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hilosophy of Science 

December, 1986 

ENTROPY AND UNCERTAINTY* 

TEDDY SEIDENFELDt 

Department of Philosophy 
Carnegie-Mellon University 

This essay is, primarily, a discussion of four results about the principle of 
maximizing entropy (MAXENT) and its connections with Bayesian theory. Result, 
provides a restricted equivalence between the two: where the Bayesian model 
for MAXENT inference uses an "a priori" probability that is uniform, and where 
all MAXENT constraints are limited to 0-1 expectations for simple indicator- 
variables. The other three results report on an inability to extend the equivalence 
beyond these specialized constraints. Result2 established a sensitivity of MAX- 
ENT inference to the- choice of the algebra of possibilities even though all em- 
pirical constraints imposed on the MAXENT solution are satisfied in each mea- 
sure space considered. The resulting MAXENT distribution is not invariant over 
the choice of measure space. Thus, old and familiar problems with the Laplacian 
principle of Insufficient Reason also plague MAXENT theory. Result3 builds 
upon the findings of Friedman and Shimony (1971; 1973) and demonstrates the 
absence of an exchangeable, Bayesian model for predictive MAXENT distri- 
butions when the MAXENT constraints are interpreted according to Jaynes's 
(1978) prescription for his (1963) Brandeis Dice problem. Lastly, Result4 gen- 
eralizes the Friedman and Shimony objection to cross-entropy (Kullback-infor- 
mation) shifts subject to a constraint of a new odds-ratio for two disjoint events. 

1. Introduction. Thirty-six years after Shannon (1948) and Wiener (1948) 
introduced their now familiar expression for the uncertainty captured in 

*Received January 1985; revised January 1986. 
tI thank J. Kadane, I. Levi, and A. Shimony for their detailed, constructive comments 

on an earlier draft of this paper. Also, I have benefited from discussions with: A. Denzau, 
C. Genest, P. Gibbons, E. Greenberg, E. Jaynes, M. Schervish, G. Tsebelis, B. Wise, 
the members of the Philosophy Department Colloquium at Carnegie-Mellon University, 
and other helpful critics at the 29th NBER-NSF Seminar on Bayesian Inference in Eco- 
nomics. 

Support for this research came from the Department of Preventive Medicine, Washington 
University (St. Louis), and N.S.F. Grant #SES-8607300. 

Philosophy of Science, 53 (1986) pp. 467-491. 
Copyright C 1986 by the Philosophy of Science Association. 

467 

This content downloaded from 132.174.254.127 on Mon, 29 Sep 2014 16:46:54 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


468 TEDDY SEIDENFELD 

a probability distribution, entropy formalism is a thriving enterprise. Its 
advocates find applications in diverse settings, including problems of im- 
age restoration (Frieden 1972), and estimating missing proportions- in 
contingency tables for socio-economic survey data (Denzau, Gibbons, and 
Greenberg 1984). But I doubt there is a more staunch defender of the 
generality of entropy as a basis for quantifying (probabilistic) uncertainty 
than the physicist E. T. Jaynes. 

Almost thirty years ago, Jaynes (1957) offered his celebrated papers 
on "Information Theory and Statistical Mechanics." There he argued that 
statistical mechanics is best understood as an instance of "inference," 
subject to inductive principles for maximizing uncertainty (measured by 
entropy), rather than as a "physical theory" in which, for example, the 
results of ergodic theory depend upon equations of motion and suspect 
assumptions about appropriateness of time-intervals (for use in identifying 
time frequencies and phase averages). In one fell swoop, Jaynes's ap- 
proach reproduced a host of computational rules for determining statis- 
tical distributions, grounded on a simple rule for maximing entropy. The 
conceptual innovation was to give this rule a wide scope, elevating it to 
a principle of inductive logic for assigning (subjective) probabilities in an 
observer-invariant (objective) fashion. Investigators holding the same 
"evidence" agree in their determination of probabilities, provided they 
adhere to Jaynes's program for selecting a probability distribution that 
maximizes entropy subject to the constraints of the shared "evidence." 

Consider a simple illustration, used by Jaynes (1963) in his Brandeis 
Lectures. Suppose we are faced with an ordinary six-sided die whose 
"bias" is stipulated to constrain our expectation for the next roll: 

E[number of spots on next roll] = 3.5. (1) 

The problem is to determine a (subjective) probability distribution for the 
set X = {1,. . .,6} of possible outcomes. Shannon's formula for the un- 
certainty (entropy) in a discrete distribution (over n-states) is: 

Us = - Piog(pi). (2) 

Jaynes's principle of Maximizing Entropy (MAXENT) directs us to choose 
that distribution over X (pi 2 0 >pi = 1) which maximizes (2) subject 
to the constraint (1). That is, from among those distributions satisfying: 

6 

X ip(i) = 3.5, 
i=l 

maximize uncertainty. The solution is the uniform distribution, p(i) = 
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ENTROPY AND UNCERTAINTY 469 

1/6 (i =1,. . .,6).1 If, instead, the constraint specifies: 

E[number of spots on next roll] = 4.5 (3) 

instead of the value 3.5 (for a fair die), the MAXENT solution (Jaynes 
1978) is (to five places): 

{P1,- *,P6} = {.05435, .07877, .11416, .16545, 

.23977, .34749}. (4) 

Note that in (4) the probabilities are shifted away from the uniform dis- 
tribution to lie on a smooth (convex) curve, increasing (decreasing) in pi 
whenever the constraint fixes an expectation greater than (less than) 3.5- 
corresponding to the uniform distribution. 

Why does Jaynes find the MAXENT principle compelling? Why should 
a rational person pick the uniform distribution from among the continuum 
of distributions satisfying (1), or choose the distribution (4) from among 
the continuum of distributions satisfying (3)? I can identify five reasons 
proposed by various authors: 

(i) A pragmatic justification-in an impressive variety of empirical 
problems, researchers find MAXENT solutions useful. (See Frieden 1984.) 

(ii) An argument for the long run-asymptotically, a MAXENT dis- 
tribution is the focus of concentration among all distributions satisfying 
the given constraints. That is, if we use entropy to gauge "distance" be- 
tween distributions, asymptotically, the class of distributions satisfying 
the given constraints concentrates sharply about the MAXENT solution. 
(See Jaynes 1979.) 

(iii) An a priori analysis-MAXENT is justified by axiomatic consid- 
erations of (necessary) conditions for representing uncertainty. (See Shore 
and Johnson 1980 and 1981.) 

(iv) A defense of MAXENT through Insufficient Reason-MAXENT 
provides a consistent form of the Laplacian principle of Insufficient Rea- 
son; hence, it helps rehabilitate the classical interpretation of probability. 
(See Jaynes 1978.) 

(v) MAXENT justified as an extension of Bayesian theory-the 
Bayesian program for representing degrees of belief by probabilities and 
"updating" these through conditional probability (as regulated by Bayes's 
theorem) is a special case of MAXENT inference. (See Jaynes 1968, 
1978, and 1981; Rosenkrantz 1977; and Williams 1980.) 

