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 CASES IN WHICH PARSIMONY OR COMPATIBILITY
 METHODS WILL BE POSITIVELY MISLEADING1

 JOSEPH FELSENSTEIN

 Abstract

 Felsenstein, J. (Department of Genetics, University of Washington, Seattle, WA 98195)
 1978. Cases in which parsimony or compatibility methods will be positively misleading.
 Syst. Zool. 27:401-410.-For some simple three- and four-species cases involving a character
 with two states, it is determined under what conditions several methods of phylogenetic
 inference will fail to converge to the true phylogeny as mo,re and more data are accumulated.
 The methods are the Camin-Sokal parsimony method, the compatibility method, and Farris's
 unrooted Wagner tree parsimony method. In all cases the conditions for this failure (which
 is the failure to be statistically consistent) are essentially that parallel changes exceed infor-
 mative, nonparallel changes. It is possible for these methods to be inconsistent even when
 change is improbable a priori, provided that evolutionary rates in different lineages are suf-
 ficiently unequal. It is by extension of this approach that we may provide a sound method-
 ology for evaluating methods of phylogenetic inference. [Numerical cladistics; phylogenetic
 inference; maximum likelihood estimation; parsimony; compatibility.]

 Parsimony or minimum evolution
 methods were first introduced into phy-
 logenetic inference by Camin and Sokal
 (1965). This class of methods for inferring
 an evolutionary tree from discrete-char-
 acter data involves making a reconstruc-
 tion of the changes in a given set of char-
 acters on a given tree, counting the
 smallest number of times that a given
 kind of event need have happened, and
 using this as the measure of the adequacy
 of the evolutionary tree. (Alternatively,
 one can compute the weighted sum of the
 numbers of times several different kinds
 of events have occurred.) One attempts
 to find that evolutionary tree which re-
 quires the fewest of these evolutionary
 events to explain the observed data.
 Camin and Sokal treated the case of ir-
 reversible changes along a character state
 tree, minimizing the number of changes

 I This report was prepared as an account of work
 sponsored by the United States Government. Nei-
 ther the United States nor the United States De-
 partment of Energy, nor any of their employees, nor
 any of their contractors, subcontractors, or their em-
 ployees, makes any warranty, express or implied, or
 assumes any legal liability or responsibility for the
 accuracy, completeness or usefulness of any infor-
 mation, apparatus, product or process disclosed, or
 represents that its use would not infringe privately-
 owned rights.

 of character states required. A number of
 other parsimony methods have since ap-
 peared in the systematic literature (Kluge
 and Farris, 1969; Farris, 1969, 1970,
 1972, 1977; Farris, Kluge, and Eckhardt,
 1970) and parsimony methods have also
 found widespread use in studies of mo-
 lecular evolution (Fitch and Margoliash,
 1967, 1970; Dayhoff and Eck, 1968; see
 also Fitch, 1973). Cavalli-Sforza and Ed-
 wards (1967; Edwards and Cavalli-Sfor-
 za, 1964) earlier formulated a minimum
 evolution method for continuous-charac-
 ter data.

 An alternative methodology for phylo-
 genetic inference is the compatibility
 method, introduced by Le Quesne (1969,
 1972). He suggested that phylogenetic
 inference be based on finding the largest
 possible set of characters -which could si-
 multaneously have all states be uniquely
 derived -on the same ftree. The estimate
 of the phylogeny is then taken- to be that
 tree.-While Le Quesne's specific sugges-
 tions as to how this might be done have
 been criticized by Farris (1969), his gen-
 eral approach, which is based on Camin
 and Sokal's (1965) concept of the com-
 patibility of two characters, has been
 made rigorous and extended in a series
 of papers by G. F. Estabrook, C. S. John-
 son, Jr., and F. R. McMorris (Estabrook,

 401
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 402 SYSTEMATIC ZOOLOGY

 1972; Estabrook, Johnson, and McMorris
 1975, 1976a, 1976b; Estabrook and Lan-
 drum, 1975).

 There has been relatively little exami-
 nation of the properties of parsimony or
 compatibility methods as methods of sta-
 tistical inference. Farris (1973, 1977) has
 shown that a number of different parsi-
 mony methods produce maximum likeli-
 hood estimates of an "evolutionary hy-
 pothesis" consisting of a phylogeny along
 with the reconstructed states of the char-
 acters in a large number of ancestral pop-
 ulations. However, when the object is to
 estimate only the phylogeny, the Camin-
 Sokal method has not been proven to
 give a maximum likelihood estimate ex-
 cept in the case when the probabilities of
 change in the character states are known
 to be small (Felsenstein, 1973).

