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1. Introduction 

 The Paradox of the Ravens (a.k.a,, The Paradox of Confirmation) is indeed an old chestnut. 

A great many things have been written and said about this paradox and its implications for the 

logic of evidential support.1 The first part of this paper will provide a brief survey of the early 

history of the paradox. This will include the original formulation of the paradox and the early 

responses of Hempel, Goodman, and Quine. The second part of the paper will describe attempts 

to resolve the paradox within a Bayesian framework, and show how to improve upon them. This 

part begins with a discussion of how probabilistic methods can help to clarify the statement of 

the paradox itself. And it describes some of the early responses to probabilistic explications. We 

then inspect the assumptions employed by traditional (canonical) Bayesian approaches to the 

paradox. These assumptions may appear to be overly strong. So, drawing on weaker 

                                                 
1 For a nice taste of this voluminous literature, see the bibliography in (Vranas 2004). 
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assumptions, we formulate a new-and-improved Bayesian confirmation-theoretic resolution of 

the Paradox of the Ravens.  

2. The Original Formulation of the Paradox 

 Traditionally, the Paradox of the Ravens is generated by the following two assumptions (or 

premises). 

• Nicod Condition (NC): For any object a and any predicate F and G, the proposition that 

a has both F and G confirms the proposition that every F has G. A more formal version 

of (NC) is the following claim:  (Fa · Ga) confirms (∀x)(Fx ⊃ Gx), for any individual 

term ‘a’ and any pair of predicates ‘F’ and ‘G’. 

• Equivalence Condition (EC): For any propositions H1, H2, and E, if E confirms H1 and 

H1 is (classically) logically equivalent to H2, then E confirms H2. 

From (NC) and (EC), we can deduce the following, “paradoxical conclusion”: 

• Paradoxical Conclusion (PC): The proposition that a is both non-black and a non-raven, 

(∼Ba · ∼Ra), confirms the proposition that every raven is black, (∀x)(Rx ⊃ Bx). 

The canonical derivation of (PC) from (EC) and (NC) proceeds as follows: 

1.  By (NC), (∼Ba · ∼Ra) confirms (∀x)(∼Bx ⊃ ∼Rx).  

2.  By Classical Logic, (∀x)(∼Bx ⊃ ∼Rx) is equivalent to (∀x)(Rx ⊃ Bx).  

3.  By (1), (2), and (EC), (∼Ba · ∼Ra) confirms (∀x)(Rx ⊃ Bx).  QED. 

 The earliest analyses of this infamous paradox were offered by Hempel, Goodman, and 

Quine. Let’s take a look at how each of these famous philosophers attempted to resolve it. 

3. Early Analyses of the Paradox due to Hempel, Goodman, and Quine 

3.1 The Analyses of Hempel and Goodman  
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 Hempel (1945) and Goodman (1954) didn’t view (PC) as paradoxical. Indeed, Hempel and 

Goodman viewed the argument above from (1) and (2) to (PC) as sound. So, as far as Hempel 

and Goodman are concerned, there is something misguided about whatever intuitions may have 

lead some philosophers to see “paradox” here. As Hempel explains (Goodman’s discussion is 

very similar on this score), one might be misled into thinking that (PC) is false by conflating 

(PC) with a different claim (PC*) − a claim that is, in fact, false. Hempel warns us that [our 

emphasis] 

…in the seemingly paradoxical cases of confirmation, we are often not judging the 

relation of the given evidence E alone to the hypothesis H … instead, we tacitly introduce 

a comparison of H with a body of evidence which consists of E in conjunction with an 

additional amount of information we happen to have at our disposal. 

 We will postpone discussion of this crucial remark of Hempel’s until the later sections on 

Bayesian clarifications of the paradox − where its meaning and significance will become clearer. 

