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A PURELY SYNTACTICAL DEFINITION OF CONFIRMATION 1

CARL G. HEMPEL

1. Objective of the paper. The concept of confirmAtion occupies a centra]
position in the methodology of empirical scienc'e. For it is the distinctive
characteristic of an empirical hypothesis to be am.enable, at least in principle,
to a test based on suitable observations or experiments; the empirical data
obtained in a test-or, as we shall prefer to S2:1y, the observation sentences
describing those data-may then either confirm or disconfirm the given hypo­
thesis, or they may be neutral with respect to it. To say that certain observa­
tion sentences confirm or disconfirm a hypothesis, does not, of course, generally
mean that those observation sentences suffice strictly to prove or to refute the
hypothesis in question, but rather that they constitute. favorable, or unfavorable,
e.vidence for it; a.nd the term "neutral" is to indicate that the observation
sentences are either entirely irrelevant to the hypothesis 1 or at least insufficie.nt
to strengthen or weaken it.

Ao~ precise definition of the concepts of confirmation, disconfirmation, a,nd
neutrality ,vhich have just been loosely characterized appears to be indispen.sa,ble
for an adequate treatment of several fundamental problems in the logic and
nlethodology of emi)irical science; these problems include the elucidation of the
logical structure of scientific tests, explanations, and predictions, the logical
analysis of the so-called inductive method, and a rigorous statement and develop­
ment of the operationalist and empiricist conceptions of meaning and knowledge.2

However, no general definition of the concept of confirlnation and of its cor­
relates seems to have been developed so far; and the few rudimentary definitions
in1plicit in recent methodological writings prove unsatisfactory in various
respects (cf. section 3, end).

It is the objective of this study to develop a general definition" of confirmation
in purely logical tern1S. Confirmation ,viII be construed as a certain logical
relationship which may be considered as an ideal model or a "rational reconstruc­
tion" of the concept of confirmation as it is used in the methodology of empirical
acience. Apart from its relevance for the theory of science, the definition off
confirmation here to be developed appears to be of interest also from the view­
point of formal logic ; for it is of a purely syntactical character,3 and it establishes
a relation analogous in various ways to the relation of consequence in its syn­
tactical interpretation. In fact, confirmation will prove to be, in a certain

Received September 2, 1943.
1 A modified and expanded version of a paper of the same title of which an abstract

appeared in this JOURNAL, vol. 8 (1943), p. 39. The earlier version was scheduled to be
read at the meeting of the Association for Symbolic Logic that was to have taken place at
Yale University in December 1942.

2 A detailed discussion of the various methodological aspects of the problem of confirma­
tion will be given in a separate paper, to be published elsewhere, by the present author and
Dr. Paul Oppenheim. It is the study, with Mr. Oppenheim, of these broader issues which
suggested the problem of defining confirmation in logical terms.

3 Cf. R. Carnap, The logical syntax of language, 1937, §1.
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sense, a generalization of the converse of the syntactical consequence relation
(cf. 3.3 below). The development of a logical theory of confirmation might
therefore be regarded as a contribution to a field of study sometimes called
inductive logic; a field in which research so far has almost exclusively been con­
cerned with probabilities (in the sense of the "logical" theories4

) or degrees of
confirmationS rather than with the more elementary non-quantitative relation
of confirmation which forms the object of this essay.

2. The modellanguage L. Notational conventions. The present study is
restricted to the case where the language of science has a comparatively simple
logical structure which will now be characterized; it is essentially that of the
lo\ver functional calculus without identity sign. While many different languages
satisfy the following stipulations, it will be convenient to formulate the latter as
referring to "the" language L.

Throughout this paper, quotation marks to be used for forming designations
of expressions will be omitted when the expressions are listed in a separate line.

2.1 The following kinds of signs are permitted in L:
2.11 F our statement connectives:

"-I V • :::>

2.12 Individual constants: As such \ve use the small letters 'a', 'b', 'c, cd', 'e'
with and \vithout positive integer subscripts. It will prove convenient, for
further reference, to lay down a certain order for these constants, to be called
their alphabetical order, namely:

a, al , a2 , ... , b, bl , b2 , .. · , C, CI , C2 , • • • , d, dl , d2 , · . · , e, el , e2 , · · · .

2.13 Individual variables:

X, Xl , X2 , ... , y, YI , Y2, ... , Z, Zl , Z2, ....

2.14 Predicate constants of any finite degree; especially:
a) of degree 1,

P, PI , P2 , ... , Q, QI , Q2 , ...

b) of degree 2,

R, R I , R2 , ••••

Also, additional predicate symbols-mostly abbreviations of English words­
,viII be used when necessary; exalnple: 'Sw' for 'Swan.'

2.15 Universal and existential quantifier signs, as in:

(x)(Ey)R(x, y).

2.16 Auxiliary signs: parentheses, comma.
2.2 The sentences of L or L-sentences are formed out of the above kinds of

4 Such as those of J. M. Keynes, J. Nicod, H. Jeffreys, B. O. !(oopman, St. Mazurkie­
wicz, and others.

{) Cf. particularly Janina Hosiasson-Lindenbaum, On confirmation, this JOURNAL, vol. 5
(1940), pp. 133-148.
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signs according to the rules of the lower functional calculus. To indicate group­
ing, parentheses rather than dots are used. Universality is always expressed
by means of a universal quantifier, never by the use of free variables. A class
of L-sentences is also called a sentential class.

2.3 The rules oj inference for L are those of the lower predicate calculus
without identity sign. As neither sentential variables nor predicate variables
are provided for in L, we have to assume that primitive sentential schemata
rather than primitive sentences have been laid down, each schema characterizing
a certain class of L-sentences as primitive sentences. Furthermore, a set of
rules of inference is assumed to be given. The particular way in which the
primitive sentential schemata and the rules of inference are chosen is not of
importance for the subsequent discussion; we therefore refrain from giving an
explicit statement of these stipulations. 6

2.31 L will be assumed to contain no defined individual or predicate signs;
all the terms listed in 2.12 and 2.14 will be considered as primitives. (In effect,
the following considerations are also applicable to languages providing for
explicit definitions; the above restriction then amounts to the assumption that
in sentences'studied as to confirmation, all defined non-logical signs have been
eliminated by virtue of their definitions.)

A sentence Swill b-e said to be a consequence of a class K of sentences if S
can be deduced, by means of a finite number of applications of the rules of
inference, from the class obtained by adding to K the primitive sentences of L.
A sentence 82 is said to be a consequence of a sentence SI if 8 2 is a consequence
of {SI}, I.e., of the class containing SI as its only element.

We note the following theorem for later reference:
2.32 Theorem: If K is an infinite sentential class, and S is a consequence of

K, then there exists a finite subclass K' of K such that S is a consequence of K' .
This follows from the definition of "consequence" in connection with the fact

that every rule of inference of the narrower predicate calculus presupposes only
a finite number of premises-the entire deduction of S from K can therefore
contain only a finite number of sentences.

A class K (or a sentence 81) will be said to entail a sentence 8 2 if S2 is a con­
sequence of K (or of SI , respectively).

A sentence S is called analytic if it is a consequence of the null class of sen­
tences. S is called contradictory if its denial is analytic (in this case, every
sentence is a consequence of S). S is called consistent if it is not contradictory.

A sentential class K is called inconsistent if every sentence is a consequence
of it; otherwise, it is called consistent. Two sentential classes will be said to
contradict each other, or to be incompatible with each other, if their sum is in­
consistent; otherwise they are called compatible. A sentence SI will be said
to be incompatible with, or to contradict a sentence S2 (or a sentential class K)
if {SI} + {S2} (or {SI} + K, respectively) is inconsistent; otherwise, kC;1 will
be said to be compatible with 82 (or with K, respectively).

8 For detailed statements of suitable sets of rules see, for example, R. Carnap, Formali­
zation of logic, Cambridge, Mass., 1943, p. 135 fT.; and especially D. Hilbert and P. Bernays,
Grundlagen der Mathematik, Vol. I, Berlin, 1934, §4.-Carnap's system involves reference
t.o primitive sentential schemata.
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A sentence of atomic form, or an atomic sentence, is a sentence consisting of
a predicate, followed by a parenthesized expression which consists of as many
individual constants-separated by commas-as the degree of the predicate
requires. Examples: 'P(a)', 'R(c, d)'.

