NOUS 37:1 (2003) 1-24

Explanatory Generalizations, Part I:
A Counterfactual Account®

JAMES WOODWARD and CHRISTOPHER HITCHCOCK
California Institute of Technology

1. Introduction

The nomothetic conception of explanation, according to which all successful
explanations must appeal to laws, has dominated the discussion of scientific
explanation in the second half of the twentieth century. The best known
formulation of the nomothetic conception of explanation is, of course,
Hempel’s Deductive-Nomological theory of explanation. While few philo-
sophers today accept the D-N theory of explanation in its original formula-
tion, there is a widespread consensus that laws play a central role in
explanation, even among prominent critics of the D-N model such as Wesley
Salmon (see, e.g., Salmon 1984, p. 262).

This emphasis on the role of laws naturally raises the question: ‘what is a
law of nature?” The standard answer is that laws are (or at least entail)
exceptionless generalizations. Not all exceptionless generalizations are laws,
however. It may be that all of the members of the Greenspoint School
Board are bald, but this is not a generalization that could be used to explain
why some individual member of the school board is bald. So what more is
needed? Various other conditions have been proposed: laws must contain
only qualitative predicates, support counterfactuals, be confirmed by their
instances, and so on. However, there is general agreement that none of these
proposals (either singly or in combination) is completely successful (see, for
example, the discussion in Salmon’s (1989) survey). Defenders of the nomo-
thetic conception are thus in the uncomfortable position of insisting that
laws are essential to successful explanation while lacking a clear account of
what laws are.

The assumed role of laws in explanation also gives rise to a related
problem. Fields of scientific inquiry that deal with complex systems—the
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life sciences and social sciences, as well as branches of the physical sciences
such as meteorology and geology—seem to provide generalizations that are
not truly exceptionless and which lack many of the other features standardly
assigned to laws. John Beatty, in an interesting series of articles, has argued
on these grounds that there are no laws of biology. (See, e.g., Beatty 1995;
see also Smart 1963.) Others have argued for similar conclusions in the
social sciences (see, e.g., Scriven 1956, Fay 1983, Rosenberg 1992, Earman
and Roberts 1999). This presents us with an apparent dilemma:

[If] one insists that the special sciences don’t state laws, one must either (a)
explain . .. how the special sciences can provide good explanations without having
laws to avert to, or (b) deny the immensely plausible claim that...the special
sciences sometimes provide good explanations. (Pietroski and Rey 1995, 85.)

Pietroski and Rey apparently regard the first horn as so unattractive that
they do not explore it further; their unwillingness to do so is a testament to
the lasting influence of the nomothetic conception of explanation.

In this paper we will defend a new theory of explanation and explanatory
generalizations that attempts to meet the challenge described under (a). The
central idea is that successful explanation has to do with the exhibition of
patterns of counterfactual dependence describing how the system whose
behavior we wish to explain would change under various conditions. As
we will see, whether a generalization can figure in such a pattern of depen-
dence and hence can be used to explain has to do with whether it is
invariant, rather than with whether it is lawful. A generalization is invariant
if it would continue to hold under an appropriate class of changes involving
interventions on the variables figuring in that generalization. Invariant gen-
eralizations (and only invariant generalizations) will support the kinds of
counterfactuals required for successful explanation. Many of the generaliza-
tions of the special sciences are invariant and hence explanatory even though
they are not naturally regarded as laws. While the absence of a generally
accepted account of lawfulness is a serious problem for the nomothetic
conception, our theory avoids this problem because it does not rely on the
notion of law but rather on the notion of invariance, which, we will argue, is a
relatively clear notion.

Our discussion is organized as follows. Section 2 motivates the claim that
explanation has to do with the exhibition of patterns of counterfactual
dependence. Section 3 provides a more detailed explication of the concepts
of invariance and intervention. In section 4, we compare our account of
explanation with Hempel’s D-N account. Here we will show that our
account differs from the D-N model in the kind of generality it takes to be
desirable in explanations. While the D-N and other traditional models of
explanation emphasize generality with respect to objects or systems other
than the one that is the focus of explanation, our account instead emphasizes
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generality with respect to other possible properties of the very object or system
that is the focus of explanation. We argue in a companion piece to this paper
(Hitchcock and Woodward forthcoming—hereafter referred to as EG2) that
a focus on this second sort of generality permits a much more satisfying
account of what it means to say that one explanation is deeper than another.

Before turning to details, we should remark that there is an alternative
way of conceiving of our project. Readers who wish to retain the idea
that laws are essential to explanation may view our account of explanatory
generalizations as a new account of laws, rather than as an argument that
generalizations that are not laws may figure in explanations. The difference
between this perspective and our own strikes us as largely verbal. The
substantive point on which we disagree with philosophical tradition has to
do with features that generalizations must possess if they are to play an
explanatory role: we think it is invariance, rather than exceptionlessness or
any of the other features traditionally associated with laws, that is crucial.
What we decide to call explanatory generalizations is secondary. However,
some convention about how to use the word ‘law’ is required, and we think
that it is simplest and least confusing to restrict the word ‘law’ to its
traditional philosophical meaning.

2. Of Laws and Explanations

According to Hempel’s D-N theory of explanation, explanations have the
following logical form:

Cla CZ’ s Cm
Ly, Ly ... L,

E is a proposition describing the phenomenon to be explained—the
explanandum. E is derived from a set of other propositions, collectively
called the explanans. The explanans contains propositions of two distinct
types: Cy, C,...C,, describe particular circumstances or initial conditions,
while L, L,, ... L, describe laws of nature. The laws of nature must figure
essentially in the derivation; the derivation is invalid without these premises.
When such a derivation is given, it shows that the explanandum was to be
expected in light of the explanatory information. It is for this reason,
according to Hempel, that D-N explanations explain.

Many explanations conform to this structure. Consider an explanation of
the magnitude of the electric field created by a long, straight wire with a
positive charge uniformly distributed along its length. A standard textbook
account proceeds by modeling the wire as divided into a large number of
small segments, each of which acts as a point charge of magnitude dg. Each
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makes a contribution dE to the total field E in accord with a differential form
of Coulomb’s law:

(1) dE = (1/4meo)(dq)s’)

where s is the distance from the charge to an arbitrary point in the field.
Integrating over these individual contributions yields the result that the field
is at right angles to the wire and that its intensity is given by

E = (1/27mep)(A\/r)

where r is the perpendicular distance to the wire and A the charge density
along the wire.

