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THE LOGIC OF ASYMMETRIC CONTESTS 

BY JOHN MAYNARD SMITH* & G. A. PARKER1" 
*School of Biological Sciences, University of Sussex. t Department of Zoology, University of Liverpool 

Abstract. A theoretical analysis is made of the evolution of behavioural strategies in contest situations. 
It is assumed that behaviour will evolve so as to maximize individual fitness. I f  so, a population will 
evolve an 'evolutionarily stable strategy', or ESS, which can be defined as a strategy such that, if all 
members of a population adopt it, no 'mutant'  strategy can do better. A number of simple models of 
contest situations are analysed from this point of view. It is concluded that in 'symmetric' contests the 
ESS is likely to be a 'mixed' strategy; that is, either the population will be genetically polymorphic or 
individuals will be behaviourally variable. Most real contests are probably asymmetric, either in pay-off 
to the contestants, or in size or weapons, or in some 'uncorrelated' fashion; i.e. in a fashion which does 
not substantially bias either the pay-offs or the likely outcome of an escalated contest. An example of an 
uncorretated asymmetry is that between the 'discoverer' of  a resource and a 'late-comer'. It is shown 
that the ESS in asymmetric contests will usually be to permit the asymmetric cue to settle the contest 
without escalation. Escalated contests will, however, occur if information to the contestants about the 
asymmetry is imperfect. 

I. Introduction 
This paper discusses the question, 'How would 
we expect animals to behave in contest situ- 
ations?' It attempts to combine two previous 
approaches to the problem. Maynard Smith 
(1974) defined an 'evolutionarily stable strategy', 
or ESS, and argued that natural selection, acting 
between individuals, would produce such a 
strategy. The concept was, however, applied 
mainly to symmetric contests between equally 
matched opponents. Parker (1974a) discussed 
the consequences of the fact that most contests 
between animals are not symmetric. The present 
paper is mainly concerned with applying the 
concept of an ESS to asymmetric contests. 

A contest between two individual animals may 
be 'asymmetric' in any of three ways: 

(i) Pay-off Asymmetry. One contestant may 
have more to gain by winning (or, equivalently, 
more to lose by accepting defeat). For example, 
the owner of a territory may have invested time 
and energy in exploring the territory, settling 
boundaries with neighbours, building a nest, etc. 
and therefore will suffer a greater loss of fitness 
than an interloper by retreating from the 
territory. 

(ii) Asymmetry in Fighting Ability, or in 
'RHP'  (= 'Resource Holding Potential'). In- 
dividuals may differ in some intrinsic feature 
such as size, weapons, etc. or there may be 
extrinsic circumstances favouring one contestant 
(for example, 'postural' advantages in contests 
between insects, as discussed by Parker (1974a)). 

(iii) Uncorrelated Asymmetries. That is to 
say asymmetries which do not affect either the 

pay-offs or the RHP's  of  the contestants. No 
example can be given, since it is unlikely that any 
actual asymmetry is completely without effect 
either on pay-off or RHP. It is, however, im- 
portant to analyse contests which are uncorre- 
lated in the above sense, because if it can be 
shown that completely uncorrelated asymmetries 
can settle contests, then the argument that 
differences in pay-offs or RHP are too small to 
explain the conventional settling of  disputes is 
irrelevant. Thus it is no part of our argument 
that differences in pay-off and RHP do not 
exist, only that they need not exist for contests 
to be settled conventionally. 

In all cases we shall look for an 'evolutionarily 
stable strategy' or ESS. This concept is defined 
mathematically in the next section, and methods 
of finding ESS's discussed. Briefly, however, a 
strategy is an ESS if a population of individuals 
adopting that strategy cannot be 'invaded' by an 
initially rare mutant adopting an alternative 
strategy. A few explanatory points are: 

(i) A 'strategy' is a specification of  what an 
individual will do in all the situations it may find 
itself in; if contests are asymmetrical, it must 
specify what a contestant would do in either 
'role' (e.g. if owner of a territory and if inter- 
loper). 

(ii) A strategy may be 'pure', e.g. in situation 
A, always do a, or 'mixed', e.g. in situation A, do 
a with probability p and b with probability q. 

(iii) If  an ESS is a mixed strategy, it might be 
realized genetically in one of two ways. The 
members of  a population might be genetically 
identical, each individual adopting different pure 
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strategies on different occasions, with probabili- 
ties corresponding to the ESS. Alternatively, 
each individual might be fixed in its behaviour, 
the population being genetically polymorphic, 
with the frequencies of different genotypes 
corresponding to the ESS. 

(iv) If  it is asserted that some strategy I is an 
ESS, this can be shown only for some specified 
set of alternative strategies. 

There are two features of asymmetric contests 
which must be made explicit in any analysis: 

(i) Given that there is an asymmetry, are both 
contestants fully informed about its nature? 
Clearly, if neither contestant has any information, 
the asymmetry is irrelevant to their strategy; if 
two animals differ in size, but neither has any 
information as to whether it is larger or smaller 
than its opponent, then their strategy is un- 
affected by the size difference, although the out- 
come may be affected. Contests in which there 
is perfect information available to both contest- 
ants are in general rather easy to analyse; almost 
always there are two possible ESS's, the con- 
testant in one or other of the two 'roles' being 
treated conventionally as the winner. Much 
greater difficulties arise when only partial 
information exists. 

(it) It will be assumed that different behaviours 
or strategies have different genotypes. A geno- 
type may specify a 'mixed' strategy, so that an 
individual with that genotype may behave 
differently on different occasions. There will also 
be genes which influence the likelihood of an 
animal playing a particular 'role' in an asym- 
metric contest. For example, an individual with 
genes for early maturation might be more likely 
to be an 'owner' than an 'interloper' in a 
territorial contest; genes wilt also affect RHP. 
It is assumed in this paper that the genetic 
determination of strategies is independent of the 
genetic determination of roles. To put the matter 
another way, it is assumed that individuals may 
find themselves playing different roles, and it is 
asked, what strategies appropriate to these roles 
will evolve ? 

This paper is mainly concerned with the 
evolution of strategies. It may be, however, that 
physical characteristics uneorrelated with RHP, 
for example skin colour, are used to settle 
asymmetric contests. Then some animals will 
usually have the more favoured role, others the 
less favoured one, and selection for the helpful 
physical feature will proceed. One aspect of this 
problem is analysed in section V, on 'bluff'. By 

bluff we mean the possession of physical charac- 
teristics, such as manes or crests, which increase 
apparent RHP without conferring an equivalent 
increase in actual RHP in an escalated contest. 

II. Notation and Definitions 
Suppose I and J are strategies. Then Ej(I)  means 
the expected gain or pay-off to an individual 
adopting strategy I against an opponent adopt- 
ing J. The pay-off is measured in terms of 
Darwinian fitness, i.e. as a change in the expected 
number of offspring consequent on adopting 
strategy I. We shall be concerned not with 
absolute values of these pay-offs but with rela- 
tive values. Thus if J is 'stay and fight it out in a 
given territory' and 1 is 'retreat and look for an 
alternative territory elsewhere' we shall be con- 
cerned with the values of  E j ( I ) - E a ( J ) ,  which is 
supposed to be interpreted as the gain in the 
expected number of offspring to an individual 
who retreats, compared to the number it would 
have had if it had stayed to fight it out (of course, 
this 'gain' may be negative). 

Suppose now that a population consists of a 
fraction p adopting I and q adopting J where 
p + q  = 1, then 

average 'fitness' of  I = WI = pEi(1) +qEj(I)  

and 

average 'fitness' of  J = Wa = pEI(J) +qEa(J). 

