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terization of defensibility. Briefly, I avoid this problem by relativizing epistemic con-
sistency to a given person a (more precisely, to the epistemic universe Ua) and revising
the formal characterization of epistemic consistency. This formal characterization is
given at the beginning of the appendix to this paper.

8 See H. E. Kyburg, Jr., ‘Conjunctivitis’, in this volume. Kyburg distinguishes ‘weak’
from ‘strong’ versions of several principles governing logical propertics. In his discus-
sion, these principles apply to sets of reasonably aceepied sentences; I have taken the
liberty of adapting his terminoclogy to the sets I am calling *epistemic universes’.

7 The concept of a doxastic altemative is borrowed from Hintikka [12], p. 49.

8 Tam grateful to my colleague Brian Chellas for pointing out the potential of (C.dens).
® Henry E. Kyburg, Jr. [17], pp. 197-8.

10 The term justified’ that occurs in these principles is one that we have not dealt with
in this paper, It is a term often used in discussions of rational belief, however. My
argument is based partly on an ambiguity in this term and I have deliberately used it
in order to keep my presentation of the lottery paradox as innocent as possible,

11 This suggestion is made, for example, by Schick, op. cit.

12 The relationship of accessibility is defined in the Appendix to this paper.

13 1t is wotth pointing out again that my claim here depends on the schematic explica-
tion of Reasonable given in Section I.B. If I were to change the definition of ‘sustains’
so that & can be egual to or greater than .5, then it seems doubtful that suspension of
belief would ever be obligatory.
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CONJUNCTIVITIS*

1

Consider a set S of statements that may be taken to represent an idealized
body of scientific knowledge. Let 5, and s, be members of S. Should we
regard the conjunction of 5, and s,, also as a member of §T1t is tempting
to answer in the affirmative, and a number of writers, whose systems we
shall consider below, have indeed answered this way. An affirmative
answer is conjunctivitis, which may be expressed by the following principle:

The Conjunction Principle: If S is a body of reasonably accepted state-
ments, and 5, belongs to S and s, belongs to S, then the conjunction of
s, and s, belongs to S.

This principle is clearly equivalent to the following principle.

The Conjunctive Closure Principle: 1f §is a body of reasonably accepted
statements, then the conjunction of any finite number of members of §
also belongs to S.

Already the intuitive plausibility of the conjunction principle begins
to fade; while it seems reasonable enough to want to accept the conjunc-
tion of two relatively elementary statements that are individually accept-
able, it seems quite unreasonable to accept all the enormously long con-
junctions of elements in S. But the reasonableness or unreasonableness
of the principle will depend, of course, on what other principles one also
accepts.

One principle which is, so far as 1 know, universally accepted 1, is the
principle that anything entailed by a member of S should also be a mem-
ber of S. If it is reasonable to accept 5,, and s, entails s,, then it is reason-
able to accept s,. I shall call this the weak deduction principle.

The Weak Deduction Principle: If § is a body of reasonably accepted
statements, and s, belongs to §, and 5, =5, is a theorem of our underlying
logic, then s, belongs to S.

Another principle which I am sure is universally accepted is that the
set of reasonably accepted statements S should contain no contradictions.

Swain (ed.), Induction, Acceptance, and Rational Belief. All rights reserved.
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Whether or not it is psychologically possible to believe a contradiction
(with practice perhaps it is), we do not want to regard it as rational.
This I shall call the weak consistency principle.

The Weak Consistency Principle; 1If § is a body of reasonably accepted
statements, then there is no member of § that entails every statement of
the languape.

In 1961 1 offered an argument from the weak consistency principle
and the weak deduction principle to the denial of the conjunction prin-
ciple. This argument has come to be called the lottery paradox, and has
engendered a number of principles designed to restrict the contents of §
in such a way that all three of the principles mentioned so far hold.

The argument is this: Consider a fair lottery with a million tickets.
Consider the hypothesis, ‘ticket number 7 will not win’. Since this is,
by hypothesis, a fair lottery, there is only one chance in a million that
this hypothesis is false. Surely, I argued, this is reason enough to accept
the hypothesis. But a similar argument would provide reason to accept
the hypothesis that ticket / will not win, no matter what ticket number J
may be. By the conjunction principle, we obtain from ‘ticket 1 will not
win’ and ‘ticket 2 will not win’, the statement ‘neither ticket I nor ticket 2
will win’; from the last statement, together with the statement ‘ticket 3
will not win’, by the conjunction principle, ‘neither ticket 1, nor ticket 2,
nor ticket 3 will win’; and so on, until we arrive at the reasonable accept-
ance of a long conjunction which can be briefly expressed as: ‘For all i,
if i is a number between one and a million, inclusive, ticket { will not win’,
But we may also suppose that S contains the statement that the lottery
is fair; and this statement entails the statement: ‘For some i, { is a number
between one and a million inclusive, and ticket ¢ will win’. By the weak
deduction principle we must therefore include this latter statement in S.
By the conjunction principle we must therefore include the conjunction
of the universally quantified statement and the existentially quantified
statement in S. But this conjunction is an explicit contradiction from
which any statement will follow in violation of the weak consistency
principle. I concluded that it was worth while to hang onto the weak
deduction principle and the weak consistency principle, and therefore that
the conjunction principle should be abandoned.

Quite a number of people, finding the conjunction principle more
plausible than I do, have attempted to spike this argument here or there.
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One of the earliest attempts was made by Salmon [14], who suggested
that one ought not to accept particular statements (such as ‘Ticket 7 will
not win the lottery’), but restrict one’s acceptances to general statistical
or universal generalizations. Since a number of writers have followed
Salmon in this ploy, it is worth stating a statistical version of the same
argument,?

Consider a finite population P of entities, each of which either has or
lacks a certain quality 0. We draw a random sample (in any sense of
‘random’ you choose) of 11 of the P’s. A certain proportion of the members
of the sample, f, have the property O; we know that in the parent popula-
tion P some unknown proportion p have the property Q. Now consider
hypotheses of the form ‘p lies in the interval i’; for example: ‘p lies in the
interval (f—.1,f+.1)", ‘p lies in the interval (f'—.0001, f+.675)’, etc.
There are a number of principles of inference that one might adopt for
arriving at acceptable statistical statements of this form. I shall consider
two, though what I say will apply to other principles as well. Let us call
them the Bayesian Acceptance Principle and the Classical Acceptance
Principle.? In accordance with the Bayesian Principle, we shall accept a
statistical hypothesis if its posterior probability is greater than 1 —¢, i.e.,
if the probability of its negation is less than ¢. According to the Classical
Principle, we will accept a hypothesis provided the probability of rejecting
it by mistake is less than . Since the argument is slightly different in the
two cases, I shall treat them separately.