Meanwhile, it is important to note that Hempel and Goodman also provide independent 

motivation for premise (1) of the canonical derivation of (PC) − a motivation independent of 

(NC) − in an attempt to further bolster the traditional argument.2 The following argument for 

premise (1) is endorsed by both Hempel and Goodman [our emphasis and brackets]: 

                                                 
2  Almost all early commentators on the paradox have viewed (EC) and premise (2) as beyond reproach. But not all 

contemporary commentators are so sanguine about (EC) and (2). See (Sylvan and Nola 1991) for detailed discussion 

of non-classical logics and the paradoxes of confirmation. See (Gemes 1999) for a probabilistic approach that also 

denies premise (2). We will not discuss such approaches here. We restrict our focus to accounts couched in terms of 

classical logic. 
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If the evidence E consists only of one object which … is a non-raven [∼Ra], then E may 

reasonably be said to confirm that all objects are non-ravens [(∀x) ∼Rx], and a fortiori, E 

supports the weaker assertion that all non-black objects are non-ravens 

[(∀x)(∼Bx ⊃ ∼Rx)].  

 This alternative argument for premise (1) presupposes the Special Consequence Condition: 

(SCC) For all propositions H1, H2, and E, if E confirms H1, and H1 (classically) logically 

entails H2, then E confirms H2. 

Early instantial and probabilistic theories of confirmation [e.g., those presupposed by Hempel, 

Goodman, Quine, Carnap (1950)] embraced (SCC). But, from the point of view of contemporary 

Bayesian confirmation theory, (SCC) is false, as was first shown by Carnap (1950).3 We will 

return to this recent dialectic below, in our discussion of the paradox within the context of 

contemporary Bayesian confirmation theory. But before making the transition to Bayesian 

confirmation, let us briefly discuss Quine’s rather influential response to the paradox, which 

deviates significantly from the views of Hempel and Goodman. 

3.2 Quine on the Paradox of the Ravens 

 In his influential paper “Natural Kinds”, Quine (1969) offers an analysis of the paradox of 

confirmation that deviates radically from the Hempel-Goodman line. Unlike Hempel and 

Goodman, Quine rejects the paradoxical conclusion (PC). Since Quine accepts classical logic, 

                                                 
3 In response to Karl Popper’s (1954) critique of Logical Foundations of Probability, Carnap acknowledges in the 

introduction to the second edition (1962) that he had two distinct notions of confirmation (i.e. high probability above 

a threshold, and increase in probability) in mind when he wrote different parts of the book. This explains how he 

could apparently accept (SCC) at one place and reject it at a different place in the same book. 
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this forces him to reject either premise (1) or premise (2) of the (classically valid) canonical 

argument for (PC). Since Quine also accepts the (classical) equivalence condition (EC), he must 

accept premise (2). Thus, he is led, inevitably, to the rejection of premise (1). This means he 

must reject (NC) − and he does so. Indeed, according to Quine, not only does (∼Ba · ∼Ra) fail to 

confirm (∀x)(∼Bx ⊃ ∼Rx), but also ∼Ra fails to confirm (∀x)∼Rx. According to Quine, the failure 

of instantial confirmation in these cases stems from the fact that the predicates ‘non-black’ [∼B] 

and ‘non-raven’ [∼R] are not natural kinds − i.e., the objects falling under ∼B and ∼R are not 

sufficiently similar to warrant instantial confirmation of universal laws involving ∼B or ∼R. Only 

instances falling under natural kinds can warrant instantial confirmation of universal laws. Thus, 

for Quine the source of the problem is (NC). He suggests that the unrestricted version of (NC) is 

false, and must be replaced by a restricted version that applies only to natural kinds: 

Quine−−−−Nicod Condition (QNC): For any object a and any natural kinds F and G, the 

proposition that a has both F and G confirms the proposition that every F has G. More 

formally, (Fa · Ga) confirms (∀x)(Fx ⊃ Gx), for any individual term a, provided that the 

predicates ‘F’ and ‘G’ refer to natural kinds. 

 To summarize, Quine thinks (PC) is false, and that the (valid) canonical argument for (PC) is 

unsound because (NC) is false. Furthermore, according to Quine, once (NC) is restricted in scope 

to natural kinds, the resulting restricted instantial confirmation principle (QNC) is true, but 

useless for deducing (PC).4 However, many other commentators have taken (NC) to be the real 

                                                 
4 Interestingly, while Hempel and Goodman are completely unsympathetic to Quine’s strategy here, they are much 

more sympathetic to such maneuvers in the context of the Grue Paradox. In this sense, Quine’s approach to the 

paradoxes is more unified and systematic than Hempel’s or Goodman’s, since they give “special treatment” to Grue-
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culprit here, as we’ll soon see. We think that the real problems with (NC) [and (QNC)!] only 

become clear when the paradox is cast in more precise Bayesian terms, in a way that will be 

explicated in the second part of this paper. But we will first show how the Bayesian framework 

allows us to clarify the paradox and the historical debates surrounding it. 

