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Abstract Inductive probability is the logical concept of probability in ordinary
language. It is vague but it can be explicated by defining a clear and precise
concept that can serve some of the same purposes. This paper presents a
general method for doing such an explication and then a particular explication
due to Carnap. Common criticisms of Carnap’s inductive logic are examined;
it is shown that most of them are spurious and the others are not fundamental.
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1 Introduction

The word “probability” in ordinary English has two senses, which I call induc-
tive probability and physical probability. I will begin by briefly reviewing the
main features of these concepts; for a more extensive discussion see [27, 28].

The arguments of inductive probability are two propositions and we speak
of the probability of proposition H given proposition E; I will abbreviate
this as ip(H|E). For example, if E is that a coin is either two-headed or two-
tailed and is about to be tossed, while H is that the coin will land heads, then
plausibly ip(H|E) = 1/2. By contrast, the arguments of physical probability
are an experiment type and an outcome type, and we speak of the probability
of an experiment of type X having an outcome of type O; I will abbreviate
this as ppX(O). For example, if X is the experiment of tossing the coin just
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mentioned and O is the outcome that the coin lands heads, then ppX(O) = 0
or 1, depending on what is on the coin.

Let an elementary sentence for any function be a sentence that says the
function has a specific value for specific arguments. I call a function logical
if all true elementary sentences for it are analytic. For example, if a function
f is defined by specifying its values for all possible arguments then the truth
value of all elementary sentences for f follows from the definition of f and
hence f is a logical function.

Clearly physical probability isn’t logical, since the value of ppX(O) in my
preceding example depends on what is on the coin. On the other hand, in that
example ip(H|E) = 1/2 regardless of what is on the coin. More generally, the
value of ip(H|E) is determined once H and E are fixed and hence inductive
probability is logical.

In my coin example the inductive probability has a numeric value but
many inductive probabilities don’t have a numeric value. For example, the
inductive probability that humans evolved in Africa, given what I know,
doesn’t have a numeric value. Furthermore, as Keynes [21, pp. 28–30] argued,
some inductive probabilities are not even comparable. These facts should not
be surprising, since inductive probability is a concept of ordinary language
and many concepts of ordinary language are vague. However, they do make
it difficult to reason rigorously about inductive probabilities, especially in
complex situations. Fortunately, there is a methodology for mitigating this
difficulty, namely, explication [4, pp. 3–8].

Explication begins with a pre-existing vague concept; this is called the
explicandum. That concept is explicated by identifying another concept, called
the explicatum, that satisfies the following desiderata to a sufficient degree:

– It is clear and precise, not vague like the explicandum.
– It is similar enough to the explicandum that it can be used in place of the

latter for some envisaged purposes.
– It permits the formulation of exceptionless generalizations; Carnap called

this fruitfulness.
– It is as simple as is compatible with satisfying the preceding desiderata.

This paper will discuss how to explicate the concept of inductive probability. I
begin with general considerations, then present a particular explication due to
Carnap, then discuss common criticisms of Carnap.

2 General Considerations

2.1 Domain of the Explicatum

The propositions H and E for which ip(H|E) is meaningful are enormously
diverse and it isn’t feasible to construct an explicatum with such a large and
diverse domain. Fortunately, this is also not necessary, since the explicatum
only needs to be usable for specific purposes. Therefore, the first step in
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explicating inductive probability is to specify a limited domain of pairs of
propositions H and E for which we will explicate ip(H|E).

I will assume that we aim to explicate all inductive probabilities of the
form ip(A|B.K), where A and B are in some algebra A of propositions
and K is a fixed proposition.1 Following common terminology, I will call K
“background evidence,” though it can be any proposition and need not be
anyone’s evidence. To take a very simple example, K could be that a coin
will be tossed twice and land heads or tails on each toss, while A could be the
smallest algebra that contains H1 and H2, where Hi is that the coin lands heads
on the ith toss.

In that example K is a simple proposition but in other cases K could be
a large body of information possessed by some person. If we are unable to
express that information in a proposition it can still be denoted “K” and
treated like a proposition [29]. At the other extreme, situations in which there
is no background evidence can be handled by taking K to be an analytic
proposition.

2.2 Form of the Explicatum

In the method I am proposing, the explicatum for inductive probability will be
a function that takes two elements of A as arguments and has real numbers
as its values; I will call this function “p” and I will denote the value of p for
arguments A and B by “p(A|B).” This function is to be defined in such a way
that p(A|B) is a good explicatum for ip(A|B.K), for all A and B in A. I don’t
include K in the second argument of p because it is fixed in any context.

The definition of p will consist of axioms that together specify the value
of p(A|B) for all A and B in A. These values must be specified in a way
that doesn’t depend on contingent facts; for example, an axiom may state that
p(A|B) equals 1/5 but not that it equals the proportion of humans with blue
eyes. By defining p in this way we ensure that it is logical and hence is, in this
respect, like inductive probability.

The axioms that define p will include axioms that ensure p obeys the
mathematical laws of probability. There are two reasons for this requirement.
First, when inductive probabilities have numeric values they satisfy these laws,
and we want p(A|B) to equal ip(A|B.K) when the latter has a numeric
value, so we need p to satisfy the laws of probability when the corresponding
inductive probabilities have numeric values. Second, a good explicatum is
fruitful and simple, so it is desirable to have p satisfy the same laws even when
the corresponding inductive probabilities lack numeric values.

1For any propositions A and B, I will denote the proposition that A is false by “∼A,” the
proposition that A and B are both true by “A.B,” and the proposition that at least one of A
and B is true by “A ∨ B.” An algebra of propositions is a nonempty set of propositions with the
property that, for every A and B that it contains, it also contains ∼A, A.B, and A ∨ B.
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In what follows it will be helpful to have some notation for logical relations.
I will use “A ⇒ B” to mean that A logically implies B, that is, ∼A ∨ B
is analytic. I will also use “A ⇔ B” to mean that A and B are logically
equivalent, that is, A ⇒ B and B ⇒ A.

The following axioms ensure that p satisfies the laws of probability; these
are asserted for all A, B, C, and D in A.2

Axiom 1 p(A|B) ≥ 0.