Bayesian case: There are any number of intervals i such that the
hypothesis ‘p € i* is acceptable, under the assumption that the prior dis-
tribution of p is continuous between 0 and 1. Let i, be the intersection
of all these intervals. By the conjunction principle, ‘p €.’ is acceptable.
Again under the assumption of continuity, it is possible to divide any
interval { and in particular i, into a finite number of subintervals i,
[25+04y Iy, such that the posterior probability of ‘p e i;’ is less than &, for
all k, 1sk<m. But this is just to say that the posterior probability of
‘~pe i’ is greater than 1—¢ for all k, 1 <k<m, and thus that the hypo-
thesis ‘~p e i’ is acceptable for all k, | <& <m. The conjunction principle
then entails that ‘~p e i.’ is acceptable, in virtue of the fact that i,=U,.
Thus by the conjunction principle we have ‘pei. & ~p €.’ in our body
of acceptable statements in violation of the weak consistency principle,

Classical case: Again there are any number of intervals / such that the
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probability that we will falsely reject the hypothesis ‘p € i* when we observe
fis less than &. To be more precise {(and more classical), to each of these
intervals i; there will correspond an interval Ej, such that if we reject the
hypothesis ‘p € ;" if and only if the observed frequency ffalls outside the
interval E;, then we will falsely reject the hypothesis no more than ¢ of
the time. Of those hypotheses ‘p € {;” such that in point of fact f falls in
the corresponding interval E;, we say that they ‘are not rejected at the ¢
level of significance’. In particular, to each hypothesis of the form ‘p & (a,
b)’ there will correspond a test interval (a—d, b+ ¢) (it will always include
the closed interval [a, b]), such that if we reject the hypothesis if and only
if we observe a value of f not falling in the test interval, we shall falsely
reject it less than & of the time. Consider two hypotheses ‘p € {a, /)’ and
‘p e ([, bY. At any level of significance, the value f of the observed fre-
quency will fall within the test interval corresponding to each of these
hypotheses.® Thus at any level of significance we will accept both the
hypothesis *p € (a,f)’ and the hypothesis ‘p & (f, by’. By the conjunction
principle, we must then accept their conjunction. But there is no number
that belongs both to (f, &) and (a, f); again we find a violation of the
weak consistency principle.

11

Among those who have adopted principles of acceptance satisfying the
principle of conjunction, the weak principle of consistency, and the weak
principle of deduction, are included Hempel [3], Hintikka [7], Lehrer
[12], and Levi [13]. In the ensuing sections I shall consider the principles
proposed by each of these writers in turn, both from the viewpoint of
strength and from the viewpoint of plausibility. We begin with Hempel.
In his well known paper, ‘Deductive-Nomological vs. Statistical Explana-
tion’, Hempel lays down certain *‘necessary conditions of rationality in
the formation of beliefs”, I shall discuss them one by one.

(CR1) Any logical consequence of a set of accepted statements is
likewise an accepted statement; or, K contains all logical con-
sequences of any of its subclasses.

An obviously equivalent formulation is the following:
The Principle af Deductive Closure; Theset Sis closed under deduction.
It should be cbserved that this principle is not equivalent to the weak
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deduction principle. Hempel's criterion entails the weak deduction prin-
ciple, but the converse does not hold. For example, the set: {'S’,‘So P,
‘Sve’,'~Po~5,'S§&T",‘T",...} of which ‘P’ is not a member satisfies
the weak principle, but not Hempel’s strong principle. However, the con-
junction principle, together with the weak deduction principle, are
equivalent to the principle of deductive closure:

Tueorem 1: Principle of deductive closure=(principle of conjunction
and weak deduction principle)

Proor: If S satisfies the principle of deductive closure, then if s, and
5, belong to S, so do all their consequences; among their consequences
is the conjunction of s, and 5,. Thus the principle of conjunction, And if
S satisfies the principle of deductive closure, then if s, belongs to S, so
does any consequence of s,. Thus the weak principle of deduction. Now
suppose S satisfies both the principle of conjunction and the weak deduc-
tion principle; then suppose that s,,..., s, each belong to S, and that s
follows from &,,..., 5, as premises. By the principle of conjunction, the
conjunction of 5,, ..., 5, belongs to S'; by the standard deduction theorem,
plus the weak deduction principle it then follows that s belongs to S.

What is questionable about the strong principle of deductive closure is,
I think, precisely the principle of conjunction, This may involve a matter
of intuition: I simply don't believe that everything I believe on good
grounds is true, and I think it would be irrational for me to believe that,
Other people seem to think the opposite. I suspect that at root there is a
confusion of quantifiers: of everything that I believe, it is correct to say
that I believe it to be true; but it is not correct to say that I believe every-
thing 1 believe to be true. In symbols:

n (x) (I believe x o I believe x to be true)
(2) I believe (x) (I believe x = x is true).

Statement (1) seems true, statement (2) false.
Hempel’s second condition of rationality is a consistency condition

(CR2) The set X of accepted statements is logically consistent.

Although it might be possible to construe this as the weak principle of
consistency above, it is more likely that Hempel has in mind a strong
principle of consistency:

Strong Principle of Consistency: If S is a body of reasonably accepted
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statements, then there is no finite subset of §, s4,..., s,, such that every
statement of the language follows from s{, .., 5, as premises.

Again conjunction plays an important role. In the presence of the con-
junction principle, the strong principle of consistency and the weak
principle of consistency are equivalent.

THeoREM 2: Conjunction principle = [strong principle of consistency
=weak principle of consistency].

Again one can question the plausibility of the strong principle. I pro-
bably cannot believe a contradiction, or act on one, But I can certainly
believe, and even act on, each of a set of statements which, taken con-
jointly, is inconsistent. Indeed, when I lend my moral support to a lottery,
without buying a ticket, this is one way to describe what is going on; though
a more adequate and complete description would involve expectation.

Hempel's third criterion is, he claims, “simply a restatement of the
requirement of total evidence” (p. 151).

{CR3) The inferential acceptance of any statement / into K is decided
on by reference to the total system K.

This criterion, though it is not strictly relevant to the problem of conjunc-
tivitis, is worth a comment or two. It is clearly in conflict with the prin-
ciples of fallibilism and empiricism which underly much of what Hempel
writes, Surely it is a consequence of these principles that even if a state-
ment 5 becomes a part of our body of reasonable beliefs, we will, if the
evidence begins to go the other way, be ready to reject it. But if we incor-
porate the statement 4 into the body of beliefs K, then, whatever elsc we
add to that body of beliefs, its probability, relative to that body of beliefs,
is going to be unity. Once accepted, no added evidence can ever render
I improbable. The suggestion — which requires a great deal of develop-
ment — is that we shall have to keep our evidential base separate from the
body of reasonable beliefs erected on that base. There is also a new path
to inconsistency opened by this principle. Let us suppose that there is a
set P, 999 of which are @, ; that 99% of the @, are @,; ... that 99% of the
Q, are R. There is nothing inconsistent in supposing this, and that at the
same time 99°% of the P are not-R. But there is obviously something
inconsistent about accepting the statement that an arbitrary P is not-R
(since it is a P and that’s all we know about it), and accepting the state-
ment that an arbitrary Pis R (sinceitis a Pand that’s all we know about it).
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Hempel finally proposes a measure of epistemic utility (related to the
content of a statement in terms of a logical measure function) according
to which the principle of maximizing utility leads to the rule:

Tentative rule for inductive acceptance: Accept or reject /i,
given K, according as ¢(fi, K)> 1/2 or ¢(h, K) < 1/2; when
c(h, Ky=1/2, i may be accepted, rejected, or left in suspense
{p. 155).

It is clear that this rule is not only, as Hempel puts it, “too liberal”, but
leads directly, through the strong principle of deduction, to inconsistency,
provided only that there are three hypotheses, jointly exhaustive, whose
probabilities, relative to k are all less than a hall.

A recent paper by Hilpinen and Hintikka develops an inductive accept-
ance rule that is demonstrably consistent, and satisfies a number of criteria
similar to those discussed above. Their system uses Hintikka's 1965 sys-
tem of inductive logic [4], in which non-zero degrees of confirmation
come to be assigned to general sentences. This system of inductive logic is
applicable in principle to all first order languages {(without identity), but
is developed in detail only for monadic languages. In point of fact, the
system developed by Hilpinen and Hintikka satisfies the strong consist-
ency principle, and the strong principle of deductive closure. Put in terms
of the most finely articulated statements above: their system satisfies the
weak deduction principle, the weak consistency principle, and the con-
Jjunction principle. (Since these three principles are independent, it seems
best to refer to them separately.)