4. Bayesian Clarifications of (NC) and (PC) 

 Hempel (1945) provided a cautionary remark about the paradox. He warned us not to 

conflate the paradoxical conclusion (PC) with a distinct (intuitively) false conclusion (PC*) that 

(intuitively) does not follow from (NC) and (EC). We think Hempel’s intuitive contrast between 

(PC) and (PC*) is important for a proper understanding the paradox.  So, we’ll discuss it briefly. 

 What, precisely, was the content of this (PC*)? Well, that turns out to be a bit difficult to say 

from the perspective of traditional, deductive accounts of confirmation. Based on the rest of 

Hempel’s discussion and the penetrating recent exegesis of Patrick Maher (Maher 1999), we 

think the most accurate informal way to characterize (PC*) is as follows: 

(PC*) If one observes that an object a − already known to be a non-raven − is non-black 

(hence, is a non-black non-raven), then this observation confirms that all ravens are 

black. 

 As Maher points out, it is somewhat tempting to conflate (PC*) and (PC). But, Hempel did 

not believe that (PC*) was true (intuitively) about confirmation, nor did he think that (PC*) 

                                                                                                                                                             
predicates, while Quine views the problem − in both paradoxes of confirmation − to be rooted in the “non-

naturalness” of the referents of the predicates involved. For what it’s worth, we think a unified and systematic 

approach to the paradoxes is to be preferred. But, we think a unified Bayesian approach is preferable to Quine’s 

instantial approach. However, our preferred Bayesian treatment of Grue will have to wait for another paper. 
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(intuitively) follows from (NC) and (EC). This is because, intuitively, observing (known) non-

ravens does not tell us anything about the color of ravens. While this seems intuitively quite 

plausible, it is quite difficult to see how Hempel’s confirmation theory can theoretically ground 

the desired distinction between (PC) and (PC*). What Hempel says is that we should not look at 

the evidence E in conjunction with other information that we might have at our disposal. Rather, 

we should look at the confirmational impact of learning E and only E.  

 There are two problems with this (the second worse than the first). First, as we have cast it 

(and as we think it should be cast), (PC*) is not a claim about the confirmational impact on 

(∀x)(Rx ⊃ Bx) of learning ∼Ba in conjunction with other information about a (i.e., ∼Ra), but the 

impact on (∀x)(Rx ⊃ Bx) of learning ∼Ba given that you already know ∼Ra. Basically, we are 

distinguishing the following two kinds of claims: 

• E confirms H, given A − e.g., ∼Ba confirms (∀x)(Rx ⊃ Bx), given ∼Ra − versus 

• (E · A) confirms H, unconditionally − e.g., (∼Ba · ∼Ra) confirms (∀x)(Rx ⊃ Bx) 

unconditionally. 

Note: in classical deductive logic, there is no distinction between: 

• X entails Y, given Z, and 

• (X · Z) entails Y. 

 For this reason, Hempel’s theory of confirmation (which is based on deductive entailment − 

see below) is incapable of making such a distinction. Perhaps this explains why he states things 

in terms of conjunction, rather than conditionalization. After all, he offers no confirmation-

theoretical distinction between ‘and’ and ‘given that’. So, while it seems that there is an intuitive 
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distinction of the desired kind between (PC) and (PC*), it is unclear how Hempel’s theory is 

supposed to make this distinction formally precise [see Maher (1999) for discussion].5  

 The second problem with Hempel’s intuitive “explaining away” of the paradox is far more 

worrisome. As it turns out, Hempel’s official theory of confirmation is logically incompatible 

with his intuitive characterization of what is going on. According to Hempel’s theory of 

confirmation, the confirmation relation is monotonic. That is, Hempel’s theory entails: 

(M) If E confirms H, relative to no (or tautological) background information, then E 

confirms H relative to any collection of background information whatsoever. 