Axiom 2 p(A|A) = 1.

Axiom 3 p(A|B) + p(∼A|B) = 1, provided B.K is consistent.

Axiom 4 p(A.B|C) = p(A|C) p(B|A.C).

Axiom 5 If A.K ⇔ C.K and B.K ⇔ D.K then p(A|B) = p(C|D).

One consequence of these axioms is the following:3

Theorem 1 If B.K ⇒ A then p(A|B) = 1.

A corollary of this is:

Theorem 2 If K ⇒ ∼B then p(A|B) = 1.

Hence if B.K is inconsistent we have p(A|B) + p(∼A|B) = 1 + 1 = 2; that is
the reason for the proviso in Axiom 3.

Axioms 1–5 also entail the following additivity law

Theorem 3 If K ⇒ ∼(A.B) then p(A ∨ B|C) = p(A|C) + p(B|C), provided
C.K is consistent.

2.3 Alternative Formulations

The approach described in the two preceding subsections incorporates a
number of choices that could be done differently. I will now indicate the main
alternatives and my reasons for making the choices that I did.

2Similar axiomatizations of probability have been given by von Wright [31, p. 93], Carnap
[8, p. 38], and Roeper and Leblanc [30, p. 11], though my formulation differs from all of them
in some respects. Von Wright imposed the restriction to consistent evidence on Axiom 2 rather
than Axiom 3, which has the result that Theorems 1 and 2 don’t hold. Carnap took p(A|C) to be
undefined for inconsistent C. Roeper and Leblanc redundantly added Theorem 2 as an additional
axiom. And none of these authors allowed for background evidence.
3All theorems are proved in Section 6 unless I refer to a proof elsewhere.
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I took the arguments of p to be propositions, that is, the kind of thing
that is expressed by a declarative sentence and can be expressed by different
sentences in different languages. One could instead take the arguments of p to
be sentences of a formal language that can express the relevant propositions. I
decided not to use the latter method because it requires attention to linguistic
details that are a distraction from the main issues involved in explicating
inductive probability. Also, the apparently greater concreteness and rigor
involved in using sentences is mostly illusory, since we need to specify the
semantics of the formal language and this is done ultimately by stating, in
ordinary language, the propositions that are the meanings of the sentences of
the formal language.

I treated the concept of a proposition as primitive but propositions could
instead be identified with sets of possible states of affairs; the latter approach
derives from Kolmogorov [22] and is standard among mathematicians. I have
not done this because it would require me to give an exposition of set theory
and explain how propositions can be correlated with sets. Explanations are all
the more necessary because this is not a natural way of representing proposi-
tions. Freudenthal [14] makes further criticisms of the set representation.

I assumed that the ordinary language concept of propositions is sufficiently
clear for present purposes. Some philosophers don’t think so, and for them I
would propose an explication along the lines sketched by Carnap [6, pp. 209–
11]. In this explication, the explicatum is neither sentences nor sets.

My way of accommodating background evidence is new, I believe, though
it is merely an attempt to explicitly allow for a common Bayesian practice. An
alternative approach would be to include K in A and have p(A|B) defined
only for those B in A that entail K; however, that is messier and isn’t the way
Bayesian probability models are normally formulated.

Most presentations of probability theory follow Kolmogorov [22] in begin-
ning with an unconditional function p(·). Kolmogorov’s elementary axioms for
this function, stated in my notation, are:

K1. p(A) ≥ 0.
K2. If A is analytic then p(A) = 1.
K3. If A.B is inconsistent then p(A ∨ B) = p(A) + p(B).

Conditional probability is then introduced by adopting as a definition:

K4. p(A|B) = p(A.B)/p(B), provided p(B) > 0.

These axioms follow from mine, in the following sense:

Theorem 4 If p(A) is def ined to be p(A|T), where T is analytic, then K1–K4
all hold.

Since all the usually-recognized elementary laws of probability follow from
K1–K4, this theorem shows that those laws also follow from Axioms 1–5.

My main reason for not starting with unconditional probability is that K4
leaves p(A|B) undefined when p(B) = 0, although ip(A|B.K) can exist even
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when ip(B|K) = 0. For example, let X be tossing a coin, O that the coin lands
heads, and Rr the proposition that ppX(O) = r. Also let Xa be the proposition
that a is a token of type X and similarly for Oa. Then, by the principle of direct
inference [28], ip(Oa|Rr.Xa) = r, even though ip(Rr|Xa) = 0 for most, if
not all, r. See [17] for further discussion of the drawbacks of taking uncon-
ditional probability as primitive, including attempts to evade the problem by
using infinitesimals.

Even writers who take conditional probability as primitive often say it is
undefined when the second argument is inconsistent, whereas I have taken
p(A|B) to be defined for all B in A, including inconsistent B. This has
no practical significance, since our evidence is always consistent, but it has
some advantages in simplicity and uniformity. Also, if we think of conditional
probability as a generalization of logical implication then, since B ⇒ A for
inconsistent B, we should likewise have p(A|B) = 1 for inconsistent B.

3 Carnap’s Basic System

Axioms 1–5 imply that p(A|B) = 1 if B.K ⇒ A and p(A|B) = 0 if B.K ⇒
∼A and K �⇒ ∼B. However, these axioms don’t fix the value of p(A|B)

in any other case and so additional axioms must be added to complete the
definition of p. Unlike Axioms 1–5, these additional axioms must depend on
the content of K and the propositions in A. I will now present an example of
such additional axioms, due to Carnap.

Carnap called the explication of inductive probability “inductive logic” and
he worked on it from the 1940s until his death in 1970. Most discussions
of Carnap’s inductive logic only talk about his early explications published
between 1945 [3] and 1952 [5], though his later explications were much better.
Here I will present one special case from Carnap’s posthumous “Basic System
of Inductive Logic” [8, 9]. I won’t always state things exactly the way Carnap
did; in particular, I will restate Carnap’s proposals in the notation I have been
using.