A sentence of basic form, or a basic sentence, is a sentence which is either
atomic, or the denial of an atomic sentence.-A sentence is said to be a basic
conjunction if it is either a basic sentence, or a conjunction of basic sentences.

A sentence of molecular form, or a molecular sentence, or simply a molecule,
is a sentence which is either atomic or consists of atomic sentences and state­
ment connectives.

A generalized sentence is a sentence containing at least one quantifier.
An expression obtainable from a sentence by replacing at least one individual

constant by a variable not occurring in that sentence will be called a (sentential)
matrix, and in particular a molecular matrix if it is obtainable from a molecular
sentence.

A sentence consisting of a molecular matrix preceded exclusively by universal
quantifiers, or exclusively by existential quantifiers, or by at least one universal
and at least one existential quantifier will be called a universal sentence, or an
existential sentence, .0000-8r·-mixed generalization, respectively. A sentence will be
called completely generalized if it contains no individual constants.

A Jull sentence oj a given predicate is an atomic sentence beginning with that'
predicate. A Jull sentence oj a given sentential matrix is one obtainable from
the matrix by substituting some individual constant for every variable which
is not bound by a quantifier, different occurrences of the same variable being
replaced by the same constant.

We now turn to a brief summary of the devices used in this paper to formulate
statements about L; some of them have already been employed in the preceding
text.

As meta-language for L, we use English, enriched by certain abbreviating
symbols and by variables of certain kinds. In particular we use:

Variables Jor names oj sentences oj L:

M (reserved for molecules),

S, SI, S2, ••• , T, T1 , T2,

Variables Jor names oj sentential classes:

K, K 1 , K 2 , ••• , K*, K**, ....

Unless otherwise stated, the designation of an expression in L is formed by
including the expression in quotes.

To form a designation of a finite class of sentences, we shall place their names,
separated by commas, between braces. The same device will be used in con­
nection with sentential variables. Thus,' {Sl, S2, S~}' will be short for 'the
class whose elements are Sl, S2, Ss.'

'''JS1' will designate the denial of Sl, 'Sl.S2' the conjunction of Sl and S2,
and 'SlVS2', 'Sl=::JS2' will be used analogously. The same stipulation applies
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to all other sentence name variables and will also be used in connection with
names of particular sentences when no misunderstanding seems possible.

The arrow symbol, '----+', ,vill be used as an abbreviation of "has as a conse­
quence" or "entails," as in 'Sl ~ (SIVS2)', '{Sl, S2} ----+ SI'. Analogously,
the double arrow, '~', will be used to designate equivalence (mutual con­
sequence).

Occasionally tile statement connective symbols ':",,' , 'v', '.', ':::>', '==:' will be
used .also in the meta-language; especially in the formulation of theorems,
{)r of definitions such as 3.01, 3.02 below.

Some further notational devices will be explained upon their first occurrence.
Finally, we have to characterize the intended interpretation of the expressions

occurring in L. "Vhile the solution of our problem ,vill proceed along purely
syntactical lines, semantical and pragmatic references are indispensable for an
appraisal of the significance of the problem, and for an evaluation of the ade­
quacy of the proposed solution.

The individual constants of L are thought of as names of particular things
which form the object of some scientific inquiry. The predicates are to designate
certain attributes, i.e., properties or relations, of those things; and we conceive of
them as having been chosen in such a way that the observational or experimental
methods used in the inquiry make it possible to ascertain the absence or presence
,of those properties or relations in a given individual or group of individuals.
In other words, \ve assume that any test report, i.e., any complex of "data"
obtainable by the testing procedures in question, can be formulated by means
·of full sentences of predicates of L. To state this idea in a precise manner, one
might stipulate that each single datum obtainable in those tests is expressible in a
basic sentence, and that every test report 11as to have the form of a basic conjunc­
tion; or one may, as we shall do here, adopt the more liberal stipulation that every
possible test report is of molecular form. Now, the scientific test of any hypo­
thesis is based on a confrontation of the hypothesis with empirical data, i.e.,
with a test report. We shall therefore aim at defining confirmation as a relation
which obtains, under certain conditions, bet,veen a molecular sentence M (rep­
resenting the observation report) and a sentence S ,vhich may be of any form
(representing the hypothesis). This corresponds to the idea that the crude data
obtained by the testing procedure are alvlays particular in character; but that
they may serve to corroborate or weaken hypotheses of general as 'Yell as of
particular form.

3. Restatement of the problem. Criteria of adequacy for its solution. In
vie\v of the preceding considerations, our problem assumes a purely syntactical
character. In its original forIn it presented also a semantical and a pragmatical
aspect; for it amounted to this question: Under what conditions shall ,ve say
that a report on the outcome of a certain test confirms a given hypothesis?
Thus, reference to actual testing procedures was involved. But clearly, it is
immaterial for the definition of a logical relation of confirmation whether the
given report represents actual or hypothetical data. In fact, our definition
will be satisfactory only if it enables us to discuss questions of the t)rpe: "Sup­
posing that such and such data were obtained, would they confirln such and
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such a hypothesis?"; "What empirical findings would constitute disconfirming
evidence for this hypothesis?"; etc. Our problem, then, will be to lay down
purely formal conditions under which a molecule M confirms a sentence S.

Any proposed definition of a relation Cf of confirmation will automatically
determine definitions of the t,vo associated relations of disconfirmation and
of neutrality, according to the following schemata:

3.01 Dscf(M, S) == Cf(M, t'JS).
3.02 Ntl(M, S) == (t'JCf(lll, S) • t'JDscf(M) S»).
While the indications given so far in this essay as to the intended meaning

of "confirmation" do not determine this concept unambiguously and precisely, it
is clear that any acceptable definition of confirmation will have to satisfy certain
criteria of adequacy. These may be divided into two classes, logical and
material conditions of adequacy, which will no,v be discussed in turn.

Logical conditions of adequacy. The logical requirements are stated in three
groups. In each group, the fulfillment of the first condition entails that of all
others. Those other conditions are mentioned for two reasons; first, because
most of them represent important characteristics which would generally be
sought in an adequately defined concept of confirmation; and secondly, because
some apparently reasonable alternative definitions ,vhich ,ve shall exanline,
turn out to satisfy some of those weaker conditions, but not the strongest of
each group. Confrontation ,vith the different requirements explicitly stated
will thus provide a yardstick for the appraisal of what might be termed the
degree of adequacy of a proposed definition of confirmation.

First group of logical requirements.
3.1 General consequence condition: If M confirms every sentence of a class

K, then it also confirms every consequence of K.
3.11 Special consequence condition: If M confirms S, then it also confirms

every consequence of S.
3.12 Equivalence condition: If M confirms S, then it also confirms every

equivalent sentence. (Intuitively, this means that whether a sentence is con­
firnled by a given molecule or not, depends only on its content, not on its formu­
lation.)

3.13 Conjunction condition: If Al confirms everyone of a finite number of
sentences, then it confirms also their conjunction.

Second group of logical requirements.
3.2 General consistency condition: Every consistent molecule is compatible

with the class of all the sentences which it confirms.
3.21 Special consistency condition: The class of all the sentences confirmed

by a consistent molecule is consistent.
3.211 No consistent molecule confirms and disconfirms the same sentence.
3.22 No consistent molecule confirms a contradictory sentence.

Third group of logical requirements.
3.3 Entailment condition: If M ~ S, then M confirms S. (This means

that the relation of entailment in L, with its domain restricted to molecular
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sentences, is contained in the relation of confirmation, and that, in this sense,
the concept of confirmation is a generalization of that of entailment.)