Since Hintikka’s system is not as well known as it shouid be, a brief
review of its features may be helpful here. Consider a language L, con-
taining k& primitive monadic predicates ‘P;’. By means of these predicates,
one can characterize K=2*kinds of individuals, corresponding to Carnap’s
2% Q-predicates, For the sake of simplicity we suppose that instantiation
of each of the Q-predicates is logically possible, or in Carnap’s terms,
that the primitive predicates are logically independent, These g-predicates
are called by Hintikka ‘attributive constituents’. A constituent consists
of a specification, for each of the K Q-predicates or attributive constit-
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uents, of whether or not it is instantiated in the world. There are 2¥—1
possible different constituents (because it is logically false that no con-
stituent be instantiated in a non-empty universe).

There are various ways of assigning a priori probabilities to the con-
stituents. One might take the probability of 2 constituent to be proportional
to (w/K)*, where « is an arbitrary constant, and w is the number of Q-
predicates that are alleged to be instantiated by the constituent. For our
purposes the simpler assignment of equal probabilities to each constituent
(also worked out by Hintikka and Hilpinen) will suffice,

Let e be a sentence that asserts, for each member of a sample of n
individuals, and for each of our primitive predicates ‘P;, either that that
individual has the property P, or that it has the property ~ P, Since we
may order the (-predicates in an arbitrary way there is no loss of gener-
ality in supposing that our sample of » individuals provides instantiation
of the first ¢ Q-predicates. The constituents that are consistent with our
evidence all have the form:

(3x) 2:(x) & Ax) (2 (x)) & & 3x) .(x) & @x) 2,,(x)
& @x) 0, (x) & & (3x) Q,,,(x) & (x) (1 (¥) v Q2 (x)
Ve Q@) v @, (x) v e v @ (¥)),

where i, <, whenever j<k, and i, >c.

Let C, be the constituent that asserts that just those Q-predicates in-
stantiated by our evidence are exemplified in the universe (i.e., C.=‘(x)
0, (x) & & (@x) 0.(x) & (x) (O (x}v -+ v Q.(x)), and let C,, be any
other constituent consistent with our evidence. Then it is possible to show:

M P(C,e)>P(Cy,€)
(2) lim,.,P(C.,e)=1
3) lim,_. P({C,,e)=0.
One further fact is important;
@ Every consistent general sentence / of L, can be transformed
into a disjunction of constituents; thus P(h, &)=Y ,P(C,, e),

where the summation is extended over all those constituents
in the disjunction equivalent to A.

It is possible to show ((2) and (3) give an intuitive justification) that for
given e<1/2, we can calculate an integer ny such that if n>ng, one and
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only one constituent will have a probability, relative to e, greater than
1 —&. This constituent will of course be C..

We now adopt the following for our rule of acceptance : Accept a general
statement A, given evidence ¢, if and only if: the probability of / is greater
than 1—¢, and more than n, objects have been examined. Formally (p.
11):

(D.Ac) Ac(h,e)=p (i) P(h,e)>1—¢g where 0<e<0.5
(i} n> ny.

In virtue of (4) a hypothesis & can have a probability greater than 1—&
only if the constituent C, appears in its distributive normal form; thus
every hypothesis that is acceptable must be consistent with C.; and thus
they must be jointly consistent. The strong consistency condition, and
thus the weak consistency condition also, is satisfied.

The principle of conjunction is also satisfied. If /;; and /; are acceptable,
then C, must occur in the distributive normal form of each of them, and
thus C, will occur in the distributive normal form of their conjunction.
The probability of their conjunction will therefore be greater than 1 —g,
and their conjunction will therefore be acceptable.

The principle of deductive closure so far fails, however, even in its
weak form. Let ‘(x)A(x)’ be an acceptable generalization; one of its
deductive consequences is ‘4{a)’. But there is no clause in {(D.Ac) that
will allow us to accept ‘A{a)’.

Deductive closure does hold, however, for general statements. Suppose
that the general statements /1, ..., /, are all acceptable, and that they entail
a factual general statement h. Since C, occurs in the distributive normal
form of each A, C. must also occur in the distributive normal form of A
itself, Thus # must be acceptable, and, so far as general statements A
(containing no individual constants) are concerned, the strong principle
of deductive closure is satisfied.

THEOREM 3: If K is the set of all those statements & such that Ac(h, ),
then X satisfies the conjunction principle and the strong consistency
principle, but neither the strong nor the weak deduction principle. The
strong and weak deduction principles are satisfied if we restrict their range
of application to completely general sentences.

The system so far provides us with no way of accepting singular state-
ments of the form M (a,), where M is a molecular predicate equivalent to
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a disjunction of Q-predicates, and a, an individual constant. Hintikka
and Hilpinen show that in order to preserve consistency, our rule for the
acceptance of singular predictions must be:

(D.Acsing) A singular hypothesis {4 (q,) is acceptable if and only if
the generalization (x) A4 (x) is acceptable (p. 18),

Let A, be the disjunction of the ¢ Q-predicates in C.. ‘(x) 4.(x)’ is accept-
able, and the probability of the conjunction of any arbitrary number of
statements of the form 4, (a,) is at least 1 —¢. Indeed:

limr-mP[Ac(al) & & Ac(ar)] =P(C,e)

Let us look at consistency and deductive closure. Suppose the singular
statements ‘A, (a,)’, ‘4, (a,)’, ...°4,(a,)’ are acceptable as being instances
of acceptable universal generalizations, and that the compound statement
§ is deducible from them. Since ‘(x)A4.(x)’ is the strongest universal
generalization, ‘4, (a,)’ is deducible from ‘4_(a,)’, ‘4, (a,)’ is deducible
from ‘4. (a,) etc., and the statement S is deducible from the conjunction
‘A.(a,) & A.(a;) & & A (a,), therefore S is deducible from ‘(x) A4 (x)".
This ensures that the probability of S will be at least 1 —¢, But we have
no grounds for either asserting or denying that S is acceptable; accept-
ability has been defined only for completely general statements, and for
singular statements of the form A(g). Deductive closure thus far fails.
Acceptability in general, however, would presumably be defined in this
way:

(Acc) A statement S is acceptable if and only if it belongs to every
class K of statements, closed under deduction, containing e,
such that each member of K that is completely peneral is
acceptable by (D.Ac), and such that each statement acceptable
by (D.Ac) is a member of XK.

The separate principle (D.Ac sing) is deducible from this principle.

Tueorem 4: If K'is the set of all statements /1, such that 4 is acceptable
by the principle (Acc), then K satisfies the conjunction principle, the strong
consistency principle, and the strong deduction principle.

ProoF:

(a) Conjunction Principle: The conjunction of s, and s, belongs to every
class K closed under deduction to which both s, and s, belong, and there-
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fore to every class K closed under deduction and meeting further require-
ments as well to which both s, and s, belong.

(b) The Strong Consistency Principle: By hypothesis e is consistent, and
consistent with the strongest acceptable generalization, ‘(x) Ac(x)’, Other
statements are obtained only by deduction, but deduction cannot intro-
duce inconsistency.

(c) The Strong Deduction Principle: Since the classes X are closed
under deduction the deduction principle is satisfied automatically.

