P (H). That means that if we fully specify our prior probabilities over some
outcome space, we have also delivered an exhaustive catalog of what our belief
in each outcome would be, given that we have learned some other outcome. For
from being neutral, the prior probability distribution anticipates how our beliefs
will evolve as we learn any sequence of admissible outcomes and different prior
probability distributions can yield courses that differ greatly. This consideration
gives further grounds for the abandoning of such terms as “ignorance priors” or
“informationless priors” in favor of “priors constructed by some formal rule” as
reported in Section 4.4 above.

As with the first problem, objectivists have the most acute difficulty with this
second problem of the priors. For they are committed to there being one, appro-
priate prior probability distribution in any given epistemic situation. Yet none can
supply the neutral starting point appropriate in the absence of all evidence. So
the objectivist must either accept the unpalatable conclusion that the initial prior
probability contains information without evidential warrant; or that Bayesian dy-
namics can only be used once we have learned enough by other means to make a
properly grounded selection of the prior probability.

Subjectivists at first seem to have a better response. For them, a prior proba-
bility is simply a statement of personal opinion with no pretensions of evidential
warrant. As evidence accumulates and is incorporated into the probability dis-
tributions by conditionalization, limit theorems assure us of a merging of opinion
onto a unique distribution that properly represents the bearing of evidence. (For
discussion of these theorems, see [Earman, 1992, Ch. 6].) However this solution
comes at some cost. At any finite stage of the process, the posterior probability
distribution is an unknown mix of unwarranted opinion and warranted support.
While the limit theorems may assure us that, in particular circumstances, the mix
will eventually converge onto warranted support, at any definite state we may be
arbitrarily far from it.47 Imagine that we have collected some very large set of
evidence Elarge and we are interested in its bearing on some hypothesis H. It will
always be possible for a determined mischief maker to identify some prior prob-
abilities for P (H&Elarge) and P (Elarge) so that P (H|Elarge) is as close to one
as you like or as close to zero as you like. The two differ essentially. The incre-
mental measures are functions of three arguments, H,E and B, that represent the
incremental support accorded H by evidence E alone with respect to a tacit back-
ground B. PSC(H|E) is a function of two arguments, H and E&B, that measures

47Here is the obligatory reporting of Keynes’ quip: “In the long run we are all dead.”
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the total support accorded to H by evidence E conjoined with the background B,
that is, by the total evidence E&B.

5.7 The Prior Probability of Universal Generalizations

Neither objectivist nor subjectivist fares well if zero or unit prior probability has
been assigned injudiciously to some outcome. Then Bayesian dynamics becomes
completely dogmatic. For once they have been assigned zero or unit probability, it
follows from Bayes’ theorem that these assignments are unrevisable by condition-
alization.48 The complete disbelief of a zero prior probability and the complete
belief of a unit probability will persist indefinitely. In concrete terms, this sort of
dogmatism is a familiar if unwelcome phenomenon. Consider the dogmatic con-
spiracy theorist who discounts the benign explanation of a catastrophe in favor of
an elaborate conspiracy committed by some secret agency. Once a zero prior prob-
ability has been assigned to the benign explanation, no failure to reveal the secret
agency’s intervention or even existence can restore belief in the benign explana-
tion. Rather Bayes’ theorem will provide mounting assurance that each failure is
further evidence of the perfection of the secret agency’s cover-up.

While the best Bayesian advice would seem to be very cautious before assigning
a zero prior probability, there are suggestions, reviewed in more detail in [Earman,
1992, §4.2, 4.3], that hypotheses with the power of universal generalizations ought
to be assigned a zero prior probability. These concerns arise for any hypotheses
H that entails a countable infinity of consequences E1, E2, . . . 49 Considering only
the first n consequences we have

P (H) = P (H|E1&. . .&En).P (En|E1&. . .&En−1).P (En−1|E1&. . .&En−2).
. . .P (E2|E1).P (E1)

Popper [1959, Appendix VII] urged that we should expect the instances E1, E2,
. . . of a universal generalization H to be equiprobable and independent of one
another. That is,