Not all who have examined these supporting arguments find them con- 
vincing. (See especially: Dias and Shimony 1981; Frieden 1984; Fried- 

'The MAXENT formalism is discussed in the appendix. 
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470 TEDDY SEIDENFELD 

man and Shimony 1971; Rowlinson 1970; and Shimony 1973. Jaynes 
1978 offers selected rebuttal.) In what follows, I present concerns I have 
primarily with the third, fourth, and fifth claims (above). I fear MAXENT 
is not as attractive as the advertising suggests. In particular, my doubts 
center on the assertion that MAXENT avoids the conceptual difficulties 
that plague simpler versions of Insufficient Reason. (This is discussed in 
section 3. See also my 1979.) A related argument (given in section 4) 
undercuts the allegation that canonical applications of MAXENT have 
Bayesian models; in fact, it shows that all but the most trivial applications 
of MAXENT are unBayesian. Hence, there is solid ground for disputing 
the fifth claim (above). All of this is previewed in the discussion (section 
2.1) of the relation between Bayesian "conditionalization" and shifts that 
minimize changes in entropy-connected with an evaluation of claim (iii). 

The scope of a single essay is insufficient also to address the first two 
arguments (justification (i) and (ii)) in the detail they deserve. A prag- 
matic appeal to successful applications of MAXENT formalism cannot 
be dismissed lightly. The objections to MAXENT that I raise in this paper 
are general. Whether (and if so, how) the researchers who apply MAX- 
ENT avoid these difficulties remains on open question. Perhaps, by ap- 
peal to extra, discipline-specific assumptions they find ways to resolve 
the conflicts within MAXENT theory. A case-by-case examination is called 
for. 

Justification (ii) introduces a family of issues separate from those rel- 
evant to concerns (iii)-(v): when do asymptotic properties of an inductive 
principle warrant its use in the short run too? I offer some reflections on 
the "concentration" theorem in section 5. 

The reader will observe that throughout this essay I rely on Jaynes's 
prescriptions for the application and interpretation of the MAXENT for- 
malism. Of course, my intent is to ask serious questions, not to hunt out 
minor inconsistencies in a scholar's writings spanning thirty years' active 
work. That is, I take Jaynes's papers on MAXENT to be the most thor- 
ough account available. 

2. Axiomatic Properties Characterizing MAXENT and Its General- 
ization through Kullback-Leibler Cross-Entropy. 

2.1. Shannon (1948) proved an elegant uniqueness theorem establishing 
that Us (2) is characterized by three simple properties: 

(S1) Us is a continuous function of the pi's. 
(S2) When P = { IIn, . . ., 1 /n} is the uniform distribution on 

n-states, Us is monotonically increasing in n, the number of 
states over which one is uncertain. 
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ENTROPY AND UNCERTAINTY 471 

(S3) Us is additive over decomposition of the sample space of poss- 
sible outcomes. That is, let fQ - {s,,. . . ,sn} be the set of (n) 
possible outcomes, and let fQ be partitioned into m ' n disjoint 
subsets f'Y {r= . . 9,rJ}, with ri a subset of fl. If P is a prob- 
ability distribution over fl, P' the corresponding distribution 
over f', and P( Iri) the conditional distribution (over fQ) given 
ri, then: 

m 
Us(P) = US(P') + pi * Us(P( Iri)). (5) 

i-l 

A few remarks remind the reader why these three conditions are im- 
portant for the MAXENT program. The property (S1) is a structural as- 
sumption that guarantees MAXENT distributions shift smoothly with 
smooth changes in constraints. (S2) is important since the uniform dis- 
tribution pi = I /n (i 1,. . .,n) maximizes entropy over all distributions 
on n-states. Hence, (S2) assures that, subject to MAXENT, uncertainty 
increases with the number of possibilities about which one is "ignorant." 
Lastly, (S3) is reminiscent of the multiplication rule for probabilities: 

P(A&B) = P(A|B) P(B). 

Condition (S3) suggests a version of the Bayesian principle of condition- 
alization is satisfied by MAXENT (as I noted in 1979, p. 438, n. 22). 
Specifically, we have: 

Result,. Let PO be a MAXENT solution subject to the constraints Co 
{C1,. . . ,Ckl If one adds the constraint that event e occurs (assumed 

consistent with CO), then the new (updated) MAXENT distribution P1 is 
the "old" conditional probability POQ le) if and only if PO( Ie) satisfies 
the constraints in CO. 

Proof ("if"). Use (S3) by setting f'= {e, - e}. Let C1 = {cl, . . . 
Ck, Ck?+ }, where Ck+ 1 is the constraint EVIe] = 1, for the indicator variable 

Ie =1 if e occurs 

- 0 otherwise. 

Contrary to the conclusion, suppose P1 (the MAXENT solution subject 
to C1) is not equal to PO( le). That is, suppose 

tU5(Pl ) > Us(Po(' le)). 

Now, it is clear that P1&) is also a conditional probability of the form 
P& ) = P1Q le), since PI satisfies Ck+1. Define a probability PO'(-) by PO'(-) 

PO(e) >PilQe) + PO(-e) -PO( I-e). Then, by (S3), US(PO) > US(PO), 
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472 TEDDY SEIDENFELD 

in light of the inequality (*). But PO' satisfies CO, contradicting the as- 
sumption that PO is the MAXENT solution for constraints CO. To verify 
that PO' satisfies CO, note that the class of distributions satisfying a con- 
straint set is convex (see appendix A), and note that PI does (since it 
satisfies Cl) and that either PO(e) = 1 whence PO' = P1, or else PO( I - 

e) satisfies CO since PO and PO( je) do (and constraints are taken to be 
linear in probability-see appendix A). 

Proof ("only if"). This is trivial. Whenever P1 = PO( je), PO( je) sat- 
isfies Cl and hence satisfies CO also. Li 

Result, provides, also, for the following: 

COROLLARY. Where CO is vacuous and {Ci}(i = 1,...) is an increasing 
sequence of constraint sets, Ci C1 ?1, corresponding to a sequence 
{ei} of mutually consistent observations (measurable) in the initial 
sample space, then Pi) = PO (* leI, . ei) is the MAXENT proba- 
bility for constraints Ci. 

Proof. Ci is summarized by the sole constraint: Ieln .nei 1. Hence, 
Ci = Ci-I U {Iei 1}. Then apply mathematical induction with Result1.2 

Whenever the constraints arise by observations of events (measurable) 
in the space X of PO, the corollary establishes an equivalence of the MAX- 
ENT principle and Bayesian conditionalization with a uniform "a priori" 
probability over X. But before this equivalence is accepted as justification 
for the fourth or fifth claims (p. 469), two questions must be addressed. 

(A) What is the relation between MAXENT and Bayesian solutions 
that use other than a uniform "a priori" probability over X? 

(B) What is the relation between MAXENT and Bayesian solutions 
when other than indicator-variables appear among the constraints? 

I discuss the first of these in section 2.2, following. The significance of 
the second question is made evident by an example. 

Recall that the unconstrained MAXENT solution for the six-sided die, 
X = {1,. . .,6}, is the uniform probability pi = 1/6 (i = 1,. . .,6). As this 
distribution satisfies the constraint E[X] - 3.5, we may take 

CO= {E[X] = 3.5} 

while preserving the uniform probability, pi = 1/6, as the MAXENT so- 
lution PO'(-) = PO(-). However, if we add the observation, el, that an odd- 
numbered side resulted on the roll, then the MAXENT solution for C1' = 
{E[X] = 3.5, Iel = 1} is not the uniform distribution over the three out- 

2Where the support for PO is a denumerable set, this argument depends upon (u-additivity 
to extend it to C,. = Ui<. Ci. 
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ENTROPY AND UNCERTAINTY 473 

comes {1,3,5}-which is the conditional probability PO'( le,)-but instead 
is the distribution (see appendix) 

Pl'(i) { .21624, .31752, .46624} (i= 1,3,5). (5.1) 

Likewise, had the observation been that the roll yielded an even-num- 
bered side, Iel 0, the MAXENT solution for the constraint set C'= 
{E[X] = 3.5, Iel =0} would be 

P'(i) ={.46624, .31752, .21624} (i = 2,4,6) (5.2) 

instead of the conditional probability PO'(Q jl), uniform over {2,4,6}. Bayesian 
conditionalization requires that Pc,(Q) = Pc, jel) and that Pc,Q(-) = 

Pc,( le-,), both in conflict with (5.1) and (5.2). Expressed in still other 
words, the MAXENT solutions P'(-) and P'1'() are not the conditional 
probabilities P6( le,) and P'( jel), though the former correspond to an 
addition of new evidence el or j, to the constraints imposed on PO. 