The set of statements characterized as acceptable by this principle con-
sists essentially of C, and e, together with all of their deductive conse-
quences. This set is essentially the set of deductive consequences of a
single statement. We shall find this to be characteristic of those acceptance
rules for which deductive closure holds, and which are demonstrably con-
sistent.

There are certain shortcomings to the system of Hintikka and Hilpinen.
In the first place, as it stands, it does not allow us to take account of the
relative frequencies with which the Q-predicates are exemplified. In a
similar system proposed by Hintikka [6] the probability that an individual
a will have a certain molecular property M will depend on the relative
frequencies with which Q-predicates have been observed to be exemplified ;
but in the system under discussion we can never accept A4(a) unless the
universal generalization (x) M(x) is acceptable. This is a general feature
of these systems, and necessarily so. All of these systems accept the
principle of conjunction, and it follows directly from the principle of
conjunction that if an arbitrary predictive inference of the form ‘A4 (a)’
is acceptable, then its universal generalization ‘(x) 4 (x) is acceptable, at
least when restricted in scope to the unobserved part of the universe of
discourse. This should be stated formally,

THeorem 5: If the principle of conjunction is accepted, and if for any
arbitrary individual @ among the unobserved individuals, the singular
predictive inference ‘A (a)’ is acceptable, then the universal generalization
‘(x)A(x)’ is acceptable, when restricted in scope to unobserved individuals.

ProoF: Let the evidence e mention only & individuals, as failing to
satisfly the predicate ‘4’; let these individuals be a, ...q, (k may be 0).
Then if the principle of conjunction is accepted, then if in general any
singular predictive inference of the form ‘4 (a,)’ (i> k) is acceptable, then
every finite conjunction of statements of this form is acceptable, and the
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universal generalization ‘(x) (~x € {a;, 83,..., @} 2 (A(x)))" is acceptable
in a finite language. For an infinite language, we need only note that
‘A(ay+,) is acceptable, and that if the restricted universal generalization
is acceptable for all individuals up to the nth, then by the principle of
conjunction it is acceptable also for all individuals up to the (n+1)st.
A plausible induction principle yields the conclusion. In systems such as
Hintikka’s without identity we cannot express a generalization that takes
account of exceptions; but the same result follows in those systems for
cases when k=0,

The problem of extending the system of Hintikka and Hilpinen to a full
first order logic is very knotty. Some steps have been taken in this direction
by Hintikka, who has defined constituents quite generally. Hintikka’s
approach to inductive logic is applicable in principle to all first order
logics, though the definition of (Acc) would obviously have to be enor-
mously complicated even to deal with a language containing two-place
predicates, Tuomela [15] has begun the attempt to construct an inductive
logic for monadic languages with identity. But in virtue of the fact that
the essence of the acceptance rule is that we are directed to accept a single
statement (C_&e), together with all of its deductive consequences, any
such system will be open to objections of the sort that will be applied
below to proposals of Levi and Lehrer.

Finally, it should be observed that in order to do statistical inference,
we need a general higher order logic. In particular, we need to be able to
speak of the set of #-membered subsets of a set S, if not in general, at
least for sets of fairly high order. We also need a language rich enough
for measure theory. Such a language, of course, is enormously more
powerful than anything hitherto considered by Hintikka, Hilpinen, or
Tuomela. To be sure one must start somewhere. But it is difficult to see
what principles, analoguous to those adopted for the monadic predicate
calculus, could be used to avoid the statistical versions of the lottery
paradox described above,

v

The system of inductive acceptance described by Levi [13] has the over-
whelming advantage of being applicable to very rich languages. It is thus
the sort of system we can apply in the kinds of circumstances that we can
actually find ourselves in. It can be applied, for example, to the problem
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of accepting statistical hypotheses on given evidence. Two new concepts
must be explained before the rule can be stated. The most important and
most novel concept is that of an wltimate partition. Levi argues that the
inductive inference maker does not conduct his inquiries in a vacuum;
he does so in a context determined in part by a felt need, a problem which
he is seeking to solve. Thus before the inquiry starts, an investigator has
an idea, which may be quite clear, or, unanalyzed, may be rather confused,
as to what would constitute a relevant answer to his problem. These
answers can be related to relatively atomic relevant answers, which con-
stitute an ultimate partition, U/ in the following way. Following Levi,
we suppose that there is a certain statement & which represents background
information, not up for test in the inquiry, and a certain statement e,
which represents the body of evidence of the inquiry. The uitimate parti-
tion U, is a (usually finite) set of sentences in L {the language of the in-
quiry, which may be as rich as you please), such that each element of U,
is consistent with b and e, and such that the conjunction of b and e entails
(i) that some member of U, is true, and (ii) that at most one member of
U, is true, and (iii) every relevant answer is logically equivalent to the
disjunction of zero or more members of U,, where we understand the
disjunction of zero members of U, to be the conjunction (inconsistent
with b and ¢) of all the members of U,. The set of sentences M, represents
the canonical standardized list of relevant answers. For an ultimate
partition containing n members, M, is the set of 2° statements, constructed
by forming the disjunction (in alphabetical order) of m (1<m<n) ele-
ments of U, and adding to that list S,, the disjunction of all the members
of U, and C,, the conjunction of all the members of U.. The subscript ‘¢’
reflects the evidence e. An initially ultimate partition would be designated
by ‘U, and its set of ultimate answers in canonical form by ‘M’. Given
some cvidence e, the initially ultimate partition would be reduced by the
deletion of any elements of U that were inconsistent with e. This produces
a truncated ultimate partition U,, and leads to a new (and correspondingly
truncated) set of relevant answers M.

The other crucial concept is content. Content is defined relative to
ultimate partitions. Each element of the initial ultimate partition is taken
to have the same content, on the grounds that any difference in content
would lead to a finer ultimate partition. To arrive at the conditional
content of a hypothesis H, given certain evidence e, one merely applies
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the same principle to the truncated ultimate partition: one takes each
element of U, to have the same content. This leads to the conclusion that
in general,
cont(H, e) = mjfn, where n is the number of elements in U,,
and m is the number of elements in U, that are inconsistent
with H (p. 70).

With these two concepts at hand, we can state Levi’s Inductive Acceptance
Rule (p. 86).
Rule A: (a) Accept b & e and all its deductive consequences.

(b) Reject all elements a; of U,, such that p{a,, e) < g cont
(~a, e) i.e., accept the disjunction of all unrejected ele-
ments of U, as the strongest element in M, accepted via
induction from b & e.

{c) Conjoin the sentence accepted as strongest via induction
according to (b) with the total evidence b & e and accept
all deductive consequences,

(d) Do not accept (relative to b, e, U., the probability distri-
bution, and g) any sentences other than these in your
language.

The number ¢ referred to in the acceptance rule may be construed as an
index of boldness; it ranges from 0 to 1, and the larger it is, the less cautious
will one be in accepting statements not entailed by the background know-
ledge and evidence 5 & e. The number g reflects the “‘relative importance
of the two desiderata: truth and relief from agnosticism”.