/ will then be an ESS if l~ i>Wa for all 
alternative strategies J when the 'mutant' 
strategy J is rare, i.e. when 0 < q <  1. That is, I 
is an ESS if, for all alternative strategies J, 
either 

EI(I)>EI(J)  (la) 
or 

El(I) = E l ( J )  and Ea(1)>Ea(d). (lb) 

If  I is a pure strategy and an ESS, it is usually 
the case that (la) will be satisfied for all or almost 
all J. But if I is a mixed strategy, composed of 
strategies Ili2...  Ix. . . In with frequencies PxP~... 
pn, it is easy to see that EI(Ii) must be the same 
for all i (otherwise, Ii would increase or decrease 
in frequency relative to other strategies); 
stability then depends on satisfying (lb). If  
therefore one suspects the existence of a mixed 
ESS, the procedure is first to seek for probabili- 
ties P l . . 'Pn  (or in the 'continuous' case, for a 
probability density function) such that each 
component pure strategy has the same expec- 
tation against the mixed strategy. This establishes 
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that the mixed strategy is an equilibrium strat- 
egy; condition (lb) will then show whether it is 
a stable equilibrium. 

A word must be said about the inheritance of 
behavioural strategies, and the corresponding 
stability criteria. There are three possibilities: 

(i) Each strategy, pure or mixed, can reproduce 
itself without genetic recombination with others. 
The 'fitness' of  strategy I would be K +  Ex, where 
K is a constant and E~ the expected pay-off 
to strategy I, played against itself and the other 
strategies weighted by their frequencies in the 
population; K is introduced because E~ may be 
negative. With this type of inheritance, conditions 
(la, b) are necessary and sufficient to ensure that 
a population playing I is in a genetically stable 
equilibrium. 

(ii) As (i), but only pure strategies can repro- 
duce. If the ESS is a mixed strategy, it can be 
achieved only by a genetically polymorphic 
population. In this case, if there are more than 
two pure strategies in the ESS, conditions (lb) 
are neither necessary nor sufficient to ensure the 
stability of the equilibrium. They do, however, 
appear to be a good indicator of stability. The 
only two equilibria of this type considered in 
this paper are the distributions for the 'war of 
attrition' and the 'graduated risk' games. Both 
have been simulated on a computer and found 
to be stable for this type of inheritance. 

(iii) Bisexual inheritance with genetic recom- 
bination. Nothing general can be said. There are 
cases (e.g. the 'war of  attrition') in which the 
ESS calls for a frequency distribution which 
could not be maintained under sexual reproduc- 
tion with most types of genetic determination. 
In such cases, simulation suggests that the 
genetic equilibrium will approach as close to the 
ESS as the genetic system allows. 

III. Symmetric Contests 
(i) The 'War of Attrition' 

Maynard Smith (1974) analysed a 'war of 
attrition', in which only display is possible. 
Clearly, contests can only be settled because a 
long contest is disadvantageous, in wasting time 
and energy. Winning consists in the opponent 
'backing down'. Let the value of winning be V. 
Suppose that two contestants, A and B, are pre- 
pared to continue for periods mA and rnB, where 
mA and mB equal the loss of fitness associated 
with a contest of that length, measured on the 
same scale as V. Then if mA>mB, the pay-off to 
A is V--mB and to B is -mB.  In this situation, 

no pure strategy can be stable. It can be shown 
that the ESS is to play m = x, where 

1 
p(x) = --~ e x p ( -  x/V). (2) 

That is, in the 'war of  attrition', individuals 
will vary in their persistence as shown in Fig. 1. 
The strategy could be realized by a genetically 
uniform population whose members had a 
constant probability k3t of  giving up per time 3t 
during a contest, where k = 1/V; natural selec- 
tion would adjust k to the appropriate value. 

(ii) 'Hawks' and 'Doves' 
Consider now a contest in which two pure 

strategies are possible: (a) Escalate, and con- 
tinue until either opponent retreats, or until 
injured. (b) Display; retreat if opponent esca- 
lates. 

It is supposed that if both contestants display, 
then the contest can be settled without excessive 
waste of time, each contestant having an equal 
chance of winning. If  the value of winning is + V 
and of injury is - D, the pay-off matrix is 

Escalate Display 

V - D  
V 

2 
Escalate 

Display o v/2 

p(x) 

\ 

I - . ~ - *  P ~ [ r s t I r 

1.0 2.0 

Fig. 1. Evolutionary stable strategy for 'war of attrition'. 
V is the value of winning and x the price an individual 
is prepared to pay. 
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In the matrix, the pay-offs are to the left-hand- 
side individual. Allowing for mixed strategies, 
the possible strategies are, 'always escalate', or 
'always display', or 'escalate with probability P ' .  

Let ~trategy I be the ESS, and suppose that il 
is a mixed strategy, escalate with probability P. 
Since I is an equilibrium, the expected gain of an 
individual who escalates against I must equal the 
expected gain of one who displays. That is 

V - D  V 

o r  

e-5--+(1-p)v = (1-P  

V 
P -- - - .  (3) 

D 

Let d be an alternative strategy, escalate with 
probability P'.  Then since I is stable, 

Ea(I)>Ej(J) for all P'. 

Ej( I ) -  Ea(J) 

[ p , ( V ,  D)+ V] 
= (P-P ' )  (1 - P ' )  -2-] 

L 2 2 J  

and for P # P '  this expression is always positive, 
so that the strategy P = V/D is an ESS. Clearly, 
if V >  D, the ESS is P = 1. If  the advantages of 
winning outweigh the risks of injury, contestants 
will always escalate. If V< D, the ESS is given 
by (3). 

(iii) Retaliator 
Maynard Smith & Price (1973) analysed this 

case further, with D> V, but allowing for more 
complex strategies, in which an individual could 
modify its behaviour in the light of its opponent's 
behaviour. They concluded that the ESS is to 
display, but to escalate if one's opponent 
escalates, i.e. to 'retaliate'. 

It has since been pointed out by Gale & 
Eaves (1975) that 'retaliation' is not the only 
ESS for the set of strategies considered; there is 
an alternative, mixed, ESS composed of a mix- 
ture of Hawks, and 'Bullies' (i.e escalate, but 
retreat if one's opponent escalates in return). 
This is an interesting example of the fact that 
the same preconditions (weapons, advantages 
to be gained, etc.) can lead to two different 
evolutionarily stable patterns of behaviour. 
Which ESS in fact evolves in any particular 
species will depend on the initial conditions; 
that is to say, on the behaviour patterns of the 

ancestral species. This possibility of two stable 
strategies should not cause any surprise. 
Analogous bistable or multistable situations 
are familiar to anatomists; for example, ostriches, 
antelopes and kangaroos have solved the problem 
of rapid locomotion on open plains in quite 
different ways. 

(iv) The 'Graduated Risk' Game 
Consider now one final symmetric contest. 

Suppose that each contestant can select a 'level' 
to which he is prepared to escalate the contest; 
let A select level mA and B select level rnB, 
where mz>mJ~. Then the contest will actually 
escalate up to level mB. At or before this stage, 
one or other contestant may be injured, in 
which case the other is left as victor; alterna- 
tively, if neither is injured, A (who is willing 
to continue) wins. Let XB be the probability 
that neither contestant is injured (XB will be a 
decreasing function of  mB); then �89  
is the probability that a particular contestant is 
injured, and hence 

V - D  
expected pay-off to A = VXB + - -  (1 -- XB), 

2 

V--D 
expected pay-off to  B - (1--XB). 