This explanation does instantiate the D-/N schema: it consists of a deduct-
ively valid argument in which a law of nature, in this case Coulomb’s law,
figures as an essential premise. However, we want to focus on an additional
feature that plays no role in the D-N model. Put abstractly the feature is this:
the generalization (1) not only shows that the explanandum was to be
expected, given the initial conditions that actually obtained, but it can also
be used to show how this explanandum would change if these initial and
boundary conditions were to change in various ways. As we will put it, (1)
can be used to answer a range of what-if-things-had-been-different questions.
For example, (1) can be used to tell us how the electric field would differ if the
charge density of the wire were increased, or if the wire twisted into a circle or
a solenoid. In this way, (1) shows us that certain factors, such as the charge
density and geometrical configuration of the conductor, make a systematic
difference to the intensity and direction of the field. In short, Coulomb’s law
is explanatory because it tells us what the electric field depends on.

Based on this one example, of course, it is hard to adjudicate between these
two rival analyses of what makes Coulomb’s law explanatory. Both of us
have defended elsewhere the idea that tracing dependence relations in the
manner described above is essential to explanation (Woodward 1979, 1984,
1997a, 2000; Hitchcock 1993, 1995). While we will not rehearse this defense
here, we will present one line of argument that will help to motivate the
central idea.

The generalization (1) is commonly regarded as a law of nature.
However, generalizations that are not plausibly regarded as laws also figure
in explanations. Such generalizations can also be used to answer a range
of what-if-things-had-been-different questions, just as Coulomb’s law can.
It is for this reason, we claim, that they also can be used to provide
explanations. It is because there are generalizations and patterns of
argument that answer such questions without citing laws that non-lawful
explanation is possible.

Consider an illustration drawn from the structural equations literature.
Suppose that we are interested in determining the extent to which the amount
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of water (X)) and fertilizer (X>) received by an individual plant influences its
height Y. To this purpose we write down the linear regression equation

2) Y=aXi+aX,+U

Here a, and a, are fixed coefficients and U is a so-called error term, which
we may take to represent other causal influences on Y besides X and X>.

Even if the generalization (2) conveys information about a causal relation-
ship between X, X, and VY, it falls far short of the standards normally
demanded of laws. To begin with, (2) is bound to fail for sufficiently large
or extreme values of X and X;. One can’t make a plant grow arbitrarily high
by dumping huge amounts of water and fertilizer on it, nor make it arbit-
rarily small by giving it only minuscule amounts. Even if we confine our
attention to values of X; and X, within a more ordinary range, (2) may fail to
hold for certain ways of achieving those values; it will fail for instance, if X}
has a relatively high value as a result of dumping a large amount of water on
the plant at the end of an otherwise dry growing season. In addition, there
are many background conditions, not represented in (2), which if changed
would disrupt (2). (2) would fail if we were to spray the plant with weed killer
or heat it to a very high temperature. Less dramatically, there are many
possible conditions that will not destroy the plant, but which will alter the
effect of water and fertilizer on plant height. There may be physical changes
in the root system of the plant or the surrounding soil that would change the
way in which given amounts of water affect plant height. Finally, even when
we confine ourselves to the actual background conditions, and moderate
quantities of water and fertilizer, (2) may not perfectly describe the relation-
ship between the variables in question. While these features of (2) may make
us reluctant to describe it as a law of nature, we commonly take such general-
izations to provide useful information about which variables are causally or
explanatorily relevant to which others. (For a similar observation, see Earman
and Roberts 1999, 12.)

What conditions must an equation like (2) satisfy if we are to regard it as
making a true causal claim? In particular, how do we distinguish between the
use of an equation like (2) to describe or summarize patterns of covariation
among variables within a body of data, and its use to make causal claims or to
explain? Consider the following passage from the statistician David Freedman:

Causal inference is different [from descriptive summary], because a change in the
system is contemplated: for example, there will be an intervention. Descriptive
statistics tell you about the correlations that happen to hold in the data: causal models
claim to tell you what will happen to Y if you change X. (Freedman 1997, p. 116)

We take Freedman’s idea to be this: if (2) correctly describes a causal
or explanatory relationship, then an intervention on the right hand side
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variables which changes each X; by the amount AX; should change Y in just
the way represented by (2)—i.e. by a;AX; + a,AX,." This is just to say that
(2) should be invariant under interventions on the right hand side variables.
When (2) has these properties it can be used to answer a range of what-if-
things-had-been-different questions about how the height of the plant would
change as the amount of water and fertilizer it receives is (hypothetically)
varied. Thus we can see in (2) the same features that we have found in (1).
Our claim is that we may regard (2) as explanatory in virtue of its possessing
these features, even if (2) falls short of the standards we require in laws of
nature.

We hope that this informal discussion conveys some sense of what it
means to say that a relationship is invariant under interventions—we will
offer a more precise characterization in section 3 below. We can use this
notion to give a provisional formulation for our theory of explanation
which will help to guide the reader through our subsequent discussion. An
explanation involves two components, the explanans and the explanandum.
The explanandum is a true (or approximately true) proposition to the effect that
some variable ( the ‘explanandum variable’) takes on some particular value. The
explanans is a set of propositions, some which specify the actual (approximate)
values of variables (explanans variables), and others which specify relationships
between the explanans and explanandum variables. These relationships must
satisfy two conditions: they must be true (or approximately so) of the actual
values of the explanans and explanandum variables, and they must be invariant
under interventions.

Note the similarity in structure between this formulation and the for-
mulation of Hempel’s D-N theory of explanation. The statement specifying
the value of the explanandum variable is analogous to Hempel’s explanan-
dum proposition; the statements specifying the values of the explanans
variables are analogous to Hempel’s initial conditions; and the invariant
generalizations figuring in our explanans are analogous to Hempel’s laws.
This similarity of structure will help to bring the essential differences between
the two accounts into sharper focus. We will explore these differences in
greater detail in section 4 below.

Two further clarifications are in order. First, our account can be extended
analogously to include invariant generalizations relating the values of variables
to the probability of some outcome, or the probabilistic distribution or
expectation of some variable. Consider the following generalization: if a
photon which is polarized with an angle of 8, from the vertical impinges on
a polarizer set at angle 6, from the vertical, the probability that it will pass
through is cos*(#> — 6;). This generalization describes an invariant relation-
ship between the probability of transmission and angular displacement and
hence is potentially explanatory.”