Of course, where P0( le) fails to satisfy the old constraints, CO, PI must 
differ from this conditional probability. Unfortunately, whenever the ini- 
tial constraints CO include more than mere 0-1 expectations for indicators 
(measurable) in the space of PO, there are events in the algebra of PO for 
which Po( le) fails CO. Hence, without the proviso that P0( le) satisfies 
CO, Bayesian conditionalization conflicts with shifts according to the 
MAXENT rule unless all constraints (in C1) are mere 0-1 expectations 
for indicator variables. 

Perhaps there is a way out of this difficulty by extending the algebra 
so that all constraints reduce to 0-1 expectations for indicator variables 
(measurable) in the extended algebra? This is discussed in sections 3 
and 4. 

2.2 Aside on Kullback-Information and Its Relation to (Shannon) Un- 
certainty: There is an important generalization of Us (2), due to Kullback 
(1951), essential for a coherent account of "uncertainty" with continuous 
random variables and useful in widening the scope of the MAXENT prin- 
ciple even for discrete distributions. Let P0 be an initial ("prior") distri- 
bution and Pl some distribution to be compared with Po. Define the Kull- 
back-information in a shift from P0 to Pl by the formula 

IK(P, P0) = ph1* log[pl/p?] (6) 
i=l1 

when P0 is discrete, and by the analogous integral in densities 

IK(Pl, P) f pl(x) - log[pl(x)/p0(x)] dx (7) 

for continuous distributions. 
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474 TEDDY SEIDENFELD 

In the case of discrete distributions, (6) is related to (2) in a straight- 
forward fashion. Whereas Us purports to measure the residual uncertainty 
in a distribution, that is, Us attempts to quantify how far a distribution 
is from certainty-how far a distribution is from a 0-1 probability-IK 
reports the decrease in uncertainty in shifting from P0 to Pl. If we set 
pu as the uniform distribution over the finite space X of P0 (so that pu 
is the MAXENT distribution [no constraints] over X), and if we set P* 
as a 0-1, point distribution over X (so that P* depicts a state of certainty 
with respect to X), then 

US(P1) = IK(P*,PU) - IK(Pl,PU). (8) 

(See Hobson and Cheng 1973.) Moreover, Hobson (1971) shows that IK 
is characterized by five properties (three of which parallel Shannon's con- 
ditions for Us). To wit, (up to a constant) IK uniquely satisfies 

(K1) IK is a continuous function of P0 and Pl. 
(K2) When Po = {1/n,. . .,1/n} and Pl = {1/m,. . .,1/m,0,. . .,0} 

(m ? n), then IK is increasing in n and decreasing in m. 
(K3) IK is additive over decomposition of the sample space, analo- 

gous to (S3). 
(K4) IK is invariant over relabeling of the sample space. 
(KS) IK 0 just in case Po _ P. 

The remarks (pp. 470-71) about (SI) - (S3), and in particular the use- 
ful Result1, apply to Kullback-information in parallel with the general- 
ization of Shannon's three conditions by these five. Specifically, (K3) 
(analogous to (S3)) entails a restricted equivalence between Bayesian con- 
ditionalization and a minimum Kullback-information shift: where P0 sat- 
isfies a constraint set C0, and a minimum IK-shift subject to the extra 
constraint of an event el yields the revised probability Pl, then Pl(') = 
P?( le,) provided P?( Ie,) satisfies Co.3 

Just as in Result1, this equivalence is relativized to cases where the 
conditional probability P?( le,) satisfies the initial constraints C0. Where 
C0 includes constraints other than the mere observation of events (mea- 
surable) in the space of Po, the important proviso on P?( Ie) fails for some 
events. Thus, unless the constraint set is restricted to 0-1 expectations 
for indicator variables, some (Bayesian) conditionalizations do not agree 
with the revision from P0 to Pl by minimizing the change in Kullback- 
(or Shannon-) information. 

Besides generalizing Us with discrete distributions, IK affords a con- 
sistent extension of entropy to continuous distributions, unlike the (nat- 
ural) continuous version of Shannon-uncertainty. That is, where we take 

3Williams (1980) establishes the special case of this result when C0 is vacuous. 
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ENTROPY AND UNCERTAINTY 475 

a continuous version of (2) to be 

Us(P) = - jp(x) * log[p(x)]dx (9) 

(with p the density for P), then it is well known (see Jaynes 1963) this 
attempt fails to provide consistent results over smooth transformations of 
continuous random variables. For example, if X is confined to the unit 
interval [0, 1], the use of (9) yields a MAXENT distribution uniform on 
[0,1]. However, if we consider the equivalent random variable Z, de- 
fined by z x X3, then Z (like X) is a continuous variable on [0,1], and 
(9) generates a MAXENT distribution for Z uniform on [0, 1] -in con- 
tradiction with the result for X. 

By contrast, if we use IK to identify minimum information shifts, once 
P0 is identified, IK remains invariant over the class of random variables 
equivalent to the one chosen for identifying Po. Of course, in the con- 
tinuous case the MAXENT program then requires a supplementary prin- 
ciple to fix Po, where P0 depicts a "state of ignorance" prior to the in- 
troduction of "constraints." Jaynes (1968, 1978, and 1980) (for example), 
is favorably disposed toward's Jeffreys's (1961) theory of invariants for 
this component of his MAXENT program. Unfortunately, the policy of 
using Jeffreys's invariants to fix such "prior" probabilities is inconsistent 
with basic Bayesian postulates. (See Seidenfeld 1979.) Thus, it remains 
an open question how to determine an "ignorance" prior for continuous 
distributions in a fashion consistent with Bayesian theory. Since my dis- 
cussion in this essay pertains to discrete distributions, we may bypass this 
problem and use IK as a generalized account of minimum change in prob- 
ability.4 

3. Entropy and Insufficient Reason: Repartitioning the Sample 
Space. A standard objection to the principle of Insufficient Reason is that 
it fails to provide consistent answers across simple reformulations of 
questions of interest. One cannot assign equal probability to disjoint events 
merely on the grounds that the question posed (together with tacit back- 
ground assumptions-of fact) fails to include a good deductive reason 

4For example, IK provides an account of a minimum shift from a prior probability Po 
which is not itself identified as a solution to a MAXENT problem. In his recent (1983) 
paper, "Highly Informative Prior Probabilities," Jaynes make use of this generalization. 
If objective Bayesian theory is modulated to admit arbitrary (coherent) "prior" information 
as part of the "well-posed problem," then the basic dispute with subjectivist Bayesians 
(such as Savage) is resolved in favor of the latter point of view. That is, even Savage has 
no objection to a position that makes "objective" a posterior probability constrained by a 
prior probability and likelihood! Nonetheless, I remain dubious of the claim (v) that Bayes- 
ian theory is a special case of Kullback-information theory. 
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for selecting one answer over another. If you are "ignorant" about the 
outcome of a roll of a cubical die (with spots from 1 to 6 arranged in 
conventional order), then you may appeal to Insufficient Reason to assign 
each of the six outcomes: one-spot uppermost, . . ., six-spot uppermost, 
equal probability (1/6). Or, you can cite Insufficient Reason to partition 
the outcomes in two: one-spot uppermost, more than one-spot uppermost, 
and assign these possibilities equal probability (1/2). On its face, Insuf- 
ficient Reason does not dictate which of these contrary analyses is ap- 
propriate. 