2 

A 'strategy' consists of a choice of  mB and 
hence of XB. Suppose that the ESS is a mixed 
strategy/ ,  given by the probability distribution 
p(x). 

To find p(x) we first find a distribution such 
that Effk) = EI(1) for all fixed k. 

If  Ei(k) = Ex(I), then Ei(k) is the same for 
all k, and in particular Effk)= Effk+3k), 
therefore 

k 
V - D  

f p(x)--~--(1 - k) dx + 

o 

1 k x,[vx+ 
k 

dx 

k+~lc 
[ .  V - D  

= J p ( x ) - - - ( 1  - k -  3k) dx+  

o 
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1 

(x) V x -  ( l - x )  dx 
2 

which simplifies to 

Vkp(k) - - -  

k 

D - V f p  2 (x) dx. 

0 

(4) 

The solution of (4), subject to the constraint 

1 

p(x)dx = 1, 

o 

is 

D - V  
p(x) = x(D-sw/zv 

2V 

or writing D/V --- a, a measure of  the 'riskiness' 
of  fighting, 

a - I  
p(x) . . . . . .  x(~'-8~/2. (5) 

2 

I f  there is to be a mixed ESS, given by p(x), 
then (5) must be satisfied. It  is also necessary 
to show that the equilibrium given by (5) is a 
stable one. Stability is suggested by the fact that 

Ek(I)>Ekfk) for all fixed k (the proof  is straight- 
forward and is not given here), and has been 
confirmed by computer simulation. 

It  is easier to interpret (5) if we put 
y = �89 and plot p(y) as a function of y. 
We can interpret y as follows. In selecting a 
maximum level of  escalation m, an animal also 
selects a maximum probability, ( 1 - x ) ,  that one 
or other contestant will be seriously injured. 
Hence y is the risk of  serious injury an individual 
is prepared to run. Note that y ~0.5, since even 
in a contest between two 'hawks'  the risk of  
injury to each contestant is only 0.5. 

p(y) is given as a function of y in Fig. 2. We 
reach the common-sense conclusion that the 
greater the damage, the smaller on average the 
risk an animal will run of  incurring that damage. 

It  is interesting that, provided et> 1, the ESS is 
a mixed one. I f  a < l ,  (5) cannot be satisfied, 
and no mixed strategy can be an equilibrium. 
In  this case, it is always worth while to escalate 
to the limit. 

IV. Asymmetric Contests 
(i) Uncorrelated Asymmetry with Perfect 
Information 

Suppose that whenever a contest takes place, 
it is between a 'discoverer' and a ' latecomer' ,  or 
has some other similar asymmetry. I t  is assumed 
that the asymmetry makes no difference to the 
pay-offs to the contestants, or to their RHP's.  
This is what we mean by 'uncorrelated'. It  is 
also assumed that the contestants have complete 

4-0 

3.0 

P(Y) 

2,0 

1,0 
J 

_ . - 3 _ _ L  I I 

0 0,1 0'2 0"3 0'4 0 '5  

y 

4.0 

3,0 

2.0 

1.0 

o4=3.0 

_ _ 1  I I i 

0 0"1 0"2 OG 0 '4  0-5 

Y 

4.0 

3.0 ~ 5 . 0  

2.0 

1,0 , X  

0 0.1 0.2 0-3 0-4 0-5 

Figure 2. Evolutionarily stable strategy for 'graduated risk game', y is the 
risk of serious injury an individual is prepared to run, and tz = D/V, where 
V is the value of winning and D the price of serious injury. 
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information about their roles, i.e. an individual 
'knows' that he is an owner and his opponent 
an interloper, or, of  course, vice-versa. 

Maynard Smith (1974) analysed the 'war of 
attrition' contest when associated with an 
uncorrelated asymmetry. If  we refer to the roles 
as A and B (i.e. A might mean 'discoverer' and 
B 'late-comer') then it was shown that there are 
two ESS's. The first is 'If A, play M (where 
M >  V); if B, play 0', and the second is 'if A, play 
0; if B, play M >  V'. Here, M represents the cost 
in fitness terms that a contestant is prepared to 
suffer from a prolonged contest. That  is, the 
members of an evolutionarily stable population 
persist in one role, and retreat immediately in 
the other. These two alternative ESS's are 
stable against the mixed strategy given by (2), 
which ignores the asymmetry. The reason is that 
members of a stable population have a high 
expected gain against each other, since they win 
half the contests they engage in, and are never 
involved in a long contest. 

This conclusion is not unique to the 'war of 
attrition'. A similar conclusion can easily be 
established for the 'hawks and doves' contest. 
If  V<D, the strategy (3) is no longer an ESS; 
instead, the ESS's are 'escalate if A, retreat if B', 
and 'retreat if A, escalate if B'. In fact, it is 
typically the case that a contest with an un- 
correlated asymmetry has two alternative ESS's. 

In practice, as mentioned earlier, an asym- 
metric contest is unlikely to be completely un- 
correlated. We next consider contests in which 
there is a difference either in pay-off or RHP. 
These contests also tend to have two alternative 
ESS's, but these are no longer equivalent. One, 
the 'common-sense' ESS, is for the contestant 
with the most to gain or the higher RHP to 
persist and his opponent to retreat. However, 
there is sometimes also a 'paradoxical' ESS, in 
which the contestant with the least to gain or the 
lower RHP persists. Some reasons are given 
why such paradoxical ESS's are unlikely to occur 
in nature, although their occurrence cannot be 
completely ruled out. 

(ii) Contests with Unequal Pay-offs and Perfect 
Information 

Suppose that in a contest between, say, an 
owner, A, and an interloper, B, the owner has 
more to gain (or lose); let the value of victory to 
the owner be VA and to the interloper be VB, 
where VA> VB. Suppose further that the contest 
is a 'war of attrition', victory going to the con- 
testant who continues longer. It follows from the 

analysis in the last section that if we permit only 
strategies which ignore the role of the con- 
testants, then the ESS, which we will call 
strategy I, is to continue for a time x distributed 
as 

1 
p(x) = ~ - e x p ( -  x~ ~') 

where P = (VA + V~)/2. 
Consider two alternative strategies, J and K, 

as follows: 
strategy J; play 0 when B, play M when A; the 

'common-sense' strategy; 
K; play M'  when B, play 0 when A; the 
'paradoxical' strategy. 

We show first that both strategy J and K can 
be an ESS. Consider first strategy J: 

Ej ( J )  = �89 

M 
X 

0 

OO 

+ ~ e x p ( - x / V ) d x  

M 

= �89189 e x p ( - M / V )  

- �89 - e x p [ -  M/~']). 

Hence Es(J)>Ej(I)  if ~'( l -exp[-M/~ '] )>VB 
e x p ( - M / P ) .  Thus J is an ESS against I provided 
that 

VA+ V~ 
exp(-- M/17)< 

VA+3V~" 

There is therefore always a value of M which 
will make J stable against I; in the extreme case 
VB = 0, any positive M makes J stable. It is 
easy to show that J is also stable against K. 

Now consider the paradoxical strategy K 
(paradoxical because contestants play high 
when they have least to gain). 

M 
EK(K) = �89 VB and E~(J) = l V B - - -  

2 

if M ' > M  and = �88189 if M ' < M .  

Hence K is stable against J, even if M > M ' ,  
provided that M' > VA-- (VB/2). 