As it stands, rule A obviously leads to the acceptance of a set of state-
ments satisfying the strong principle of deductive closure {indeed Levi
takes the condition of deductive cogency, as he calls it, as a condition of
adequacy), and thus also the conjunction principle; the strong consistency
principle is satisfied because ¢ must be less than or equal to 1, and the
probability level at which elements of U, are rejected must therefore be
Iess than 1/n, where # is the number of elements of U,. Even if g is taken
to be I, and the number of elements # of U, is taken to be 2, the inequality
in (b) preserves us from inconsistency. The general principle is the same
as that embodied in Hintikka’s system already discussed : what is accepted
is essentially a single (strongest) hypothesis F, together with its deductive
consequences.
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Unlike Hintikka’s system, in Levi’s system a high probability is not
necessary for acceptance. Levi's system has a rule of rejection which is
not purely probabilistic, but is dependent on content (as determined by
the number of elements in the ultimate partition) and on the index of
caution g. One may perfectly well end up accepting a proposition on the
evidence whose probability relative to that evidence is less than 1/2, so
long as it is more probable than any competing alternative. The canonical
example is that in which there are three elements in U,, each (therefore)
having content 1/3, g is 1, and the probabilities of a,, a, and a, are
respectively 0.4, 0.3, and 0.3, We are directed to accept «, and all the
deductive consequences of a, &b &e. Strong consistency is nevertheless
preserved.

While Hintikka’s system appears to be the prototype of a global
approach to problems of belief and acceptance, and thus to be limited
by the cheice of a language, and open to the difficulties of attempting
to develop a similar system for richer languages, Levi’s system is frankly
local and problem dependent. Another way of construing the relation is
to say that for Hintikka, the [anguage we use determines the ultimate
partition, while for Levi the ultimate partition is detcrmined both by a
language and by a particular problem; or perhaps it could be put this way:
the partition is determined by a particular problem together with the
language in which we represent that problem to ourselves,

The fact that Levi’s rule of acceptance is relativized to a given language
L, background knowledge b, evidence ¢, and a probability distribution
P, raises no eyebrows; we surely expect that what a plausible acceptance
rule will dictate will depend on these factors. That what we accept should
depend in some way on how cautious or bold we are being, as expressed
by the number ¢, also seems reasonable enough. The important question
concerns the relativization to an ultimate partition, Given the language,
b, e, the probability distribution and g, it is clear that different ultimate
partitions may lead to the acceptance of different sets of statements. It
would be blatantly contrary to the whole pragmatic spirit of Levi’s
approach to suppose that there is some special, preferred, universal,
ultimately ultimate partition. All ultimate partitions must be treated on a
par, though at a given time, under given circumstances, we may not
consider or think about more than one. But wc could consider several,
Levi asks rhetorically, ... why is it impossible for conditions K and K’
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to prevail at the same time, such that a man belicves a deductively con-
sistent and closed system of sentences I' based on K and simultaneously
a deductively consistent and closed system of sentences I'" based on K?
To be sure he will believe, and believe rationally, all sentences in the set
IF'uT’, and this set may very well be neither consistent nor [deductively]
closed. But.,, why should this be objectionable?” (p. 94).

One answer to this rhetorical question might consist in quoting the
arguments Levi aduces elsewhere in his book in favor of the Principle of
Deductive Cogency. Whatever reason there is for demanding that the
set I" based on K should be deductively consistent and closed, are these
not also reasons for demanding that v TI"" be deductively consistent and
closed? But I rather agree with Levi that there is nothing at all objection-
able about a man believing rationally all the sentences in the set "'u [,
where this set is neither consistent nor deductively closed. Indeed, since for
any hypothesis that has a high probability, we can construct an ultimate
partition which will lead to the acceptance of that hypothesis, we are
in essentially the same state, so far as statements with high probability are
concerned, as we are in one of my rational corpora. Levi points out (p. 95)
that his Rule A *... requires that this set [of rationally accepted sentences]
must be divisible into subsets which are consistent and closed relative
to the total evidence and the ultimate partitions detached at that time”.
But since we can detach any partition we want, this latter requirement is
empty; and it is trivial to divide any set of sentences satisfying my con-
ditions for a rational corpus into subsets that are deductively cogent.
Indeed, it is trivial to do this for any purely probabilistic rule of acceptance.

THeoREM 6: If S € Kifand onlyif Prob(S, &}> r, then K may be divided
into subsets which are consistent and closed - i.e., for which the strong
consistency principle and the strong deduction principle are satisfied.

Proor: For each sentence S of K, let K consist of S, together with all
of its deductive consequences. The Kj are the required division. If T e K,
then T is entailed by S. But if S entails T, the probability of T cannot be
less than that of § (on any interpretation of probability) and so T belongs
to K. Conversely if Se K, then Se K So K={JK;. The sets Kg are
deductively closed; they satisfy the Conjunction Principle. It remains to
show that they are consistent. An inconsistency can appear only if it is
entailed by some sentence S of K. But the probability of an inconsistency
(onany interpretation of probability) is 0, and if S entails it, the probability
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of § cannot be greater than 0; and so S cannot be a member of K on
purely probabilistic grounds.

Let us examine the set of statements that might come to be accepted (by
means of some ultimate partition or other) in Levi’s system. Levi points
out that this set of statements will not in general satisfy either the strong
deduction principle or the strong consistency principle. It is interesting
to observe that these sets of statements do satisfy the weak deduction
principle and the weak consistency principle.

THEOREM 7: If I, is the set of all those statements S such that there is
an ultimate partition U,, relative to which, and b, ¢, and g, S comes to be
accepted by Rule (A), then I, satisfies the weak deduction principle and
the weak consistency principle.

Proor: Every statcment that comes to be accepted in this set of state-
ments is accepted originally in relation to some ultimate partition. But
Rule A demands that when S is accepted relative to some ultimate parti-
tion, all of the deductive consequences of S & b & eshould also be accepted;;
thus the weak deduction principle. As for consistency, if § is inconsistent
in itself, it can never come to be accepted by Rule A, and thus cannot be
a member of the set of accepted statements relative to any ultimate parti-
tion,

There is one further kind of consistency we might ask about. The pair
of statements (S, ~.5) is perfectly consistent in the weak sense - i.e., it
contains no inconsistent statement among its elements — and yet seems
rather flatly wrong, somehow. What I shall call the Principle of Pairwise
Consistency stipulates that a body of accepted statements should not
contain any such pairs of statements.

Principle of Pairwise Consistency: If Kis a body of reasonably accepted
statements, then for no statement .S of the language is it the case that both
S and the denial of S belong to K.

In a similar manner we may define for every n a principle of n-wise
consistency:

Principle of n-wise Consistency: 1If K is a body of reasonably accepted
statements, then for no set of statements s, 53,..., 5,— is it the case that
each of s,, §3,..., 5,— 1, and ~ (s, &S, ..., §,— ) is a member of K.

We should first observe that any purely probabilitistic acceptance rule
{with acceptance level greater than 1/2) satisfies the Principle of Pairwise
Consistency, and any purely probabilistic acceptance rule with acceptance
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level greater than n/(n+ 1) satisfies the Principle of n-wise Consistency.

THEOREM 8: If S & K if and only if Prob(S, e)> r (where r > 1/2), then
K satisfies the Principle of Pairwise Consistency. If S e K if and only if
Prob(S, e)>n/(n+1) then K satisfies the Principle of n-wise Consistency.

Proor: For ordinary point probabilities, the probability of S is one
minus the probability of ~ .S, so both probabilities cannot be greater than
1/2. For my interval probabilities, it is possible to show that Prob(S)=
(p, q) if and only if Prob{(~S8)=(1—g, 1=p); so the same argument
goes through.