Nor will it do to give priority to the more refined partition of possi- 
bilities merely on the grounds that added possibilities indicate more in- 
formation about the circumstances. The added refinement may be both 
irrelevant and nonsymmetric to the basic question. Consider the standard, 
cubical die arranged with six numbered spots so that opposite sides sum 
to seven.5 A roll of a die typically provides an observer with either two 
or three visible surfaces. In addition to the single side showing upper- 
most, the die displays one or two vertical faces as well. Let us partition 
outcomes as follows: for each of the six sides showing uppermost, char- 
acterize the roll also according to whether the sum of the visible spots on 
the side (vertically showing) faces(s) is (a) greater than, (b) equal to, or 
(c) less than the number of spots showing on the top face. 

a 
Figure 1. Repartitioning the sample space for a roll of the die., 
Outcomes where the sum of visible, side-faces 

(a) exceeds 
(b) equals 
(c) is less than 

the top-face. 

Instead of six outcomes this partitions the rolls into fourteen different 
possibilities (as displayed in table 1). These fourteen possibilities con- 
stitute a partition of all rolls with a standardly numbered die. Are we to 
apply Insufficient Reason to this refined partition (of the six familiar events) 
leading to a probability distribution (.07142, .14285, .21428, .14285, 

'The arrangement of spots is further constrained so that a pair of dicre may sum to seven 
on each of the six pairs of parallel faces; that is, dice are uniformly oriented. 
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ENTROPY AND UNCERTAINTY 477 

TABLE 1 

# Spots Showing on Sum of Spots Visible 
Upper Face of Die on Side Face(s) 

i ~ ~ ~~ ~~i =i >i 
1 No No Yes 
2 Yes No Yes 
3 Yes Yes Yes 
4 Yes No Yes 
5 Yes Yes Yes 
6 Yes Yes Yes 

('Yes'/'No' identifies which arrangements are possible.) 

.21428, .21428) over the basic six outcomes of the roll (how the die 
landed)? If we believe that added refinement of possibilities reflects more 
information, then the fourteen-fold partition of states has priority in the 
application of Insufficient Reason. Of course, what is lacking is a judg- 
ment of relevance of the refinement introduced by considering the (nuis- 
ance) factor: sum of spots showing on side face(s). 

Does the MAXENT program offer new guidance in this old problem? 
We noted (in discussion of Shannon's condition (S2), p. 471) the well- 
known result that the uniform distribution pi = 1 /n (i = 1,... ,n) max- 
imizes entropy over all discrete distributions with i7 Pi = 1. Thus, 
MAXENT faces the same sensitivity to repartitions of the sample space 
as does the simpler principle of Insufficient Reason. Perhaps, in the ab- 
sence of any constraints other than the number of possibilities, advocates 
of MAXENT can argue that refinement of possibilities by an observable 
(as with the modified sample space for the die, see table 1) does constitute 
new, relevant information. Unfortunately, the problem is not restricted 
to "a priori" MAXENT probability assignments. That is, the question of 
which partition is appropriate for application of MAXENT arises even 
when "constraints" are imposed. 

As in Jaynes's example from his Brandeis Lectures (1963), restated in 
greater detail fifteen years later (1978), let us.impose the "constraint" 

E[number of spots showing] = 4 
- 3.9285. (10) 

If we apply MAXENT to the partition of outcomes by number of spots 
showing (up), that is, in the familiar six-fold partition, the distribution 
which maximizes entropy subject to (10) is (to five places-see the ap- 
pendix) 

(.11122, .12908, .14981, .17387, .20180, .23422) (11) 

where pi (i - 1,. .. ,6) is the probability of i spots showing up. 
However, since the alternative partition (table 1) is a refinement of the 

six-fold partition used above, the constraint (10) applies there too. Spe- 
cifically, definef(statej) (j = 19 . . ., 14-counting across possible states 
in table 1) as follows: 
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f(statel) = 1,f(state2) =f(state3) = 2, 

f(state4 ) =f(state5 ) = f(state6 ) = 3, 

f(state7 ) =f(state8) = 4, 

f(stateg) =f(state10) =f(state1l) = 5 

and f(state12) = f(state13) = f(state14) = 6. 

Then (10) is equivalent to the constraint: 

Etf ] = 55/14. (12) 

But the distribution over the fourteen states that maximizes entropy, sub- 
ject to (12), is not one that yields a (marginal) distribution for the number 
of spots showing corresponding to (11). Instead MAXENT, applied to 
the refined partition, subject to the constraint (12) yields the (marginal) 
distribution for the number of spots showing: 

(.07142, .14285, .21428, .14285, .21428, .21428).6 (13) 

The difference between these solutions can be conceptualized in the 
following terms. When the empirical "constraints" all involve a quantity 
(parameter) of interest, the MAXENT distribution for the parameter of 
interest is sensitive to which (refined) algebra of possibilities the inves- 
tigator uses to solve the problem. Even though the investigator professes 
"ignorance" about the nuisance factor, and bases the MAXENT solution 
on the empirical constraints (all of which involve the parameter of interest 
alone), the MAXENT solution (like the principle of Insufficient Reason) 
changes with the addition of a refined partition of possibilities. 

A sufficient condition for ensuring that the refinement does not affect 
the MAXENT solution is to make the refined algebra a product space in 
which the new factor (constituting the refinement) is probabilistically in- 
dependent of the parameter of interest.7 Where the nuisance factor is (for 
other reasons) required to be probabilistically dependent with the param- 
eter of interest, this sufficient condition can be simulated by imposing a 
degenerate 0-1 marginal distribution on the nuisance factor. Then the 
nuisance factor is, in effect, a constant and constants are (vacuously) 
probabilistically independent of other variables. In section 4, where 

6That is, the MAXENT solution to this problem corresponds to the uniform distribution 
over the fourteen states. That (13) is the MAXENT solution follows directly from the fact 
that (1/n) Si f(statej) = 55/14. The uniform distribution over the fourteen states in table 
1 satisfies condition (12). Recall that the uniform distribution maximizes entropy over all 
discrete distributions. 

7In their application of MAXENT to estimating frequencies in contingency tables, sub- 
ject to constraints of lower dimensional contingency tables, Denzau, Gibbons, and Green- 
berg (1984) note this independence is necessary for a coherent solution. 
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MAXENT is contrasted with Bayesian inference, the device of using a 
degenerate 0-1 distribution with nuisance factors is key to understanding 
an important objection raised by Friedman and Shimony (1971). 

Summary. The question addressed in this section is prompted by claim 
(iv), that the MAXENT program provides a satisfactory account of the 
Laplacian principle of Insufficient Reason. That principle, in its simplest 
version, succumbs to inconsistencies when the space of possibilities is 
repartitioned and Insufficient Reason is applied to both algebras of pos- 
sibilities. The same inconsistencies can arise with the MAXENT prin- 
ciple: (i) in the absence and (ii) in the presence of empirical constraints 
on the quantities of interest. 