The reason Hempel’s theory entails (M) is that it explicates “E confirms H relative to K” as “E & 

K entails X”, where the proposition X is obtained from the syntax of H and E in a certain 

complex way, which Hempel specifies (the technical details of Hempel’s approach to 

confirmation won’t matter for present purposes). Of course, if E by itself entails X, then so does 

E & K, for any K.6 Thus, according to Hempel’s theory of confirmation, if (PC) is true, then 

                                                 
5 Perhaps Hempel had something like the following in mind. Notice that (∀x)(Rx ⊃ Bx) entails Ba given Ra; so, 

given Ra, ∼Ba falsifies (∀x)(Rx ⊃ Bx) and, on Hempel’s account, Ba confirms it. Likewise, (∀x)(Rx ⊃ Bx) entails 

∼Ra given ∼Ba; so, given ∼Ba, Ra falsifies (∀x)(Rx ⊃ Bx) and, on Hempel’s account, ∼Ra confirms it. However, 

(∀x)(Rx ⊃ Bx) entails neither Ba nor ∼Ba given ∼Ra; so, arguably, one might hold that  (∀x)(Rx ⊃ Bx) cannot be 

confirmed by either Ba or by ∼Ba given ∼Ra (though, as already affirmed, it is confirmed by ∼Ra given ∼Ba). 

Similarly, (∀x)(Rx ⊃ Bx) entails neither Ra nor ∼Ra given Ba; so, arguably, one might hold that  (∀x)(Rx ⊃ Bx) 

cannot be confirmed by either Ra or by ∼Ra given Ba (though, of course, it is confirmed by Ba given Ra).  Even if a 

Hempelian story along these lines can be told, it won’t save Hempel’s analysis from problem #2, below. 

6 Hypothetico-deductive approaches to confirmation also imply (M), since they explicate “E confirms H relative to 

K” as “H & K entails E.” So, H-D confirmation cannot avail itself of a Hempel-style resolution of the paradox either. 
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(PC*) must also be true. So, while intuitively compelling and explanatory, Hempel’s suggestion 

that (PC) is true but (PC*) is false contradicts his own theory of confirmation. As far as we 

know, this logical inconsistency in Hempel (and Goodman’s) discussions of the paradox of 

confirmation has not been discussed in the literature.7 

 It is clear that Hempel was onto something important here with his intuitive distinction 

between claims (PC) and (PC*), but his confirmation theory just lacked the resources to properly 

spell out his intuitions. Here contemporary Bayesian confirmation theory really comes in handy. 

 According to Bayesian confirmation theory, “E confirms H, given K”, and “(E · K) confirms 

H, unconditionally” have quite different meanings.  Essentially, this is possible because Bayesian 

explications of the confirmation relation do not entail monotonicity (M).  Specifically, 

contemporary Bayesians offer the following account of conditional and unconditional 

confirmation − where hereafter, we will use the words “confirms” and “confirmation” in 

accordance with this Bayesian account: 

                                                 
7 Maher notes that Hempel never proves that (PC) is true while (PC*) is false.  This is an understatement!  He 

cannot prove this claim, on pain of contradiction with his official theory of confirmation.  We think the reason 

Hempel (and others) missed this inconsistency is that it is easy to conflate objectual and propositional senses of 

“confirmation”.  If you think of the objects doing the confirming, then one can see (PC) as true and (PC*) as false 

(even from a deductivist point of view).  But, if you think of the propositions as doing the confirming, then this is 

impossible from a deductivist point of view (i.e., from the point of view of any theory which entails (M)).  The 

salient passages from Hempel suggest that he slides back and forth between objectual and propositional senses of 

confirmation.  And, we suspect that this is what led him into the present inconsistency. 
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• Bayesian Confirmation. E confirms H, given K (or relative to K), just in case  

P[H | E · K] > P[H | K]. And, E confirms H, unconditionally, just in case  

P[H | E] > P[H], where P[•] is some suitable probability function.8 

 It is easy to see, on this account of (conditional and unconditional) confirmation, that there 

will be a natural distinction between (PC) and (PC*). From a Bayesian point of view this 

distinction becomes: 