Second, we will restrict our attention to causal explanation and will use
the words ‘causes’ and ‘explains’ interchangeably in what follows. Perhaps
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some generalization of the account presented here can be developed for
explanation in fields like mathematics and linguistics—we will return to this
possibility briefly in EG2. We will also avoid cases in which the explanandum
event is brought about in some idiosyncratic way, such as by preempting or
overdetermining causes. We think that the general treatment of causation in
terms of counterfactual dependence that we favor can be extended to cover
such cases, but we will not attempt to show this here.?

3. Invariance and Interventions

Obviously, our account puts a great deal of weight on the concepts of
invariance and intervention, and it is to these concepts that the current
section is devoted. A relationship is invariant if it continues to hold, or
rather would continue to hold, in the presence of a certain range of changes.
Our purpose in this section, then, is to specify the sorts of changes under
which an explanatory relationship must remain invariant.

Consider a standard example of a relationship that does not carry
explanatory import. Let X represent the height of a column of mercury in
a particular barometer located at Burbank Airport, and Y the amount of
rainfall recorded during a certain period at the same location. Then we
might well expect there to be some relationship of the form

G Y=fX)+U,

that accurately predicts the amount of rain to be expected given any level of
mercury in the barometer, where U is as before an error term representing
omitted causes. If our account is to be adequate, (3) had better not count as
being invariant in the relevant sense.

There are in fact, at least two distinct sorts of changes under which (3) will
continue to hold. We need to distinguish between stability under such changes
and the sort of stability which establishes invariance. First, (3) will hold under
changes in the price of tea in China, under changes in the lemming population
of Norway, and under a great many other changes besides. These all involve
changes in background conditions, that is, in the values of variables that do
not explicitly figure in the generalization (3). (Of course, (3) will also break
down under some changes in background conditions—for example, under
extreme changes in temperature. However, since we require only that an
explanatory relationship remain invariant under some range of changes, the
existence of some changes in background conditions under which (3) will not
continue to hold does not by itself show that (3) is non-invariant.) By
contrast, the notion of invariance that we take to be central to explanation
is invariance under some range of changes in the variables figuring in the
relationship itself. This focus is one important respect in which our account
differs from other accounts in the philosophical literature which appeal to
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ideas resembling our notion of invariance. For example Skyrms’ (1980) notion
of ‘resilience’ and Eells’ (1991) requirement of ‘context-unanimity’ for prob-
abilistic causation both incorporate the idea that causal and/or explanatory
relationships satisfy a kind of stability condition, but this is understood as
stability across background conditions. Unlike our view, these authors assign
no special status to stability under interventions on the variables figuring in
the relationship itself.

To count as invariant, however, it is not enough that a generalization
remain valid under changes in the variables that figure in the relationship,
for there is a natural sense in which (3) continues to hold under such
changes: as we observe the mercury rise and fall as a result of normal
atmospheric changes, we will observe that (3) continues to hold. To put
the point another way, there are two different ways of completing the
counterfactual: if the height of the column of mercury had been different,
then... One might reason: if the height of the column of mercury had been
different, then the atmospheric pressure would have to have been different,
and so there would have been a different amount of rainfall, in accordance
with (3). Lewis (1979) calls this kind of counterfactual a backtracking counter-
factual. (3) is invariant under this sort of counterfactual change, so we have
not yet found the right notion of invariance.

In addition to backtracking counterfactuals, Lewis also recognizes non-
backtracking counterfactuals, and it is upon these that he erects his well-
known analysis of causation (Lewis 1973, 2000). According to Lewis, the
counterfactual ‘if 4 were true, then B would be true’, symbolized 4 > B, is
true if in the closest possible worlds where A is true, B is true as well.
Possible worlds are close to the actual world to the extent that they hold
fixed the laws of nature and the particular matters of local fact that obtain
in our world: the criteria for weighing the costs of various kinds of depar-
tures from actuality are given in Lewis (1979).

As we shall understand the notion of invariance, invariant generalizations
must exhibit a pattern of non-backtracking counterfactual dependence. In
particular, (3) will be invariant under changes in mercury level just in case
some non-backtracking counterfactuals of the form: ‘if the height of the
column of mercury (X)) had been x, then the amount of rainfall (Y') would
have been f{x)” are true. In fact, such claims are false: (3) is not invariant in
this way and hence cannot successfully answer what-if-things-had-been-
different questions and cannot serve in explanations. By contrast, Coulomb’s
law does exhibit such a pattern of counterfactual dependence: it correctly
answers questions about what would have happened had the charge density
or geometry of the wire been different.

If Lewis’s account of non-backtracking counterfactuals were fully satis-
factory, we could use it to provide an adequate account of the notion of
invariance relevant to explanation and no further discussion would be
needed. Although we think that Lewis’s account is more nearly correct
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than many of the competing treatments advanced by philosophers, we do
not think that it is fully adequate. Our scepticism has several sources. First,
Lewis’s criteria are vague in ways that causal claims do not seem to be. For
example, those criteria require that we attach more importance to avoiding
“big, widespread, diverse violations of law” than to avoiding ‘‘small, loca-
lized, simple violations of law” (1979 [1986], 48). We doubt that there is
anything in scientific practice that tells us how to count miracles or to make
such comparisons in a non-arbitrary way. Second, and more fundamentally,
we doubt that it is possible to define criteria of similarity of worlds adequate
for a theory of causal or non-backtracking counterfactuals in purely acausal
terms, as Lewis attempts to do. That is, in order to determine whether (and
how) the values of Y depend counterfactually on the values of X, one must
make reference to the causal influence of other variables in specifying what
must be held fixed. This view (or rather a closely analogous view) is now
generally accepted among proponents of probabilistic theories of causation
(e.g. Cartwright 1979, Eells 1991) and is gaining currency among writers on
counterfactuals (e.g. Kvart 1986, Horwich 1987, Jackson 1977, and especially
Pearl 2000, chapter 7). We will not defend our scepticism here, but will proceed
directly to our positive theory.*

Central to our account of non-backtracking counterfactuals is the notion
of an intervention. An intervention is an exogenous causal process that
brings about the antecedent of the counterfactual in question. Heuristically,
we may think of interventions as manipulations that might be carried out by
a human being in an idealized experiment. Thus, in the case of (1), the
possible worlds that are relevant to the evaluation of counterfactuals in
which we imagine the charge density to be different are those in which we
physically intervene to change the charge density along the wire by connect-
ing it to an appropriate source or sink. Coulomb’s law is explanatory
because it correctly tells us how the field intensity would change under
such hypothetical interventions. A corresponding claim is not true of the
barometer reading and the quantity of rainfall. Fiddling with a mercury
column is not a way of bringing about or suppressing a storm, and this is
why the former does not explain the latter.