What is lacking is an account of how nuisance factors are judged for 
their relevance. Left to the MAXENT rule, the verdict is loaded in favor 
of relevance of the nuisance factor (since mere repartitioning is enough 
to affect MAXENT, as demonstrated above).8 The problem is encapsu- 
lated in 

Result2. Given that constraints C = {ci} are a function of 0 the param- 
eter of interest alone, the MAXENT (marginal) distribution for 0 may 
differ from the 0-marginalization of the (joint) MAXENT solution. That 
is, maximizing entropy in a marginal (average) distribution does not agree 
with marginalizing (averaging) the overall maximum entropy unless in- 
dependence obtains between the parameter of interest and the nuisance 
parameter. The MAXENT solution is consistent with respect to margin- 
alization only if the joint MAXENT distribution is a product of marginal 
MAXENT distributions. 

Proof. By the construction above. However, Result2 does not apply to 
cross-entropy (Kullback-information) shifts, as shown in the lemma (ap- 
pendix B). 

4. Entropy and Bayesian Theories. Claim (v) (p. 469) asserts the the- 
sis that MAXENT inference subsumes Bayesian theory as a special case. 

8This policy, to presume that changes that result from refinement of the algebra of pos- 
sibilities reflect added relevant information in the refinement, seems to underlie Jaynes's 
(1980) analysis of the "marginalization paradoxes" (from Dawid, Stone, and Zidek (1973)). 
As Dawid, Stone and Zidek use their anomalies to question this policy (Does it work 
consistently for Bayesians using "improper" prior distributions?), it comes as no surprise 
to me that the involved parties accuse each other of missing the point (see the discussion 
and rebuttal to Jaynes's 1980). 

For an alternative account of these "paradoxes," based on an interpretation of improper 
distributions as finite but not countably additive probabilities, see Sudderth (1980) and 
Kadane, Schervish, and Seidenfeld (1986). 
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To assess the claim we need guidelines for what counts as Bayesian in- 
ference. The point is not moot. (See Good 1971 for some 4.7 x 104 
varieties.) I rest content here with some core postulates for Bayesian the- 
ory: 

(B1) An agent's belief state is represented by a coherent, finitely 
additive conditional probability PBK( I )-coherence. 

(B2) PBK( I ) is relativized to background evidence BK (consistent 
and closed under entailment), where BK depicts the agent's 
total background evidence. 

(B3) As regulated by Bayes's theorem for conditional probability 
PBK( | & e) is the agent's hypothetical belief state for the 
hypothesis that he accepts only the new (consistent) evidence 
e, that is, under the hypothesis that BK is enlarged by addition 
of e (and its new consequences given BK)-conditionaliza- 
tion.9 

We have Result1 (p. 471-from Shannon's property (S3)), establishing 
a restricted equivalence between revising probabilities through MAXENT 
and through conditionalization.10 The restriction in Result, is that the "old" 
conditional MAXENT probability satisfy all the constraints and not merely 
the final constraint, newly imposed, which prompts the revision. Of course, 
if the restriction is satisfied then the constraint set is mutually consistent. 
Otherwise, not only is conditionalization at odds with a revised MAX- 
ENT solution, but where (in a sequence of shifts) constraints imposed at 
earlier stages are not retained in subsequent stages, the net Shannon or 
Kullback shift depends upon the order in which constraints are introduced 
and replaced. (See Tribus and Rossi 1973.) Hence, if a net Shannon or 
Kullback change is to be path-invariant over the order in which con- 
straints are added, they must be mutually consistent-or else, some con- 
straints must be dropped before others are introduced., (See Shore and 
Johnson 1981, property 13, and related discussion.)1 

9This brief statement of the core postulates rides roughshod over several important sub- 
tleties in a proper formulation. In particular, I have not attended to temporal versus atem- 
poral interpretations of (B3)-conditionalization. See Levi (1981), and references cited there, 
for a careful discussion of such matters. 

"0Recall, too, this restricted equivalence extends to the Kullback-information approach- 
see section 2.2, p. 474. 

"This problem is exacerbated by the unpleasant fact that IK induces a semi-metric only- 
it does not satisfy the triangle inequality in general. (See Burbea and Rao 1982 for ad- 
ditional results.) In his (1968, ?111) example of the distribution of impurities in a crystal 
lattice, Jaynes constructs a "prior" MAXENT solution from a constraint that is not satis- 
ified by the "posterior" he obtains through data from a subsequent (neutron reflection) 
experiment. Thus, the question raised in this note has a basis in the current application of 
the MAXENT program. (I thank Professor E. Greenberg [Economics, Washington Uni- 
versity] for the last reference.) 
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We may satisfy the restriction in Result1 by limiting all constraints to 
0-1 expectations for indicator variables (measurable) in the initial algebra 
of PO. Then, by the corollary to Result1, MAXENT reduces to Bayesian 
theory with a uniform "a priori" probability. If we use the Kullback- 
information generalization, the parallel result and corollary equates min- 
imum-information shifts with Bayesian conditionalization from an arbi- 
trary (a priori) probability. 

Canonical illustrations of the MAXENT program, for instance Jaynes's 
Brandeis dice problem, use constraints that do not reduce to 0-1 expec- 
tations for indicator variables in the measure space of PO. If, as a Bayes- 
ian, one hopes to understand a constraint as "evidence," then it is rea- 
sonable to ask whether, by extending the algebra, the constraint can be 
interpreted as an "event" in the larger algebra of possibilities. The ques- 
tion also holds out the hope that, in the extended algebra, there will be 
a Bayesian model for MAXENT formalism by application of Result1 in 
the larger space of possibilities. Hence, if we are to consider the more 
interesting version of MAXENT theory (with an enriched language of 
constraints), the thesis that the MAXENT principle is coherent (from a 
Bayesian point of view) returns us to the question of the previous section. 
Under which conditions can we extend (refine) the field of events, while 
preserving MAXENT solutions for a given set of constraints? 

It is from this perspective I propose we consider the interesting results 
of Friedman and Shimony (1971) (and Shimony's generalization of 1973). 
Let me rehearse their analysis in some detail.12 Suppose we require a 
MAXENT probability distribution for a discrete space X = {x1,. . .,xl} 
of n-states (n 2 3) based on "a priori" considerations, that is, in the 
absence of additional information about X. As noted (above), the uniform 
distribution P(xi) = pi = 1/n (i = 1,. . .,n) is the MAXENT solution. 
This result is not altered by adding the structure of distinct numerical 
magnitudes f(xi) = ai to X, ai #/ aj if i =# j, so long as we profess ignorance 

121 bother with the particulars since Jaynes ([1978] 1983, pp. 249-51) finds the F-S 
argument unacceptable. His complaint is that they use ill-defined constraints. In an oth- 
erwise patient review of several objections to the MAXENT program, he writes (following 
brief but general remarks about the difference between testable constraints and conditioning 
events), 

Of course, it is as true in probability theory as in carpentry that introduction of 
more powerful tools brings with it the obligation to exercise a higher level of un- 
derstanding and judgment in using them. If you give a carpenter a fancy new power 
tool, he may use it to turn out more precise work in greater quantity; or he may 
just cut off his thumb with it. It depends upon the carpenter. 