 For a given probabilistic model of evo-
 lution, one can construct a maximum
 likelihood estimate of the phylogeny,
 given the observed data on a set of dis-
 crete characters. Phylogenies construct-
 ed by the proper maximum likelihood
 method typically have the property of
 consistency. A statistical estimation
 method has the property of consistency
 when the estimate of a quantity is certain
 to converge to its true value as more and
 more data are accumulated. The purpose
 of this paper is to show that parsimony
 methods (as exemplified by the criterion
 of Camin and Sokal and by Farris's un-
 rooted tree method) as well as compati-
 bility methods do not possess the prop-
 erty of consistency in all cases. This is
 done by constructing a particular three-
 species case in which lack of consistency
 can be proven, a case in which parallel
 evolution is relatively probable. In find-
 ing such a case, we have thereby also
 shown that Farris's (1973) maximum like-
 lihood estimate of the "evolutionary hy-
 pothesis" can give an inconsistent esti-
 mate of the phylogeny, since it always
 gives the same estimate as a parsimony
 method. Although it had been suspected
 that Farris's estimate of the phylogeny
 might be inconsistent, it was previously
 known only that it was not the same as

 direct maximum likelihood estimation of
 the phylogeny (Felsenstein, 1973), and
 no actual proof of its inconsistency had
 been made.

 The result may be regarded as warning
 us of the weakness of parsimony and
 compatibility methods. Alternatively, the
 conditions which must hold in order to
 have lack of consistency may be regarded
 as so extreme that the result may be taken
 to be a validation of parsimony or com-
 patibility approaches. Readers must de-
 cide for themselves. In either case the
 conclusion reached will have the merit
 of being based on an examination of the
 properties of phylogenetic methods when
 considered as methods of statistical in-
 ference. Systematists may be tempted to
 reject this sort of attempt to evaluate phy-
 logenetic methods by the criteria of sta-
 tistical inference, particularly in view of
 the oversimplified models of evolution
 used here. It would seem difficult to take
 such a reaction seriously if unaccompan-
 ied by an attempt to erect a more ade-
 quate set of criteria, or to use the present
 criteria to examine more realistic models
 of evolution.

 To show that a parsimony or compati-
 bility method does not yield a consistent
 estimate of the phylogeny, it is not suf-
 ficient simply to show that it does not
 yield a maximum likelihood estimate.
 There are many examples known in sta-
 tistics of consistent estimation methods
 which are not maximum likelihood esti-
 mates. For example, in samples drawn
 independently from a normal distribu-
 tion, the maximum likelihood estimate of
 the mean of the underlying nor'mal dis-
 tribution is the sample mean. But the
 sample median is also a consistent esti-
 mator of the true mean. As more and
 more points are collected, it too will ap-
 proach the true mean. By analogy to this
 case it might be argued that, although
 parsimony and compatibility estimates of
 the phylogeny are not maximum likeli-
 hood estimates, they do provide consis-
 tent estimates of the phylogeny. While
 this will often be the case, we shall see
 that this conjecture is not always true.
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 MISLEADING PARSIMONY METHODS 403

 THE EXAMPLE

 The example involves characters each
 of which has two states, 0 and 1. The an-
 cestral state in each character is 0 and the
 derived state is 1. It is possible for the
 state of a population to change from 0 to
 1, but not to revert from state 1 to state 0.
 Suppose that we have observed three
 species A, B, and C and that the (un-
 known) true phylogeny is as given in Fig.
 1. Once a character is in state 1 at the
 beginning of a segment of the tree, it will
 not change thereafter, so that all we need
 to know for each segment is the proba-
 bility that a character which is in state 0 at
 the beginning of the segment will have
 changed to state 1 by the end of the seg-
 ment. These probabilities are assumed to
 be the same for all characters in this par-
 ticular case; they are the quantities P, Q,
 and R shown in Fig. 1 next to the seg-
 ments. In this particular case, the proba-
 bilities of change are assumed to be the
 same in segments II and IV of the tree,
 and the same in segments III and V. This
 is done purely to make the algebra easier:
 this assumption could be relaxed some-
 what without altering the qualitative con-
 clusions. It is important to realize that the
 constancy of P, Q, and R from character
 to character, and the differences between
 them from segment to segment, amount
 to strong assumptions about the biologi-
 cal situation. The differences in the prob-
 ability of change may be due to the seg-
 ments' being of different length in time
 (so that the tip species are not contem-
 poraneous). Alternatively, they may be
 due to differences in the rate of evolution
 per unit time, differences from segment
 to segment of a sort which affect all char-
 acters. This amounts to the assumption
 that there are true differences in the over-
 all rates of evolution of different lineages.