~.31 Any molecule confirms any analytic sentence.
3.32 A contradictory molecule confirms every sentence.
It might be thought plausible that 3.3 should be supplemented by stipulating:

If S ~ M, then M confirms S. Indeed, if this condition is satisfied-as, for
instance, in the case where M = 'Pea) • PCb) • Pee)' and S = '(x)P(x)'-then,
it might be argued, all the information conveyed by M bears out the hypothesis
S. However, the stipulation under consideration is far too comprehensive:
together with 3.11, it would make any molecule confirm every sentence what-
'oever. For, let S be an arbitrary sentence, then, by the contemplated stipula­
-':on, M would confirm M.S, and consequently, by 3.11, also S.

Let us note that as a consequence of 3.01, 3.02, and 3.211, every consistent
""nolecule M determines a division of all sentences of L into three mutually ex­
clusive classes: those which M confirms, those which it disconfirms, and those
with respect to which it is neutral.-If M is inconsistent, then it entails every
sentence and thus, because of 3.3, both confirms and disconfirms every sentence.

The material condition oj adequacy amounts, briefly, to the requirement that
the proposed definition of confirmation should be in sufficiently close agreement
with the customary meaning of the concept of confirmation as it is used in the
methodology of empirical science. Naturally, this requirement is vague, and
it refers to certain standards ,vhich contain a fairly strong subjective element:
what appears as a materially quite satisfactory definition of confirmation to
one person, may be judged artificial and too comprehensive or too narrow by
another; also, opinion as to the adequacy of a proposed definition may vary
with one and the same person in the course of his occupation with the problem.

Consider, for example, the hypothesis 'All swans are white,' which we sym­
bolize by '(x) (Sw(x) ~ Wh(x))', and the molecules 'Sw(a). Wh(a)' and 'rvSw(b)

",Wh(b)'. It might be felt-and would probably be argued by many-that
under a materially adequate definition of confirmation, the first molecule should
be confirming, the second neutral with respect to the hypothesis. However,
according to the same intuitive standards, the second molecule would constitute
confirming evidence with respect to the hypothesis '(x)("'Wh(x) ~ rvSw(x»)'.
But the two hypotheses here mentioned are equivalent, and adherence to the
intuitive standards exemplified in this illustration would therefore make the
confirmation of a hypothesis by a certain body of evidence a matter not only of
the content of the hypothesis, but also of the form in which it is expressed.
This feature appears intuitively intolerable and was, in fact, explicitly ruled out
by the equivalence condition 3.12. As this case shows, some aspects of the
intuitive idea of confirmation-each of which separately may appear quite
reasonable-are incompatible with each other. It is therefore to be expected
that certain apparently very natural intuitive requirements will have to be
sacrificed in the interest of others which appear to have greater systematic
importance.

In addition to being vague in the sense just illustrated, the material condition
of adequacy is also indefinite in the specific sense that the material adequacy
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of any proposed criterion of confirmation can be ascertained only inductively,
as it were, namely by applying the criterion to certain concrete cases which,
on intuitive grounds, appear as unquestionable instances of confirmation (or
of disconfirmation or neutrality, as the case may be), and by checking whether
the formal criterion in question yields the desired result. But clearly, even if
a given definition of confirmation passes any number of tests of this type, we can
never be quite certain that it does not possess some features which, if only
recognized, would stamp it materially inadequate or at least awkward. Despite
its indefiniteness, the question of material adequacy cannot be disregarded, and
it will be taken into consideration in every step of the subsequent develop­
ment of a definition of confirmation.

Certain conceptions of confirmation which seem to be reflected in recent meth­
odological discussions would have to be ruled out on the basis of the above
requirements of adequacy.

Thus, one customary criterion of confirmation, if stated explicitly, would
lead to the following definition: A confirming instance for a hypothesis of uni­
versal conditional form-say, '(x)(y)(R1(x, y) ::> R2(x, y))'-consists in the
conjunction of two full sentences obtained by replacing each individual variable
in the molecular matrix which constitutes the antecedent by some individual
constant, and by performing the same substitution in the consequent. 7 In
the above illustration, 'R1(a, b) • R2(a, b)' would be a confirming instance.-How­
ever, this criterion is open to various objections: (a) It violates the formal
requirements 3.1, 3.11, 3.12.8 This is readily seen from the earlier discussion
referring to the hypothesis '(x)(Sw(x) ::> Wh(x))'. (b) An interesting aspect
of the violation of 3.12 is the following: Certain universal conditionals, such as
'(x)«P(x) • "-'Q(x)) ::> (Q(x) • "-'Q(x)))', where the consequent is contradictory
(but the antecedent not analytic), clearly ca'nnot have any confirming instances
under the criterion in question; and yet these universal conditionals are not
contradictory; the one just mentioned, for example, is equivalent with the
hypothesis '(x)(P(x) ::> Q(x))'. (c) The criterion under consideration is re­
stricted to hypotheses of universal conditional form, whereas an adequate
definition of confirmation should be applicable to hypotheses of other forms
as well.

An alternative approach might be suggested by the consideration that the
test of a scientific hypothesis consists in examining its predictive power, Le.,
in deducing from it and certain observation sentences certain new observation
sentences, and in seeing whether these predictions come true. This idea could
be reflected in a syntactical definition of the following type: A class K of mole­
cules (which, incidentally, is equivalent to one molecule M) confirms a given
sentence S if K can be exhaustively divided into two mutually exclusive classes
K 1, K 2 such that K 2 is non-null, and every sentence in K 2 is a consequence of

7 A criterion to essentially this effect was formulated by Jean Nicod in Foundations of
geometry and induction, London 1930, p. 219.

8 With respect to the equivalence condition, this difficulty was exhibited already in the
author's Le probleme de la verite, Theoria (GOteborg), vol. 3 (1937), pp. 206-246, esp. p. 222.
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K l + {S} but not of K l alone.-But this type of definition clearly violates the
requirements 3.1 and 3.11; also, it is materially inadequate in that, for instance)
the molecule 'P(a)' would not by this criterion confirm the hypothesis '(Ex)P(x)'
(this feature also violates 3.3); and more generally, it would not provide any
possibility of confirmation at all for existential sentences because these cannot
satisfy the above condition.-Finally, the consistency condition would be
violated; thus, e.g., the class {'P1(a)', 'P2(a)'} would confirln (x) (P1(x) ::>
(P2(x) • P 3(x)))' as well as, say '(x) (Pl(x) ::) (P2(x) • rvP3(x)))'.

4. The C-development of a sentence. l'he basic idea of the definition of
confirmation here to be developed may be illustrated by the following example;

If Sand M are the sentences '(x)(P(x) ::J Q(x))' and 'pea) • Q(a) • P(b) &.

Q(b) • "-'Q(c) • ,,-,P(c)', respectively, then M can be said to confirm S in the
following sense: S asserts that the extension of .P is included in the extension
of Q (and, consequently, the extension of "-'Q in that of ,,-,P); and for the objectts
referred to in M, namely, Q, b, and c, it is indeed the case that all those reported
in M as belonging to the extension of P are also reported as belonging to the
extension of Q, and those reP9rted as belonging to the extension of "-'Q are
also reported as belonging to the extension of ,,-,P.9

The problem now presents itself of developing an explicit criterion which
embodies this idea, and which is applicable also to hypotheses that cannot be
interpreted as asserting a relation of inclusion, as is the case, in particular,
with existential sentences and· mixed generalizations. We therefore state the
inclusion criterion in a modified version which lends itself nl0re readily to the
necessary expansion.