The FS article led to considerably more discussion . . . in which severed thumbs 
proliferated like hydras; but the level of confusion about the points already noted 
is such that it would be futile to attempt any analysis of the FS arguments. (1983, 
pp. 250-51) 
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about, for example, an expected value ELf] .13 

Next, suppose we imagine acquiring information about X, reported by 
a constraint E[f ] = r (where, of course, r lies between the minimum and 
maximum of the n-values {a,, . ,aj). We may apply MAXENT to de- 
termine a new distribution P1(X), subject to the constraint E[f] = r. 
Friedman and Shimony ask, in effect, for necessary and sufficient con- 
ditions that Pr(X) can be a conditional probability P(X| "E[f] = r") ob- 
tained by extending P to a field that includes the constraint as an event. 
Their findings are remarkable: 

THEOREM [F-S]. Subject to the conditions above, P can be so ex- 
tended just in case P("E[f ]= (1 /n) * E7=I ai") = 1. In words, P can 
be extended if and only if the extension makes the constraint, E(f) 
= r = average of the ai's, practically certain.14 

A simple example brings home the point. Following Frieden (1984), 
let us simplify the "dice" problem by collapsing the space of outcomes 
to the three-sided die with 1, 2, and 3 spots (respectively) on each face. 
(Just identify a roll of a usual six-sided die by the minimum of the hor- 
izontal faces.) Then the MAXENT distribution for a roll of the die, based 
on "a priori" information, is the uniform (1/3, 1/3, 1/3) for each face. Sup- 
pose we quantify outcomes by identifying a state with the number of 
spots, f(i-spots) = i (i = 1,2,3). As in the dice example of section 1 (pp. 
468-69), we can calculate a MAXENT solution for a constraint E[f] 
- r (1 ? r ? 3), denoted by Pr(i). Since the average (1/3) *Ei1 i 2, 
the F-S Theorem dictates that, in extending P to make P, a conditional 
probability, it is practically certain that r = 2. 

If the constraint can be interpreted as fixing the center of gravity of 
the die as belonging to a region that makes E[f ] = r a correct statement 
of "chance," then the F-S result shows the MAXENT solution requires 
an a priori assignment of probability 1 to the empirical claim that the die 
is loaded so that r = 2. (See Shimony 1973.) I doubt this is the intended 
interpretation Jaynes wants for the "constraint" in his Brandeis Dice prob- 

"1In the 1971 version of this argument, there is the added premise that for one state, 
say the mth, f(x,),) = (1/n) j=jf(xi). That is, in the 1971 formulation, it is supposed 
there is one state whose magnitude am equals the average of the n magnitudes am = 

(I/n) * I ai. This condition is relaxed in Shimony's 1973 generalization. For the example 
which follows involving the trinomial "die," the 1971 applies. At the expense of com- 
plicating the calculations, Shimony's (1973) version is applicable to Jaynes's Brandeis 
Dice example as presented in Jaynes's 1983, pp. 243-45. 

14The Friedman-Shimony proof uses disintegrability of P in the partition by r, the con- 
straint. This assumption is not guaranteed for a general, finitely additive probability. But 
in the application to the Dice problem (and its generalizations), where r is the "sample 
average" in the first N rolls, this problem does not arise since, given N, r has a finite 
sample space. 
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lem.'5 So, instead, let us examine Jaynes's own interpretation of the con- 
straint. 

In his 1978 article (reprinted in his 1983) he writes, 

When a die is tossed, the number of spots up can have any value 
i in 1 c i c 6. Suppose a die has been tossed N times and we are 
told only that the average number of spots up was not 3.5 as we might 
expect from an "honest" die but 4.5. Given this information, and 
nothing else, what probability should we assign to i spots in the next 
toss? (p. 244) 

And in the discussion which follows, Jaynes uses the MAXENT distri- 
bution given the constraint to determine a predictive (subjective) distri- 
bution for the N + 1st roll. Thus, we can apply the F-S result to the 
problem of the three-sided die, in accord with Jaynes's proposal for in- 
terpreting the constraint. Let r be the "sample average" of the first N 
rolls. Then, Pr(i) is a conditional probability for the N + 1st roll, in the 
extended product field XN+l (X = {1,2,3}), just in case the a priori prob- 
ability is 1 that r = 2. 

A connection with the problem of section 3 is obvious. The question 
posed by Friedman and Shimony addresses the coherence of the MAX- 
ENT program by providing necessary and sufficient conditions for inter- 
preting the MAXENT solution as a conditional marginal distribution in 
a refined (product) algebra that includes the "constraint" as a conditioning 
event. Not surprisingly, since the constraint is a relevant bit of infor- 
mation for fixing the (marginal) distribution of the N + 1 st roll, coherence 
is achieved by converting the nuisance parameter (r) into a constant, al- 
most surely. (See the discussion on pp. 475-76.) That is, the problem 
of repartitioning the algebra to permit the same MAXENT distribution 
for the N + 1st roll-both in the minimal field of X and in the product 
XN+1-admits only degenerate solutions for the nuisance parameter, r, 
defined on the subfield XN. 

We can press the investigation further into the realm of Bayesian models. 
What if we allow the agent to hold an exchangeable probability for rolls 
of the die. (The probability P is exchangeable if, for any sub-sequence 
of n trials, P is invariant under permutations of the order of outcomes.) 
Then even the F-S solution is barred. That is: 

Result3. If E(f ) = r is a constraint imposed on the distribution for the 
N + 1st roll of an n-sided die (n ? 3), based on the "sample average" 
from N (different) rolls, and P,. is this MAXENT solution, then there is 

"5Though his response to Rowlinson's (1970) question concerning Wolf dice data sug- 
gests the geometric interpretation above. (See Jaynes [1978] 1983, pp. 258-68.) 
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no exchangeable Bayesian model that makes P,. a conditional probability 
with P(i I "sample average" = r) = Pr(i) (i = 1,. ,n). 

Proof (outline). According to de Finetti's representation theorem, such 
an exchangeable P is a mixture of i.i.d. multinomial distributions (each 
on a sample space of n outcomes) for some "mixing" prior r on the 
multinomial parameter. Recall, where r = (n + 1)/2, that is, when the 
"sample average" equals the average of the number of spots showing on 
the n faces of the die, then Pr(i) = pi = 1/n, the uniform distribution. 
In other words, when the constraint satisfies r = (n + 1)/2, the MAX- 
ENT distribution for the N + 1st roll is the uniform probability, inde- 
pendent of the sample size N. Let II be the class of "mixing" priors that 
satisfy this restriction, that is, where the conditional probability for the 
N + 1st outcome is uniform given that the "sample average" of the first 
N outcomes equals (n + 1)/2, for each N. Then a+, the (degenerate) 
"mixing" prior that assigns probability 1 to the multinomial parameter 
(1/n,. . . ,l /n), belongs to this class II. Given N, verify that among r 
C II, r+ maximizes the probability of the event {r = (n + 1)/2}. But, 
for this "mixing" prior (,+), hence for all "mixing" prior in fI, the event 
{r = (n + 1)/2} has probability less than 1. This contradicts the Fried- 
man-Shimony theorem, establishing Result3 *16 LiI 

Summary (Section 4). In this section we investigate the coherence of 
MAXENT theory when the constraint set includes more than 0-1 expec- 

'6Frieden (1984) considers the case of a trinomial die with a uniform "prior" distribution 
for the multinomial parameter. He shows the interesting result that P(ijr = m = 2) = 
1'4 for i = 1, 3 and P(ilr = m = 2) = 1/2 for i = 2, for all N 2 3. The uniform prior 
corresponds.to a Carnapian confirmation function c* (X = 3 in his continuum of inductive 
methods). Thus it is enlightening to compare Frieden's analysis with the Dias-Shimony 
result (1981), appendix B (B.5a) and (B.5b), for this case. Their results are in agreement, 
of course. 

For contrast, I note that with an "improper" prior (whose density is 1/w, * W2 * W3 for 
the multinomial parameter (w,,w2,w3)), the predictive P(ilr = m = 2) is likewise "im- 
proper," with all its mass concentrated at the extreme point (0,1,0), i = 1, 2, 3. 