3.1 Domain of the Explicatum

Carnap [8, p. 43] assumed there is a denumerable set of individuals, denoted
a1, a2, . . . ; they could be balls in an urn, outcomes of tossing a die, birds, people,
or almost anything else. It is assumed that the names “ai” are chosen in such a
way that, for i �= j, it is analytic that ai and a j are different individuals.

Carnap [8, p. 43] called a type of property a modality. Some examples of
modalities are color (red, blue, . . . ), shape (square, cubical, . . . ), substance
(iron, stone, wood, . . . ), and age in years (0, 1, 2, . . . ). The first three of these are
qualitative and the last is quantitative. Other quantitative modalities include
weight and height.

A family of properties is a set of properties that belong to one modality, are
mutually exclusive, and jointly exhaustive. A primitive property is a property
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that isn’t defined in terms of other properties in our analysis. In the explication
I am presenting, Carnap [8, p. 121] took the primitive properties to be the
elements of a finite family of properties. These primitive properties will here
be denoted F1, F2, . . . , Fk.

Goodman [16, p. 74] defined the predicate “grue” as follows: It applies to
things examined before time t iff they are green, and to things not examined
before t iff they are blue. For example, if t is the year 2000, then a green
emerald that was examined in 1960 is grue and a green emerald that was first
examined in 2001 isn’t grue. Since grue is a combination of two modalities
(color and time), and Carnap required the primitive properties to belong to
one modality, grue cannot be one of Carnap’s primitive properties.4

Philosophers are apt to object that we could regard a set of properties which
includes grue as a modality. However, this is using “modality” in a sense other
than what Carnap intended. Faced with this response, philosophers object that
Carnap didn’t define, with sufficient clarity and explicitness, what he meant
by “modality.” Carnap [8, p. 74] acknowledged that “it would certainly be
desirable to give further clarification for the concept of modality”; however,
the explanations and examples he gave suffice to enable readers of good will
to correctly identify, at least in most cases, which second-order properties are
modalities in Carnap’s intended sense. Note also that in any particular expli-
cation the primitive properties are specified by definition, without reference
to the concept of modality, so the unclarity of the concept of modality doesn’t
prevent explications of inductive probability from being clear. The concept of
modality is merely used by Carnap to give informal guidance on how to select
primitive properties in a way that will result in a satisfactory explication of
inductive probability.

An atomic proposition is a proposition that ascribes one of the primitive
properties to one of the individuals. I will use “Fia j” to denote the atomic
proposition that individual a j has primitive property Fi. A sample is a finite set
of individuals. A sample proposition is a conjunction of atomic propositions,
one for each individual in some sample. For example, F2a1.F5a2 is a sample
proposition for the sample {a1, a2}. As a matter of formal convenience, we
count the empty set as a sample and we deem an analytic proposition to be
a sample proposition for the empty set.

We now fix the domain of the explicatum by taking A to be the algebra gen-
erated by the atomic propositions and taking K to be an analytic proposition.
Note that A contains every sample proposition. Also, since K is analytic, no
background evidence is assumed.

3.2 Definition of p

We have already partially defined p by Axioms 1–5. We will now complete the
definition of p, for the domain of explication just described, by adding further

4Carnap [8, p. 74] also had another objection to grue, which I am omitting here.



600 P. Maher

axioms that were proposed by Carnap. As in Theorem 4, p(A) here means
p(A|T), where T is analytic; similarly, ip(A) will mean ip(A|T). Also, E is
here any sample proposition, i is any integer between 1 and k, and m and n are
any positive integers.

Carnap assumed that none of the Fi is infinitely precise (for example,
specifying the exact wavelength of light reflected by an object). In that case,
ip(E) > 0, for every sample proposition E. Hence Carnap [8, p. 101] adopted:

Axiom 6 (Regularity) p(E) > 0.

The individuals are supposed to be identified in a way that carries
no information about which primitive property any individual has. There-
fore, permuting the individuals will not change the inductive probability of
any sample proposition; for example, ip(F1a3.F2a5) = ip(F1a5.F2a3). Hence
Carnap [8, p. 118] adopted:

Axiom 7 (Symmetry)5 p(E) isn’t changed by permuting individuals.

A characteristic property of inductive probability is that evidence that one
individual has a property raises the probability that other individuals have
the same property. For example, evidence that one bird is white raises the
probability that another bird is white. Hence Carnap [8, p. 161] adopted:

Axiom 8 (Instantial Relevance) p(Fian|E.Fiam) > p(Fian|E) provided E does
not involve am or an.

If someone is given the outcome of past tosses of a die and asked to state the
probability that the die will come up six on the next toss, usually the person will
take account of the number of past tosses and the number of these that have
come up six, ignoring the specific results of the tosses that didn’t come up six.
This suggests that it would be appropriate to adopt:

Axiom 9 (λ-condition) If a is any individual not involved in E then p(Fia|E)

depends only on the number of individuals mentioned in E and the number
that E says have Fi.

But if, for example, F1 is more similar to F2 than to F3, then reasoning
by analogy suggests ip(F1a1|F2a2) > ip(F1a1|F3a2), whereas Axiom 9 implies
p(F1a1|F2a2) = p(F1a1|F3a2). Carnap [9, p. 84] was aware of this but con-
sidered the λ-condition to be appropriate when such differential similarity
relations are insigificant.

5Following de Finetti [11], this is also called exchangeability.
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Carnap [9, Section 19] proved that Axioms 1–9 imply:

Theorem 5 (λγ Theorem) If k > 2 then there exist λ > 0 and γ1, . . . , γk ∈ (0, 1)

such that the following holds: if E is a sample proposition for a sample of s
individuals, si is the number of individuals to which E ascribes Fi, and a is any
individual not involved in E, then

p(Fia|E) = si + λγi

s + λ
.

For example, if γ1 = 1/4 and λ = 2 then

p(F1a4|F1a1.F2a2.F3a3) = 1 + 2/4

3 + 2
= 3

10
.

Extension of Theorem 5 to the case where k = 2 requires a further assumption
[9, p. 98].

To get numeric values from Theorem 5 we must fix the values of λ and the
γi. I’ll now discuss how to to do that, starting with the γi.