Considering the stability of K against /, an 
argument identical to that used for strategy J 
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leads to the conclusion that Kis  stable provided The pay-off matrix (MI) then is: 

VA+ VB B exp(- M ' / P ) < - -  
3 VA + VB" escalates 

This condition can also be satisfied, although 
it requires larger values of M'  than was required 
of M. We therefore conclude that either the 
common-sense strategy J or the paradoxical 
strategy K can be an ESS. 

We will now show that although strategy K is 
an ESS, a population initially adopting strategy 
I, which ignores differences in pay-off, would 
evolve to strategy J but not to K. This follows, 
because an I population can be invaded by a 
mutant o r but not by a mutant K. Considering 
first invasion by or, 

displays 

escalates 

A 

displays 

V(1 - x) - Dx 

Vx- D(1 - x) 

V 

0 

V 

v/2 

(MI) 

M 
1 1 

= x)ff-exp(-x/V)dx 
o 

o o  

M 
- f Texp(-x/V)dx} 

M 

va-~" 
(1 - exp[ -  M/V]). 

2 

Since EI(I) = 0, it follows that EI(J)>EI(I) 
for any M, provided that VA> V~, as has been 
assumed. Hence a J mutant can invade an I 
population. The same argument shows that a K 
mutant cannot invade an I population. 

We conclude that in contests with unequal 
pay-offs, and perfect information, the common- 
sense strategy, play high when you have more to 
gain and zero when you have less to gain, is an 
ESS. The converse, paradoxical, strategy is also 
an ESS, but a population will not evolve the 
paradoxical strategy if it starts from a strategy 
which ignores the difference in pay-offs. 

(iii) Contests with Unequal RHP's and Perfect 
Information 

We suppose that in each contest there is an 
asymmetry, which can be thought of as a differ- 
ence in size, which affects the chances of victory 
if escalation takes place. Contestant A is 'large', 
and has a probability x>0.5  of victory; B is 
'small' and has probability ( 1 - x )  of victory. 

A strategy is defined by (Pl,P2) where Pl is the 
probability of escalating when A, and pz the 
probability of escalating when B. 

We first show that no mixed strategy, with Pl 
and/or P2 in the open interval 0 to 1, can be an 
ESS. Let I, J, and K be the strategies (Pt, P~), 
(P'I,P~) and (Pl,P'2). 

1 
EI(I) = 2t Plp~[Vx- D(1 -x ) ]  

+pl(1 -p~) V+ (1 -pl)(1 -P2)~- 

+~{p~pl[V(1- x)-  Dx] 

+P2( 1 - e l )  V+ (1 -P2)(1 -Pl)-~- (6) 

If I is an ESS, then 

El(l) I> El(J) 
and 

EI(1) >~ El(K) .  
Hence 

(pl-p'I){ p~[Vx- D(1-x)]+(1-p~)V} >~O (7A) 

and 

V 
(P2-P'2){ Pl[V( 1 - x ) -  Dx]+(1-pl)~- } >~ 0.(7B) 
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If  0 < p 1 < 1 ,  then (pl-p'~) can be positive or 
negative, and hence 

V 
p2[Vx- D(1 - x)] + (1 -P2)~-  = 0 

putting D/V = a, we obtain 

if 0 < p l <  1, then P2 = 

and 

1 + 2 = ( 1 - x ) - 2 x  

1 
if  0 < p ~ <  1, then Pt - . (8) 

2x + 2ax-  1 

It is clear that if one of these equations is 
satisfied, both must be. Since 

p l < l ,  2x+2ax- 1>1,  
or  

x >  1/(1 +a). 

We now show that the equilibrium strategy 
(8) is unstable. Consider the alternative strategy 
or, (Pl = 1,P2 = 0). We already know that 
EI(I) = EI(J), so that stability of I requires 
Ea(I)>Ea(g). From (6), this becomes 

Pl 
- - - ~  +p~[1 - x ( 1  + a ) ] > 0 - -  (9) 
2 

Since x >  1/(1 + a), the 

LHS<(pl/2)- �89 +p2(1 -- 1)<0, 

so that inequality (9) cannot be satisfied. Thus 
we have shown that no mixed ESS can be stable. 

It follows that only the pure strategies (0,0) 
(1,0) (0,1) and (1,1) need be considered. It is 
then easy to show that if a > ( 1 - x ) / x  (i.e. injury 
relatively serious), then (Pl = 1, p~ = 0) is an 
ESS, and if a < ( 1 - x ) / x  (i.e. injury not serious), 
thenpl  = P2 = 1 is an ESS. 

Ifa>x/(l  - x )  (and hence, since x>0-5,  a > l ) ,  
the 'paradoxical' strategy (Pl = 0, P2 = 1) is 
also an ESS. 

The first two strategies are common-sense, 
but a word of explanation is needed for the 
third. Note that it requires: (a) damage is 
serious ( a >  1); (b) a contestant knows for certain 
that he is larger (or smaller) than his opponent; 
(c) Size is an uncertain guide to the results of a 
contest. 

Therefore a population adopting the paradoxi- 
cal ESS will be stable, because they will never 
be involved in escalated fights with each other, 
and a mutant hawk runs a non-negligible risk 
(1 - x > 0 )  of serious injury. The weakness of the 
model lies in the assumption that the estimate of 
size is certain. If  information is not perfect, 
then things are more complex. An individual 
may estimate (correctly or otherwise) that he is 
an A, and therefore escalate, only to find that 
his opponent has also estimated himself to be 
an A, the result being an escalated contest. 

A particular case of a contest with incomplete 
information is analysed in the next section. 

(iv) A Contest With Incomplete Information 
Suppose that a population consists of indi- 

viduals of different sizes, and that size differences 
affect the outcome of an escalated contest. 
Suppose further that a contestant estimates, 
with greater or lesser accuracy, the difference 
in size between himself and his opponent. How 
will strategy depend on this estimate? 

Ideally, one would like to analyse a model in 
which size was continuously distributed and 
in which the error of estimates was similarly 
distributed. We have been unable to do this. The 
model which follows is much simpler, but gives 
qualitatively interesting results. 

Suppose that there are only two equally 
frequent classes of individual, say 'large' and 
'small', and that in an escalated contest a large 
individual has a probability x>~0.5 of winning. 
An individual is assumed not to 'know' his 
own size, but to estimate whether his opponent 
is larger (+) ,  equal (0), or smaller ( - )  than 
himself. An individual makes a correct estimate 
with probability P;  if he makes a wrong esti- 
mate, he will not make the 'double' error of 
estimating that a larger opponent is smaller, 
or vice-versa. 

With these assumptions the relative frequen- 
cies of  different types of contest are as shown 
in matrix (M2). 