Note also, Result3 (like the F-S theorem) depends upon the assumption n 2 3. For 
n = 2, the "sample average" is a sufficient statistic with an exchangeable P (unlike the 
case with n > 2). Then the predictive probability P,.(i) = P(ilr) has a Bayesian model with 
the "improper" prior (whose density is 1/w w2), corresponding to the "straight-rule" in 
Camnap's (1951) continuum of inductive methods (X = 0). But for n = 2, Pr(i) then is 
determined without appeal to entropy considerations, since the class of distributions sat- 
isfying the constraint E[i] = r is a unit set! 

Lastly, Dias-Shimony (1981) prove a restricted agreement between MAXENT and Bayesian 
methods for the case of the trinomial die. Their theorem, ?IV (4. 10) shows that the extreme 
Carnapian method (X = oo), ct, is in asymptotic agreement (for increasing population sizes) 
with MAXENT solutions to select problems of direct inference. Result3 demonstrates this 
agreement cannot be extended to simple problems of predictive inference. (Recall, X oo 
corresponds to the point-probability 1 for the multinomial parameter (1/n,. . 1/n) in de 
Finetti's representation of Carnapian methods.) 

I thank Professor E. Greenberg for alerting me to Frieden's recent work. 
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tations for indicator variables (measurable) in the initial space of possi- 
bilities. The question asked is whether, by extending the algebra, MAX- 
ENT solutions have Bayesian models. The Friedman-Shimony result (1971) 
shows that where we attend to MAXENT solutions with even a single 
constraint (not a 0-1 expectaiton for an indicator variable), only degen- 
erate Bayesian models exist. The degenerate Bayesian model is one in 
which the "constraint" is a nuisance parameter having, a priori, a 0-1 
distribution. This agrees with the findings from section 3, dealing with 
repartitioning the sample space, where such degenerate solutions avoid 
the conflict reported in Result2. Last, using Jaynes's recent (1978) pre- 
sentation of his (1963) Brandeis Dice problem, we show there is no ex- 
changeable (Bayesian) probability that preserves his recommended inter- 
pretation of the constraints-Result3. 

Whereas the MAXENT principle is sensitive to the choice of measure 
space (Result2), that is not the case with cross-entropy (Kullback-infor- 
mation) shifts-see appendix B. However, the phenomenon pointed out 
in the Friedman-Shimony theorem (to wit: there are only degenerate 
Bayesian models that make "constraints" into events and make the MAX- 
ENT distributions into conditional probabilities given the constraints), does 
generalize to cross-entropy. This is shown in appendix B, Corollary2 to 
Result4. This finding uses a generalization of an observation from van 
Fraassen (1981). 

5. Comments on the Concentration Theorem (Jaynes 1979, and see 
his 1963, pp. 51-52). 

THEOREM (JAYNES). Consider N repetitions of an experiment with n 
possible outcomes on a given trial. Letf (1 ' i ? n) be the observed 
relative frequency of the i-th outcome in these N trials. Then the class 
of sequences of possible outcomes (from the N trials), satisfying a 
set of m constraints linear in these frequencies, is asymptotically 
(with N x-> o) concentrated as X2/2N (with n-m-I degrees of free- 
dom) about the MAXENT distribution for the f 's. Here the "metric" 
across possible sequences of outcomes is given by the difference in 
the entropy of the corresponding f's. 

I have two remarks to make about this interesting result. 
First, unless there is some connection drawn between the long-run and 

short-run properties of the principle under question, mere asymptotics are 
insufficient for justification. To cite two (well-known) cases where 
asymptotic concerns prove inadequate because they lack relevance for the 
short run: neither the limiting-frequency definition of probability, nor the 
criterion of asymptotic consistency of point-estimates is well received. 
(See Fisher 1973, pp. 34-35 and pp. 148-49 for discussion of these two 
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examples.) So, at least, the asymptotic argument needs to be supple- 
mented with analysis of the rate at which concentration about the MAX- 
ENT distribution occurs. But then it is hard to understand how Jaynes 
will use the concentration theorem to defend application of MAXENT in 
statistical mechanics since he will need to show how to resolve the very 
problem he used in 1957 to undercut the grounding of statistical me- 
chanics on ergodic theory. That is, to apply the concentration theorem in 
statistical mechanics, Jaynes needs to show, for example, what are the 
appropriate time intervals to use to achieve "concentration" about the 
MAXENT distribution. 

A second objection to the argument that seeks justification of the 
MAXENT rule by appeal to claim (ii) is based on consideration of how, 
in Jaynes's (1979) result, limiting frequencies from repeated trials are 
contrasted with a subjective, MAXENT probability for a single trial. The 
concentration theorem establishes that, relativized to the given constraints 
(interpreted with limiting frequencies as probabilities), the class of lim- 
iting frequencies concentrate (in the sense of having entropy) close to the 
MAXENT distribution for a single trial. Apart from the important ques- 
tion why "constraints" on a MAXENT probability for a single trial trans- 
late into parallel conditions on limiting frequencies from repeated trials 
(see also note 16 in section 4), there is the following difficulty with the 
attempted justification. 

After relativizing the class of possible limiting frequencies to those sat- 
isfying the given constraints, we are directed to count each logically pos- 
sible sequence of repeated trials as a separate state. Then the concentra- 
tion about the MAXENT probability is determined by the (asymptotic) 
proportion of these states with frequencies close to the MAXENT dis- 
tribution. Why is this a problem? It is a problem because, if the concen- 
tration about the MAXENT solution demonstrates how highly probable 
the MAXENT solution is, then as Jaynes's points out (1979, p. 322), the 
argument equates possibility with probability. In other words, if the con- 
centration theorem is to show how probabilistically atypical "low" en- 
tropy distributions are (in repeated trials), logically distinct sequences must 
be judged equally probable. 

An assignment of equal probability to distinct states characterizes an 
extreme Camapian method, X = o, whose Bayesian description is of an 
i.i.d. process with uniform (p = l/n) probability for each of the n out- 
comes of a single trial. Recall that the "a priori" MAXENT probability 
over n outcomes is the uniform distribution, pi = I /n (i = 1,. . . ,n). By 
the strong law of large numbers, we know that in an i.i.d. process, with 
probability 1 the limiting relative frequencies concentrate about this "a 
priori" distribution. If we restrict the limiting relative frequencies, so they 
satisfy the constraints imposed on the MAXENT solution, then the con- 
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centration, given the constraints, is at the MAXENT distribution. But, 
even here the argument depends upon the uniform "prior" probability, 
corresponding to A = ox. (See Dias and Shimony 1981, pp. 192-93, for 
related discussion.) 

The point of the objection is that, were the argument modified by 
choosing a different "prior" in place of the uniform one, the law of large 
numbers would continue to hold-in an i.i.d. process there still would 
be a concentration of limiting frequencies about the "a priori" probability 
and a related, conditional concentration given frequency constraints. Of 
course, with the change in "prior," the concentration of frequencies would 
not be determined simply by the proportion of sequences close to the 
"prior," but by some weighted proportion in which sequences were as- 
signed unequal probability as dictated by the "prior." In short, the con- 
centration theorem singles out MAXENT whenever distinct sequences are 
counted equally; however, by tailoring the weights on sequences to the 
"prior" chosen, we can defend any "prior" by a concentration-of-fre- 
quencies result. How does claim (ii) distinguish MAXENT from rival 
(Bayesian) methods? 

APPENDIX A: ON THE MAXENT FORMALISM. 