By setting s = 0 in Theorem 5, we see that γi = p(Fia); thus γi needs to
be a good explicatum for the a priori inductive probability that something
has Fi. Let the attribute space for the Fi be the logical space whose points
are the most specific properties of the relevant modality. Carnap [8, pp. 43–
45] noted that each Fi corresponds to a region of the attribute space and he
proposed [9, pp. 33–34] that γi be set equal to the proportion of the attribute
space that corresponds to Fi.

For example, suppose the Fi are colors; then the attribute space could be
taken to be the unit cube whose axes represent the degree of saturation (from
0 to 1) of red, green, and blue. If F1 is the color red, it occupies a region around
the point (1,0,0); if that region occupies 1/20 of the volume of the cube then we
would set γ1 = 1/20 (assuming that the object is monochromatic).

Of course, attribute spaces can be represented in different ways; for exam-
ple, Carnap [9, p. 8] described a representation of the space of colors different
to the unit cube that I just mentioned. These different representations will, in
general, lead to different values for the γi, but any natural representation is
likely to give values for the γi that are sufficiently in accord with the vague
a priori inductive probability that an individual has Fi. If that isn’t so then we
need to choose a representation that does give such values.

I now turn to λ. The formula in Theorem 5 can be rewritten as:

p(Fia|E) =
(

s
s + λ

)
si

s
+

(
λ

s + λ

)
γi.

This shows that p(Fia|E) is a weighted average of two factors, si/s and γi.
The factor si/s is the relative frequency of Fi in the sample and hence is
empirical, whereas γi is our explicatum for the a priori probability of Fia, which
is logical. The larger λ is, the more weight is put on the logical factor and the
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slower someone using p will learn from experience. In the limit as λ → ∞,
p(Fia|E) → γi and there is no learning from experience; at the other extreme,
as λ → 0, p(Fia|E) → si/s. Carnap [9, pp. 107–119] considered the effect of
different values of λ in a variety of examples and concluded that, in order for
p to agree with inductive probability (to put it in my terms), λ should not be
much less than 1 or much greater than 2. Since integer values are simplest, he
further concluded that λ should be set equal to either 1 or 2. I think this is
correct as far as it goes but we can go further, as follows.

A theorem of de Finetti shows that we can think of the individuals ai as
tokens of some experiment type X which has an unknown physical probability
of giving an outcome of type Fi.6 If γi = 1/2 then the expected value of ppX(Fi)

must be 1/2 and it is then natural to explicate the a priori inductive probability
distribution for ppX(Fi) as uniform from 0 to 1. These assumptions imply:

Theorem 6 (Rule of Succession) If E says that in a sample of s individuals all
have Fi, then

p(Fia|E) = s + 1

s + 2
.

But by Theorem 5 and the assumption that γi = 1/2, we also have:

p(Fia|E) = s + λ/2

s + λ
.

These two identities imply that λ = 2.
Having thus fixed the values of λ and the γi, we have fixed the value of

p(A|B) for all A and B in A, and hence the explication is complete.

4 Spurious Criticisms of Carnap

There are many criticisms of Carnap’s inductive logic that are frequently
repeated by philosophers; Hájek [18, Section 3.2] gives a useful compendium
of them. Most of these criticisms are spurious, at least with respect to Carnap’s
Basic System, so in this section I will point out the errors in the spurious
criticisms presented by Hájek.

4.1 Arbitrariness

Hájek writes:

Is there a correct setting of λ, or said another way, how “inductive” should
the confirmation function be? The concern here is that any particular

6The theorem is called de Finetti’s representation theorem; Jeffrey [19, pp. 217–221] gives an
exposition of it.
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setting of λ is arbitrary in a way that compromises Carnap’s claim to be
offering a logical notion of probability.

But the choice of λ isn’t arbitrary; it is designed to ensure that p is a good
explicatum for inductive probability and I have argued that setting λ = 2 is best
for this purpose. Furthermore, even if the choice of λ were arbitrary, p would
still be logical in the sense that Carnap [4, p. 30] claimed, because its values are
specified by its definition in a way that doesn’t depend on contingent facts.7

A little later Hájek expands on the objection this way:

The whole point of the theory of logical probability is to explicate am-
pliative inference, although given the apparent arbitrariness in the choice
of language and in the setting of λ—thus, in the choice of confirmation
function—one may wonder how well it achieves this.

Here Hájek suggests that, in addition to the alleged arbitrariness in the choice
of λ, there is also “arbitrariness in the choice of language.” My presentation has
used propositions rather than sentences of a language but, abstracting from this
detail, the objection is that the choice of the domain of p is arbitrary. However,
if A is chosen to contain the propositions whose inductive probabilities we
want to explicate, as I proposed in Section 2.1, then the choice isn’t arbitrary.
Furthermore, even if the choice were arbitrary, that wouldn’t prevent p being
a good explicatum within its domain.

Hájek believes that in Carnap’s inductive logic, the value of p(H|E), for
fixed H and E, changes when new predicates are added to the language.8 Since
the new predicates do not appear in H or E, our decision to include or exclude
them from the language is irrelevant to ip(H|E). Thus I think the objection
Hájek intended to make is not what he said (that the choice of language is
arbitrary) but rather that the value of p(H|E) depends on irrelevant features
of the language (or of the algebra A). The answer to this objection is that there
is no such dependence in Carnap’s Basic System. In the special case that I
presented, the primitive properties were required to belong to one family, so
new ones can only be added by replacing existing ones. For example, we might
subdivide an existing property into several more specific properties. Doing that
will not change λ or the γi for the Fi that have not been replaced, hence it will
not change p(H|E) for any H and E that don’t involve the new properties.
We can also enrich A by allowing more than one family of properties; I haven’t

7All of the four philosophers who have written comments on this paper have objected that Hájek
doesn’t mean what Carnap means by “logical.” So I need to remind readers that Hájek criticized
“Carnap’s claim” and that what claim a person made is determined by the meanings that person
was using. I may add that, while Carnap explained what he meant by “logical,” I have seen no
account of what Hájek means by this term.
8Hájek states later that “by Carnap’s lights, the degree of confirmation of a hypothesis depends
on the language in which the hypothesis is stated” and he gives as examples “the addition of new
predicates and the deletion of old ones.”
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discussed how to do that but Carnap did and the proposals he made ensure that
the value of p(H|E), for given H and E, isn’t altered by adding new families
of properties [8, p. 46].