P (En|E1&. . .&En−1).P (En−1|E1&. . .&En−2).. . .P (E2|E1).P (E1)
= P (En).P (En−1).. . .P (E2).P (E1) = P (E1)n

But since this must hold for arbitrarily large n and with P (E1) < 1, it follows that
the prior P (H) = 0. The obvious weakness of Popper’s proposal is that the very
fact that E1, E2, . . . are instances of a universal generalization H suggests that
they are not independent. However, just a little dependence between E1, E2, . . .
is not enough to allow a non-zero prior for H. Inspection of the above expression
for P(H) shows that P (H) > 0 entails

48Once P (H) = 0, Bayes’ theorem (B) requires P (H|E) = 0 for all admissible E. (Condition-
alizing on evidence E for which P (E) = 0 leads to an undefined posterior P (H|E).) It follows
that for any H′ =∼H for which P (H′) = 1, P (H′|E) = 1 as well.

49The simplest example is a universal generalization that asserts, “For all x, Q(x).” where x
ranges over a countably infinite set of individuals a, b, c, . . . Its consequences are Q(a), Q(b), . . .
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Limn→∞P (En|E1&. . .&En−1) = 1

That is, finitely many favorable instances of H eventually make us arbitrarily sure
that the next instance will be favorable. That was an outcome that Jeffrey [1983,
p. 194] felt sufficiently akin to “jumping to conclusions” to want to renounce
non-zero prior probabilities on universal hypotheses.

Lest this commitment to the projectability of the hypothesis not seem immodest,
the analysis needs only a slight modification to make it more striking. Group the
instances E1, E2, . . . into sets that grow very rapidly in size. For example

F1 = E1 F2 = E2&. . .&E10 F3 = E11&. . .&E100. . .

so that

F1&. . .&Fn = E1&. . .&E(10n−1)

Each of the Fi is a consequence of H, so the above analysis can be repeated with
Fi substituted for Ei to infer that p(H) > 0 entails

Limn→∞P (E1&. . .&E(10n+1)|E1&. . .&E(10n)) = 1

That is, if we assign non-zero prior probability to an hypotheses with the power
of a universal generalization, eventually we are willing to project from some finite
set of its positive instances to arbitrarily many more at arbitrarily high probability.

The point is not that there is something intrinsically wrong with such immod-
esty. Indeed for the right hypothesis, this may be just the appropriate epistemic
attitude. The point is that assigning a zero or a non-zero prior probability to
a hypothesis with the power of a universal generalization is never neutral. The
former commits us dogmatically never to learning the hypothesis; the second, no
matter how small the non-zero prior, commits us to its arbitrary projectability on
finite favorable evidence. There is no intermediate value to assign that leaves our
options open. Our inductive course is set once the prior is assigned.

Finally, one sees that some significant prior knowledge is needed if we are to
assign the non-zero prior probabilities prudently. For a countably infinite set of
outcomes E1, E2, . . . corresponds to an uncountable infinity of universal hypothe-
ses: each hypothesis corresponds to one of the uncountably many combinations of
the Ei and their negations ∼Ei. However we can assign non-zero prior probability
to at most countably many of these hypotheses. That is, loosely speaking, when
we assign our priors, we are selecting in advance the measure zero subset that
we will be prepared to learn and dogmatically banishing the rest to disbelief no
matter what evidence may accrue.

5.8 Uncertain Evidence

The versions of Bayesian confirmation theory considered so far depict learning as
an absolute: if we are given evidence E, it cannot be doubted. That is quite unre-
alistic. No datum is ever certain and it is not uncommon in science that the accu-
mulation of later evidence leads one to doubt the correctness of evidence collected
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earlier. Something like this could be incorporated into traditional Bayesianism if
we separate, say, the inerrant sense datum D: “my retina senses a plesiosaur like
shape on the surface of Loch Ness” from the fallible evidence E: “I saw a ple-
siosaur on Loch Ness.” That fallibility could then enter the analysis through the
conditional probability P (E|D). This solution complicates the analysis without
ultimately allowing that all evidence is fallible, for it merely pushes the inerrancy
deeper into an elaborated outcome space.