Here we review some of the mathematics for calculating MAXENT solutions. Following 
Shore and Johnson (1980), a constraint is an expectation (linear in probability) for a bounded 
function of the state variables. (We use only linear, equality constraints, E[f ] = c, instead 
of the more general class including inequalities too.) Hence, the class of distributions 
satisfying a (finite) set of constraints is,convex. Thus cj = p_= pifj)(xi) is the jth constraint. 

With k constraints, cl, . C ., Ck the matter of choosing a distribution that satisfies these 
constraints and maximizes entropy is a variational problem (familiar in physics), solved 
by the device of Lagrange multipliers. (See Courant and Hilbert 1963, pp. 164-74.) The 
formal solution obeys: 

Pi = P(xi) = [Z(A1,- *Xk)]-l exp[-Xif1(xi) - * * * -kfk(xi)] (Al) 
where 

n 

Z(A,. . .,Ak) = E exp[-Xif,(xi) - * .. kfk(xi)], (A2) 

and the X's are the Lagrange multipliers, chosen to satisfy the k constraints, that is, 

a 
Cj --log Z. (A3) a x. 

In the case of Jaynes's Brandeis Dice problem, there is one constraint arising from the 
expectation for the function f(i-spots) = i (i = 1 .,6), so that 

6 

c= i-p(i-spots). (A4) 

As Jaynes shows (see his [1978] 1980, p. 244) 
6 

Z(A) W e- Xli = X(l _X6)1(1 _X) (A5) 

This content downloaded from 132.174.254.127 on Mon, 29 Sep 2014 16:46:54 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


488 TEDDY SEIDENFELD 

where x = CeX. (The r.h.s. of (A5) is by the usual rule for geometric series.) Then, by 
(A3) and (A4) 

a 
- - log Z = (1 - 7x6 + 6x7)/[(1 - x)(1 - x6)] = c,. (A6) 

ax, 

In the problem discussed on p. 477, (10) sets the constraint: cl = 55/14. Solving (A6) 
for this value yields: 

x= 1. 160601 Z- 10.43509 (A7) 

(as obtained on my TI 58C calculator). This results in the MAXENT distribution (11) on 
p. 477, in accord with (Al). The MAXENT distributions (5.1) and (5.2) are calculated in 
the identical manner. 

It is interesting to note, as reported in Denzau, Gibbons and Greenberg (1984), the 
MAXENT solution (Al) is associated with a LOGIT model by a simple reidentification 
of parameters. (See the interesting papers in Manski and McFadden (1981) for a very 
helpful discussion of the role played by LOGIT models in econometric models of com- 
posite data from individual decision problems.) 

APPENDIX B: ON MINIMUM INFORMATION SHIFTS 
ARISING FROM THE SPECIFICATION OF NEW 

CONDITIONAL PROBABILITIES 

Recall, the entropy in a distribution P is given by 

-Zip(xi) * log p(xi), 

and the cross-entropy (or Kullback-information) in a shift from P0 to P' is given by 

pi (xi) -log [pl(xi)/p0(xi)]. 

Result,. Let X = (x+,. . .,x") with xi n xj = 0 fori =A j and n 2 3. Let E, E2 C X with 
El nE2 = 0andX- (El UE2) =E3 #0. LetN= (1,. . .,n), andchoosel,I, CN, 
with i1 n i2 = 0 so that Ei = Uif,ixi (i = 1,2). Assume |E,| = k and E21 = m, so 
k + m < n. Specify a constraint c: p(El)/p(E2) = (1 - o)/o. If P is the MAXENT solution 
subject to constraint, c, then either P(E3) > [n - (k + m)]/n, or else at = m/(k + m) 
when P is the uniform distribution and P(E3) = [n - (k + m)]/n. 

COROLLARY1. Let P0 be a probability on X. Let El and E2 be as above. Let P' be a 
minimum Kullback-information (cross-entropy) shift from P0 subject to the constraint 
c, as above. Then P'(E3) > P0(E3) unless P' = Po. (Note: Van Fraassen 1981 gives 
a direct argument for this corollary in the special case P0(EI) = P0(E2) = .25. His 
analysis makes tacit use of the lemma [below].) 

Proof of Corollatyl. The corollary follows from Result4 and a simple lemma about cross- 
entropy. 

LEMMA. Let P0 be a distribution on X, and let P' be a minimum cross-entropy shift from 
P0 subject to the set of constraints C. Let Y be a refinement of X, that is, Vx E X (x 
C Y). Let Poy be a distribution on Y that agrees with P0 on X, and let Cy be the 
reformulation of C in the measure space generated by Y. If P'y is the minimum cross- 
entropy shift from Poy subject to Cy, then Ply agrees with P' on X. (I thank Ben Wise, 
of Carnegie-Mellon University, for raising the question of this lemma.) 

Proof of the Lemma. This is immediate from the additive decomposition of a cross- 
entropy shift from P0 to P' into a sum of a marginal cross-entropy shift and an expected 
P' shift in conditional probability. Ol 

(Proof of Corollary,-continued.) Without loss of generality, assume Pox is rational- 
valued. (Otherwise, consider a sequence (Pi0x) of rational-valued probabilities con- 
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verging to Pox) Refine X to Y so that Poy is uniform on Y. By the lemma (above), the 
minimum cross-entropy shift from Poy to P'y agrees with the minimum cross entropy 
shift from Pox to P'x on X. But, with Poy uniform on Y, the minimum cross-entropy 
shift is just the MAXENT distribution P, in the measure space (Y,Y), subject to the 
constraint c. Then apply Result4 to show that P'y has the desired property on E3. To 
wit: P'y(E3) > P0Y(E3), unless P'y = Poy. OII 

Now, for the proof of Result4. 

Let X, El, E2, and E3 be as stated. Introduce the constraint of new conditional odds via 
"called-off" bets. That is, define 

f(xj) - cx if xi (E El 

-(1-cxt) if xi&E2 

=0 if xi E E3. 

The constraint c, then, is formulated by: E[f] = 0. Distributions satisfying this constraint 
also satisfy P(E1)/P(E2) = (1 - ox)/ox. The MAXENT distribution subject to c, denoted 
by P, is determined through the equation 

P(xi) = e-Xf(xi) Z- (1) 

where Z(X) = ky - + my"1) + (n - k - m) (2) 

for y =e x 

and c=0=- d log Z(X) 

dX 

Then y = (a/1 - a) * (k/m). (4) 

Substituting (4) into (1), we arrive at 

P(El U E2) *Z = k[m(1 - o)/ko)] + mt[ko/(m(1 - ot))]'-' (5) 

' k + m. (6) 

The inequality in (6) is strict unless oc = m/(k + m), when P is the uniform distribution, 
P', on X. O 

COROLLARY2. With X, El, E2, Pox and c as above, the only coherent probability that 
makes P1x into a conditional probability Pw(- |"c") in some measure space (W,W) 
which extends (X,X), is where PW((l - a)/a = P0X(E,)/P0X(E2)) = 1. 

That is, for coherence, with probability 1 the constraint c is irrelevant to Po. This corollary 
augments the Friedman-Shimony (1971) and Shimony (1973) theorems by generalizing 
their observation to cross-entropy shifts from arbitrary probability distributions. 

Proof. Note that for any value of cx other than the one irrelevant to P0 the P'-probability 
of the event E3 increases. Thus, no probability mixture of the conditional probabilities 
Pw(E31"c") can equal the unconditional probability Pw(E3)(= P0X(E3)) unless "c" is 
irrelevant to Pw(E3) almost surely. OII 
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