4.2 Axioms of Symmetry

Hájek writes:

Significantly, Carnap’s various axioms of symmetry are hardly logical
truths.

In the explication I have described there is just one “axiom of symmetry,”
namely Axiom 7. That axiom, like all the other axioms, is part of the definition
of p, hence analytic, and in that sense a logical truth. Furthermore, if there
were additional symmetry axioms, they would also be part of the definition of
p and hence also logical truths.

Hájek continues:

Moreover, Fine [13, p. 202] argues that we cannot impose further symme-
try constraints that are seemingly just as plausible as Carnap’s, on pain of
inconsistency.

There are two things wrong with this. First:

Theorem 7 There are uncountably many probability functions that satisfy all
the constraints that Fine [13, p. 193] claimed are not jointly satisf iable.

Second, one of Fine’s constraints (his L6) is not something that an explicatum
for inductive probability should satisfy. It implies that all γi have the same
value, which is not desirable in general. It also implies that, when there
are multiple families of properties, the explicatum is insensitive to analogies
between individuals that the evidence says differ in any respect, which is never
desirable.9

4.3 Syntactic Approach

Hájek writes:

Another Goodmanian lesson is that inductive logic must be sensitive to
the meanings of predicates, strongly suggesting that a purely syntactic
approach such as Carnap’s is doomed.

This criticism assumes that Carnap’s inductive logic uses “a purely syntactic
approach,” that is, it assigns p values to pairs of expressions based on the form

9The problem here is essentially the one discussed in Maher [25, Section 3].
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of the expression, without regard to what the expression means. However, Car-
nap’s Basic System assigns p values to pairs of propositions, not expressions;
hence it isn’t a “syntactic approach.”

Hájek’s criticism seems to be that, because of its allegedly syntactic ap-
proach, Carnap’s inductive logic is unable to distinguish between predicates
like Goodman’s “grue” and normal predicates like “green” and “blue.” Stated
non-linguistically, the objection would be that Carnap has no way of distin-
guishing properties like grue from normal properties like green and blue. But
Carnap did distinguish between these properties, as we saw in Section 3.1.

4.4 No Canonical Language

Hájek writes:

Finding a canonical language seems to many to be a pipe dream, at least
if we want to analyze the “logical probability” of any argument of real
interest—either in science, or in everyday life.

This objection appears to assume that Carnap’s inductive logic requires a
“canonical language,” though Hájek does not explain what this is or why he
thinks Carnap is committed to it. In fact, one of Carnap’s central philosophical
principles was that there is no uniquely correct or right language.

Everyone is at liberty to build up his own logic, i.e. his own form of
language, as he wishes. [2, p. 52]

Let us grant to those who work in any special field of investigation the
freedom to use any form of expression which seems useful to them.
[6, p. 221]

I’ve been told that Hájek’s point here is that, since Carnap allows green
but not grue to be a primitive property, his explication is “language-relative,”
whereas a good explication shouldn’t be language-relative. But in the explica-
tion I presented, p is a function of two propositions and there is no reference
to any language, so there is no legitimate sense in which p is language-relative.
It is true is that p(A|B) depends on what the propositions A and B are; for
example, if A says that an individual is green and A′ says it is grue then
p(A|B) may differ from p(A′|B), but in this respect p agrees with inductive
probability, so this isn’t a defect of p.10

I’ve also been told that Hájek’s point here is that the explicata actually
developed by Carnap have very simple domains that aren’t applicable to
arguments of real interest to science. This is a legitimate criticism and I will

10In Carnap [8], the explicatum is likewise a function of propositions. It is true that Carnap
there represents the propositions as models of a language, but this is merely a way of specifying
propositions and doesn’t make the explicatum relative to the language.
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discuss it in Section 5. It is not, however, what the preceding quotation from
Hájek says.

4.5 Total Evidence Isn’t Well Defined

Hájek writes:

If one’s credences are to be based on logical probabilities, they must be
relativized to an evidence statement, e. But which is it to be? Carnap’s
recommendation is that e should be one’s total evidence. . . However,
when we go beyond toy examples, it is not clear that this is well-defined.
Suppose I have just watched a coin toss, and thus learned that the coin
landed heads. Perhaps “the coin landed heads” is my total evidence? But
I also learned a host of other things: as it might be, that the coin landed at
a certain time, bouncing in a certain way, making a certain noise as it did
so . . . Call this long conjunction of facts X. I also learned a potentially
infinite set of de se propositions: “I learned that X,” “I learned that I
learned that X” and so on. Perhaps, then, my total evidence is the infinite
intersection of all these propositions, although this is still not obvious—
and it is not something that can be represented by a sentence in one of
Carnap’s languages, which is finite in length.

It is true that the concept of a person’s total evidence is vague, but most
concepts of ordinary language are vague and that doesn’t prevent them being
useful. So I will take the objection to be that a person’s total evidence is too
vague or complex to be represented in Carnap’s inductive logic.

One answer to this objection is that a person’s total evidence in a given
context may be explicated by a relatively precise proposition. Such an explica-
tion is satisfactory if it captures sufficiently well the part of the person’s total
evidence that is relevant to the hypotheses under consideration in that context.
Hájek’s sequence of de se propositions would normally be irrelevant and could
be omitted. A second answer was mentioned in Section 2.1: we can simply
denote a person’s total evidence as “K,” without attempting to articulate all
that it contains, and explicate inductive probabilities conditional on K.

4.6 Foundationalism

Hájek continues:

The total evidence criterion goes hand in hand with positivism and a foun-
dationalist epistemology according to which there are such determinate,
ultimate deliverances of experience. But perhaps learning does not come
in the form of such “bedrock” propositions, as Jeffrey [20] has argued—
maybe it rather involves a shift in one’s subjective probabilities across a
partition, without any cell of the partition becoming certain.