 In Fig. 1 the segments of the tree are
 also numbered with Roman numerals.
 Knowing the probability of 0 -> 1 change
 in each segment, we can easily obtain the
 probabilities of each of the possible com-
 binations of states in the tips. For exam-
 ple, for the three tip species to be in

 A.

 15/Qp

 fIR

 FIG. 1.-An evolutionary tree with three tip
 species. The segments of the tree are numbered I
 through V, and next to each is shown the probability
 of change from state 0 to state 1 in the segment.

 states 1, 1, and 0 respectively, there must
 have been no change from state 0 in seg-
 ments I and V. There may have been a
 0 -> 1 change in segment II, or else no
 change in that segment but 0 -O 1
 changes in both segments III and IV. The
 probability of observing states 1, 1, and
 O is thus

 Plo = (1 - R)[Q + (1 - Q)PQ](1 - P)
 (1)

 Similarly, we can compute the probabil-
 ities of all eight possible configurations
 of character states:

 POO0 = (1 - P)2(1- Q)2(1- R) (2a)
 Pool = P(1 - P)(1- Q)2(1- R) (2b)
 Polo = (1 - P)2Q(1- Q)(1 - R) (2c)
 Poll = P(1 - P)Q(1- Q)(1 - R) (2d)
 Ploo = P(1 - P)(1 - Q)2(1 - R) (2e)
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 404 SYSTEMATIC ZOOLOGY

 P1o1 = P2(1 - Q)2(1 - R) (2f)
 P11o = (1 - P)[Q + (1 - Q)PQ](1 - R)

 (2g)

 P111 = PQ[P(1 - Q) + 1](1 - R) + R (2h)

 RESULTS OF THE CAMIN-SOKAL

 PARSIMONY METHOD

 If we examine N characters in these
 three species, we can count how many of
 the characters are in each of the eight
 possible combinations: 000, 001, 010, ,
 111. Let us call the resulting numbers of
 characters no00, nool,. n1ll. We can use
 these numbers to discover what will be
 the result of applying the Camin-Sokal
 parsimony method to these data. When a
 character has the configuration 000, then
 no matter which phylogeny we propose,
 no changes of character state will be re-
 quired to explain the evolution of this
 character along that phylogeny. There are
 four other configurations of the data which
 will require only one character state
 change to be assumed, no matter what
 phylogeny is postulated. These are 001,
 010, and 100, which require one character
 state change on the segment of the evo-
 lutionary tree leading to a single species,
 as well as 111, which requires a single
 change at the root of the tree.

 The remaining three configurations,
 110, 101, and 011, will require different
 numbers of changes of state on different
 phylogenies. Let us represent the three
 possible bifurcating phylogenies as (AB)C,
 A(BC), and (AC)B, placing parentheses
 around monophyletic groups. On the phy-
 logeny (AB)C, the configuration 110 re-
 quires only one change while the others
 require two changes. If we let

 S = nool + nolo + n100 + n111
 + 2(n1j0 + n101 + no11), (3)

 then (AB)C requires S - n110 changes of
 state to be assumed. By similar logic,
 A(BC) requires S - n011 changes, and
 (AC)B requires S - ni01 changes. Which
 tree we estimate depends on which re-
 quires us to assume the fewest changes
 of character state. We can immediately
 see that the Camin-Sokal parsimony

 method will estimate the correct phylog-

 eny as (AB)C if and only if n1l0 o n1ol, no11.
 When no1, is the greatest of these three
 numbers A(BC) will be the estimate, and
 when n10o is the greatest the estimate will
 be (AC)B. When there are ties for the
 greatest of n1lo, n1ol, and no1,, there will
 be two or more possible estimates.