A direct solution has been proposed by Jeffrey [1983, Ch. 11]. Standard
Bayesianism introduced evidence E by by conditionalizing, which forces unit prob-
ability onto E. Jeffrey instead proposed that we merely shift a lesser amount of
probability to E, commensurate with our confidence in it. This non-Bayesian shift
from initial probability Pi to final probability Pf is then propagated through the
outcome space by Jeffrey’s rule. For this simplest case of evidence that partitions
the outcome space into {E,∼E}, the rule asserts that, for each proposition A,

Pf (H) = Pi(H|E).Pf (E) + Pi(H| ∼E).Pf (∼E)

The distinctive property of this rule is that it leaves unaffected our judgments
what the probability of H would be were E definitely true or definitely false. That
is, for all H, it satisfies Pi(H|E) = Pf (H|E) and Pi(H| ∼ E) = Pf (H| ∼ E).
The uniqueness of Jeffrey’s rule follows in that it proves to be the only rule that
satisfies these two conditions [Jeffrey, 1983, p. 169; Howson and Urbach, 2006,
p. 85]. Jeffrey’s rule reduces to ordinary conditionalization if the evidence E is
certain, Pf (E) = 1.

One unappealing aspect of Jeffrey’s rule is that the order in which it is applied in
successive applications matters. That is, if we apply it first on a partition {E,∼E}
and then {F,∼ F}, in general we do not arrive at the same final probability
distribution as when the order is reversed. (See [Diaconis and Zabell, 1982].)

In the context of the Shafer-Dempster theory (Section 4.2 above), Dempster’s
rule of combination allows uncertain evidence to be combined with other belief
distributions in an analogous way, but one that is independent of the order of
combining. With appropriate restrictions, Dempster’s rule of combination can
yield ordinary Bayesian conditionalization as a special case. See [Diaconis and
Zabell, 1986] for discussion of the relationship between Jeffrey’s rule and Demp-
ster’s rules.

6 FURTHER CHALLENGES

This concluding section collects mention of some of the many further challenges
to Bayesian confirmation theory that can be found in the literature.

In a letter to Nature and a subsequent article, Popper and Miller [1983, 1987]
urged that the probabilistic support evidence E provides an hypothesis H in
Bayesian confirmation theory is not inductive support. Their argument depended
upon decomposing H into conjunctive parts by the logical identity
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H = (H ← E)&(H ∨ E)

where the first conjunct, “H, if E,” is (H ← E) = (H∨ ∼E). Since the second
conjunct (H ∨ E) is deductively entailed by E, they identify the first, (H ← E),
as “containing all of [H] that goes beyond [E]” [1983, p. 687] and require that
E supplies inductive support for H only in so far as it supports this part that is
not deductively entailed by E. However it is easy to show that P (H ← E|E) ≤
P (H ← E) so that (H ← E) never accrues probabilistic support from E.

While Popper and Miller’s argument drew much discussion (for a survey see
[Earman, 1992, pp. 95-98]), the decisive flaw was already identified immediately
by Jeffrey [1984], who objected that (H ← E) is not the part of H that goes beyond
E. It rests on a confusion of “part” with “deductive consequence.” While we might
think of theorems as logical parts of the axioms that entail them, that sense of
part no longer works when inductive relations are the concern. For example, let
H be that my lost keys are in my office (“office”) or in my bedroom (“bedroom”)
and E is the evidence that they are in my house. Then (H ← E) is the enormous
disjunction

office ∨ bedroom ∨ Mars ∨ Jupiter ∨ Saturn ∨ . . .

where the ellipses include all places not in my house. It is as peculiar to call this
disjunction a part of the original hypothesis as it is unsurprising that it is not
probabilistically confirmed by the evidence.