(PC) P[(∀x)(Rx ⊃ Bx) | ∼Ba·∼Ra] > P[(∀x)(Rx ⊃ Bx)], and 

(PC*) P[(∀x)(Rx ⊃ Bx) | ∼Ba·∼Ra] > P[(∀x)(Rx ⊃ Bx) | ∼Ra] 

What Hempel had in mind (charitably) is the former, not the latter. This is crucial for 

understanding the ensuing historical dialectic regarding the paradox. The important point here is 

that Bayesian confirmation theory has the theoretical resources to distinguish conditional and 

unconditional confirmation, but traditional (classical) deductive accounts do not. As a result 

Bayesian theory allows us to precisely articulate Hempel’s intuition concerning why people 

might (falsely) believe that the paradoxical conclusion (PC) is false by conflating it with (PC*). 

 A key insight of Bayesian confirmation theory is that it represents confirmation as a three-

place relation between evidence E, hypothesis H, and background corpus K. From this 

perspective the traditional formulation of the paradox is imprecise in an important respect: it 

leaves unclear which background corpus is presupposed in the (NC) − and, as a result, also in 

                                                 
8 We won’t bother to discuss the competing axiomatizations and interpretations of probability. These details won’t 

matter for our discussion. For simplicity we will just assume that P is some rational credence function, and that it 

satisfies an appropriate version of the standard, (Kolmogorov 1956) axioms. But these assumptions could be altered 

in various ways without affecting the main points we will make below. 
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the (PC). In other words, there is a missing quantifier in the traditional formulations of (NC) and 

(PC). Here are four possible precisifications of (NC) [the corresponding precisifications of (PC) 

should be obvious]:  

• (NCw) For any individual term ‘a’ and any pair of predicates ‘F’ and ‘G’, there is some 

possible background K such that (Fa · Ga) confirms (∀x)(Fx ⊃ Gx), given K. 

• (NCα) Relative to our actual background corpus Kα, for any individual term ‘a’ and any 

pair of predicates ‘F’ and ‘G’, (Fa · Ga) confirms (∀x)(Fx ⊃ Gx), given Kα. 

• (NCT) Relative to tautological (or a priori) background corpus KT, for any individual 

term ‘a’ and any pair of predicates ‘F’ and ‘G’, (Fa · Ga) confirms (∀x)(Fx ⊃ Gx), given 

KT. 

• (NCs) Relative to any possible background corpus K, for any individual term ‘a’ and any 

pair of predicates ‘F’ and ‘G’, (Fa · Ga) confirms (∀x)(Fx ⊃ Gx), given K. 

 Which rendition of (NC) is the one Hempel and Goodman had in mind? Well, (NCw) seems 

too weak to be of much use. There is bound to be some corpus with respect to which non-black 

non-ravens confirm ‘All non-black things are non-ravens’, but this corpus may not be very 

interesting (e.g., the corpus which contains ‘(∼Ba · ∼Ra) ⊃ (∀x)(∼Bx ⊃ ∼Rx)’!).  

 What about (NCα)? Well, that depends. If we happen to (actually) already know that ∼Ra, 

then all bets are off as to whether ∼Ba confirms (∀x)(∼Bx ⊃ ∼Rx), relative to Kα (as Hempel 

suggests, and Maher makes precise). So, only a suitably restricted version of (NCα) would satisfy 

Hempel’s constraint. (We’ll return to this issue, below.)  
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 How about (NCs)? This rendition is too strong. As we’ll soon see, I.J. Good demonstrated 

that (NCs) is false in a Bayesian framework.  

 What about (NCT)? As Maher (1999) skillfully explains, Hempel and Goodman (and Quine) 

have something much closer to (NCT) in mind. Originally, the question was whether learning 

only (∼Ba · ∼Ra) and nothing else confirms that all ravens are black. And, it seems natural to 

understand this in terms of confirmation relative to “tautological (or a priori) background”. We 

will return to the notion of “tautological confirmation”, and the (NCα) vs (NCT) controversy, 

below. But, first, it is useful to discuss I.J. Good’s knock-down counterexample to (NCs), and his 

later (rather lame) attempt to formulate a counterexample to (NCT). 