Carnap ([1, p. 425], [7, p. 57]) denied that there are “bedrock” propositions.
On the other hand, the inductive probability of any proposition given itself is 1,
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so if I use inductive probabilities given my evidence to guide my actions, I will
act as if I am certain that my evidence is true. Carnap never explained how to
reconcile these things.

The apparent contradiction can be resolved by recognizing that what we
count as evidence isn’t completely certain but only sufficiently certain that
it can be treated as certain in the context at hand. Thus what counts as my
evidence can change when the context changes. So if K is my total evidence in
a particular context, then the principle of total evidence implies that I should
treat K as certain in that context but it doesn’t imply that K is a “bedrock”
proposition; on the contrary, there may be other contexts in which I need to
consider the possibility that K is false, and K won’t be evidence for me in those
contexts. See Maher [24, pp. 158–162] for further discussion of this account of
evidence.

Before moving on it may be worth noting that the requirement of total
evidence has been, and continues to be, widely endorsed. Carnap [4, p. 212]
cited endorsements by Jacob Bernoulli, Peirce, and Keynes; more recent
endorsements include the following:

Your assignment of 1/2 to the coin landing heads superficially seems
unconditional; but really it is conditional on tacit assumptions about
the coin, the toss, the immediate environment, and so on. In fact, it is
conditional on your total evidence. [17, p. 315]

The point of view I maintain is based on the thesis that it is senseless to
speak of the probability of an event unless we do so in relation to the body
of knowledge possessed by a given person. [12, p. 3]

So if there were a problem with the requirement of total evidence, it would not
be a problem peculiar to Carnap.

4.7 Circularity

Hájek writes:

By Carnap’s lights, the degree of confirmation of a hypothesis depends
on the language in which the hypothesis is stated and over which the
confirmation function is defined. But scientific progress often brings
with it a change in scientific language (for example, the addition of new
predicates and the deletion of old ones), and such a change will bring with
it a change in the corresponding c-values. Thus, the growth of science may
overthrow any particular confirmation theory. There is something of the
snake eating its own tail here, since logical probability was supposed to
explicate the confirmation of scientific theories.

As I pointed out in Section 4.1, Carnap’s Basic System isn’t language
sensitive in the way Hájek here supposes, that is, with respect to addition
or deletion of predicates. However, referees tell me that Hájek’s objection
can be reformulated with reference to modalities. In this revised version,
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the objection starts from the premise that the growth of science may change
what the modalities are, and infers that Carnap’s inductive logic has some
undesirable kind of circularity. I will now discuss this revised version of the
objection.

Suppose we have defined an explicatum p for inductive probability in the
way Carnap recommends. Thus, the primitive properties are the members of a
set of families of properties, with the properties in each family belonging to one
modality. Now suppose that the growth of science somehow makes some for-
mer non-modalities count as modalities; this doesn’t require p to be changed
in any way, since the definition of p still satisfies Carnap’s requirements. Thus,
in order for the growth of science to force a change in p, it must cause some
former modalities to become non-modalities.

Humans have learned a vast amount about color over the past four cen-
turies but those discoveries haven’t prevented color from continuing to be
a modality. Similarly with the modalities of substance and weight. Is there
then any example of the growth of science causing a modality to cease to be
one? Perhaps someone will claim that the quantity of phlogiston in a body
was once a modality and no longer is. But if “quantity of phlogiston” refers
to the amount of the hypothetical substance phlogiston in a body, then what
modern science tells us is that all bodies are alike in having none of it; this
doesn’t prevent quantity of phlogiston from being a modality, it just makes it a
modality that is useless for most scientific purposes.

I haven’t been able to think of any example of the growth of science causing
a modality to cease to be one. But with no examples, it is hard to think clearly
about what the consequences of such a development would be for Carnap’s
inductive logic. So then, let the critics give us an example of the growth of
science causing a modality to become a non-modality; when they have done
so, then it will make sense to consider the consequences of such a development
for Carnap’s inductive logic.

5 Legitimate Criticisms of Carnap

Although most of the common criticisms of Carnap’s inductive logic are
spurious, there are some legitimate criticisms of it. I will discuss them in this
section.

The explication that I presented in Section 3 has the property that, for any
sample proposition E, p(Fia1 . . . Fian|E) → 0 as n → ∞. So, if we were to add
to A a proposition Ai that all individuals have Fi, we would have p(Ai|E) =
0, for every sample proposition E. This is true of all Carnap’s explications
of inductive probability and many authors (including Hájek) regard it as
unsatisfactory. However, there are a variety of ways of modifying Carnap’s
explications to avoid this result [32] and Carnap himself [9, p. 143] had this
issue on his agenda, so this defect (if it is one) is correctable, not fundamental.

Another legitimate criticism is that the explicata developed by Carnap have
very simple domains and, as a result, aren’t applicable to most situations of
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real interest. For example, Carnap never developed explications for domains
involving relations or continuous magnitudes, or for situations with rich back-
ground evidence, though these are all common in science and everyday life.
While this is true, it is merely a fact about the explications that Carnap actually
developed; it doesn’t show that the methodology of explicating inductive
probability is similarly limited. On the contrary, Bayesian statisticians have
developed probability models, which I would interpret as explications of
inductive probability, for a wide variety of realistic domains; there are many
examples in Gelman et al. [15], Congdon [10], and elsewhere. Furthermore,
an explication of inductive probability for an artificially simple domain isn’t
necessarily useless, since it may help to clarify fundamental questions about
the properties of confirmation and resolve philosophical paradoxes, as I have
shown elsewhere.11

I conclude that explication of inductive probability is a valuable methodol-
ogy for reasoning about inductive probability and that the particular explica-
tion of Carnap’s that I have presented is a creditable simple example of such
an explication. Contrary to what most philosophers today believe, Carnap’s
inductive logic isn’t fundamentally misconceived.

6 Proofs

6.1 Proof of Theorem 1

p(A|B) = p(A|B)p(B|B) by Axiom 2
= p(A|B)p(B|A.B) by Axiom 5 and B.K ⇒ A
= p(A.B|B) by Axiom 4
= p(B|B) by Axiom 5 and B.K ⇒ A
= 1 by Axiom 2.