Prob~[S, & S, & & S,_,] =
Prob[~ S v ~8S, v v~S _]
Prob[~ S, v ~8 v v~S._ 1<
Prob(~ 8§)+ Prob[~S; v ~S; v e ~ 8, _ (]
Prob(~ §;) +Prob{~S5,)+ - + Prob(~S,_,)
Prob(S)) = nj(n+ 1); Prob{~ S)< 1 =nf(n+ D =1/(n+1)
Prob~[S; & S; & & S, 1<@m—-1) lfn+D=@n-1)
+D<niin+1.
Therefore ~ [S, & §; &--- & S,_,] is not probabilistically
acceptable.

Now let us observe that Levi’s general sets of rationally accepted state-
ments, although they do in fact satisfy the weak consistency principle, do
not satisfy the Pairwise Consistency Principle. Consider a three ticket
biased lottery, in which ticket 1 has the probability 0.4 of winning, and
the tickets 2 and 3 have the probability 0.3 of winning. Relative to the
ultimate partition: {Ticket 1 wins, ticket 2 wins, ticket 3 wins}, we will
be able to accept the statement ‘ticket 1 wins’ together with all its deductive
consequences. Relative to the ultimate partition {ticket 1 wins, ticket 1
does not win}, we will be able to accept the statement ‘ticket one does
not win’ together with all of its deductive consequences, Thus in the
union of the statements accepted relative to each of these ultimate parti-
tions, we will find both a certain statement and its denial (We assume g=1.)

It is interesting to observe that while Levi takes me to task for abandon-
ing the rule of conjunction in my system (and with it the strong deduction
principle and the strong consisiency principle), the set of rationally
accepted beliefs that he comes up with not only abandons all three of
these principles (conjunction, strong deduction, strong consistency) but
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also fails to satisfy the pairwise consistency principle, which my own
system, like that of any other purely probabilistic system, does satisfy.
It is also interesting to note that the requirements of Rule A, construed
locally and not globally, are satisfied by any probabilistic rule of accept-
ance (including mine).

v

Keith Lehrer discusses a purely probabilistic rule of inductive inference,
and what amounts to the strong consistency condition. He shudders with
horror at what he regards as an abandonment of consistency, and attempts
to provide a rule of inductive inference which will satisfy the three
strongest principles: the conjunction principle, the strong principle of
consistency, and the strong principle of deduction. The principle he comes
up with contains as parameters P, an appropriate probability function, e,
a body of evidence, and L, a formal language. There is no parameter
corresponding to degree of caution, or level of practical certainty. There
is no relativization to a given set of hypotheses, The rule is:

RDI:  D(k, €) [k is directly inducible from ¢] if, for any A, if it is not
the case that Te & k7+ B, then P(k, €) > P{h, &).

IR: I(h, ) [/ is inducible from e] if and only if & is & member of a
set I, such that I, =1, I, u+u I, [where]
I, = the set of hypotheses /1, such that D(#,, e),
and letting C, be a conjunction of the members of I, that is
logically equivalent to I,
I, = the set of hypotheses /; such that D(h;, C, & e)
I, = the set of hypotheses /1; such that D(h;, C, & e)

I, = the set of hypotheses A, such that D(h;, C,-, & e).

We may elucidate the ‘logical equivalence’ of a statement (C,) and a set of
statements (I,) in the obvious way: C, is derivable from the set of state-
ments I, and every member of I, is derivable from C,,. It might be won-
dered if, for every I,, there is a finite conjunction of members of I, from
which every member may be derived. In a finite language this is the case;
in an infinite language C, may turn out to be an infinite conjunction.
1t is possible to prove that the set of statements induced by IR from con-
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sistent evidence satisfies the conjunction principle (if & and k are inducible
from e by IR, so is their conjunction); that this set of statements is
deductively closed {if #,,..., #, are inducible from e by IR, and T&,,...,
I,k k, then k is inducible from ¢); and that it is strongly consistent (it
contains no set of statements #,,..., i1, such that Th,, ..., i, FTk&~k).

But we have achieved our goal of an inductive rule that satisfies these
strong principles at essentially the same cost as that paid for Hintikka
and Hilpinen’s rule, namely: there is essentially only one hypothesis that
we may induce from given evidence. Anything else we are allowed to
induce will turn ocut to be merely an implicate of the evidence and that
one strongest hypothesis. Indeed the situation for Lehrer’s system is even
stranger; at a given level we cannot induce all the deductive-consequences
of the strongest hypothesis we can induce, but only a string of implicates,
of which each implies a// the statements lower in the string.

Lemma: If it belongs to I, then /& belongs to I, ;.

PROOF: I, 4, is the set of hypotheses /i, such that D(k,, C, &e), i.c.,
such that for any /4, if it is not the case that C, &e&Hh; entails i, then
P(h;, C &e)}>P(h, C &e). But C,&e does entail &, so it is directly
inducible from C,, &e.

TueoreMm 9: If & and k are directly inducible from e, then either k &e
entails /1 or h&e entails k.

ProofF: Suppose that & &e does not entail 4. Then P(k, e)>P(h, &).
Suppose that hé&e does not entail k., Then P(h, e)> P(k, e). Therefore
either k &e entails /1 or /1 &e entails k.

Observe that this means that if # and & are any two members of C,,
then either C,_, &edkthor C,_ &ehtk,

(Now, incidentally, we see why the conjunction principle holds. If &
and k are directly inducible from e, then so is their conjunction, simply
because their conjunction is equivalent, given e, to one of them alone:
i.e., either e entails k=h &k, or e entails hi=h&k.)

We now come to the main theorem regarding Lehrer’s system, which
is that there is essentially only one statement inducible from e. In order
to show this rigorously for infinite languages we must allow ourselves
infinite conjunctions; two observations on this move are in order. It seems
to be only in pathological cases that the move to infinite conjunctions is
required. This move must be allowable in Lehrer’s system, since he says
to let “C,, be a conjunction of members of I, that is logically equivalent to
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I, and in the pathological cases no finite conjunction will do. I suspect,
however, that worry about the infinite case is academic.

TrCOREM 10:

{a) For every n, there is a statement, k,, which is either inducible from
C,-, and e, or which is an infinite conjunction, each member of which is
inducible from C,_, such that every member of J, is entailed by k, and .

(b) There is a statement, k,, such that every statement inducible from e
is entailed by ¢ and k,, and such that k, is inducible from e, or is an infinite
conjunction, each member of which is inducible from e.

Proor: For every two statements in I, either the first, in conjunction
with e and C, .., entails the second, or the second, in conjunction with &
and C,_,, entails the first. This relation gives a partial ordering of the
hypotheses inducible from C,_-, and e. Either {(as would in general be
true) there is a hypothesis k such that every element of I is derivable from
k&e&C,_,, and then k is the k, whose existence is asserted in (a), or
else there will be an infinite sequence of hypotheses inducible from
Coor1&e, ky..., ky...,such that k, & C,_, &e entail k,_,, but k;_, &C,_,
&.e do not entail k. In this case we let &, be the infinite conjunction of
the hypotheses k;. (Observe that in this case, C, will have to be an infinite
conjunction, too. We may, of course take k, as C, itself in this case.)
Therefore k, &e & C,_, does entail A.

In a similar way, either there is an »* such that for # and m greater than
n*, C, and e entail C, and e and conversely, or else, for every n, C,,, and
e entail C,, but C, and e do not entail C,,.,. In the former case k, is the &,
of (b). In the latter case, there is an infinite conjunction, C*, such that
every member of C* is inducible from e, and every finite conjunction
of members of C* is inducible from e, which is such that for any state-
ment i whatever, if /1 is inducible from e, 4 is deducible from C*; namely
the conjunction of all &,.