5. I.J. Good’s Counterexample to (NCs) and his “Counterexample” to (NCT) 

 Good (1967) asks us to consider the following example (we’re paraphrasing here):  

• Our background corpus K says that exactly one of the following hypotheses is true: (H) 

there are 100 black ravens, no non-black ravens, and 1 million other birds, or else (∼H) 

there are 1,000 black ravens, 1 white raven, and 1 million other birds. And K also states 

that an object a is selected at random from all the birds. Given this background K, we 

have: 

P[Ra · Ba | (∀x)(Rx ⊃ Bx) · K] = 
100

1000100
 < P[Ra · Ba | ~(∀x)(Rx ⊃ Bx) · K] = 

1000

1001000
 

Hence, Good has described a background corpus K relative to which (Ra · Ba) disconfirms 

(∀x)(Rx ⊃ Bx). This is sufficient to show that (NCs) is false. 

 Hempel (1967) responded to Good by claiming that (NCs) is not what he had in mind, since it 

smuggles too much “unkosher” (a posteriori) empirical knowledge into K. Hempel’s challenge 
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to Good was (again, charitably) to find a counterexample to (NCT). Good (1968) responded to 

Hempel’s challenge with the following much less conclusive (rather lame, we think) 

“counterexample” to (NCT) [our brackets]: 

…imagine an infinitely intelligent newborn baby having built-in neural circuits enabling 

him to deal with formal logic, English syntax, and subjective probability. He might now 

argue, after defining a [raven] in detail, that it is initially extremely unlikely that there are 

any [ravens], and therefore that it is extremely likely that all [ravens] are black. … On the 

other hand, if there are [ravens], then there is a reasonable chance that they are a variety 

of colours. Therefore, if I were to discover that even a black [raven] exists I would 

consider [(∀x)(Rx ⊃ Bx)] to be less probable than it was initially. 

Needless to say, this “counterexample” to (NCT) is far from conclusive! To us it seems 

completely unconvincing [see Maher (1999) for a trenchant analysis of this example]. The 

problem here is that in order to give a rigorous and compelling counterexample to (NCT), one 

needs a theory of “tautological confirmation” − i.e. of “confirmation relative to tautological 

background”. Good doesn’t have such a theory (nor do most contemporary probabilists), which 

explains the lack of rigor and persuasiveness of “Good’s Baby”. However, Patrick Maher does 

have such an account; and he has applied it in his recent, neo-Carnapian, Bayesian analysis of the 

paradox of the ravens. 

6. Maher’s Neo-Carnapian Analysis of the Ravens Paradox 

 Carnap (1950, 1952, 1971, 1980) proposed various theories of “tautological confirmation” in 

terms of “logical probability”. Recently Patrick Maher (1999, 2004) has brought a Carnapian 

approach to bear on the ravens paradox, with some very enlightening results. For our purposes it 
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is useful to emphasize two consequences of Maher’s neo-Carnapian, Bayesian analysis of the 

paradox. First, Maher shows that (PC*) is false on a neo-Carnapian theory of (Bayesian) 

confirmation. That is, if we take a suitable class of Carnapian probability functions Pc(• | •) − 

e.g., those of Maher (1999) − as our “probabilities relative to tautological background”, then we 

get the following result [see Maher (1999)] 

• Pc[(∀x)(Rx ⊃ Bx) | ∼Ba · ∼Ra] = Pc[(∀x)(Rx ⊃ Bx) | ∼Ra] 

Intuitively, this says that observing the color of (known) non-ravens tells us nothing about the 

color of ravens, relative to tautological background corpus. This is a theoretical vindication of 

Hempel’s intuitive claim that (PC*) is false − a vindication that is at best difficult to make out in 

Hempel’s deductive theory of confirmation. But, all is not beer and skittles for Hempel. 