Another challenge to Bayesian confirmation theory comes from what first ap-
pears as an unlikely source. Over recent decades, there has been a mounting body
of evidence that people do not assess uncertainty in accord with the strictures of
probability theory. The most famous example comes from Kahneman and Tver-
sky’s [1982] experiments that showed that people are quite ready to contradict the
monotonicity of a probability measure — the property that an outcome is never
less probable that each of its logical consequences. In the case of “Linda,” they
found that people would affirm that a suitably described character Linda is more
likely to be a bank teller and feminist than a consequence of this possibility, that
she is a bank teller. One response to this body of work is to lament the unreli-
ability of people’s intuitions about uncertainty and the need for them to receive
training in the probability calculus. Another response notes that we humans have
been dealing more of less successfully with uncertainty for a long time; this success
extends to much of science, where uncertainties are rarely treated by systematic
Bayesian methods. So perhaps we should seek another approach based a little
more closely on what people naturally do. Cases like “Linda” suggest that we nat-
urally try to select the one conclusion that best balances the risk of error against
informativeness and detach it from the evidence. That is quite compatible with
preferring to detach less probable outcomes. When told a coin was tossed, most
people would infer to the outcome “heads or tails” as opposed to “heads or tails
or on edge” even though the latter is more probable and a certainty.
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In philosophy of science, if a numerical calculus is used to assess the bearing of
evidence, it is most often the probability calculus. In other domains, that is less so.
In the artificial intelligence literature, alternative calculi proliferate. They include
the Shafer-Dempster theory, possibility theory [Zadeh, 1978] as well as numerical
systems generated for particular contexts, such as the MYCIN system applied in
medical diagnostics [Shortliffe and Buchanan, 1985]. One motivating factor has
been pragmatic. A probabilistic analysis requires a prohibitively large number of
quantities to be fixed for the general case. In an outcome space with n atomic
propositions, there are of the order of n! conditional probabilities. Seen from
that perspective, possibility theory’s simple rule for disjunction is appealing: the
possibility of AvB is just the larger of the possibilities of A or B individually. That
same rule would seem disastrous to the systematic philosopher of science schooled
with Bayesian intuitions, who will wonder why the rule does not distinguish the
cases of A and B coincident or mutually exclusive and all those in between. The
debate between proponents of the different calculi, including probabilistic systems,
has been fierce. The principle goal seems to be to establish that each proponent’s
system has the same or greater expressive power than another’s. (See for example
[Cheeseman, 1986; Zadeh, 1986].)

The issue of “stopping rules” has entered the philosophy of science literature
from the debate between Bayesian and Neyman-Pearson statisticians. It pertains
to a deceptively simple plan for assuring belief in a false hypothesis. Assume
we have a fair coin. On average, on repeated tosses, it will show heads with a
frequency of about 0.5. The actual frequency will fluctuate from this expected
0.5 and there will always be some definite but small probability that the observed
frequency is arbitrarily far removed from the expected. In order to advance the
misperception that the coin is not fair, we toss it repeatedly, waiting mischievously
for chance to realize one of these rare removals that is possible but very unlikely
for a fair coin. That is our “stopping rule.” When the rare removal happens we
report the resulting count of heads and tails as evidence that the coin is not fair.
The plan can be generalized to seek disconfirmation of any statistical hypothesis.
We accumulate observations, waiting for chance fluctuations to deliver results that
can only arise with low probability if the hypothesis is true.

The result is troubling for Bayesians. For them, the import of evidence is fully
determined by the likelihood ratio and that likelihood ratio has been contrived
to favor arbitrarily strongly the falsity of the hypothesis. That the experimenter
intended to generate a deceptive result is irrelevant; the intentions of the exper-
imenter collecting the data do not appear in Bayes’ theorem. Neyman-Pearson
statisticians have a ready escape that is not available to the Bayeisan: the strat-
egy of “try and try again until you get a statistically significant result” is not a
good test of the hypothesis. Correspondingly, the procedure that uses this stop-
ping rule does not count as a severe test of the hypothesis in the sense of Mayo
[1996, §11.3, 11.4].