We define the ESS, (I), as (Pt, P~, Pa), where 

Pl = probability of escalating if estimate 
opponent is ( - ) ,  

P2 = probability of escalating if estimate 
opponent is (0), 

Pa = probability of  escalating if estimate 
opponent is (+) .  
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A is large; + 

estimates B is: 0 

A is small; + 

estimates Bis :  0 

B is large; 
estimates A is: 

+ 0 

( l - P )  2 p.(1 - P )  ( l - P )  ~ 

4 2 4 

(1 - P )  p2 p(1 - P )  

2 2 

( l - P )  2 p ( 1 - P )  ( l - P )  2 

4 2 4 

0 P(1 - P )  p2 

0 ( l - P )  2 P ( I - P )  

0 0 0 

+ 

B is small; 
estimates A is: 

0 

0 0 0 

P(1 - P ) *  (1 _p)2  0 

p2 P(1 - P )  0 

( l - P )  2 p.(1 - P )  ( l - P )  2 

4 2 4 

p.(1 , e )  PZ p_(1 - P )  

2 2 

(1 _p)2  (1 - P )  (1 _p)2  
p , - -  

4 2 4 
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(M2) 

The expression for EI(I) is complex, containing 
a term corresponding to each entry in the table, 
the first such term being 

[p2a__ .~  +p~( 1 , , V]  1 ( l - P )  2 V - D  - p a ' V + q - P a ) Z ' - f  

4 4 

and the term corresponding to the entry P(1 - P ) *  
being 

[P(1 -P) lpep3[Vx-  D(1 - x ) ]  +P2(1 ~3~ g~ 

+ ( l - p ~ ) ( 1 - p 3 ) 2  } 

and so on. 
If  I is an ESS, then EI(I)>1 EI(J), where J is 

the strategy (p'~, p~, Pa); two other inequalities 
are obtained from comparing I with (Pa, P'z, Pa) 
and (Pl, P2, P'a). Putting D/V = a, the ratio of 
the risk to the value of winning, these inequali- 
ties reduce to 

(Pl --P'I) {(1 -- p)2 [2 -pxa -paa] + 

+ 2P(1 - P)[2 +p2(2x-  2a(1 - x) - 1 - a)] 

+ 2P2[pa(2x-2a(1-x ) -  l)+11}l>0 (lOa) 

(pl-p'~){e(1 -P)[4-pl~-p3~ 
+p.(2x- 2~(1 - x ) -  1) 
+pl(2(1 - x) - 2 a x -  1)] 

+ 2[P 2 + (1 - P)2](1 -pza)} >10 (10B) 

and 

(Pa-P'a) {(1 - P)Z [ 2 - p l a  -paa] 

+ 2P2[I +p1(2(1 - x ) -  2 a x -  1)] 

+ 2P(1 - P ) [ 2  +p2(2(1 - x) - 2 a x -  1 - a)] } >/0. 
Ooc) 

Case(i) x - -  l . p  = ~. 

To get some feel for these inequalities, 
consider the simple case in which x --- 1 (large 
individuals always win escalated contests) and 
P = ~ (a substantial probability, ~, that a 
contestant's estimate of size difference is faulty). 

We proceed by asking for what range of 
values of a the strategy (pl = 1, 0~<pa~<l, 
pz = 0) is an ESS. The inequalities reduce to 

1 8 -  a+4p~(1 - a ) > 0 ,  ( l lA)  

(P2-P'~)(16- 6a - 10ap2 ) >/0, (11B) 

1 0 - 1 7 a -  4p,,(1 + 3a)<0. (11C) 
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Inequality B leads to the conditions 

8 
(i) a>=-, p~ = O, 

,5 

8 8 - 3 a  
(ii) 1 < a < : ,  p 2 =  

5 ~ '  3 

(iii) a <  1, P2 = 1. 

Ifp~ = 0, condition A is satisfied provided a <  18. 
Ifp2 = 1,condit ionCissatisf iedprovideda>6/29 
Hence the strategy pt  = 1, Pa = 0 is an ESS for 
6/29<a< 18, with 

6 
p~ = 1 i f - - < a < l  

29 

8 - 3 a  8 
p~ = ~ if 1 < a < -  

5a 3 

and 

8 
P2 = 0 i f - < a < 1 8 .  

3 

It  follows that if  the outcome of  a fight 
between large and small individuals is certain, 
the strategy 'escalate if estimate opponent is 
smaller, display if estimate opponent is larger' 
is stable for a very wide range of  a = D/V. 
When a contestant estimates that his opponent 
is equal, the stable strategy may be pure escalate, 
mixed, or pure display, depending upon a. 

Is it possible that the reverse 'paradoxical '  
strategy, Pl = 0,  Pa = 1, could be an ESS? 
Analysis shows that there is no value of ,z 
for which A and C can simultaneously be satis- 
fied if Pl = 0 and Pa = 1. No paradoxical ESS 
exists in this ease. 

It  makes surprisingly little difference if x r 1 ; 
that is, if  size difference is only an imperfect 
indicator of  victory. For  example, if x = ] and 
as before P = ], a calculation similar to that 
above shows that the strategy 

(Pl = 1, 0 <~P2 ~< 1, Pa = 0) 

is stable for ~-<a<18,  with P2 taking an inter- 
mediate value for 13/11<a<26/7. The main 
difference is that if size difference is a certain 
indicator of  the outcome of an escalated con- 
tact, Pa = 0 is stable to a lower value of a; that 
is, the risk of  injury must be lower before 

individuals estimating that their opponent is 
larger will escalate. 

A more important difference is that the para- 
doxical strategy Pl = 0, Pa = 1 is now an ESS, 
for 2 . 3 < a < 1 8 .  

To conclude concerning contests with im- 
perfect information, it is important  to distinguish 
two sources of  uncertainty: (i) uncertainty con- 
cerning the cue used to estimate the outcome 
(P  ~ 1), and (ii) the cue is affuncertain predictor 
of  the outcome of  an escalated contest (x r 1). 

Provided that the cue (e.g. size difference) can 
he estimated accurately, it will be used as a con- 
ventional means of settling contests, even if it is 
a poor predictor of  the outcome. No paradoxical 
ESS will exist, and escalated contests will be 
rare, unless a is small finjury not serious). I f  the 
cue cannot be estimated reliably, escalation will 
be more frequent, and there is a theoretical 
possibility of  a paradoxical ESS. 

(v) Information Acquired During a Contest 
One last type of contest will be considered, 

because it introduces an element of  realism miss- 
ing from previous examples, and because it 
illustrates the general argument rather well. 
Suppose that two contestants differ in RHP,  but 
that information about this difference is only 
obtained in the course of  a contest. For  simpli- 
city, the contest is divided into a series of  
' rounds ' ;  it can be imagined as a butting match 
between two rams. Each round is 'won'  by one 
contestant. The probability that contestant A 
wins each round is constant and equal to x, 
where 0-5 ~< x ~< 1. Thus the result of  each round 
provides both contestants with some information 
about the likely outcome of  subsequent rounds. 
I f  x = 1 this information is perfect; a contestant 
who loses one round is sure to lose the next. I f  
x = 0.5, the contest is symmetric, and no rele- 
vant information is conveyed. The loser of  each 
round also suffers some damage, or loss of  fit- 
ness. A strategy is then simply a choice of  when 
to retreat after losing a round rather than enter 
the next. 

ESS's have been found for a particular numeri- 
cal example. The value of  winning is V = 10. 
The losses of  fitness for losing each of the first 
five rounds are 1, 2, 4, 8 and 16 respectively; no 
loser continues after this point. It  is assumed (for 
simplicity of  analysis) that an individual decides 
whether to continue to the next round on the 
basis of  the result o f  the last round only. Thus 
only five 'pure '  strategies need be considered: 
S1 retreats after losing the first round, $2 after 
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losing the second round, and so on, up to $5, 
who~retreats after losing the fifth round. 

Values of  x were taken from 0.5 to 1. Before 
the first round, a contestant does not 'know'  Pure strategies 
whether he is the stronger or weaker contestant, e s1 $2 $3 $4 $5 
but does 'know'  the degree of asymmetry 
associated with the contest; that is, when finding o-5 0-28 0 0 0.72 0 
the ESS for x = 0.7, say, it is assumed that 
individuals are involved in contests in which the o.55 0.29 0 0 0.71 0 
chance of winning each round is either 0.7 or 
0.3, with equal frequency. The method of analysis o.6 0-14 0.17 0 0.69 0 

was first to compute, for each value of  x, a pay- 0.65 0 0.367 0 .046 0-587 0 
off matrix for each of  the five strategies played 
against all the others, and then to seek for the o.7 0 0 1.0 0 0 
ESS (if necessary by iteration) of  each matrix. 