 INCONSISTENCY OF THE RESULT

 We assume that the N characters have
 evolved independently of one another,
 and have been chosen for study without
 regard to the configuration of their char-
 acter states in these three species. Each
 character may be regarded as falling in-
 dependently into one of the eight config-
 urations 000, , 111 with probabilities
 POOO, , P1I1. So the nijk are drawn from
 a multinomial distribution with these
 probabilities.

 In such a case, an elementary applica-
 tion of the Strong Law of Large Numbers
 (e.g., Feller, 1957:243-244) tells us that
 as we let N->oo, nijk/N->Pijk for all con-
 figurations ijk. In particular, this implies
 that as we score more and more charac-

 ters, n11o will ultimately become larger
 and remain larger than either n10o or no11
 if and only if P1lo > P11,O Po1l. Whichever
 of these three probabilities is largest de-
 termines which of the three bifurcating
 phylogenies is certain to be the ultimate
 estimate as we accumulate more and more
 characters. Thus the condition for the
 Camin-Sokal estimate to have the prop-
 erty of consistency is simple: that P1lo be
 greater than or equal to both P1o1 and Po11.
 Note in particular that if this condition
 does not hold, the consequences are strik-
 ing: if, say P10o > P1lo,_ P1l, then as we ac-
 cumulate more and more information the
 Camin-Sokal parsimony method is in-
 creasingly certain to give the wrong an-
 swer, in this case (AC)B.

 We now examine the conditions on P
 and Q which are required in order to have
 inconsistency of the Camin-Sokal parsi-
 mony methods. The three quantities P1lo,
 PI1o, and Po11 are given by the expressions
 (2g), (2f), and (2d). Note that all of these
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 MISLEADING PARSIMONY METHODS 405

 quantities contain a common factor of(1 -
 R). Provided that R < 1 (which we as-
 sume), this factor can be dropped. The
 condition Pl0o ? Poll then becomes

 (1 - P)[Q + (1 - Q)PQ]
 P(1 - P)Q(1 - Q)

 which simplifies to

 Q (1 - P) 0 . (5)

 This will always hold, so in the present
 case it will always be true that Pllo - Poll.
 Now we need only inquire whether P0lo ?
 Plol. This is the same as asking whether

 (1 - P)[Q + (1 - Q)PQ] - P2(1 - Q)2
 (6)

 which is equivalent to requiring that

 O P2(1-Q)+PQ2-Q. (7)

 Let us view this as a quadratic equation
 in P whose coefficients depend on Q.
 Since 1 - Q > 0 (which we assume), the
 quadratic in (7) has a minimum at P =
 -Q/(1 - Q). Since this is never positive,
 the positive values of P for which (7) is
 satisfied are those values of P below the
 point where the quadratic function is
 zero:

 P S P1 = (_Q2 + [Q4 + 4Q(1 - Q)]1/2)
 /2(1 - Q) (8)

 P1 is always a real number, so no com-
 plications arise. Figure 2 shows P1 plotted
 for values of Q between 0 and 1. P1 rises
 from 0 to 1 as Q goes from 0 to 1. Above
 the P1 curve is the region of values of P
 for which P1lo < P1ol.

 This is the region in which the Camin-
 Sokal parsimony method is guaranteed to
 converge to the wrong estimate of the
 tree as we accumulate more and more
 data. Note that for every possible value
 of Q there is a range of values of P in
 which we will encounter this unpleasant
 behavior. A similar statement holds if we
 rearrange (7) to obtain limits on the val-
 ues of Q as a function of P, so that for
 every value of P there is a range of Q
 values in which this unpleasant behavior

 I .00

 .90

 .80 NC/

 -Bso ' N C
 .70.

 .50 C

 Sokl -s hdfal o be cstetithpren

 .40

 .30-

 .20-

 .10

 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00
 Q

 FIG. 2.-Values of P and Q for which the Gamin-
 Sokal method fails to be consistent in the present
 case. C denotes the region of consistency, NC the
 region of inconsistency. Their boundary is the
 curve relating P1 to Q.

 occurs. Note that for small Q, the condi-
 tion (8) is closely approximated by

 P E Q1/2 (9)

 and for Q near 1 it is closely approximat-
 ed by

 P - 1 - (1 - Q)2. (10)

 The effect of (8) is that the Camin-So-
 kal method will tend to fail when there
 is a sufficient disproportion between P
 and Q, which is the same as requiring
 that there be a sufficiently great dispro-
 portion between the lengths of the long
 and the short segments of the tree in
 Fig. 1.