The above molecule M determines a certaIn class of individuals {a, b, c};
and we may say that M confirms S because from the information contained in .1VI.'
it can be inferred that in {a, b, c} S is completely satisfied; or, to use a metaphor:
in a world containing exclusively the jndividuals a, b, and c, the sentence S
would be true, according to the information contained in M. Now, for a world
of that finite kind, the content of S could be expressed in terms of a certain
molecular sentence, namely '(P(a) ::) Q(a)) • (P(b) ::) Q(b)) • (P(c) ::) Q(c))';
and the assertion that S would be true in that world, according to the informa­
tion contained in M, can be expressed more precisely by saying that the above
molecular sentence is a consequence of M. We shall call that molecular sen­
tence the 1M-development of S (Le., the development of S for the individual
constants contained in llf). The idea of 1M-development can readily be de­
fined in a general manner, so as to be applicable to sentences of any form; thus,
for example, the development of the sentence '(x)(Ey)R(x, y)' for the domain
determined by the molecule 'R(a, a) • "-'R(a, b) • R(c, b) • R(b, a)' is the following:

9 This idea of defining confirmation in terms of an "inclusion criterion" was suggested
to me by Dr. Nelson Goodman as offering considerable advantages over an attempt which I
had made before to define confirmation in terms of "inductive attainability" of S from B­
an approach which is not discussed in the present paper. Dr. Goodman's idea proved an
invaluable help for the present investigation; in fact, it initiated all the following con­
siderations.
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'(R(a, a) v R(a, b) v R(a, c)) • (R(b, a) v R(b, b) v R(b, c)) • (R(c, a) v R(c, b) v
R (c, c))'. In terms of this concept, whose general definition will be given
presently, the central idea of the definition of confirmation here to be developed
assumes this form: A sentence 8 is confirmed by a molecule M if M entails
the 1M-development of 8. As will be seen below, this idea still requires certain
modifications if it is to yield an acceptable concept of confirmation.

In the above illustrations of the concept of the development of 8 we referred
to a domain of objects, and to their satisfying certain conditions. Thus we
left the sphere of purely syntactical analysis and made use of semantical rela­
tionR. I-Iowever, it proves possible to express the intended idea in exclusively
syntactical terms. This is done in the following definition:

4.1 Df. Let C be a finite class of individual constants (not individuals)
and 8 a sentence. Then the C-developm.ent of 8 is a sentence D c(8), which is
determined by the following recursive definition:

A) If C is empty, then D c(8) = 8.
B) If C is not empty, then:

I a. D c("-'8) = "-'D c(8).
b. D c(81 v 82) = D c(81) v D c(82).

c. D c (81 • 82) = D c(81) • D c(82).

d. D c (81 :::> 82) = D c(81) :::> D c(82).

II a. If 8 is atomic, then D c(8) = 8.
b. If 8 is of the form (~)<I> where ~ is an individual variable and <I> a sentence

or a matrix, then:
bl. If <I> contains no free occurrence of~, then Dc(S) = Dc(<I».
b2. If 4> contains free occurrences of ~, then let

be the conjunction of the following sentences, in the order here described:
The sentence obtained from <I> by replacing all free occurrences of ~ by the
alphabetically first (cf. 2.12) individual constant in C; tIle sentence obtained
analogously by means of the alphabetically second constant in C; and so
on. Then

De(S) = DeCII <l>i)·
'rEe

c. If 8 is of the form (E~)4:>, then:
cl. If <I> contains no free occurrence of ~, then D c(8) = D c(4:».
c2. If cI> contains free occurrences of ~, let

be the disjunction of the sentences described under 2.2, taken in the same
order. Then

De(S) = DeC L: cI>!).
'r EC
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Notational conventions: (a) When names of particular. sentences occur
as arguments of 'Dc', the name-forming quotes will be absorbed by the frame
'D c( )'. (b) Also, in sentences of the form D c(· • .) = - - - , where on the
right hand side a quoted sentential name would have to appear, we shall have
the quotes absorbed by the identity si~n.

Thus, e.g., if C = {'a', 'b'}, we shall write

Dc«x)P(x» = P(a) • P(b)

instead of

Dc('(x)P(x)') = CP(a) • P(b)'.

The left-hand side is simplified according to part (a), the right-hand side ac­
cording to part (b) of the notational conventions.

Illustrations oj the above definition.
4.11 Let 8 = '(x) (Ey)R(x, y)'; C = {'a', 'b', 'c'}; then:

D c(8) Dc«Ey)R(a, y) • (Ey)R(b, y) • (Ey)R(c, y» (by B II b2)

Dc«Ey)R(a, y» • Dc«Ey)R(b, y» • Dc«Ey)R(c, y» (by B I c)

Dc(R(a, a) Y R(a, b) Y R(a, c» • Dc(R(b, a) Y R(b, b) Y R(b, c»

• Dc(R(c, a) Y R(c, b) Y R(c, c» (by B II c2)

(R(a, a) Y R(a, b) Y R(a, c» • (R(b, a) Y R(b, b) Y R(b, c»

• (R(c, a) Y R(c, b) Y R(c, c» (by BIb and B II a).

This, incidentally, is the sentence which was given above as the 1M-development
of 8 for M = 'R(a, a) • "-'R(a, b) • R(c, b) • R(b, a)'.

4.12 Let C = {'a', 'b'}, 8 = '(x) (P(x) Y Q(c»'. Then, as is readily verified:
D c(8) = (P(a) Y Q(c) • (P(b) Y Q(c».

4.13 For every molecular sentence M and every finite class C of individual
constants, Dc(M) = M;

Subsequently, the expressions 'c.g.. sentence' and 'c.g. class' will serve as
abbreviations of 'completely generalized sentence' and 'class of completely
generalized sentences,' respectively.

We note the following theorems on C-development:
4.2 Theorem. If C is a finite class of individual constants and 8 1, 8 2 are c.g.

sentences such that 8 1~ 82, then D c(81) ~ D c(82).

Proof. If 8 1 ~ 82, then 8 1::>82 is analytic,IO and hence identically true for
any finite domain;ll Le., D c(81:::)82) is an analytic sentence for every finite class C
of individual constants. Now Dc(81::>82) = Dc(81) ::> Dc(82) (4.1 B I d);
therefore, the latter sentence is analytic, and by virtue of this fact and the modus
ponens rule, D c(81) ~ D c(82).

10 Cf. Hilbert and Bernays, loco cit., p. 155, or Carnap, loco cit. (see footnote 6), p. 142,
T 28-11.

11 Cf. Hilbert and Bernays, loco cit., p. 121, Theorem 1.
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4.21 Theorem. If 81, 8 2 are equivalent c.g. sentences, then D c(81), D c(82)

are equivalent for every finite class C of individual constants. (From 4.2.)
4.3 Theorem. Let C be a finite class of individual constants, K a finite

class of c.g. sentences, Dc(K) the class of the C-developments of the elements
of K, and 8 a c.g. sentence such that K ~ 8; then Dc(K) ~ Dc(8).

Proof. Let

IIT
TeK

be the conjunction of the elements of K taken in anyone order, then

II T~S;
TeK

hence,. by 4.2,

Dc(II T) --+ Dc(S);
TeK

furthermore, by 4.1,

Dc(II T)
TeK

is a conjunction of the C-developments of the elements of K, and therefore
follows from Dc(K);"thus we have

Dc(K) ~ Dc(II T) ~ Dc(8),
TeK

which proves the theorem.
4.4 Theorem. If a class K of c.g. sentences is inconsistent, then, for every

finite C, the class of the C-developments of the sentences of K is also inconsistent.
Proof. K must contain at least one sentence to be inconsistent. Let 8 E K.

Then, 'since K is inconsistent, K ~ "-J8. Hence, by 4.3, Dc(K) ~ DC("-J8), or,
by virtue of 4.1, Dc(K) ~ "-JDc(S). This shows that Dc(K) is inconsistent,
since also Dc(S) E Dc(K).

4.41 Theorem. For every finite C, a contradictory c.g. sentence has a
contradictory C-development. (From 4.4)

4.42 Theorem. For every finite C, an analytic c.g. sentence has an analytic
C-development.

Proof. If 8 is an analytic c.g. sentence, then "-J8 is a contradictory c.g.
sentence; now, by 4.1, Dc(8) is equivalent with "-JDc("-J8); and since, by 4.41,
Dc(~8) is contradictory, Dc(8) is analytic.

4.51 Note. The converse of theorem 4.4 and its corollaries does not hold:
it may happen that for a certain class C of individual constants a c.g. sentence 8
has an analytic or a contradictory C-development without being analytic or
contradictory itself. For example, let 81 = '(x)P(x) Y (x)"-JP(x)', and 82 =
(Ex)P(x) • (Ex)"-JP(x)'. Then, if C contains exactly one element, Dc(81) will be
analytic. Thus, if C = {'a'}, Dc(81) is 'P(a) Y"-JP(a)'. On the other hand,
82 can be true only in a domain of at least two individuals; for a class C con­
taining only one element its C-development is contradictory; thus, if C = {'a'},
then Dc(82) = P(a) • "-JP(a).
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By developing these illustrations a little further, it can also readily be seen
that for a given C and two completely generalized sentences 8 1, 8 2, it may happen
that D c(81) ~ D c(82), while it is not the case that 8 1 ~ 8 2• This shows that
the converse of 4.2 does not hold.