These remarks about the connection between explanation and the results
of human manipulation are intended only heuristically. It is not part of the
theory we are proposing that causal and explanatory dependencies hold
only when human intervention is possible. Nonetheless, we believe the
heuristic value to be genuine. In particular, we take it to be an advantage
of our approach that it makes clear the connection between counterfactuals
and the sorts of manipulations actually carried out in experiments used to
test causal and explanatory claims. This connection is considerably more
obscure on Lewis’s account.

To spell out more generally the requirements that an intervention must
satisfy, let us begin with a simple experimental paradigm. A researcher
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wants to know whether treatment with a particular drug, D, causes recov-
ery, R, from a particular disease. She divides a population of subjects, all of
whom have the disease, into treatment and control groups. She administers
the drug to all of the subjects in the treatment group, but to none in the
control group, and then measures the frequency of recovery in the two
groups. Her interventions / thus consist in some process that assigns each
subject to one of these two groups, administering the drug to those in the
treatment group and withholding it from those in the control group. She
wishes to design the experiment in such a way that any difference in
recovery rates between the two groups can be attributed to the effect of
the drug. What conditions must her experiment meet in order for this to be
the case?

First, her interventions must determine whether or not any given subject
receives the drug. This condition could be violated in a number of ways.
Some members of the control group may already have quantities of the drug
in their bloodstream, so that the experimenter’s interventions do not suc-
ceed in withholding the drug from those subjects. Or subjects in the treat-
ment group may fail to comply with the experimental protocol and throw
their drugs away.

Second, the experimenter’s interventions / must not be correlated with
any factor that affects recovery, with the exception of those that lie along
the causal chain from / to D to R. This condition could be violated, for
example, if the subjects in the treatment group happen to have compromised
immune systems, while those in the control group do not. Randomized trials
are designed to avoid this sort of problem.

Our notion of intervention is a generalization of these restrictions. We
will proceed in several stages. First, we shall introduce some concepts (such
as the notion of one variable’s being causally relevant to another) that will
be needed in our definition. Second, we will use these concepts to define the
notion of an intervention variable. Third, we will define the notion of an
intervention, or more precisely, of a counterfactual whose antecedent is
made true by an intervention. Fourth, we will define a special kind of
intervention, which we call a testing intervention. Finally, we will use the
notion of a testing intervention to formulate our account of explanation.

In the above informal discussion we have followed standard philosophi-
cal usage in treating causation as a relation between events or event-types,
such as treatment with the drug (D) and recovery (R). For any given subject,
each of these events occurs, or does not. However, in providing a more
precise characterization, it is more perspicuous to follow the usual convention
for the representation of causal relationships in the natural and social sciences
and to treat variables as the primary causal relata. It is relatively easy to
translate claims about events into claims about variables. In the above exam-
ple, we may let the variable X take the value 1 or 0 according to whether some
subject does or does not take the drug and let the variable Y take the value 1 or 0
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according to whether or not the subject recovers. In general, we will say that
X is causally relevant to Y if there is some set of circumstances” W in which the
value of Y depends upon the value of X, i.e., there is some change in the value
of X in W that would change the value Y or the probability that Y takes on
some value. Thus in the above example, D is causally relevant to R if D either
causes or prevents R in some subjects.” We emphasize that this notion of
causal relevance is very permissive. In particular, X will count as causally
relevant to Y if X affects the relationship between Z and Y, where Z is some
other variable causally relevant to Y.

Based on this one example, it might seem that there is little to choose
between the two modes of representation, event causation, and causal rele-
vance between variables. This is indeed the case if we restrict attention to
dichotomous variables such as X and Y. It is important to appreciate,
however, that this is a special case. Consider the relationship between A,
the amount of the drug given to a subject as measured by some continuous
variable like mass, and 7 the amount of time that passes before some subject
is healthy again. Suppose that up to some value larger drug doses will
decrease recovery time, but that beyond this value they will harm the
subject, delaying recovery. Does treatment with the drug ‘cause’ or ‘prevent’
speedy recovery? Armed with the notion of causal relevance between vari-
ables we may sidestep this issue: A4 is causally relevant to 7" and we may
leave it at that. If we wish to be more informative, we should specify the
form of the functional relationship between 4 and T. (See Hitchcock 1993
for further discussion.)

In addition to the basic notion of a variable X being causally relevant to a
variable Y, we will need to make use of the notion of X’s being causally
relevant to Y via a route that excludes Z. This concept can be illustrated by
means of a well-known example due to Hesslow (1976). One of the most
worrisome possible side effects of birth control pills is the formation of
blood clots: the consumption of birth control pills causes blood clots. On
the other hand, birth control pills are very effective in preventing pregnancy,
which can itself cause blood clots. If the latter effect is strong enough, it may
well be that a woman is overall less likely to suffer from blood clots if she
consumes birth control pills. In what sense, then, is it true that birth control
pills cause blood clots? The natural answer is that birth control pills cause
blood clots via a route that does not include pregnancy (perhaps by the direct
introduction of certain chemicals into the blood stream). If we employ the
broadly manipulationist account of causation adopted in this essay, then we
may also provide an intuitive elucidation of this notion in the following
way: X is causally relevant to Y via a route that excludes Z if and only if
there is some value of Z such that if we were to hold Z fixed at that value by
means of an ideal experimental manipulation, and we were also to carry out
an ideal experimental manipulation that changes the value of X, then the
value of Y (or the probability of Y assuming some value) would also change.
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For example, if a woman were to have a zygote implanted in her uterus, or to use
some effective means of contraception other than birth control pills, this might
well settle the issue of whether or not she becomes pregnant in a way that
makes the consumption of birth control pills irrelevant to pregnancy. If birth
control pills are causally relevant to blood clots via a route that excludes preg-
nancy, then the consumption of birth control pills would make a difference for
the probability of blood clots even in one of these hypothetical situations
where the woman’s intervention fixes the value of the pregnancy variable.’