 In a previous paper (Felsenstein,
 1973), I showed that for sufficiently small
 probabilities of evolutionary change, the
 Camin-Sokal method yields a correct max-
 imum likelihood estimate of the phylog-
 eny, and hence would be consistent. This
 might appear to be contradicted by (8)
 and (9), since these show that the Camin-
 Sokal method can be inconsistent even
 when P and Q are small. But my earlier
 proof involved holding the lengths (in
 time) of the segments of the tree constant
 while letting the rate of change in the
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 406 SYSTEMATIC ZOOLOGY

 characters become small. This is equiv-
 alent to holding the ratio of P to Q con-
 stant while letting both approach zero. As
 will be apparent from dividing both sides
 of (9) by Q, when this is done the values
 of P and Q enter the region of consistency
 for sufficiently small values of P and Q,
 no matter what the (constant) ratio P/Q.
 So in this sense, the Camin-Sokal method
 works for sufficiently small rates of char-
 acter state change.

 COMPATIBILITY METHODS

 It is a convenient fact that precisely the
 same three-species example also allows
 us to find conditions in which the com-
 patibility methods yield an inconsistent
 estimate of the phylogeny. While the
 original approach of Le Quesne assumed
 that the direction of character state
 change was unknown, and could not be
 applied to a three-species case, the ex-
 tensions of the compatibility approach by
 Estabrook, Johnson, and McMorris do al-
 low us to make inferences in a three-
 species case when the direction of
 change on the character-state trees is
 known. For example, if two binary char-
 acters have the states (1,1), (1,0), and (0,1)
 respectively in the three species, then it
 is impossible for the transition 0 -O 1 to
 have taken place only once in each char-
 acter on a branching phylogeny.

 A pairwise consideration of all of the
 eight possible outcomes of the data will
 show that the outcomes 110, 101, and 011
 are mutually incompatible, but that all
 other combinations are compatible. If we
 are trying to find the phylogenies sug-
 gested by the largest possible set of mu-
 tually compatible characters, these will
 include (AB)C if and only if n110 > niol,
 no1,. Thus, the compatibility method for
 rooted binary character-state trees will
 give the same estimate as the Camin-So-
 kal method in the three-species case. We
 thus can apply all of the above conditions
 for inconsistency of the Camin-Sokal
 method to the compatibility approach.
 This allows the conclusion that consis-
 tency is not a general property of the com-
 patibility methods, but must be proven

 for specific probability models of evolu-
 tion if it is desired.

 UNROOTED WAGNER TREES

 One of the most widely used parsimony
 methods has been Farris's (1970) method
 of inferring unrooted evolutionary trees
 under the assumption that character-state
 changes are reversible. The consistency
 of this method can be investigated by an
 extension of the present approach to a
 four-species case. This is necessary be-
 cause there is only one possible unrooted
 tree in the three-species case, rendering
 it trivial. Figure 3 shows an unrooted tree
 with four species, A, B, C, and D. In order
 to more closely approximate the evolu-
 tionary model which underlies Farris's
 method, we assume that although the
 characters were originally in state 0, they
 have the same probability of reversion 1
 - 0 once they are in state 1, as they have

 of origination 0 1-> of state 1 when they
 are in state 0. Thus each segment of the
 evolutionary tree is characterized by a
 probability of character state change
 which applies equally to both forward
 change 0 -->1 and reversion 1 -* 0. Once
 again, we assume for simplicity that char-
 acters are independently sampled and all
 have the same probabilities. There are 16
 possible data outcomes, 0000 through
 1111. Once again, the outcome of apply-
 ing Farris's parsimony method will de-
 pend only on the numbers of characters
 no000,- , n1il, having each outcome.

 It is easy to show, along the same lines
 as before, that whether the unrooted tree
 obtained is of form (AB)(CD), (AC)(BD),
 or (AD)(BC) is determined by which of
 the three numbers n1l00 + n001l, n1010 +
 n010l, and n100l + n01l0 is largest. It is not
 difficult to demonstrate that the exact
 placement of the root of the true tree will
 affect only the relative probabilities of
 obtaining 1100 and 0011, but will leave
 the total probability P11oo + Poon1 un-
 changed, and similarly for P1010 + Polo,
 and P1ool + Po1lo. Therefore, we need not
 specify the placement of the root on the
 (unknown) true tree to compute the prob-
 abilities which determine the outcome of
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 MISLEADING PARSIMONY METHODS 407

 this parsimony method. Suppose that the
 true phylogeny is one whose unrooted
 form is given in Fig, 3. We may as well
 assume that the root is at the left-hand end
 of the central segment, and that all char-
 acters start there in state 0, as these as-
 sumptions do not affect P0loo + Pool1 and
 the other relevant probabilities.