The Bayesian response has been to reaffirm that the likelihoods are all that
is relevant to discerning the bearing of evidence and also to point out that the
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stopping rule may never be satisfied, so that the planned disconfirmation can
fail. That is, assume that a Bayesian agent assigns a prior probability p to some
hypothesis and decides to accumulate evidence concerning the hypothesis until the
posterior probability has risen to q > p. Kadane, Schervisch and Seidenfeld [1996]
show that, if the hypothesis is false, the agent’s probability that the stopping rule
is eventually satisfied is given by

Probability of stopping ≤ p(1−q)
q(1−p)

Therefore, the closer the desired posterior probability q is set to one, the closer
the probability of stopping comes to zero; that is, the probability as assessed by
the agent approaches one that the experiment will continue indefinitely without
returning the result sought in the stopping rule.50 For more discussion see see
[Savage et al., 1962, pp. 17-20 and subsequence discussion; Mayo, 1996, §11.3,
11.4; and Kadane et al., 1996].

7 CONCLUSION

This chapter has reviewed many challenges to Bayesian confirmation theory. Some
are global, reflecting differences in the very conception of inductive inference and
the inductive enterprise in science. Others are more narrowly targeted to specific
commitments of Bayesian confirmation theory. That there are so many challenges
is a reflection of the dominance that Bayesian confirmation theory now enjoys in
philosophy of science. It offers a well-articulated account of inductive inference in
science that is of unrivalled precision, scope and power. In this regard it greatly
outshines its competitors. Abductive accounts — inference to the best explana-
tion — are still stalled by the demand for a precise account of their central notion,
explanation, whereas Bayesian confirmation theory suffers from the reverse: ex-
cessive elucidation of its central notion, probability. This precision and depth of
articulation is part of what enables the challenges to Bayesian confirmation the-
ory to be mounted. For it is only after a position is clearly articulated that its
weaknesses may also be discerned. When a new Goliath enters the arena, many
would be Davids come with their pebbles.

ACKNOWLEDGEMENTS

I am grateful to Malcolm Forster for helpful discussion on an earlier draft.

50If a tenfold boost in probability is sought, so q/p = 10, we must have p ≤ 0.1 to start with
and the formula assures us that the probability of stopping is less than (p/q − p)/(1 − p) =
(0.1 − p)/(1 − p) < 0.1.



436 John D. Norton

BIBLIOGRAPHY

[Achinstein, 2001] P. Achinstein. The Book of Evidence. New York: Oxford University Press,
2001.

[Aczel, 1966] J. Aczel. Lectures on Functional Equations and their Applications. New York:
Academic Press, 1966.

[Artzenius, manuscript] F. Arntzenius. Goodman’s and Dorr’s Riddles of Induction.
[Bacchus et al., 1990] F. Bacchus, H. E. Kyburg, Jr., and M. Thalos. Against Conditionaliza-

tion, Synthese, 85, pp. 475-506, 1990.
[Bartha, 2004] P. Bartha. Countable Additivity and the de Finetti Lottery, British Journal for

the Philosophy of Science, 55, pp. 301-321, 2004.
[Bartha and Johns, 2001] P. Bartha and R. Johns. Probability and Symmetry, Philosophy of

Science, 68 (Proceedings), pp. S109-S122, 2001.
[Blake et al., 1960] R. M. Blake, C. J. Ducasse, and E. H. Madden. Theories of Scientific

Method: The Renaissance Through the Nineteenth Century. E. H. Madden, ed. Seattle: Uni-
versity of Washington Press, 1960.

[Brown, 1994] H. Brown. Reason, Judgment and Bayes’s Law, Philosophy of Science, 61, pp.
351-69, 1994.

[Browne, 2000] M. W. Browne. Cross-Validation Methods, Journal of Mathematical Psychology
44, pp. 108-132, 2000.

[Carnap, 1950] R. Carnap. Logical Foundations of Probability. Chicago: University of Chicago
Press, 1950.

[Cheesman, 1986] P. Cheeseman. Probabilistic versus Fuzzy Reasoning, pp. 85-102 in L. N.
Kanal and J. F. Lemmer, eds., Uncertainty in Artificial Intelligence: Machine Intelligence
and Pattern Recognition. Volume 4. Amsterdam: North Holland, 1986.