The final key concept that we will need is that of one variable acting as a
switch for others. Suppose that a stereo receiver has three dials and one
button on it: it has dials for volume, treble, and bass, as well as a power
button. The setting of each of these is causally relevant to the frequency and
amplitude of the soundwaves that are emitted from a speaker. Nonetheless,
there is a certain asymmetry in the way in which these variables are relevant
to the sound emitted by the speakers: the settings of the dials make a
difference to the sound emitted only when the power button is in the ‘on’
position. When the power button is set to the ‘off’ position, there are no
possible changes in the position of the other dials which will change the
output of the speaker. In this case, the position of the power button is a
switch for the settings of the other dials with respect to the output of the
speaker. More generally a variable S acts as a switch for X with respect to Y
if and only if there some is some value of S for which changes in X will
change Y and some other value of S for which changes in X will not change
Y. Informally, the value of the switch variable “interacts’ with the value of
X in such a way that when the switch is in the off position, the causal
connection between X and Y is broken. We use this notion below to capture
the idea that when an intervention on X occurs, the value of X (e.g., level of
drug in the bloodstream) is entirely determined by the intervention; the
previously existing endogenous causal connections (e.g., voluntary decisions
by subjects about whether or not to take the drug) that have determined the
value of X in the past no longer do so. The notion of a switch captures some
of the features of the ‘arrow-breaking’ conception of interventions advocated
by writers like Pearl (2000) and Spirtes, Glymour and Scheines (1993), while
avoiding other features of this idea that some have found objectionable.

In order to define the key notion of an intervention, we must first define
what it is for a variable 7 to be an intervention variable for X, with respect to Y.

Let X be a variable, whose values represent various properties that might
be possessed by some individual, and let Y be another variable (not
necessarily applying to the same individual). Then 7 is an intervention
variable for X, with respect to Y, if it meets the following conditions:®

(M) 1) Iis causally relevant to X.
2) I is not causally relevant to Y through a route that excludes X.°



Explanatory Generalizations, Part I: A Counterfactual Account 13

3) Iis not correlated with any variable Z that is causally relevant
to Y through a route that excludes X, be the correlation due to I’s
being causally relevant to Z, Z’s being causally relevant to 7, 7 and
Z sharing a common cause, or some other reason.

4) I acts as a switch for other variables that are causally relevant
to X. That is, certain values of I are such that when I attains
those values, X ceases to depend upon the values of other
variables that are causally relevant to X.

Returning to our idealized experiment, / would be a variable taking as possible
values {assign to treatment group, assign to control group, do not intervene},
X would represent taking the drug or not, and Y would represent recovery.
Clauses 1 and 4 require that the value of 7/ make a difference for whether or not
a subject takes the drug, and also that when a subject is assigned to one of the
two groups, that I be the only variable whose value makes a difference to
whether or not a subject takes the drug. Clauses 2 and 3 require that the only
effect of 7 on Y be through its effect on X.

If we are willing to make some additional assumptions, it is possible to
simplify (M) considerably. Suppose that we adopt a framework similar to
that of Spirtes, Glymour and Scheines (1993), and assume that there is a
well defined probability distribution over the values of the variables.
Assume also that this distribution satisfies the so-called Causal Markov
Condition, which says that conditional on its direct causes, each variable is
independent of every other variable except its effects. (This is a general-
ization of the familiar screening-off assumptions frequently adopted in
discussions of probabilistic causality—joint effects are screened off from
one another by the full set of their common causes, distal causes are
screened off from their effects by direct or proximal causes, and so on.)"
Then clauses 2 and 3 reduce to the following: I is probabilistically indepen-
dent of Y, conditional on the value of X. We retain the more general
formulation in (M), in part to presuppose as little as possible about the
nature of causation and its relation to probability, and in part to present an
explicit list of what is excluded by the concept of an intervention variable.

An intervention on X with respect to Y is an actual or hypothetical change
in the value of some variable I, where [ is an intervention variable for X with
respect to Y. Armed with the concept of an intervention, we can now state
our account of non-backtracking counterfactuals. A counterfactual of the
form ‘if X were to have the value x, then Y would have the value y’ is true if
and only if Y has the value y in the hypothetical situations (or possible
worlds) where (i) the value of X is equal to x; and (i1) all other variables have
their actual values with the exception of 7, and any variable for which 1 is
causally relevant, where / is an intervention variable for X with respect to Y.
More intuitively, we are to imagine a situation in which the value of X is
changed to x as a result of the change in the value of a variable that meets
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condition (M ). Such an intervention is ‘surgical’ or ‘minimal’ in the sense that
only the values of variables that are effects of the intervention are changed.
As advertised, our notion of an intervention makes no essential reference to
human beings or their activities; instead it is characterized purely in terms of
notions like causal relevance and probabilistic independence. Thus a purely
natural process not involving human activity at any point may qualify as an
intervention as long as it satisfies the conditions described by (M).

We emphasize that the conditions (M ) are stated in terms of concepts (such as
causal relevance) that are overtly causal. This means that one cannot appeal to the
notion of an intervention as part of a reductive account of what it is for X to be
causally or explanatorily relevant to Y. However, we should also note that our
account of what qualifies 7 as an intervention variable for X with respect to Y
makes no reference to the presence or absence of a causal relationship between X
and Y. Instead (M) makes reference to other causal relationships: the causal
relationship between 7 and X, the causal and probabilistic relationships between
Iand various other causes of Y besides X, and so on. In particular, we should note
thatrequiring that 7affect Yifat all only through Xisnottantamount torequiring
that 7 does affect Y through X. Moreover, our account of intervention makes
reference only to qualitative causal concepts, and not to the quantitative or
functional form of the relationship between variables. Thus, although non-
reductive, our account is not viciously circular: it does not presuppose the very
thing that it aims to assess—whether a particular functional relationship
Y =f(X) is invariant under interventions.

Some philosophers hold that non-reductive accounts of causation and
explanation must inevitably be unhelpful and unilluminating. We think, in
agreement with a growing number of writers both within and outside of
philosophy, that this attitude is fundamentally mistaken. The conclusion
that it is impossible to analyze causal relationships in terms of acausal
concepts like ‘correlation’ is now widely accepted both among philosophers
working on probabilistic theories of causation and by thoughtful statisti-
cians, econometricians and theorists of experimental design. There is general
agreement among these researchers that adoption of a non-reductive account
of causation does not preclude clear and precise treatments of causal claims
themselves or of the epistemological problems surrounding inference to such
claims. Moreover, analogous conclusions have been reached elsewhere in
philosophy. For example, there is general agreement that it is impossible
to characterize what it is for a subject S to believe that p just in terms
of ‘non-mentalistic’ notions that refer only to overt behavior. However,
it is arguable that it is possible to characterize what it is for S to believe
that p if one is allowed to make reference to S’s other beliefs and desires,
as well as to her overt behavior. Such a characterization is non-
reductive, but it is not viciously circular. So also for the account we propose.