�


6.2 Proof of Theorem 2

If K ⇒ ∼B then B.K is inconsistent, so trivially B.K ⇒ A, and hence
p(A|B) = 1 by Theorem 1. �


6.3 Lemmas Used in the Proof of Theorem 3

Lemma 1 If C.K ⇒ A then p(∼A|C) = 0, provided C.K is consistent.

11See Maher [26]. Today I would replace the term “justified degree of belief” used in that paper
with “inductive probability”.
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Proof

p(∼A|C) = 1 − p(A|C) by Axiom 3
= 1 − 1 by Theorem 1 and C.K ⇒ A
= 0.

�


Lemma 2 p(A|C) = p(A.B|C) + p(A.∼B|C), provided C.K is consistent.

Proof If A.C.K is consistent then

p(A|C) = p(A|C)[p(B|A.C) + p(∼B|A.C)] by Axiom 3
= p(A.B|C) + p(A.∼B|C) by Axiom 4.

If A.C.K is inconsistent then C.K ⇒ ∼A so, by Lemma 1, all quantities in
Lemma 2 are zero. �


6.4 Proof of Theorem 3

p(A ∨ B|C) = p[(A ∨ B).A|C] + p[(A ∨ B).∼A|C] by Lemma 2
= p(A|C) + p(B.∼A|C) by Axiom 5
= p(A|C) + p(B|C) by Axiom 5 and K ⇒ ∼(A.B).

�


6.5 Proof of Theorem 4

K1 follows from Axiom 1, K2 from Axiom 2, K3 from Theorem 3, and K4 from
Axiom 4. �


6.6 Proof of Theorem 6

Let E be Oa1 . . . Oan, let K be Xa1 . . . Xan+1, and let Rr be the proposition
that ppX(O) = r. Then we have:

ip(E|Rr.K) = ip(Oa1 . . . Oan|Rr.K)

= ip(Oa1|Rr.K).ip(Oa2|Rr.K.Oa1) . . . ip(Oan|Rr.K.Oa1 . . . Oan−1)

= rn, by Maher [28, Theorem 4 and Definition 1]. (1)

For any proposition A, let

ip′(Rr|A) = lim
δ→0+

ip(r ≤ ppX(O) ≤ r + δ|A)

δ
.

The assumption that the a priori inductive probability distribution of ppX(O)

is uniform on [0, 1] implies:

ip′(Rr|K) = 1 for all r ∈ [0, 1). (2)
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Applying a generalized form of Bayes’s theorem12 we have, for all r ∈ [0, 1):

ip′(Rr|E.K) = ip(E|Rr.K) ip′(Rr|K)∫ 1
0 ip(E|Rs.K) ip′(Rs|K) ds

= ip(E|Rr.K)∫ 1
0 ip(E|Rs.K) ds

, by (2)

= rn∫ 1
0 sn ds

, by (1)

= (n + 1)rn. (3)

Applying a generalized form of the law of total probability, we now have:

ip(Oan+1|E.K) =
∫ 1

0
ip(Oan+1|E.Rr.K) ip′(Rr|E.K) dr

=
∫ 1

0
ip(Oan+1|E.Rr.K)(n + 1)rn dr, by (3)

=
∫ 1

0
(n + 1)rn+1 dr,

by Maher [28, Theorem 4 and Definition 1]

= n + 1

n + 2
.

�

6.7 Proof of Theorem 7

Lemma 5 of Fine [13, p. 193] asserts that five constraints, called L1, L2,
L3, L6, and L7 by Fine, are not jointly satisfiable. I will show that, on the
contrary, there are uncountably many functions that satisfy those constraints.
To facilitate comparison with Fine’s text, I will mostly use Fine’s notation in
this proof.

Let a family of properties be a finite set of properties that are pairwise
exclusive and jointly exhaustive.13 Let P1, . . . , Pn be logically independent
families of properties with Pi = {Pi

1, . . . , Pi
ki
}. Let P1...n

l1...ln
be the property of

having all of P1
l1
, . . . , Pn

ln
and let

P1...n = {P1...n
l1...ln

: 1 ≤ l j ≤ k j, j = 1, . . . , n}.
Thus P1...n is a family of properties formed by combining P1, . . . , Pn.

12The generalization consists in replacing summation with integration. Derivations of this gen-
eralized version can be found in many textbooks of probability and statistics. Similarly for the
generalized law of total probability used below.
13This is a looser definition than the one in Section 2.1, since it doesn’t require the properties to
belong to one modality. It agrees with Fine’s definition but not with that of Carnap [8, p. 43] and
will only be used in the present proof.
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Let a finite set of individuals be given and, for any property φ, let φa be
the proposition that individual a has φ. A proposition of the form Pi

la will
be called an atomic proposition. Let a sample proposition with respect of
family of properties P be a proposition that ascribes a property from P to
each member of some sample. Logically true propositions will be regarded as
sample propositions with respect to any family of properties, the sample in this
case being the empty set.

Let A be the algebra of propositions generated by the atomic propositions
and let C(H|E) be defined for all H ∈ A and consistent E ∈ A by the following
axioms. Here H and H′ are any propositions in A, E and E′ are any consistent
propositions in A, and λ is any positive real constant.

A1. If E is a sample proposition with respect to P1...n for a sample of s
individuals, s1...n

l1...ln
is the number of individuals to which E ascribes P1...n

l1...ln
,

and a is any individual not involved in E, then

C(P1...n
l1...ln

a|E) = s1...n
l1...ln

+ λ/k1 . . . kn

s + λ
.

A2. If H ⇔ H′ and E ⇔ E′ then C(H|E) = C(H′|E′).
A3. If E ⇒ ∼(H.H′) then C(H ∨ H′|E) = C(H|E) + C(H′|E).
A4. C(H.E′|E) = C(H|E.E′) C(E′|E).

Let a state be a proposition of the form φ1a1 . . . φνaν , where each φi is a
property in P1...n and a1, . . . , aν are all the individuals. Letting C(H) be an
abbreviation for C(H|T), where T is any logically true proposition, repeated
application of A4 gives:

C(φ1a1 . . . φνaν) = C(φ1a1)C(φ2a2|φ1a1) . . . C(φνaν |φ1a1 . . . φν−1aν−1).