4.52 Note. None of the theorems 4.2 through 4.42 holds for all generalized
sentences, Le., including those which contain individual constants. For let
8 1 = '(x)P(x)', 8 2 = '(x)(P(x) • P(a))', C = {'b'}; then 8 1 ~ 8 2 ; but D c(81) =

'P(b)'; D c(82) = 'P(b) • P(a)', and thus neither D c(81) ~ D c(82) nor even
D c(81) ~ D c(82). This provides counter-examples for 4.2-and thus for 4.3­
as well as for 4.21; to obtain a counter-example for 4.41-and thus for 4.4­
let 8 = '(x)P(x).r-vP(a)', C = feb'}, so that D c(8) = 'P(b) • r-vP(a)', which is
non-contradictory; finally, as counter-example for 4.42, choose 8 = 'P(a) :::>
(Ex)P(x)', C = feb'}, which yields the non-analytic D c(8) = 'P(a):::>P(b)'.

5. Preliminary remarks on the subsequent definitions of confirmation.
We now turn to the systematic construction of a syntactical concept of con­
firmation. We shall begin by formulating a first definition in strict accordance
with the idea outlined in the beginning of section 4: M will be said to confirm S
if M entails the IM-development of 8. Closer examination of the concept thus
determined will reveal certain inadequacies which will then be removed by
constructing a second, revised definition; the latter, in turn, will be replaced
by a modified and more satisfactory final version. Lest the reader be alarmed
by the propsect of being needlessly led astray by a study of certain tentative
definitions which will later be abandoned, it may be well to emphasize that it is
not intended to present here all the various attempts at defining confirmation
which were made in connection with this study. The few variants that will be
considered here have been selected for systematic reasons, namely because they
represent, as it were, successive approximations of the definition finally to be
proposed; in fact, every definition subsequently to be considered presupposes the
preceding ones or certain theorems proved in connection with them.

For reasons which will be exhibited in the following section, the relation of
confirmation, Cf, will, in each of the successive stages of our discussion, be
defined in terms of a narrower relation of direct confirmation, Cfd. The manner
in which Cf is defined in terms of Cfd will remain the same throughout, and the
gradual modifications referred to will concern the definition of Cfd.

6. A fust approximation: Cfdl and Cfl • The following definition of direct
confirmation embodies the idea presented in the beginning of section 4:

6.1 Df. Cfd1(M, 8) if and only if: (a) M is a molecule; (b) 8 is a c.g. sen­
tence; and (c) M ~ D1M(8), where 1M is the class of those individual constants
which occur in lrf.

The following theorems hold for Cfd1 :

6.11 Theorem. Within the class of all c.g. sentences, Cfd1 satisfies the
general consequence condition 3.1; Le., if K is a c.g. class and M a molecule
such that Cfd1(M, T) for every T E K, and if 8 is a c.g. sentence such that
K ~ 8, then Cfd1(.NI, 8).

Proof. In vie\v of 2.32, K may be assumed to be finite. Let D]M(K) be the
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class of the 1M-developments of the elements of K. Then) sillce K ~ S, we
have DIM(K) ~ DIM(S), by 4.3; furthermore, by hypoihesis, M ~ T for every
T E DIM(K); hence: M ~ DIA1(S), and thus Cfd1(M, S).

6.12 Theorem. Cfdl satisfies the general consistency condition 3.2; i.e.J

if M is a consistent molecule and K* the class of all S such tha.t Cfdl(M, S):­
then K*+ {M} is a consistent class.

Proof. Suppose that K*+ {M} is inconsistent. 1"'llen there exists a sentence
11 such that K*+ {j}[} ~ T, K*+ {M} ~ ~T. In view of 2.32, there exists
even a finite subclass K of K* such that K+ {M} ~ T, K+ {M} ~ ~T. Let
SK be the conjunction of the elements of K. Then SK • ltf would be a contra­
dictory sentence. This will now be shown to be impossible. The core of thi8
proof is the following consideration: If SK. M is a contradictory sentence, then
it cannot be satisfied in any domain. But in the domain consisting exclusively
of the individuals mentioned in M, clearly M is satisfiable if, as was presupposed,
it is consistent. And if M is satisfied, then so is SK; for in the finite domain in
question, SK is equivalent with DIM(SK), and the latter sentence is, by hypothe­
sis, a consequence of M, and thus is satisfied whenever Mis.

This idea can be expressed more precisely as follows: Let 1M = {'aI', 'a2',
, .. , 'ak'} ; and let em', 'Sk', 'dsJc ' be abbreviations of the sentences M, SK, D]M(SK)
respectively. (Note. em' is an abbreviation for the sentence designated by
;jlf', etc. These abbreviations cannot occur in L, as no definitions are allowed in
that language; but we may introduce them into the meta-language.) The idea
that in a world containing only the individuals aI, · . · ,ak, the sentence SK
holds if DI M(SK) does, can now be expressed by the statement that the sentence

(x) ((x = at) Y (x = a2) Y • • • Y (x = ak)) :::> (dsk :::> Sk)

is analytic (not in L, which does not contain the identity sign, but in the meta­
language, whose logic has, of course, to include the lower predicate calculus
with identity sign). Now, since by hypothesis M stands in Cfd l to every Sin K,
we have M ~ DI Al(SK); thus, 'm ~ dsk ' is analytic; hence, finally,

( (x) ((x = al) Y (x = a2) Y • • • Y (x = ak)) • 1n) :::> (Sk • 1n)

is analytic. No\v, if SK. lvI, and thus 'Sk. m' were contradictory, then

(x)«x=al) v (x=~) Y . • . Y (x=ak)) • m

would be contradictory, and hence could not be satisfied in any finite domain;
Le., taking 'aI', 'a2', ... , 'ak', and all the extralogical predicates occurring in M
as uninterpreted parameters, there \vould not exist a finite domain in which those
individual and predicate constants could be so interpreted as to make the last
formula a true sentence.12 But actually, the sentence is satisfiable in a domain of
k individuals. We only have to construe 'aI', 'a2', ... , 'ak' as names of any k
individuals, and to interpret the predicates occurring in M in such a way that
M becomes a true sentence under that interpretation. And that is possible
because by hypothesis M is consistent.

12 Cf. Hilbert and Bernays, loco cit., pp. 185-186.
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6.13 Cfdl fails to satisfy the entailment condition; thus, e.g., Cfdl(M, M)
cannot hold for any molecule because of the clause 6.1 (b).

For the same reason, Cfdl violates the general consequence condition; thus,
'Pea)' stands in Cfdl to '(x)P(x)', but not to 'P(a.)'.

These shortcomings, however, can be remedied by defining, in terms of
'Cfdl', a broader concept of confirmation, 'Cfl', as follows:

6.2 Df. Cfl(M, S) if and only if (a) M is a molecule, and (b) S is a con­
sequence of a sentential class K each element T of which satisfies one of the
follo\ving conditions:

1. M'--+ T;

Clause (b) can be symbolized as follows:

(EK)«K --+ S) • (T)(T E K ::) «M,--+ T) v Cfdl(M, T))))

6.21 Theorem. Cfl satisfies the general consequence condition.
6.22 Theorem. Cfl satisfies the general consistency condition.
6.23 Theorem. Cfl satisfies the entailment condition.
6.24 Theorem. Cfdl is a proper subrelation of Cfl.
Proofs of these theorems follow.
Proof of 6.24. (a) Cfdl is a subrelation of Cfl. Let Cfdl(M, S); then there

exists a K which satisfies 6.2 (b), namely {S}; hence Cfl(M, S). (b) Cfl is
not a subrelation of Cfdl. Thus, e.g., 'Pea)' stands in Cfl (via '(x)P(x)') but
not in Cfdl to 'PCb)'.