A closely related point is that while our account presupposes some causal
notions, it embodies a number of non-trivial substantive assumptions about
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the interrelationships among other concepts (‘intervention’, ‘counterfactual
dependence’, ‘explanation’) in the same family. These assumptions are in
turn inconsistent with a number of received views about explanation. For
example, we will argue below that if the interventionist based account that we
advocate is correct, it follows that standard accounts of lawfulness and
explanation focus on the wrong sort of counterfactuals. The correctness of
this claim is quite independent of the issue of whether causal and explanatory
notions can be given a reductive characterization. More generally, our
account illustrates the point that a theory can be non-reductive without
being trivial or uninformative.

Finally, a word about ‘miracles’. Consider a counterfactual of the form
‘if X had taken the value x, then Y would have taken the value y’,where it is
understood that the X is changed to x by means of an intervention variable
I taking the value i. The notion of an intervention has been designed in such
a way that, as long as 7 is an intervention variable, it makes no difference to
the value of Y how I comes to possess the value i. We can, if we wish, say
that 7 acquires this value as a result of some minor miracle. Alternatively,
we can imagine that /7 is caused to have the value 7 as a result of a change in
the value of some other variable Z which is causally relevant to 7, that
the value of Z changes because of a change in the value of yet another
variable W and so on, with any needed miracle occurring at some much
earlier time. Because it is built into the notion of an intervention that any
change in the value of Y will occur only through the change in the value of
X, the details of how I comes to have the value i do not matter to the
assessment of the above counterfactual. In other words, the use of an
intervention variable allows us, if we wish, to push any required miracle
back indefinitely, so that the laws of the actual world continue to hold in the
region of interest. This provides a natural explanation of a striking feature
of the kinds of counterfactuals that are relevant to causal and explanatory
claims: that while we require that they be true when their antecedents
are realized by interventions, any more detailed specification of the way
in which their antecedents are realized is regarded as irrelevant and
unnecessary.

We are now in a position to characterize the notion of invariance: a
relationship R between variables X and Y is invariant if it would continue to
be true (or approximately true) in at least some hypothetical situations or
possible worlds in which the value of X is changed as the result of an
intervention. That is, there must be some non-actual value x of X such
that the following counterfactual is true: ‘if X were equal to x, then the
values of X and Y would stand (approximately) in the relationship R.” This
account can be naturally extended to cover cases where X and Y are sets of
variables, rather than individual variables.

We emphasize that our account of invariance under interventions is exist-
ential, rather than universal in character: to count as invariant an explanatory
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generalization must be invariant under some—not necessarily a/[—interventions.
As noted earlier, many and perhaps most explanatory generalizations hold
only for some range of interventions and break down under others. When
there are no interventions with respect to some generalization (i.e., when
no interventions are ‘possible’), our account has the consequence that the
generalization fails to be invariant under interventions, rather than being
trivially invariant.

What does it mean to say that there are no interventions with respect to
some generalization? We do not require that interventions be physically
possible in the sense of being consistent with physical law and actually
obtaining initial conditions: an intervention may well require a miracle some-
where in its history. For example, in the case of Coulomb’s law, we take it to
be meaningful to talk about interventions to change the charge density along
the wire, even if the actual charge density was determined to be what it was.
This sort of case may be contrasted with cases in which the existence of a
certain sort of intervention is precluded by physical law alone (rather than the
laws and the actual initial conditions together). In at least some cases of this
sort, it seems plausible that there exist no interventions for some general-
ization of interest to be invariant under and hence that the generalization is
non-explanatory. For example, in EPR type set-ups, as a matter of physical
law alone there is no intervention on the outcome of the left hand measure-
ment, with respect to the outcome of the right hand measurement. That is,
any method of bringing about a desired outcome on the left hand side (such
as preparing the particle pairs in a state other than the singlet state) will have
a direct effect on the outcome on the right hand side as well. It is thus natural
to think of this as a case in which the perfect (anti)-correlation between the
two measurement outcomes in an EPR experiment is not invariant under
(any) interventions, and it follows that one measurement result does not cause
or explain the other."

In still other cases, while there may be no physical law forbidding inter-
ventions, interventions may be ill-defined in the sense that we lack any clear
notion of what it would be to change a system in the way envisioned or of
what would be true under such a change. For example, we doubt that there
is any clear notion of an intervention that would change Bill Clinton into a
copper wire or Adam Morton into a dry, well-made match.'? This point will
play a central role in the discussion of section 4 below.

There is a final restriction we wish to impose upon the kind of invariance
under intervention that matters for successful explanation. Imagine a light
bulb that is normally triggered by a circular switch. The switch has a little
hash mark, that can be moved from a vertical position (0°) to just past
horizontal (100°). At a threshold one radian (approximately 57°), the light
comes on. We can represent this relationship as follows. Let L be a variable
that takes the value 1 if the light is on, 0 otherwise; let § be the angular
displacement of the switch measured in radians; and let [—] be the whole part
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function, so that for example [1.57079...]= 1. Then the relationship between
L and 0 is:

@) L=I0.

(Note that the maximum angular displacement of the switch was stipulated
to be 100°, which is less than 2 radians.) This relationship is invariant under
interventions on #: if we intervene to change the position of the switch, say
from 0 to 7/2 (90°), the light will go from off to on. It is intuitively plausible,
that if the switch is turned to 90° and the light is on, the relationship (4) can
figure in an explanation of why the light is on. So far, so good.

Suppose that the switch is turned to an angle of 90° and the light is on, as
before. However, now we imagine the light switch to be broken, so that the
light will remain on no matter what the setting of the switch. In this case, it
seems wrong to say that relationship (4) figures in an explanation of the
light’s being on. The light’s being on is completely independent of the
position of the switch. Nonetheless, it is still the case that (4) is invariant
under some interventions on 6: we can intervene to set # anywhere from 1 to
7/2 radians and (4) will continue to hold.

In order to deal with this sort of case, we propose a further restriction on
the interventions that are to count for purposes of determining the explana-
tory credentials of some relationship. Let R be a relationship that holds
between the actual values of certain variables, and suppose that R figures in
a putative explanation of why the explanandum variable has the value it
does. We will say that R is invariant under testing interventions if it is
invariant under interventions that change the values of the other variables
in such a way that R predicts a value for the explanandum variable different
from the value it actually had. For example, if the light is on and the switch is
turned to an angle of 90°, a testing intervention for relation (4) would be one
that sets 6 to less than one radian, where (4) predicts a change in the value of
L. Then we should require that explanatory relationships be invariant under
testing interventions. In the case where the switch mechanism is broken, (4)
fails to be invariant under testing interventions, since setting # to less than
one radian does not put out the light. An explanatory generalization must
tell us about how different values of the explanandum variable would result
from interventions that change the values of the explanans variables. It is
only if a generalization meets this condition that it can figure in answers to
what-if-things-had-been-different questions. Thus in the informal statement
in section 2, the requirement that the explanans of a successful explanation
include only invariant relationships should be understood in the following
sense: these relationships must be invariant under testing interventions on the
values of the explanans variables. In what follows, we will continue to use the
shorthand ‘invariant’ for ‘invariant under testing interventions on the values
of the explanans variables’.
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4. The Nomothetic Conception Revisited

With a clearer understanding of the key concepts of invariance and intervention,
we may contrast our account with Hempel’s D-N model in greater detail, with
particular emphasis on how invariant generalizations differ from laws of nature.