The ESS's are given in Table I. I f  x >1 0.7, the 0.75 0 0 1.0 o 0 
ESS is a pure strategy. When x = 1, an indi- 
vidual losing the first round retreats before the 0.8 o o 1.0 0 o 
next, because the first round is a perfect predictor 
of  the outcome of subsequent rounds. As x falls 0.85 0 1.0 o 0 0 
to 0.7, the damage an individual will risk before 
retreating increases. For  x<0.65,  the ESS is a 0.9 0 1.0 0 0 0 
mixed strategy. In symmetric contests, x = 0.5, 
28 per cent of  individuals retreat after losing one 0-95 1.0 0 0 0 0 
round and 72 per cent continue for four rounds. 

1.0 1.0 0 0 0 0 
These results illustrate the general theme that 

symmetric contests usually give rise to mixed 
ESS's whereas asymmetric contests are settled 
without appreciable escalation. 

Table I. ESS's for a Multiple-round Contest, Expressed as 
Proportions of the Constituent Pure Strategies 

V.  O n  Bluf f  
I f  some cue such as relative size can be used to 
settle conflicts conventionally, one might expect 
animals to evolve features which make them look 
larger than they actually are. This will only 
happen if a given increase in apparent size can 
be achieved more cheaply (in resource cost or 
other selective disadvantage) by some feature 
such as a mane or ruff of  hair than by actual 
growth in size. Such a feature will be referred to 
as 'bluff'. The essential feature of  a bluff is that 
it should increase apparent size (or whatever 

accurately predicts the outcome of an escalated 
contest. Let V and - D  be the pay-offs for 
victory and injury respectively, and let D/V = a, 
as before; we consider only eases with a >  1, i.e. 
D>V. 

From previous sections, the ESS is to escalate 
with probabilities 1, p~ = (V/D), and O respec- 
tively, according to whether a contestant is 
larger, equal or smaller than its opponent. Call 
this ESS ' I ' .  Then 

El(l)  = P{p~ [(1-p2)V+p(-~-~ - D) ] 

feature is being used to settle conflicts without V~ 1 - P  
escalation) without altering R H P  in an escalated + (1 -P~)Z--t  + . V 
contest. 2 2 

It  is not difficult to see that if a bluff cannot be which simplifies to 
distinguished from an actual increase in size, 
then bluff will spread through the population. V V 

To illustrate this point, consider a population 
of non-bluffers. An individual will be the same 
size as his opponent with probability P, and 
either larger or smaller with probability �89 - P ) .  
Suppose that opponents correctly estimate their 
relative sizes, and that a difference in size 

E , ( I )  = - - - P - - .  
2 2a 

Now consider a mutant  'bluffer', which 
appears to be one size class larger than it actually 
is. Consider first an 'optimistic bluffer', BO, 
whose own behaviour corresponds to its apparent 



170 A N I M A L  B E I - I A V I O U R ,  24,  1 

size. EI(BO) can then be estimated fronl the 
following table: 

Size relative to opponent: 

Fre- Expected pay-off 
Actual Apparent quency to mutant 

1 - P  
Larger Larger V 

2 

Equal Larger P V 

1 - P  
Smaller Equal - -  p2[(1-p~)V-p~D] 

2 
+(1 -p~)2( V/2 ) 

It can be calculated that 

V[3  1 1 ] PVI-1 1 1 ] 
EI(BO) = -~ ~ a 2a 2 + - " ~ [ 2 + ~ + 2 - ~ 2 " J  

Hence 

= T a 

Pv [!+_2+L ] 
+-2---k2 a 2a2J 

Whether BO can invade a non-bluffing popu- 
lation then depends on P, the frequency of con- 
tests between individuals which cannot distin- 
guish their sizes, and a. I f P > ~ ,  then the mutant 
can always invade; if P = 0, then the mutant 
can invade only if a >  l + V'2. 

The case of a 'pessimistic bluffer', 'BP', which 
behaves according to its actual and not to its 
apparent size, is easier. The relevant table is 

Size relative to opponent: 
Expected pay-off 

Actual Apparent Frequency to mutant 

Larger Larger ( l - P ) / 2  V 

Equal Larger P pzV+(1-p~)V/2 

Smaller Equal (1 -P)/2 (1 -P2) V/2 

Note that BP never gets into an escalated con- 
test, because if BP is willing to escalate, his 
opponent retreats. 

By a calculation similar to that above 

EI(BP l -  EffI) = -~ [-~--~j ~ t -~J 

which is positive for all values of  P, and for 
a > l .  

Hence for this particular model, a 'pessimistic' 
bluffer can always invade, and an 'optimistic' 
bluffer often can. It is easy to show that bluffing, 
once established, is evolutionarily stable. 

At first sight, this might suggest that bluff will 
continue to evolve, until the animals were all 
mane and nobody. It is important to notice, how- 
ever, that it was assumed that the bluff cannot 
be detected--short of an escalated contest. This 
is unlikely to be true. It is more likely that 
animals could evolve the capacity to distinguish 
between counterfeit and real size or RHP. This 
raises a question. Suppose that a population 
of 'bluffers' has evolved, whose members base 
their behaviour on apparent size, will a mutant 
which can distinguish and react to actual size be 
able to invade it ? 

It is convenient to write S = R+B, where 
S = 'apparent' size, R --- 'real' size and B = bluff 
component. 

Consider a model identical to that just 
analysed, except that the members of this 
population base their behaviour on S. Let this 
strategy be L 

Consider a mutant, E, which can estimate R 
directly, and which bases its behaviour on R. 
There are four situations in which the behaviours 
of E and I will differ: 

(i) (R+B) equal; Mutant E has greater R, 
(ii) (R + B) equal; Mutant E has smaller R. 

(iii) R equal ; Mutant E has greater (R + B). 
(iv) R equal; Mutant E has smaller (R+B). 
In the former two cases, typical members of 

the population estimate the contest to be equal, 
whereas E knows it is not; in the latter case, 
typical members estimate the contest to be un- 
equal and settle conventionally, although in fact 
it is equal. 

The expected pay-offs to the two strategies are 
as follows: 

pay-off to E pay-off to I 

El(E) El(I) 

(i) V p~V+(1 -p~)Z(V/2) 

(ii) 0 p2[(1 -p2) V-p2D] 

+(1 v/2) 

(iii) p~V+(1-p~)(V/2) V 

(iv) p2(V- D)/2 0 
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If we let the frequency of cases (i) and (ii) be 
p, and of (iii) and (iv) be p', it is easy to calculate 
that from (i) and (ii) there is a net gain to the 
mutantpV/a, and from (iii) and (iv) a net loss of 
p'V(1-1/a). Whether the mutant can invade 
depends on the relative frequencies p and p' 
of the two types of contests. If  p --- p' ,  the mutant 
invades if ,~<2. It is easy to show that if the 
mutant becomes established, then a population 
which bases its behaviour on actual rather than 
apparent size will be evolutionarily stable. 

To conclude, if bluff cannot be distinguished 
from actual RHP, then it will be established. If 
however individuals can evolve a capacity to 
distinguish bluff and reality, most populations 
will evolve strategies based on actual RHP. It 
is however possible for a population to evolve a 
stable strategy in which bluff is extensive, even 
though the bluff could be detected; this is more 
likely in species in which serious injury is possible. 