It is perhaps worth observing that the conjunction principle does not
hold for infinite conjunctions. Consider a sequence of hypotheses, ., ...,
k, each of which, with e, entails the preceding hypotheses, but is not
entailed by them (with e). The probability of the conjunction k, &k, &---
&k, given e, is just the probability of &, given e. The probability of the
infinite conjunction K, =k, &k, &..., k,... is thus just the lim,_, , P (k,, ¢).
Each of the k; will be inducible provided that for any & not entailed by
k;&e, P(k;, e)>P(h, ). But P(h,e) could be lim,, Pk, ¢} (since
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P(ky, e)>lim,. . Pk, €)), and & might not be entailed even by e and
the infinite conjunction of the k;. Thus the infinite conjunction would not
be inducible, even though each of its members was. Thus &, and &, may not
themselves be acceptable.

Vi

The system of Hintikka and Hilpinen and the system of Lehrer are
unsatisfactory for essentially the same reason, They boil down to the
claim that given a language and a body of evidence, there is essentially
just one strongest statement that can be accepted. This approach to induc-
tion is global with a vengeance. It suggests that as scientists or even as
people we do not induce hypothesis by hypothesis, but that induction
consists in principle of inducing at each stage of inquiry - i.e., for each
body of evidence ¢ — a single monumentally complex conjunctive state-
ment. Observe that we cannot even consider parts of the complex hypo-
thesis in isolation from other parts. Although the evidence may have the
form e;&¢;, and ¢; may be utterly irrelevant to k;, the fact that /; is
inducible from e; will have no bearing at all on whether /; is inducible
from e;&e;. A hypothesis A, not entailed by &, and ¢, and ¢; may always
turn out to be more probable on ¢; &e, than 4, is. Indeed, one may wonder
if the exceedingly high confirmation of the hypothesis that the speed of
light is finite will not preclude the acceptance of any hypothesis concerning
the cause of cancer, the existence of life on Mars, or the amount of infla-
tion to be anticipated in the coming year.

It may be argued that any global system in which the conjunction
principle is satisfied will suffer from these shortcomings. In any such
system there will be a statement from which every acceptable statement
follows, and which is either acceptable itself, or is an infinite conjunction
each finite conjunct of which is acceptable.

THEOREM 11: If the conjunction principle is satisfied for an inductive
acceptance rule in the language L, then there is a statement C* in L, or
an infinite conjunction C* every component of which is in L, such that
if 4 is a finite statement, & is inductively acceptable if and only if 4 is
entailed by C* and the basic evidence e.

Proor: Entailment given e provides a partial ordering of the state-
ments in L. Suppose first that there are two statements in L, /i, and h,,
each of which is inductively acceptable, and neither of which is ranked
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above the other in the partial ordering, By the conjunction principle their
conjunction must also be acceptable, and by the partial ordering, their
conjunction must be ranked higher than either one alone. Either there is
an acceptable hypothesis of maximum rank (from which all the other
hypotheses then follow, given ¢) or else for every hypothesis 4, there is a
stronger one /i’ which, conjoined with e, entails A, but which is not entailed
by h conjoined with e. If this is the case, an argument like that of a preced-
ing theorem will give a C* satisfying the conditions of the theorem.

Given the conjunction principle, as I showed earlier, it also follows that
the strong and weak consistency conditions are equivalent, and that the
strong and weak deduction principles are equivalent. Thus 1 think it is
appropriate to focus on the conjunction principle as a source of the
peculiarities to which such systems as those we have locked at give rise.

It is difficult to give an argument against the conjunction principle,
partly because it is so obvious to me that it is false, and partly because it is
so obvious to certain other people that it is true. The most persuasive
arguments perhaps are those which stem from the last theorem presented;
it seems preposterous to suppose that all of our inductive knowledge has
to be embodiable in a single fat statement. It seems too limiting to say that
I have to believe the conjunction of everything I have a right to believe
(there cannot be very much, then, that I have a right to believe), and it
seems even mere unreasonable to claim to have a right to believe the
conjunction of everything I have a right to believe. Although I claim
to have good reasons for believing every statement 1 believe, I claim also
to have good reasons for believing that some of those statements are false.
I think both of those claims are perfectly sound; and if they are, the con-
junction principle is false.

YII

The system of rational beliefs I have developed elsewhere accepts the
failure of the principle of conjunction. It is an attempt at a global theory,
and for a global theory the conjunction principle seems flatly false. Having
abandoned the principle of conjunction, it becomes possible to distinguish
strong and weak deductive closure, strong, weak, pairwise and n-wise
consistency. In what follows I will briefly characterize a simplified version
of the original system, freed, of course, from the original inconsistency.
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We begin (as always) with a language L ; we suppose it to contain a set
theory, terms denoting operations, properties, relations, etc., which may
be of a theoretical as well as of an observational character. We let B
denote a set of statements that are accepted as evidence or background
information. In a given context B represents the basic rational corpus,
or body of knowledge. We suppose, by hypothesis, that B is pairwise
consistent, and satisfies weak deductive closure. B8 thus contains all the
theorems of our language. To be sure, if’ we pick the wrong axioms for
set theory — inconsistent ones - in our language, the set B will be empty.
But we must always suppose, so long as we know no better, that the
language we speak is consistent, We do not suppose that we believe in
any active or behavioristic sense every statement in B; rather we say that
the contents of B are what we are committed to believing.

Axiom I: SeBo ~nSeB (‘nS’ denotes the denial, in L, of §).

AxioM II: Thm ScdT& S € B=>T¢e B(*Scd I’ denotes the conditional
whose antededent is 5, and whose consequent is T; ‘Thm § cd T says
that the statement S cd T is a theorem of L).

There is no need here for defining the probability relation; there are
certain properties of that relation I shall refer to, which 1 shall state as
axioms. It should be observed that on the basis of a definition of probability
like that [ have provided elsewhere, these axioms turn out to be theorems.
Probability I take to be relative to a body of knowledge or rational corpus
B; itis a relation that holds between a statement S, the rational corpus B,
and a pair of fractions p and q. We say, relative to B, the probability of
§ is the pair of fractions (p, ¢), and we symbolize this assertion: ‘Proby
(S, p, q)". It should be observed, not as part of the formal development
here, but simply as background information, that on the definition I have
offered, every probability statement is based on a known statement con-
cerning relative frequencies, i.e., that if the relation Probg(S, p, ) holds,
there is as a member of B some corresponding statistical statement asserting
that a certain relative frequency or measure lies between the ratios denoted
by p and gq. The properties of probability that we shall need are the follow-
ing:

Axiom III: Probg(S, ‘p’, ‘g’ Y= Proby(nS, ‘1—4",‘'1—p’).

AxioM IV: [Thm S cd T&Probg(S, p, g) &Proby(T, p’, ¢')}=>Thm p’
gr p (‘p’ gr p° denotes the statement in abbreviated notation consisting
of the fraction p’, followed by *>’, followed by the fraction p).
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AxioMm V; SeBoProbg(s, ‘1/1', “1/1").

Qur final axiom requires an auxiliary notion, that of a biconditional
chain in B. Since we have not assumed deductive closure in B, it is perfectly
possible that S & T (the biconditional whose antecedent is § and whose
consequent is T} is a member of B and that 75 R is a member of B, when
S R is not a member of B. But we want to say that S and R are related
by a biconditional chain in B anyway. In general we shall say that §
and R are related by a biconditional chain in B, in symbols, S bcy T,
when S & T belongs to every set of statements containing P b O whenever
P b Q belongs to B, and containing P b R whenever it contains both P 6 0
and @ b R. Formally:

DEFINITION 1: Sbeg T=df(K)((P) (Q) (R) ((PbQeBoPb Qe K)&
(PbReK&PbQeoPbQeK)oSbTeK).