[Cox, 1961] R. T. Cox. The Algebra of Probable Inference, Baltimore: Johns Hopkins Press,
1961.

[Diaconis and Zabell, 1982] P. Diaconis and S. Zabell. Updating Subjective Probability Journal
of the American Statistical Association. 77, pp. 822-30, 1982.

[Diaconis and Zabell, 1986] P. Diaconis and S. Zabell. Some Alternatives to Bayes’s Rule, pp.
25-38 in Information and Group Decision Making: Proceedings of the Second University
of California, Irvine, Conference on Political Economy. B. Grofman and G. Owen, eds.
Greenwich, Conn,: JAI Press, 1986.

[Duhem, 1969] P. Duhem. To save the phenomena, an essay on the idea of physical theory from
Plato to Galileo. Chicago, University of Chicago Press, 1969.

[Earman, 1992] J. Earman. Bayes or Bust. Cambridge, MA: Bradford-MIT, 1992.
[Earman and Salmon, 1992] J. Earman and W. Salmon. The Confirmation of Scientific Hy-

potheses, ch. 2 in Introduction to the Philosophy of Science. M. H. Salmon, et al. Prentice-
Hall, 1992; repr. Indianapoli: Hackett, 1999.

[Eells and Fitelson, 2002] E. Eells and B. Fitelson. Symmetries and Asymmetries in Evidential
Support, Philosophical Studies, 107, pp. 129-142, 2002.

[Edwards, 1972] A. W. F. Edwards. Likelihood. London: Cambridge University Press, 1972.
[Ellsberg, 1961] D. Ellsberg. Risk, Ambiguity, and the Savage Axioms, Quarterly Journal of

Economics, 75, pp. 643-69, 1961.
[Feinstein, 1977] A. R. Feinstein. Clinical Biostatistics XXXIX. The Haze of Bayes, the Aerial

Palaces of Decision Analysis, and the Computerized Ouija Board, Clinical Pharmacology and
Therapeutics 21, No. 4, pp. 482-496, 1977.

[de Finetti, 1937] B. de Finetti. Foresight: Its Logical Laws, Its Subjective Sources, trans. H. E.
Kyburg, in H. E. Kyburg and H. Smokler (eds), Studies in Subjective Probability, New York:
John Wiley & Sons, 1964, pp. 93-158.

[Fine, 1973] T. L. Fine. Theories of Probability. New York: Academic Press, 1973.
[Fishburn, 1986] P. C. Fishburn. The Axioms of Subjective Probability, Statistical Science, 1,

pp. 335-58, 1986.
[Forster, 2002] M. Forster. Predictive Accuracy as Achievable Goal of Science, Philosophy of

Science, 69, pp. S124-34, 2002.
[Forster, 2006] M. Forster. Counterexamples to a Likelihood Theory of Evidence, Minds and

Machines, 16, 319–338, 2006.



Challenges to Bayesian Confirmation Theory 437

[Forster, 2007] M. Forster. A Philosopher’s Guide to Empirical Success, Philosophy of Science,
74, pp. 588–600, 2007.

[Forster and Sober, 1994] M. Forster and E. Sober. How to Tell when Simpler, More Unified,
or Less Ad Hoc Theories will Provide, British Journal for the Philosophy of Science, 45, pp.
1-35, 1994.

[Forster and Sober, 2004] M. Forster and E. Sober. Why Likelihood? pp. 153-190 in M. L. Taper
and S. R Lee, The Nature of Scientific Evidence: Statistical, Philosophical, and Empirical
Considerations. Chicago and London: University of Chicago Press, 2004.

[Galavotti, 2005] M. C. Galavotti. Philosophical Introduction to Probability. Stanford: CSLI
Publications, 2005.

[Gillies, 2000] D. Gillies. Philosophical Theories of Probability. London: Routledge, 2000.
[Glymour, 1980] C. Glymour. Theory and Evidence. Princeton: Princeton University Press,

1980.
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