VI. Discussion 
Two general conclusions emerge fi'om the pre- 
ceding analysis, one relevant to symmetric and 
the other to asymmetric contests. In symmetric 
contests, it will often be the case that the ESS 
will be a mixed one, as in the 'war of attrition' 
and 'graduated risk' cases. Escalated contests 
will occur, but if injury is serious they will be 
rare. In asymmetric contests, mixed strategies 
will be the exception. Usually, some asymmetric 
feature will be taken as a 'cue' by which a contest 
can be settled conventionally. We shall discuss 
first whether there is any observational support 
for these two conclusions. We will then consider 
the circumstances in which escalated contests 
may occur. Finally, something will be said about 
the possibility of 'paradoxical' strategies, and 
about 'bluff'. 

(i) Do Mixed Strategies Occur in Nature? 
An example of a mixed strategy which fits the 

theoretical predictions of this paper is afforded 
by the dung fly Scatophaga stercoraria (Parker 
1970, 1974b). The behaviour of males searching 
for females varies in two ways. A male may stay 
at a cow pat as it grows stale for a long time, or 
may leave it and fly upwind in search of a fresh 
pat. The rate at which unmated females arrive 
at a pat is greatest when the pat is fresh, and 
falls off with time. While remaining at a cow pat, 
a male spends part of  its time actually on the pat 
and part on the grass immediately upwind of the 
pat. These variations, both temporal and spatial, 

can be analysed in terms of success in the number 
of females successfully mated. 

Although the contest is an 'n-person game' 
rather than a '2-person game', it does have the 
frequency-dependance characteristic of a con- 
test. Thus the optimal strategy for a male de- 
pends on what other males are doing. For 
example, if most males leave a cow pat as soon 
as it begins to grow stale, a male who remained 
at a stale pat would mate all the females arriving 
at it and so would have a high fitness, whereas 
if most males stay on a cow pat once found, 
it would pay to leave and search for a fresh one. 
When analysed in terms of the observed patterns 
of female behaviour, it turns out that the actual 
distribution of male behaviour is such that the 
fitnesses (i.e. expected number of matings) of 
males adopting different stay times or spatial 
positions are equal. That is, the male searching 
behaviour pattern follows an ESS. The pattern 
of stay times (Fig. 3) has the expected theoretical 
distribution for a 'war of attrition'. A distribution 
of this type requires only that the males should 
leave at random with constant probability. 
However, the distribution will only be an ESS 
if the possibility of leaving per unit time is 
adjusted by natural selection so that on average 
the fitness of males leaving early is the same 
as that of males leaving late, and this seems to 
be so. Since individual males can be seen to 
divide their time between the pat and the grass, 
it seems that in spatial distribution an indi- 
vidual male can adopt a mixed strategy; it is 
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Fig. 3. Relative numbers of male dung flies, Scatophaga 
stereoraria, leaving a cowpat at different times after its 
deposition. 
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not known whether the same is true for temporal 
variations, or whether these reflect genetic 
differences. 

Although searching behaviour of  Scatophaga 
can be satisfactorily explained, there is another 
aspect of male competition which presents more 
difficulties. A male which has once mounted a 
female remains mounted until the end of ovi- 
position. A mounted male may be attacked by 
another; if so, the contest is usually settled 
conventionally in a few seconds in favour of the 
'owner'. Sometimes a more protracted struggle, 
of very variable duration, ensues; although 
such struggles are usually won by the owner, 
they may be won by the attacker. We are not 
at present able to explain the frequency and 
duration of contests. The difficulty arises 
because of the various types of  asymmetry 
associated with the contest, both in pay-off (the 
owner of an ovipositing female has more to lose) 
and in RHP (some males are larger than others, 
and there is a postural advantage to the owner 
over the attacker). 

The case of  Scatophaga has been considered 
at some length, because in this case data were 
collected with the specific aim of seeing whether 
males adopting different strategies had equal 
mating success. Until similar investigations have 
been made of  other contest situations, it will 
not be possible to say how widespread mixed 
strategies of the kind predicted by the theory 
will prove to be. 

(ii) Are Conventional Cues Used in Nature to 
Settle Asymmetric Contests? 

Although the answer to this question is 
probably yes, one must be careful before present- 
ing particular cases in support of the theory put 
forward here. The two best-known situations 
in which contests are settled without escalation 
are in territorial behaviour, when an interloper 
retreats if challenged by an owner, and in 
dominance hierarchies, when an individual low 
in the order retreats if challenged by an indi- 
vidual higher in the order. Neither of these 
cases can be taken as relevant to the present 
theory because in both cases the behaviour of  
an individual probably depends on previous 
experience with the same opponent, a feature of 
contests which has so far been omitted from our 
analysis. 

This point will be pursued a little further in 
the case of  territory. If  two birds hold contigu- 
ous territories, and if each retreats when 

challenged inside the other's territory, then the 
behaviour presumably is influenced by previous 
encounters between the same two individuals. 
The situation is different when we have to 
analyse a contest or series of contests between 
two individuals which determine which of  them 
shall hold a particular territory and which of 
them shall move away. Such 'decisions' do have 
to be taken. For example, in great tits breeding 
success is higher in woodland than in hedgerows. 
Krebs (1971) showed that when a territory- 
holding male was removed from a wood, his 
place was taken by a male from outside the 
wood. The question therefore arises, why was 
the original male left in undisputed possession 
of the territory? One possible answer is that 
he was there first; i f  so, this is an example of 
a, probably largely uncorrelated, asymmetry. 
Another possibility is that there was some 
difference in size or age between the males, 
which was used as a cue to settle ownership; this 
would be an example of a contest with unequal 
RHP's. A third possibility, since tits winter in 
flocks in the area where they breed, is that the 
territorial contest was settled by prior positions 
in a hierarchy; if so, this only pushes the prob- 
lem back to the question of how relative pos- 
itions in a hierarchy are determined. None of 
these explanations need be correct. All that can 
be said is that such contests are settled, and 
that there are various asymmetries which could 
be used to settle them. 

There is one case of territorial behaviour in 
which there is experimental evidence (Gilbert, 
personal communication) to show how a con- 
test is settled. The males of the swallowtail 
butterfly Papilio zelicaon in California occupy 
hilltops, to which virgin females go to mate. 
Since there are more males than hilltops, there 
is competition for optimal territories. A strange 
male arriving at a hilltop is challenged by the 
occupying male, and retreats without a pro- 
longed contest. Gilbert allowed two males to 
occupy the same hilltop on alternate days, 
keeping them in the dark in the intervals. When, 
after 2 weeks, both males were released on 
the hilltop on the same day, a prolonged and 
physically damaging contest ensued before one 
male ultimately withdrew. This suggests that 
prior occupancy is the cue which settles contests. 
Since there is no obvious reason why the owner 
of a hilltop should have either a higher RHP 
or a higher pay-off for victory, this is perhaps 
best regarded as an example of an uncorrelated 
asymmetry being used to settled a contest. 
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Asymmetric contests are not confined to 
territorial situations. Geist (1966) presents 
evidence that, in Ovis dalli, when a strange ram 
is integrated into a group, his position in the 
dominance hierarchy is partly determined by 
relative size (in particular, horn size) without 
physical engagements, the latter being confined 
to opponents of approximately equal size. Here 
the asymmetry is in RHP. 