Proof of 6.23. If M --+ S, then there exists a K which satisfies 6.2 b, namely
{M}.

Proof of 6.21. Let M be a molecule and K l a class such that Cft(M, T) for
every T E K l ; let K l --+ S. We have tp prove that Cfl(M, S). By hypothesis
and 6.2(b), every T E K l is a consequence of a class K T such that M entails or
stands in Cfdl to every element of K T. Let L: K T be the sum of these classes.
Then, clearly, S is a consequence of L: K T , Le., of a class such that M entails or
stands in Cfdl to each of its elements. Hence, by 6.2, Cfl(M, S).

Proof of 6.22. Let M be a consistent molecule and K** the class of all sen­
tences to which M stands in Cfl. Assume K**+ {M} to be inconsistent. Then
K** would be inconsistent, for M E K** by virtue of 6.23. Now, for every
T E [{**, we have by hypothesis Cfl(M, T); Le., T is a consequence of a sen­
tential class K T such that M either entails or stands in Cfdl to each of its ele­
ments. If, therefore, K* is the class of all sentences to which M stands in Cfd!,
then every sentence in K** is certainly a consequence of {M} +K*; and if K**
were inconsistent, then {M} +K* would have to be inconsistent. But that is
impossible in view of 6.12.

The concept of confirmation determined by 6.2 thus satisfies all the formal
conditions of adequacy set up above. As regards its material adequacy, how­
ever, it might be argued that while the basic idea of the definition appears
satisfactory, its formalization in 6.2 involves an unnecessary restriction. Thus,
if a test report contains a certain amount of definitely favorable evidence for a
hypothesis, and in addition some entirely irrelevant statements, then the report



A PURELY SYNTACTICAL DEFINITION OF CONFIRMATION 137

might well be considered as confirming the hypothesis. Not generally so,
however, according to the above definitions of 'Cfdl' and 'Cfl'. Let, for example,
S = '(x)P(x)'; M I = 'Pea) • PCb)', M 2 = 'Pea) • PCb) • Q(a)', Mg = 'Pea) •
PCb) • Q(e)'. Then D1M1(S) = D 1M2 (S) = 'Pea) • PCb)', and thus Cfdl(Ml, S)
and Cjdl(M2, S); and, by 6.24, Cfl(Mt, S) and Cfl(M2, S); but D1Ma(S) =
'P(a) • PCb) • pee)', and thus M~ does not stand in Cfdl to S; nor does it stand in
Cfl to Seither. (This latter statement can be proved by means of the method
used in the proof of theorem 6.3 below; we omit the details here.)

One might feel inclined to change this situation by defining 'M confirms S' by:
'M has a consequence of molecular form which stands in Cfl to S'. By this
standard, M g \vould confirm S. However, the new criterion is much too liberal:
According to it, the molecule 'Pea) • r-vP(b)' would, by virtue of its consequence
'pea)', confirn1 '(x)P(x)'; and, by virtue of its consequence '~P(b)', it would
confirm '(x)~P(x)'; thus, the consistency requirement would be violated. But
upon somewhat closer inspection the intuitive difficulty which the contemplated
modification was designed to overcome appears anyhow to be of minor sig­
nificance; the concept defined in 6.2 proves to be somewhat narrower than
intuitive usage would require; but clearly it has to be expected that a precise
redefinition of a customarily vague concept will to some extent be at variance
with the intuitive meaning of the original. Besides, the concept introduced
in 6.2 provides sufficient means for stating in what sense M g constitutes, "on the
whole," as it were, favorable evidence for S; namely thus: M 3 has consequences
of molecular form which stand in Cfl to Sl but none which stand in Dscfl to S
(i.e., in Cfl to r-vS; cf. 3.01).

But there is another consequence of the definition of 'Cfl' which requires
consideration here: The conditions which M has to satisfy to confirm a gen­
eralized, but not completely generalized hypothesis appear to be too rigorous.
Let, for example, S = '(y)R(a, y)', M I = 'R(a,a) • R(a,b)'. Now it may be argued
that by the same token by which 'Pea) • PCb)' confirms '(x)P(x)', M I should be
designated as confirming S; analogously, M2 = 'R(a, a) • R(a, b) • R(a, e)', etc.,
should represent confirming evidence for S. But, while 'Pea) • PCb)' does
stand in Cfl to '(x)P(x)', neither M I nor M 2 nor any of the analogous longer
molecules stands in Cfl to S. This will now be proved for M I ; the proof can
readily be extended to the other cases.

6.3 Theorem. Ml = 'R(a, a) • R(a, b)' does not stand in Cfl to
S = '(y)R(a, y)'.

Proof. Note that clause (b) in 6.2 is equivalent with

(EK)«T)(T E K ::> Cfdl.(llf, T)) . (K+ {M} ~ S).

Hence, if the theorem is false, then there exists a class K -in view of 2.32 it may be
assumed finite-such that K+ {MI } ~ Sand Cfdl(MI , T) for every T E K.
Let SK be the conjunction of the elements of K and let 'Sk' be an abbreviation of
that conjunction. Then SK. M l ~ S; Le., 'Sk. R(a, a) • R(a, b)' ~ '(y)R(a, y)'.
Therefore, '(Sk • R(a, a) • R(a, b)) ~ (y)R(a, y)' is an analytic sentence;13 also

13 Cf. Hilbert and Bernays, loco cit., p. 155.
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'Sk :::) «(R(a, a) • R(a., b) :::) (y)R(a, y»' is analytic. But then, in view of the
modus ponens rule, SK ~ '(R(a, a) • R(a, b» ::) (y)R(a, y)', and thus SK ~
'(y)R(a, y) v "-IR(a, a) v "-IR(a, b)'. But since SK, being con1pletely gen­
eralized, contains neither 'a' nor 'b', it follows14 from the last statement that even
SK ~ '(x)(z)(y)R(x, y) v "-IR(x, x) v "-IR(x, z»'; hence Sx ~ '(x) (y)R.Cx, y) v
"-Ilt(x, Y) v (z)"-IR(x, z»', and finally, again replacing the sentence on the right
hand side of the arro\v by an equivalent one, SK ~ '(x)«y)R(x, y) v rovR(x, x»'.
Let S' K be the sentence on the right hand side of the last formula. Then, as
Cfdl(MI , T) for every T E K, we have M l ~ D I Ml (SK); hence, since SK ~ S' K,
M I ~ DIMl (S' K) (by 4.2). But this last statement is false; for DIMl (S' K) is
equivalent to

«R(a, a) • R(a, b» v rovR(a, a» • «R(b, a) • R(b, b) v rovR(b, b).

And the second component of this conjunction does not follow from MI. This
concludes the proof, which can be extended without difficulty to M 2 = 'R(a, a) •
R(a, b) • R(a, c)' and all analogously built longer molecules.

This narrowness in the definition of 'Cfl' is obviously due to the fact that,
according to 6.2, a sentence which is not completely generalized can be confirmed
by a molecule M only by virtue of being a consequence of M and directly con­
firmed c.g. sentences; the relation of direct confirmation having so far been
restricted to c.g. sentences. We shall now proceed to define a relation of direct
confirmation, Cfd2, which contains Cfdl as a subrelation, and which is applicable
also to not-completely-generalized sentences. In terms of it, a corresponding
relation of confirmation, Cf2, will then be defined.

7. A second approximation: Cfd2 and Cf2• A definition of direct confirma­
tion which is applicable to sentences of any form can be obtained from the
definition of Cfd l (6.1) by simply dropping the requirement that S be a c.g.
sentence. This is possible because the concept of C-development, which is
crucial for the definition of direct confirmation, is defined for sentences of any
form. Thus, we obtain the definition:

7.1 Df. Cfd2(M, S) if and only if (a) M is a molecule, and (b) M ~ DIM(S).
In analogy to 6.2, we then define:
7.2 Df. Cf2(M, S) if and only if:

(a) M is a molecule; and
(b) (EK)(K ~ S) . (T)(T E K ::) «111 ~ T) v Cfd2(M, T)))).