 Considering the two possible character
 states at the right-hand end of the central
 segment, we find that

 Plloo + Pooll - PQ[1 - Q)2(1 - P) + Q2P]
 + (1 - P)(1 - Q)
 *Q(1 - Q)(1 - P)
 + Q(1 - Q)P] (11)

 with analogous expressions for the other
 two relevant probabilities:

 P1O0O + PO0O1 = P(1 - Q)
 * [Q2( _- P) + (1 - Q)2P]

 + (1 - P)
 Q[Q(1 - Q)P

 + Q(1 - Q)(1 - P)]
 (12)

 and

 P1OO1 + Pol0o= P(1 - Q)
 *Q(1 - Q)P
 + Q(1 - Q)(1 - P)]

 + Q(1 - P)
 -(1 _ Q)2p + Q2(1 _ p)].

 (13)

 After some elementary but tedious alge-
 bra it can be shown from (12) and (13) that
 provided that Q - 1/2, which we assume,

 P1O0O + POO1 > P1OO1 + Po011. (14)

 This establishes that when the true tree
 is as shown in Fig. 3, our estimate of the
 unrooted tree topology may converge to
 either (AB)(CD) or to (AC)(BD), but never
 to (AD)(BC) as we collect more and more
 characters. So to establish the consistency
 of the estimation of unrooted tree topol-
 ogy, we need only enquire whether

 P10OO + POO01 ? P1O0O + Polo1, (15)

 which will be the condition for consis-
 tency. Using (11) and (12) we find after

 Q

 Q Q

 B D
 FIG. 3.-True unknown phylogeny (with root

 omitted) used to find cases in which unrooted Wag-
 ner tree parsimony methods will be inconsistent.

 further tedious algebra that (15) is simply,

 2P2Q - P2 + 2Q3 - 3Q2 + Q > 0
 (16)

 which is

 (2Q- 1)(P2 + Q(Q - 1)) 0 O. (17)
 Since Q - 1/2, (17) is simply

 P2 < Q(1 - Q), (18)

 a considerably simpler condition than (8).
 Note that when Q is small, (18) reduces
 to (9). Thus, all the statements about con-
 sistency in the Camin-Sokal case when P
 and Q are small are also correct in the
 case of unrooted Wagner trees.

 DISCUSSION

 We have seen that there are circum-
 stances under which three different es-
 timation methods are not statistically
 consistent, these being the Camin-Sokal
 parsimony method, the Estabrook-John-
 son-McMorris compatibility method, and
 Farris's parsimony method for estimating
 unrooted Wagner trees. For small values
 of P and Q, the condition for inconsisten-
 cy amounts to requiring that simulta-
 neous changes on two long segments of
 the tree be more probable a priori than
 one change on a short segment. This
 amounts to requiring that parallelism of
 changes be more probable than unique
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 408 SYSTEMATIC ZOOLOGY

 and unreversed change in an informative
 part of the tree (e.g., that simultaneous
 changes in segments III and V of the tree
 in Fig. 1 be more probable than a single
 change in segment II). This certainly
 seems like a reasonably intuitive condi-
 tion for inconsistency. The advantage of
 the argument presented here lies not in
 leading to a particularly surprising con-
 clusion, one that will cause abandonment
 of these parsimony and compatibility
 methods, but as a formal investigation of
 one of the statistical properties of phylo-
 genetic inference methods.

 The models employed here certainly
 have severe limitations: it will hardly
 ever be the case that we sample charac-
 ters independently, with all of the char-
 acters following the same probability
 model of evolutionary change. Extending
 this analysis to more realistic evolution-
 ary models will certainly be difficult. Yet
 the task must be undertaken: if inconsis-
 tency of a parsimony or compatibility
 technique is suspected, it does little good
 simply to point out that the evolutionary
 models employed here do not apply to
 the type of data being encountered in
 practice. That amounts to a confession of
 ignorance rather than validation of the in-
 ference method in question.