A case of prior ownership settling a contest 
is described by Kummer (1971) in hamadryas 
baboons, Papio hamadryas, a species in which a 
single male has permanent ownership of one or 
several females. Fights between males can be 
caused in the wild by a procedure analogous 
to Gilbert's with Papilio. If  a male is removed 
from a troop, his females will be taken over by 
another male or males. If the original male is 
then reintroduced, ownership is settled by fight- 
ing. Kummer brought together a male and 
female previously strange to one another, and 
left them for 15 min to form a pair bond. A 
second male, who had been able to observe the 
pair, was then introduced into the enclosure; 
this second male avoided conflict with the first 
arrival, who was left in possession of  the female. 
On a later occasion the same two males were 
used in a similar experiment with a second 
female but with their roles reversed; again the 
first arrival was left in possession of the female. 
This seems a clear case of a contest with an 
almost uncorrelated asymmetry, although it 
may be that the pay-off for victory is slightly 
greater to the owner of  a female, since he has 
expended energy in convincing the female of 
his ownership. 

(iii) Escalated Contests 
In all likelihood, the settling of contests by 

prior asymmetries, with or without bias, is 
widespread, although clear evidence in particu- 
lar cases is usually lacking. Escalated contests 
do, nevertheless, occur, and serious injury may 
be suffered by one or both contestants. There 
seem to be four situations in which escalated 
contests are to be expected. 

(a) The pay-off for winning is large compared 
to the loss due to injury. For  example, if the 
loser of a territorial contest has little chance 
of finding a territory elsewhere, or of surviving 
to breed next year, then we would expect esca- 
lation to be more frequent than if a territory 
in an alternative habitat is readily available, or 
if the likelihood of a non-breeder surviving for a 
further year is high. 

It is not clear that this expected correlation 
occurs. For  example, male red grouse establish 
territories in autumn, and breed in them in 
spring. There is evidence (Watson & Miller 
1971, and references cited) both that more- 
aggressive males obtain larger territories, and 
that birds which do not obtain territories 
usually die in the winter (although they may take 
over a territory if the owner dies). Yet there is 
no obvious disadvantage to increased aggression 
in terms of increased risk of injury. What 
then is the counterbalancing selection which 
prevents an indefinite increase in aggression? 
One possible explanation is that excessive 
aggression would make pair formation and 
mating more difficult; yet, in view of the very 
strong selection in favour of holding a territory, 
it is hard to believe that birds could not evolve 
so as to be aggressive to other males but not to 
females. 

(b) The second situation in which we might 
expect to see escalated contests is when there 
is no asymmetry which can be used as a cue to 
settle the contest. The analysis of the 'graduated 
risk' game suggests that if there are no asym- 
metries, and if the only choice of strategy open 
to a contestant is of a 'level of escalation' and an 
associated probability of serious injury, then 
escalated contests will occur. Individuals will 
vary in the level to which they are prepared to 
escalate; occasionally, two individuals both 
prepared to escalate to a high level will meet. 

There is a way of  avoiding escalation in 
symmetric contests, as suggested by the analysis 
of 'retaliation' by Maynard Smith & Price 
(1973). This analysis assumed, however, that 
two contestants could withdraw from a brief 
escalation without either contestant having to 
withdraw from the contest altogether. It also 
assumed that symmetric contests can be settled 
by display alone. This leads to a 'war of attrition' 
type of situation; that is to say, to protracted 
contests in which the selective cost of  the waste in 
time and energy is of the same order of magni- 
tude as the selective advantage of victory. 

It follows that in the absence of  some asym- 
metric cue, the cost of contests, either in the risk 
of injury or in the cost in time and energy, is 
likely to be large. 

(c) Imperfect information. Even if the contest 
is asymmetric, escalation is possible if the con- 
testants have imperfect information about the 
asymmetry. Here it is important to make a 
distinction between cases in which information 
about the asymmetric cue is imperfect, and 
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cases in which the cue is an imperfect prediction 
of the outcome of a contest. Suppose for exam- 
ple that the 'cue' is the relative size of horns. I f  
the contestants have accurate information about 
the relative size of their horns, this could in 
principle be used to settle conflicts without 
dangerous escalation, even if relative horn size 
was a rather poor predictor of  the outcome 
of an escalated contest. Indeed, differences of  
horn size could be used to settle conflicts even 
if they were uncorrelated with the outcome of 
escalation (i.e. unbiassed asymmetry). But if 
information about the cue (e.g. relative horn 
size) is itself imperfect, then escalation is likely; 
two contestants may both estimate that they 
are larger, or there may be a range within which 
discrimination one way or the other is impossible. 

(d) The population is not an ESS. This is 
always a possibility, particularly if the popu- 
lation is the result of  recent hybridization, 
or if it has been domesticated. 

(iv) Paradoxical Strategies 
One unforeseen outcome of the analysis is 

that in asymmetric contests, 'paradoxical '  
strategies may be stable; that is, strategies in 
which the contestant with the higher RHP or 
with more to gain gives way, and that with lower 
R H P  or with less to gain wins. Circumstances 
which favour the existence of a paradoxical ESS 
are: (a) the possibility of injury which is severe 
relative to the advantage to be gained; (b) pre- 
cise information exists about an asymmetric cue; 
(c) in the case of asymmetry in RHP,  the cue is a 
poor guide to the outcome of escalation. 

It  is important  to bear in mind this possibility, 
although it is unlikely that paradoxical ESS's 
occur in nature. First, a contest which permits a 
paradoxical ESS always permits a 'common- 
sense' ESS, in which the winner is the contestant 
with the higher RHP or with more to gain. 
Further, this common-sense R H P  has a larger 
'zone of attraction' and hence is more likely to 
arise. For example, it was shown that in contests 
with unequal pay-offs, the paradoxical strategy 
'give way when you have most to gain' can be 
stable, but could not evolve f rom an initial 
population which ignored the asymmetry, 
whereas the common-sense strategy 'give way 
when you have least to gain' could evolve from 
such a population. 

(v) Bluff and the Conveying of Information 
I t  is natural to think that one function of a 

display is to convey accurate information about 
the future behaviour of  the individual displaying. 

In contest situations this need not be the case. 
In a 'war of  attrition' situation, it would be 
selectively disadvantageous for an individual to 
convey by its behaviour whether it would 
continue for a long or a short time (Maynard 
Smith 1974). In such situations we would expect 
to see displays of  'typical intensity', although 
for a reason different f rom those suggested by 
Morris (1957). 

The situation is somewhat different if contests 
are settled by an asymmetric cue, for example 
horn development, which may indicate relative 
RHP. It  is selectively advantageous to an indi- 
vidual not to be involved in escalated contests 
with equal or superior opponents. The fre- 
quency of escalated contests in a population 
will be lower if the variance of horn size is large 
(Geist 1966). The problem of course is whether 
selection at the individual level could bring 
about such a high variance. I t  might do so in an 
animal that grows throughout life, by favouring 
an allometric relation between body size (and 
hence RHP)  and horn size; animals smaller in 
size and R H P  than the population average 
would benefit by having unambiguously small 
horns. However, the problem is not an easy one, 
and would repay further study. 

I f  contests are settled by asymmetric cues, 
the possibility of 'bluff '  must be considered; 
that is, the evolution of features which exag- 
gerate apparent size (or whatever feature is 
used as a cue) without altering R H P  in an esca- 
lated contest. It  seems clear that selection 
would favour bluff if it could not be detected, 
particularly if the bluffer were to behave in a 
way appropriate to his actual and not his 
apparent RHP. However, it is equally clear that 
selection will favour individuals capable of  
distinguishing bluff from actual RHP,  and this 
is likely to limit the extent to which bluff is 
employed in animal contests. 
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