The value of each term on the right hand side is given by A1, hence the axioms
fix the value of C(S) for every state S. Every consistent H ∈ A is equivalent to
a disjunction of states so, letting “S” be a variable ranging over states, we have
by A2 and A3:

C(H) =
∑
S⇒H

C(S), for all consistent H ∈ A. (4)

If H is inconsistent then

C(H) = C(H ∨ ∼H) − C(∼H), by A3

= C(∼H) − C(∼H), by A2

= 0.

Combining this with (4), we have:

C(H) =
∑
S⇒H

C(S), for all H ∈ A. (5)
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By A1, C(S) > 0 for all states S and hence C(E) > 0 for all consistent E ∈ A.
Therefore, by A4, we have

C(H|E) = C(H.E)/C(E), for all consistent E ∈ A. (6)

Since the values of C(H.E) and C(E) are given by (5), this shows that A1–A4
fix the value of C(H|E) for all H ∈ A and consistent E ∈ A. I will now show
that C satisfies the constraints that Fine claimed could not be jointly satisfied.

L1 Theorem 2 of Fine [13, p. 189] states that L1 is equivalent to a conjunction
of five conditions. Three of these are identical to A2, A3, and A4; the other two
are the following (asserted for H, H′ ∈ A and consistent E, E′, E′′ ∈ A):

(i) 0 ≤ C(H|E) < ∞.
(ii) If E ⇒ H and E′ �⇒ H′ then C(H|E) > C(H′|E′).

I will now show that both these conditions are satisfied.
Proof of (i):

C(H|E) = C(H.E)

C(E)
, by (6)

=
∑

S⇒H.E C(S)∑
S⇒E C(S)

, by (5).

There are at least as many terms in the denominator as in the numerator and,
by A1, each term is positive. Hence 0 ≤ C(H|E) ≤ 1, which entails (i).

Proof of (ii): Assume E ⇒ H and E′ �⇒ H′. Then:

C(H|E) = C(H.E)

C(E)
, by (6)

= C(E)

C(E)
, by A2 and E ⇒ H

= 1.

C(H′|E′) = C(H′.E′)
C(E′)

, by (6)

=
∑

S⇒H′.E′ C(S)∑
S⇒E′ C(S)

, by (5).

Since E′ �⇒ H′, the terms in the numerator are a proper subset of those in
the denominator and so, since all terms are positive, C(H′|E′) < 1. Hence
C(H|E) > C(H′|E′).

L2 L2 says C(H|E) is invariant under any permutation of the individuals. It
is satisfied because A1–A4 treat all individuals alike.
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L3 L3 says that C(H|E) is invariant under augmentation of the set of indi-
viduals.14 This is satisfied because none of A1–A4 refers to the total number
of individuals.

L6 L6 says that C(H|E) is invariant under any permutation of properties in
P1...n. We have seen that

C(H|E) =
∑

S⇒H.E C(S)∑
S⇒E C(S)

.

Permuting the properties in P1...n will not change the number of states S that
entail H.E or E and, by A1 and A4, it will not change the value of C(S) for
any S. Therefore, C(H|E) will not change and L6 is satisfied.

L7 L7 says that C(H|E) is invariant under augmentation of the set of families
of properties. So let Pn+1 = {Pn+1

1 , . . . , Pn+1
kn+1

} be a family of properties that is
logically independent of P1...n. Let A′ be the algebra generated by propositions
of the form Pi

li
a, where 1 ≤ i ≤ n + 1 and 1 ≤ li ≤ ki. Let C′(H|E) be defined

for all H ∈ A′ and consistent E ∈ A′ by the following axioms.

A1′. If E is a sample proposition with respect to P1...n+1 for a sample of
s individuals, s1...n+1

l1...ln+1
is the number of individuals to which E ascribes

P1...n+1
l1...ln+1

, and a is any individual not involved in E, then

C′(P1...n+1
l1...ln+1

a|E) = s1...n+1
l1...ln+1

+ λ/k1 . . . kn+1

s + λ
.

A2′. If H ⇔ H′ and E ⇔ E′ then C′(H|E) = C′(H′|E′).
A3′. If E ⇒ ∼(H.H′) then C′(H ∨ H′|E) = C′(H|E) + C′(H′|E).
A4′. C′(H.E′|E) = C′(H|E.E′) C′(E′|E).

These axioms fix the value of C′(H|E) for all H ∈ A′ and consistent E ∈ A′; the
proof is exactly analogous to the proof that A1–A4 fix the value of C(H|E)

for all H ∈ A and consistent E ∈ A. I will now show that C′ agrees with C
on A.

Let E be a sample proposition with respect to P1...n for a sample of s
individuals and let E′ be any sample proposition with respect to P1...n+1 that

14I omit Fine’s qualification that H and E not contain universal or existential quantifiers because
A contains only truth-functional combinations of atomic propositions.
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involves the same individuals as E and is such that E′ ⇒ E. Then for any
individual a not involved in E:

C′(P1...n
l1...ln

a|E) =
∑

E′
C′(P1...n

l1...ln
a|E′)C′(E′|E), by A2′–A4′

=
∑

E′

∑
ln+1

C′(P1...n+1
l1...ln+1

a|E′)C′(E′|E), by A2′ and A3′

=
∑

E′

∑
ln+1

s1...n+1
l1...ln+1

+ λ/k1 . . . kn+1

s + λ
C′(E′|E), by A1′

= s1...n
l1...ln

+ λ/k1 . . . kn

s + λ

∑
E′

C′(E′|E)

= s1...n
l1...ln

+ λ/k1 . . . kn

s + λ
, by A2′–A4′.

Hence C′ satisfies the proposition that results from substituting “C′” for “C”
in A1. The same is obviously true for A2–A4. Hence C′(H|E) = C(H|E) for
all H ∈ A and consistent E ∈ A, so L7 is satisfied.

This completes the proof that C satisfies all the constraints in Fine’s
Lemma 5. Since λ can be any positive real number, and each choice of λ gives
a different C, it follows that there are uncountably many functions that satisfy
Fine’s constraints.
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