The ne\v relation Cf2 is free from that material inadequacy of efl which was
exhibited in the end of the preceding section. Thus, e.g., each of the molecules
'R(a, a) • R(a, b)', 'R(a, a) • R(a, b) • R(a, c)', etc. stands in Cf2 (and indeed in
Cfd2) to '(y)R(a, y)'.

7.11 Note. Thougll the relation Cfd2 is more comprehensive than Cfdl ­

it contains the latter as a proper subrelation-it cannot serve as a general relation
of confirmation, for it does not satisfy all the formal requirements of adequacy.
Thus, e.g., 'R(a, a) • R(a, b)' stands in Cfd2 to the first, but not to the second

14 Cf. Hilbert and Bernays, loco cit., p. 106, schema Q.
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of the equivalent sentences '(y)R(a, y)' and '(y)(R(a, y) • R(a, c))'. This shows
that the requirements 3.1, 3.11, 3.12 are violated and gives a preliminary justi­
fication for the introduction of the further definition 7.2 above.

We note a fe,v theorems concerning Cfd2 which will be needed in subsequent
proofs.

7.12 Theorem. Cfd2 satisfies the conjunction condition 3.13.
Proof. Let M be a molecule and K a finite sentential class such that Cfd2(M,

S)-and thus M ~ D.IM(S)-for every S E K. Let SKbe the conjunction of the
elements of K; then, by 4.1 B I c, DI M(SK) is the conjunction of all DI M(S)
with S E K; hence M ~ DIM(SK) and thus Cfd2(M, SK).

7.13 Theorem. Cfd2(M, M) for every molecule M.-This follows Imme­
diately from 7.1 considering that DIM(M) = M (cf. 4.13).

7.14 Theorem. Cfd2 satisfies the general consistency condition.
Proof. Let M be a consistent molecule, and J(* the class of all S such that

Cfd2(M, S). We have to show that {M}+K* is a consistent class. Since
JJI E K* (7.12), this reduces to proving K* consistent.
Now~ if K* were inconsistent, then it ,vould contain, by virtue of 2.32, a finite

inconsistent subclass K. Let SK be the conjunction of its elements; then, by
7.12, M ~ DIM(SK), while SK is contradictory. This will now be shown to be
impossible.

1111 will contain a finite number of constants, say 'aI', 'a2', etc. SK may con­
tain individual constants; they fall into two classes (either of which may be
empty): the class CI of those constants which are elements of 1M, and the class
C2 of all others. (If, for instance, M = 'R(a, a).R(a, b)' and SK = '(y) (R(a, y) v
U(a, c, d, y)', then 1M = {'a', 'b'}, CI = {'a'}, C2 = {'c', 'd'}.) Every element
of C2 will, of course, also occur in DIM(SK). Now since none of the elements of
C2 occurs in M, and yet M ~ DIM(SK), clearly M must like\vise entail DIM(S)
for any S obtainable from SK by replacing the constants belonging to C2 by
arbitrary other constants.15 (Thus, in the previous illustration, M ~ DIM(SK),
but also M ~ DIM«y)(R(a, y) v U(a, a, e, y))), etc.) Now let us replace in
SK every element of C2 (if any) by some one element of 1M, say by 'al'. Let Sa
be the DIM of the sentence thus obtained. Then clearly M ~ Sa.

Now, if the sentence SK were contradictory, then it would not be satisfiable
in any finite domain.16 But from the preceding considerations it follows that SK
is satisfiable in a domain which has the same number of elements as 1M, say m.
Indeed, we can first choose a domain of m individuals, aI, ~, .. · , am and define
each predicate occurring in M in such a way that on that interpretation M
becomes true. (This is possible because of the presupposed consistency of M.)
Now, the following interpretation of the extra-logical constants in SK will make
SK a true sentence in the domain under consideration: 'aI', 'a2', ... , 'am', in so far
as they occur in SK, are to be names of aI, a2, ... , am respectively. All the
constants of C2 in S-K ('bl ', 'b2', etc.) are interpreted as names of al. For the

15 Cf. Hilbert and Bernays, loco cit., p. 106, schema a.

16 Cf. Hilbert and Bernays, loco cit., p. 121, Theorem 1, and the statement on satisfi­
ability, p. 128, second paragraph.
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predicates in SK, choose the interpretation mentioned before, which makes M a
true sentence. Under this interpretation, the assertion of Sg for the domain
{aI, ... , am} clearly becomes equivalent with that of Sa. But under the given
interpretation, Sa is true since M ---+ Sa. Therefore, there is at least one finite
domain in which SK is satisfiable; hence Sg cannot be contradictory.

The subsequent theorems concerning Cf2 can now readily be proved:
7.21 Theorem. Cf2 satisfies the general consequence condition.
7.22 Theorem. Cf2 satisfies the general consistency condition.
7.23 Theorem. Cf2 satisfies the entailment condition.
7.24 Theorem. Cfd2 is a proper subrelation of Cf2•

The proofs can be omitted here: they are exactly analogous to those of 6.21,
6.22, 6.23, 6.24; the proof of 7.22 makes use of the fact that Cfd2 satisfies the
general consistency condition (cf. 7.14).

7.3 Theorem. Cfl is a proper subrelation of Cf2 •

Proof. a) Let Cfl(M, S), Le.,

(EK)«K ---+ S) • (T)(T E K :::> «llf ---+ T) v Cfdl(M, T)))).

Then, since Cfdl is a subrelation of Cfd2 (cf. 7.11),

(EK)«K ---+ S) • (T)(T E K :::> «M ---+ T) v Cfd2(M, T))));

hence Cf2(M, S).
b) Cf2 is not a subrelation of Cfl: 'R(a, a). R(a, b)' stands in Cf2 to.

'(y)R(a, y)', but not in Cfl, as proved in 6.3.
7.4 Note. The question might arise whether an even more comprehensive

relation of confirmation, say Cfa, might not be obtained from Cf2 by the same
procedure that led from Cfd2 to Cf2, Le., by means of the following definition:

Cfa(M,S) if and only if M is a molecule, and

(7.41) (EK)«K ---+ S) • (T)(T E K :::> «M ---+ T) v -Gf2(M, T))))

And a reiteration of this procedure might promise a further broadening of the
relation of confirmation. Actually, however, all the relations thus obtainable
are coextensive with Cf2• It suffices to show this for Cfa.-If Cf2(M, S), then
certainly Cfa(M, S), for the class K = {S} satisfies the condition 7.41.-For
proving the converse, note first that by virtue of 7.23, the clause '(M ---+ T) v
Cf2(M, T)' in 7.41 can be replaced by the equivalent 'Cf2(M, T)'. Now let
Cfa(M, S); then S is a consequence of a sentential class K such that for every
T E K, Cf2(M, T); and this, by the definition of 'Cf2', means that every T in K
is a consequence of a class K T such that M entails or stands in Cfd2 to each of its
elements. Thus, S is a consequence of the sum of those K T , Le., of a class such
that M entails or stands in Cfd2 to each of its elements; but this means that
Cf2(M, S).

The following examples are intended to illustrate the character of the relations
Cfd2 and Cf2 •

7.61 'P(a)' stands in Cf2 to the sentence '(x)P(x)', and to all its consequences,
such as

a) 'P(a)', 'P(b)', 'P(c)', and any other full sentence of 'P';
b) '(x) «P(x) v Q(x))', '(x) (Q(x) :::> P(x))', '(x)P(x) v (Ey)Q(y)';
c) '(Ex)P(x)'.
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Also, the molecules 'P(a) • P(b)', 'P(a) • P(b) • P(c)', etc. stand in Cf2 to all of the
above sentences.

7.62 'R(a, a) • R(a, b) • R(b, a) • R(b, b)' stands in Cf2 to t(x)(y)R(x, y)', and
so does 'R(a, a)' and again 'R(b, b)'-but no other partial conjunction of the
first molecule. (Thus, while a full sentence of a predicate of degree 1 stands in
Cf2 to any full sentence of the same predicate-cf. 7.61 a-an analogous rule
does not hold for predicates of higher degree.)