 LIKELIHOOD METHODS

 Methods of phylogenetic inference
 which entirely avoid the problem of sta-
 tistical inconsistency are already known.
 Maximum likelihood estimation of the
 phylogeny is one of them. I have outlined
 elsewhere (Felsenstein, 1973) how this
 may be done. In the three species cases
 maximum likelihood estimation methods
 can easily be developed. The likelihood
 of a tree will simply be

 L [Jk Puk' (19)

 where Pijk is the probability of data con-
 figuration ijk and nijk is the number of
 characters having that configuration. Es-
 timation is carried out by maximizing (19)
 over the unknown parameters of the evo-

 lutionary model (such as P and Q in equa-
 tions [2]). This is done for each tree to-
 pology, and the final estimate consists of
 the topology and the evolutionary param-
 eters which yield the highest likelihood.
 (Note that despite the connotations of the
 term, the likelihood of a tree is not the
 probability that it is the correct tree.)
 When there are larger numbers of species,
 the number of possible data configura-
 tions (the number of terms nijk) in each
 character becomes so large that it is im-
 practical to use equation (19). I have pre-
 sented elsewhere (Felsenstein, 1973) an
 algorithm for evaluating the likelihood of
 a tree which avoids this difficulty.

 Maximum likelihood estimates are not
 desirable in themselves, but because
 they have desirable statistical properties
 such as consistency and asymptotic effi-
 ciency. In the case of discrete multistate
 characters under the sorts of evolutionary
 model considered here, it can be shown
 quite generally that the maximum likeli-
 hood estimation procedure has the prop-
 erty of consistency. In particular, in the
 case of the tree shown in Fig. 1, it will be
 a consistent method whatever the values
 of -P, Q, and R.

 The reader familiar with the paper of
 Farris (1973), which establishes a general
 correspondence between parsimony
 methods and maximum likelihood meth-
 ods may be puzzled at this stage: if par-
 simony methods are maximum likelihood
 methods, why have the two been de-
 scribed here as separate methods? Why
 is one sometimes not consistent while
 the other is always consistent? This par-
 adox is resolved once one recalls that the
 maximum likelihood methods used by
 Farris are different from those described
 in Felsenstein (1973) and here. Farris
 used the maximum likelihood method to
 estimate not only the parameters of the
 evolutionary tree, but also the states of
 the characters in a large number of an-
 cestral populations. When this latter kind
 of maximum likelihood estimate is made,
 the number of parameters being estimat-
 ed rises without limit as more characters
 are examined.

This content downloaded from 192.58.125.9 on Wed, 18 Oct 2017 16:57:10 UTC
All use subject to http://about.jstor.org/terms



 MISLEADING PARSIMONY METHODS 409

 From the point of view of estimating
 the phylogeny, these extra parameters
 are c" nuisance" parameters. As a result of
 their presence, the ratio between the
 number of data items and the number of
 parameters does not increase indefinitely
 as more characters are added. It is in sit-
 uations such as this that maximum like-
 lihood methods are particularly prone to
 lack of consistency, as I have previously
 pointed out (Felsenstein, 1973). Indeed,
 the present results establish that there
 are conditons under which Farris's like-
 lihood method (giving the same results as
 a parsimony method) fails to be consis-
 tent.

 PERSPECTIVE

 The weakness of the maximum likeli-
 hood approach is that it requires us to
 have a probabilistic model of character
 evolution which we can believe. The un-
 certainties of interpretation of characters
 in systematics are so great that this will
 hardly ever by the case. We might prefer
 to have methods which, while not statis-
 tically optimal for any one evolutionary
 model, were robust in that they had rea-
 sonable statistical properties such as con-
 sistency for a wide variety of evolution-
 ary models. The present results establish
 that parsimony and compatibility meth-
 ods can fail to be consistent if parallelism
 is expected to occur frequently. This
 helps establish that they do not yield
 maximum likelihood estimates. However,
 they pass the test of consistency when
 parallelism is rare. This leaves them as
 viable candidates for robust methods. Es-
 tablishing that robustness (or disproving
 it) by examining a wider range of models
 is a daunting task, but it must be under-
 taken. If phylogenetic inference is to be
 a science, we must consider its methods
 guilty until proven innocent.
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