The final axiom simply says that any two statements related by a
biconditional chain have essentially the same probability.

AxioM VI: (S beg T&Proby(S, p, )& Proby(T, p’, ¢'))=>(Thm p id p’
&Thm g id ¢") (*x id »’ denotes the statement [in abbreviated notation]
consisting of x followed by ‘=" followed by y).

We are now in a position to characterize the set of statements B, which
may be induced from B, at the level r. Note that we cannot simply include
a statement in B itself on the grounds that its probability is at least r,
unless we take r to be 1, for the probability of S, relative to B, can be less
than one only if § is not a member of B.

THEOREM 12: {Probg(S, ‘p’, ‘¢")&Thm ‘1> p’)>~Se B (Axioms V
and VI).

Let us define B, to be the set of statements whose probability, relative
to B, is at least r, where r denotes a ratio greater than a half,

DEFINITION 2: B,=df {S: Proby(S, p, ) &Thm p gr r}.

B, is thus a set of statements accepted on purely probabilistic grounds.
We can show that B, satisfies the weak consistency principle, the weak
deduction principle, and the pairwise consistency principle, which, recall,
failed for Levi’s general system.

THEOREM 13: (S€ B,&Thm Scd T)>T e B, (Axiom 1V, D-3).

TueoreM 14: ~ (AS) (S € B, &(T) (Thm Scd T)).

Proor: If (T} (Thm S cd T'), then Thm #8. Thus #S € B. Proby(ns, ‘I’,
‘1’). By axiom III, then, Prob, (S, ‘0°, ‘0°). By the (hypothetical)consistency
of B, we have ~Thm ‘0’ grr, and thus ~S¢e B,.
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THEOREM 15: (Pairwise Consistency and n-wise consistency for # such
that nf(n+ 1)< r)

(S) (Se B, ~nS € B,) (Axiom III).
(S)(S2)... (Sp-1) (51 €B. & S,eB, & &S,_,€B)>
~n(8;¢jS;...¢j S,- )€ B,]

{where § ¢j T represents the conjunction of § and T).

Lehrer makes a point of the consistency of what is induced with the
evidence on the basis of which it is induced. This condition is satisfied
here for single statements given that B is deductively closed, which may
not be an unreasonable supposition for ‘observation statements’,

THEOREM 16: (S) (Bt S>SeB)>(S)(SeB,> ~ (B, Stcontradiction)).

Proor: If B, Stcontradiction, then BFnS. By the hypothesis of the
theorem, then, #S e B, and Probg(S, ‘0°, ‘0"), and ~Se B,.

As I pointed out earlier, there are parts of any system like this which are
strongly consistent and deductively closed. The relation between state-
ments S and T, Thm S cd 7, provides a partial ordering of the elements
of B,. Letus define a strongest acceptable statement, in symbols STR, to be
a statement such that no other statement in B, bears the relation in ques-
tion to it, unless it also bears that relation to the statement. Thus:

DEeFNITION 3: STRp S=df S e B, &(T) ((TeB,&Thm Tcd S)
>Thm Scd T).

The set of consequences of any strongest statement in B, satisfies the
strong deduction principle, the strong consistency principle, and (!) even
the conjunction principle.

THEOREM 17: STRp §= [(T) (Thm S ¢d T=Te A)> (~A}contra-
diction & (R) (A+ RoRe A)&(R) (T)((Re A&Te A)>R ¢j T e A))].

Perhaps, in these terms, it is the fact that most of our beliefs are not
strongest beliefs that has led people to feel that our beliefs belong to
systems of beliefs which satisfy the conjunction principle.

There are a number of other theorems we can prove. For example, we
can prove that if a complex statement S is like a complex statement T,
except for containing occurrences of the statement P where T contains
occurrences of the statement @, and if P and @ are connected by a bicon-
ditional chain in B, then § will be a member of B, if and only if T is a
member of B,. In a similar fashion it is possible to define the concept of
an identity chain in B. Then it is possible to prove that if S is like T except
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for containing occurrences of the term p where T contains occurrences
of the term g, and p and g are connected by an identity chain in B, then
S will be a member of B, if and only if T is 2a member of B,. Even without
complete deductive closure, there is a lot that can be shown to hold in B,.

The issue is only whether or not there is a single strongest statement in
B, - i.c., whether there is a statement S* such that (T) (T € B,oThm S*
cd 7). When stated thus baldly, the answer is obvious; it is gratuitious
to suppose that there is any such statement. Indeed the supposition that
there is is one of the secondary symptoms of the disease I have called
conjunctivitis.

University of Rochester
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1 Except in one of Keith Lehrer’s systems, described in this volume.

2 A muddier version of this argument was presented in [11]; a cleaned-up version is
mentioned by Harman in [2].

3 These principles are not essential parts of the Bayesian or Classical statistical theory.
One can develop the theory of statistical inference without considering the question
of acceptance one way or the other. The classical theory requires us to refect certain
hypotheses, but it is hardly necessary to point out (as statisticians of this persuasion
inevitably do) that to reject a statement is not (necessarily) to accept it. Bayesian
theory is sometimes coupled with a philosophy according to which one never accepts
any hypothesis.

4 The test interval for ‘p € (a, ) will include the closed interval [4, #] and the test
interval for ‘p & (f, )" will include the closed interval [f, 5].

GILBERT H. HARMAN

INDUCTION®*

A Discussion of the Relevance of the Theory of Knowledge to

the Theory of Induction (with a Digression to the Effect that

neither Deductive Logic nor the Probability Calculus has Any-
thing to Do with Inference)

In 1963 Edmund Gettier demonstrated that knowledge is not simply
justified true belief?; and what has been learned in the resulting discus-
sion2 has important implications for a theory of reasoning. This paper
describes some of those implications; more generally, it attempts to show
how theories of knowledge and reasoning must be adapted to each other
if one is to achieve a unified theory of both,

An obvious connection between one’s theory of knowledge and one's
theory of reasoning is that one can take reasoning to be warranted or
valid if it could give a person knowledge. For example, a detective comes
to know who the murderer is by reasoning from circumstantial evidence:
in such a case his reasoning can be said to be valid or warranted. Whether
a person knows something by reasoning depends {in part) on whether his
reasoning justifies his belief. In the language of inductive logic, knowledge
depends on whether reasoning justifies acceptance of one’s conclusion.
Epistemologists refer to principles that warrant belief where logicians
refer to rules of acceptance.

If we thus approach inductive logic from the theory of knowledge, we
will want it to provide a strong rule of acceptance. Roughly speaking, such
a rule tells one that, given certain evidence, one may infer, accept, or
believe nonprobabilistic conclusions which may be used as part of the
evidence in further reasoning or inference. That is oversimplified, since
sometimes one should reject something previously accepted. More precise-
ly, prior to inference one accepts a set of propositions which serve as
premises or evidence; inference leads to a modification of the set either
by the acceptance of further propositions or by the rejection of proposi-
tions previously accepted; and one can then use the revised set as a basis
for future inference.

A person can come to know something by inference only if rules of
acceptance authorize him to accept it. The following test of proposed

Swain (ed.), Induction, Acceptance, and Rational Belief. All rights reserved,