7.63 Among others, each of the following molecules stands in Cf2 to
'(x)(P(x) ~ Q(x»': 'rvP(a)', 'rvP(a) V Q(a)', 'Q(a)', 'rvP(a) • Q(b)'.

7.64 Each of the molecules 'R(a, a)'1 'R(a, a) • RCb, a)', 'R(a, b) • R(b, a) •
R(c, c)' stands in Cf2 to '(x) (Ey)R(x, y)', but 'R(a, a) • R(a, b)' does not.

7.65 Cf2 does not generally satisfy the rule that if each of tw'O molecules
separately confirms a hypothesis, then so does their conjunction; for while
intuitively plausible, this rule is incompatible with the special consistency
condition 3.21. Thus, e.g., if M 1 = 'P(a) • P(b)', M 2 = 'rvP(c)', 81 = '(x)P(x)
V (x)~P(x)', then, as is readily verified, Cf2(M1, 8 1) and Cf2(M2, 8 1); but not
Cf2(MI • M 2, 81), because M 1.M2 stands in Cf2 to 82 = (Ex)P(x) • (Ex)rvP(x)',
which is incompatible with 81, and Cf2 satisfies 3.21.

Consider now the following more liberal definition of confirmation \vhich
readily suggests itself: Let Cfda(M, S) if either Cfd2(M, S) or M is a conjunction
of molecules each of which stands in Cfd2 to 8; and let Cfabe defined in terms of
Cfda in exact analogy to 7.2. Our last illustration makes it clear that this
intuitively satisfactory, more comprehensive relation would violate the con­
sistency condition; for M 1.M2 would stand in Cfda (and thus in Cf3) to either of
the incompatible sentences 8 1 and 82•

This case illustrates once more that one of the main difficulties in defining
confirmation lies in striking a balance between that liberality which seems
desirable on intuitive grounds and the formal standards of adequacy, especially
the consistency condition.

7.66 There is however one other intuitive inadequacy inherent in the con­
cepts of Cfd2 and Cf2 which can be remedied by a slight modification of the defini­
tions 7.1 and 7.2. As was pointed out in 4.51, a generalized sentence may have
an analytic or a contradictory C-development without being analytic or contra­
dictory itself. As a consequence of this fact, a molecule M may stand in Cfd2

(or in Dscfd2, i.e., the corresponding relation of direct disconfirmation; cf. 3.01)
to a generalized sentence 8 simply by virtue of the fact that the cardinal number
of 1M is so small as to make D[M(8) analytic (or contradictory, respectively),
while the content of M, intuitively speaking, neither strengthens nor weakens 8.
Let, for example, 8 1 = '(x)P(x) v (x)rvP(x)', 82 = '(Ex)P(x) • (Ex)rvP(x)',
and M = 'P(a)'. Then D1M(81) = P(a) v rvP(a), D1M(82) 'C: P(a) • rvP(a);
hence Cfd2(M, 81) and Dscfd2(M, 8 2), while by intuitive standards M will be
considered as neither confirming nor disconfirming any of the two sentences.

Similar cases can be constructed involving hypotheses in several variables.
Thus the sentence

81 = '(Ex) (Ey) (Ez) (W(x, y, z). ~W(x, z, y). rvW(y, x, z). rvW(z, y, x))'
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cannot be satisfied by any interpretation of 'W' in a domain of less than 3
individuals; indeed, if C contains exactly one or exactly two individual constants
then D c(SI) is readily found to be contradictory. This has the awkward con­
sequence that any molecule M which contains no more than two individual
constants-no matter whether it contains 'W' or not-stands in Dscfd2 to SI,
since DrM(SI) is contradictory.

These inadequacies of our definition of direct confirmation can be eliminated
by a slight modification, to which we now turn.

8. Final version of the definition of confirmation. The following pair of
definitions embodies the modifications in question:

8.1 Df. Cfd (M, S) if and only if (a) M is a molecule, (b) DrM(S) is not
analytic or S is analytic, and (c) M ~ DrM(S).

8.2 Df. Cf(1\tf, S) if and only if:
(a) M is a molecule; and
(b) (EK)«K ~ S) • (T)(T E K ::> «M~ T) v Cfd(M, T)))).

The previous illustrations might seem to s~ggest that the definiens of 'Cfd'
ought to contain, in addition to the clause (b) an analogous provision to the
effect that DIM(S) is not contradictory, or S is contradictory. This restriction,
however, is unnecessary. For while it may happen-as in the case S =
'(Ex)P(x) • (Ex)I'-IP(x)', M = 'P(a)'-that DrM(S) is contradictory \vhile S
is not, we nevertheless do not have Cfd(M, S) unless M is contradictory itself;
and the consequence that a contradictory molecule confirnls every sentence
appears as quite reasonable and is, anyhow, implied by the entailment condition
(cf. 3.32).

As is readily seen, the modified definition is free from those intuitively un­
desirable features of the previous definitions of confirmation which \vere pointed
out in 7.66; in particular, 'P(a)' neither stands in Cfd to '(x)P(x) v (x)I'-IP(x)'
nor in Dscfd to '(Ex)P(x). (Ex)I'-IP(x)'; and, in the case of the above sentence SI
containing the predicate 'W', neither M 1 nor M 2 stand in Dscfd to SI because
they do not stand in Cfd to 1'-1SI; and this is so because 1'-1SI is not analytic,
while both DrMl (I'-IS1) and Dr M2 (I'-IS1) are.

8.11 Theorem. Cfd-is a proper subrelation of Cfd2•

8.12 Theorem. Cfd satisfies the general consistency condition.-This
follows from the analogous theorem for Cfd2 (7.14) in view of 8.11.

8.21 Theorem. Cf satisfies the general consequence condition.
8.22 Theorem. Cf satisfies the general consistency condition.
8.23 Theorem. Cf satisfies the entailment condition. The proofs of these

three theorems are analogous to those of the corresponding theorems for Cf2•

8.3 Theorem. Cf(M, S) if and only if M is a molecule such that

(EI()«K ~ S) • (T)(T E K ~ Cfd(M, T)))

Proof. By virtue of 8.13, 'M ~ T' entails 'Cfd(M, 'r)'; hence the clause
'(M ~ T) v Cfd(M, T)' in 8.2 (b) is equivalent with 'Cfd(M, T)'.

8.41 Theorem. If M is an analytic molecule, then Cf(M, S) if and only if S
is analytic.

Proof. If S is analytic, then M ~ S, hence Cf(M, S) by 8.23; and if Cf(M, S),
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then, by virtue of 8.3, S is a consequence of a class K such that IY! stands in
Cfd to each T E K. Since this implies that M ~ D1M(T), D1M(T) must be
analytic; and by 8.1(b), every T of this kind must be analytic; hence also S.

8.42 Theorem. A molecule M stands in Cf to every S if and only if M is
contradictory. (From 8.23 and 8.22.)

Finally, all the illustrations and general comments concerning Cfd2 and Cf2

which are included in 7.61 through 7.65 apply lilce,vise to Cfd and Cf.
Thus, the concept of confirmation determined by the definitions 8.1 and 8.2

satisfies all our formal conditions of adequacy and at least all those tests of
material adequacy ,vhich have been referred to in the discussion of anyone of the
definitions of confirmation previously considered in this article.

The present study represents only a first attempt to arrive at a systematic
logical theory of confirmation. Its main objectives were to characterize the
issue and its significance as clearly as possible, to suggest certain conditions which
any adequate solution should satisfy, and to prove that the problem thus de­
termined can be solved in purely syntactical terms.

Ho,vever, the proof as embodied in the above construction of a syntactical
definition of confirmation is restricted to languages of the comparatively simple
logical structure of the lower functional calculus without the identity sign.
From the viewpoint of formal logic as well as of the logical analysis of science
it appears highly desirable to generalize the definition of confirmation in two
respects. First, it should be so expanded as to become applicable to more
complex language forms, such as the lower functional calculus with identity
sign, and even the higher functional calculus; and secondly, it would seem
desirable to free the definition of confirmatio~ from the restricting condition
that the confirming sentence has to be of molecular form. The generalization
of the concept of confirmation in these directions represents perhaps the most
important open problem for further research in this field.
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