Laws have traditionally been understood as universal generalizations of
the form ‘All A4’s are B’s’. It is our contention that such generalizations,
even when they satisfy the conditions for lawhood standardly imposed
by philosophers, often fail to be explanatory, or are at best very poor
explainers. Discussions of the D-/N model of explanation have often employed
toy examples of explanations having the logical form:

(5) All 4’s are B’s
Object 0 is an 4
Therefore, o is a B

These have always had an air of artificiality about them. Real scientific
explanations are much more complex affairs with considerable additional
structure. Philosophers of science have generally recognized this but have
nonetheless assumed, no doubt under the influence of the D-N model, that (5)
is an acceptable idealization—that it captures all the essential features of
genuine explanations.

Note that (5) does not have the appropriate form to be an explanation on our
account, since we require that the explanans and explanandum be expressed in
terms of the values of variables. This is easily remedied, however. Let X be the
characteristic function or indicator function for A4, so that for any object o,
X(o)=1ifand onlyif ois 4, and X(0o) =0if and only if 0 is not 4. Analogously,
let Y be the characteristic function for B. Then (5) can be re-written:

(5) For all objects, X < Y
For object 0, X(0) =1
Therefore, Y(0) =1

So the mere fact that (5) does not explicitly specify relationships between
variables is no objection to its qualifying as an explanation.

The problem, rather, is that the generalizations figuring in (5) and (5°) do
not tell us what being a B (or having a certain value of Y') depends on. It
may be that all objects are B’s, or at any rate that all objects belonging to a
much broader class are B’s. Consider, for example, the generalization:

(6) All igneous rocks have mass greater than zero.

While this fits nicely with the traditional conception of a law, it does nothing
to tell us why some particular rock is massive: its having a non-zero mass in no
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way depends upon its petrologic classification. This notion of dependence is
captured by our notion of a testing intervention: it is only if a generalization
is invariant under testing interventions that it conveys information about
how one variable depends on another. By subjecting an igneous rock to
tremendous heat and pressure, it can be transformed into a metamorphic
rock. This is an intervention, but not a testing intervention for the general-
ization in question: metamorphic rocks are also massive. Nor are there any
other interventions that qualify as testing interventions under which this
generalization is invariant—hence our sense that it tells us nothing about
what the massiveness of rocks depends on. Put another way, the general-
ization cannot be used to answer what-if-things-had-been-different questions
about hypothetical situations in which the rock would not have been massive.
Indeed, if anything, (6) suggests false answers to questions about what would
happen if a particular rock were transformed from igneous to metamorphic.

This failure is closely connected to the familiar problem of explanatory
irrelevance. The classic example comes from Salmon (1971):

(7) All men who regularly consume birth control pills fail to become
pregnant.
John Jones regularly consumed birth control pills.
Therefore, John Jones failed to become pregnant.

The generalization in (7), while arguably a law, is not invariant under testing
interventions. In particular, intervening to prevent John Jones from taking
birth control pills would not affect his chances of conception. Thus, while
(7) satisfies the requirements for successful D-N explanation, it does not
identify conditions such that changes in those conditions resulting from
interventions would lead to changes in the explanandum. According to
our account, this is why it fails to be explanatory.'?

Our account agrees with Hempel’s that to be explanatory with respect
to an object o, a generalization relating X and Y must not merely say that
the actual values of X and Y possessed by object o stand in this relation.
And like Hempel, we agree that the additional content of explanatory
generalizations is (at least partially) counterfactual in nature. However,
our account disagrees with Hempel’s (and with other standard treatments of
the role of laws in explanation) about what this additional content consists
in. According to the standard view, to count as a law, and hence as
explanatory, a generalization must describe a relationship that holds of
the actual values of X and Y possessed by objects other than o. Moreover,
the relationship must also hold for certain hypothetical values possess by
objects other than o. In particular, if a generalization like ‘All 4’s are B’s’ is
to be explanatory with respect to o, it must ‘support’ counterfactuals of the
following form: if some object o* that is different from o and does not
possess property A were to be an A, then it would be a B. (In terms of our
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schema (5'), if o*, for which X(0*)=0, were such that X(o*)=1, then
Y(o*)=1.) We will refer to counterfactuals of this sort as ‘other object’
counterfactuals.

By contrast, according to our account, to count as invariant and hence
explanatory, a generalization must describe a relationship that holds for
certain hypothetical values of X and Y possessed by the very object o, namely
those values of X and Y possessed by o in the hypothetical situations where
the value of X is changed by an intervention. That is, on our account, the
counterfactuals that must be supported by a generalization that is explana-
tory with respect to o are of the following form: if the value assigned by the
variable X to o were to be changed via an intervention (e g., from X(o)=1 to
X(0)=0), then the value assigned by Y to o would change in some way
predicted by the generalization. Let us call these ‘intervention’ counterfactuals.

We maintain that it is the ability of a generalization to support such
intervention counterfactuals, rather than its ability to support other object
counterfactuals, that determines its explanatory potential. Consider the
example in which Coulomb’s law is used to explain why a particular con-
ductor with such and such a geometrical configuration and charge distribu-
tion produces an electric field potential of such and such a strength.
According to the traditional view, Coulomb’s law is considered a genuine
law (and hence as explanatory), because it supports other object counter-
factuals, including (apparently) such counterfactuals as: ‘if Bill Clinton, the
H.M.S. Victory, or a neutron were a conductor with such and such a geo-
metrical configuration and charge distribution, he/she/it would produce an
electric field potential of such and such a strength.” Such counterfactuals tell
us very little about what the actual field potential depends on, in part because it
is so hard to comprehend their antecedents, and in part because they involve
changes in the identity of the conductor, and this is not a factor on which
the strength of the field depends. Instead the strength of the field produced by
a conductor depends on such factors as its geometry and charge density.

On our view Coulomb’s law is explanatory because it supports counterfactuals
about what would happen if the charge density or geometric configuration of this
very conductor were changed in various ways as a result of an interventions. This
counterfactual information does make explicit how the strength of the potential
field produced by the conductor depends upon its geometry and charge distri-
bution. In contrast to ‘other object’ counterfactuals, the counterfactuals on
which our account focuses exhibit explanatorily relevant information.

Itis ironic that the traditional conception of laws is often defended on broadly
empiricist grounds: universality is said to be an empirically respectable notion,
while richer modal notions are not. It is wholly mysterious how we might test
counterfactuals about what would happen if Bill Clinton, the H.M.S. Victory, or
a neutron were to be a long, straight wire; indeed, it is mysterious what such
counterfactuals mean. By contrast, the counterfactuals that are central to our
account are often directly empirically testable. For instance, it may be possible to



Explanatory Generalizations, Part I: A Counterfactual Account 21

intervene to change the geometry or charge distribution of the conductor in
order to determine whether the relationship expressed by Coulomb’s law con-
tinues to hold for this conductor. We think that the difference between these two
sorts of counterfactuals is reflected in the judgments of most scientists about the
physical content of Coulomb’s law. While it is natural and intuitive to think of
that law as telling us how the field due to some conductor would change as the
charge density or geometry of a conductor were changed, the law is simply not in
the business of trying to tell us what would happen under the fantastic transfor-
mations contemplated above.

5. Conclusion

We have argued that to explain why some phenomenon occurs is to show what
that phenomenon depends upon. This is achieved by providing the resources
for answering a variety of what-if-things-had-been-different questions: how
would the outcome have differed if the initial conditions had been changed in
various ways? A generalization can play this role if and only if it is invariant
under interventions. Such a generalization supports a range of counterfactuals:
not the ‘other object’ counterfactuals upon which traditional discussions of laws
have focussed, but counterfactuals about what would happen under certain
interventions on the system at hand.

This account of explanation has a number of virtues. It allows us to
diagnose standard counterexamples to the nomothetic conception of explana-
tion that involve failures of explanatory relevance. Such examples, while they
conform to the structure of D-N arguments, do not provide us with the
resources for answering what-if-things-had-been-different questions. More-
over, our account allows us to avoid a standard dilemma involving expla-
nation in the social sciences: either the generalizations of the special sciences
are (despite all appearances to the contrary) ‘laws’ or else they are unex-
planatory. On our account, the generalizations of the special sciences can be
used to explain if they are invariant under inventions, regardless of whether
they qualify as ‘laws’ in the traditional sense. Finally, our account is able to
make sense of the very natural intuition that some explanations are deeper
and more powerful than others. We will argue for this claim in detail in a
forthcoming companion piece (Hitchcock and Woodward forthcoming).

Notes

* This paper had its origins in a talk given by Woodward entitled “Explanation and Invariance”
at the 1997 Eastern Division Meetings of the American Philosophical Association and the
commentary on the talk by Hitchcock. Marc Lange was the other commentator and we are
grateful to him for a number of helpful comments and suggestions. We are also grateful to
Nancy Cartwright, Malcolm Forster, Alan Hajek, Dan Hausman, Paul Humphreys, and Judea
Pearl for helpful discussions. Woodward’s contribution to this paper was supported in part by the
National Science Foundation (SBR-9320097).
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"For a more detailed discussion of this idea and of the causal claims implicit in
equations like (2), see Woodward (1999) and Hausman and Woodward (1999).

2 Discretion being the better part of valor, we will remain neutral on the issue of
whether it is absorption or transmission per se, or merely the probability of absorption and
transmission that is explained on any particular occasion.

3 How to extend a ‘basic’ account of causation to cover more complex cases is a problem faced
by all theories of singular causation, and numerous proposals have been offered (see for example
Lewis 1973, 2000). For more recent accounts that are very much in the spirit of the ideas developed
in this essay, see Pearl (2000, chapter 10), Halpern and Pearl (2000), and Hitchcock (2001a).

“From our perspective, Lewis’s theory is as successful as it is in reproducing our
ordinary causal judgments because his notion of a minor miracle does roughly the same
work as the notion of an intervention in our account. Nonetheless, the two approaches do
not yield the same causal judgments in all cases—see note 10 below.

5The allowable set of possible circumstances must be constrained somehow. Any
variable X will count as causally relevant to Y if we allow as circumstances ‘the existence
of a powerful deity who sets the value of Y according to the value of X.” We have in mind
that in any given case of explanation there is some set of conditions that is being ‘held
fixed’ in the background. In example (2), for instance, it might be understood that the plant
is growing on the earth, and thus that circumstances in which there is a different gravita-
tional field or atmosphere are ‘out of bounds’. Mackie (1974) refers to these background
conditions as the ‘causal field’. In the causal modeling approach as developed by Spirtes
etal. (1993) and Pearl (2000), assumptions about which sets of circumstances are consid-
ered relevant are reflected in the choice of variables to include in the model: see Hitchcock
(2001) for more discussion.

Note that our term ‘causally relevant’ is unlike the term ‘causally connected’ used by
Hausman (1998): we do not say that X is causally relevant to Y if values of Y cause values
of X, or if X and Y are effects of a common variable.

7Both Hitchcock (2001b) and Woodward (forthcoming) contain more detailed char-
acterizations of the notion of a causal route.

8 There are a number of other characterizations of the notion of an intervention in the recent
philosophical and statistical literature. Most of these largely coincide with our characterization
but sometimes differ in detail. See, e.g. Spirtes, Glymour and Scheines (1993), Cartwright and
Jones (1991), Meek and Glymour (1994), Pearl (2000), Hausman (1998). We do not have the
space to explore in detail the relationship between these various accounts.

Note that because of our liberal conception of what it means for one variable to be
causally relevant to another, M2 will exclude the sort of case described by Cartwright and
Jones (1991) in which 7 affects the mechanism connecting X and Y.

1For a more precise statement of this condition, see Spirtes, Glymour and Scheines,
(1993, 54). For further discussion, see Woodward (1997b) and Hausman and Woodward (1999).

! Contrast this with the apparent consequence of Lewis’s account that the outcome on one
wing causes the outcome on the other (see Butterfield 1992). This is just one of a number of cases
in which our account apparently yields different causal conclusions than Lewis’s.

2 The allusion is to Morton’s wonderfully titled paper: “If I Were a Dry, Well-made
Match” (Morton 1973 ).

13 For further discussion, see Woodward (2000, section 3).
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