 More recently, Maher (2004) has convincingly argued [contrary to what he had previously 

argued in his (1999)] that, within a proper neo-Carnapian Bayesian framework, Hempel’s (NCT) 

is false, and so is its Quinean “restriction” (QNCT). That is, Maher (2004) has shown that (from a 

Bayesian point of view) pace Hempel, Goodman, and Quine, even relative to tautological 

background, positive instances do not necessarily confirm universal generalizations − not even 

for generalizations that involve only natural kinds! The details of Maher’s counterexample to 

(QNCT) [hence, to (NCT) as well] would take us too far afield. But, we mention it here because it 

shows that probabilistic approaches to confirmation are much richer and more powerful than 

traditional, deductive approaches. And, we think, Maher’s work finally answers Hempel’s 

challenge to Good − a challenge that went unanswered for nearly forty years. 

 Moreover, Maher’s results also suggest that Quine’s analysis in “Natural Kinds” was off the 

mark. Contrary to what Quine suggests, the problem with (NC) is not merely that it needs to be 
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restricted in scope to certain kinds of properties. The problems with (NC) run much deeper than 

that. Even the most promising Hempelian precisification of (NC) is false, and a restriction to 

“natural kinds” does not help (since Maher-style, neo-Carnapian counterexamples can be 

generated that employ only to “natural kinds” in Quine’s sense).9  

 While Maher’s neo-Carnapian analysis is very illuminating, it is by no means in the 

mainstream of contemporary Bayesian thought. Most contemporary Bayesians reject Carnapian 

logical probabilities and the Carnapian assumption that there is any such thing as “degree of 

confirmation relative to tautological background.” Since contemporary Bayesians have largely 

rejected this project, they take a rather different tack to handle the ravens paradox. 

7. The Canonical Contemporary Bayesian Approaches to the Paradox 

Perhaps somewhat surprisingly, almost all contemporary Bayesians implicitly assume that the 

paradoxical conclusion is true. They hold that (PC) is not really paradoxical after all once we 

take into account the fact that confirmation really comes in degrees – that some evidence is more 

strongly confirmatory that other evidence. Thus, contemporary Bayesians aim to soften the 

impact of (PC) by establishing certain comparative and/or quantitative confirmational claims. 

Specifically, Bayesians typically aim to show (at least) that the observation of a black raven, 

(Ba · Ra), confirms “all ravens are black” more strongly than the observation of a non-black non-

raven, (∼Ba · ∼Ra), relative to our actual background corpus Kα (which is assumed to contain no 

                                                 
9 Metaphysically, there may be a problem with “non-natural kinds” (in Quine’s sense − e.g., disjunctive and negative 

properties) participating in certain kinds of causal or other law-like relations. This sort of problem has been 

suggested in the contemporary literature by Armstrong (1978), Shoemaker (1980), and others. But, we think this 

metaphysical fact (if it is a fact) has few (if any) confirmational consequences. Confirmation is a logical or 

epistemic relation, which may or may not align neatly with metaphysical relations like causation or law-likeness.  
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“unkosher” information about instance a). Thus, they aim to show (at least) that relative to some 

measure c of how strongly evidence supports a hypothesis, the following COMParative claim 

holds:10 

(COMPc)  c[(∀x)(Rx ⊃ Bx), (Ra · Ba) | Kα] > c[(∀x)(Rx ⊃ Bx), (∼Ba · ∼Ra) | Kα]. 

Here c(H, E | K) is some Bayesian measure of the degree to which E confirms H, relative to 

background corpus K. The typical Bayesian strategy is to isolate constraints on Kα that are as 

minimal as possible (hopefully, even ones that Hempel would see as kosher), but that guarantee 

that (COMPc) obtains. 

 As it stands, (COMPc) is somewhat unclear. Many different Bayesian relevance measures c 

have been proposed and defended in the contemporary literature on Bayesian confirmation. The 

four most popular of these are the following.11 

                                                 
10 As Chihara (1981) points out, “there is no such thing as the Bayesian solution. There are many different 

‘solutions’ that Bayesians have put forward using Bayesian techniques”. That said, we present here what we take to 

be the most standard assumptions Bayesians tend to make in their handling of the paradox − assumptions that are 

sufficient for the desired comparative and quantitative confirmation-theoretic claims. On this score, we follow 

Vranas (2004). However, not all Bayesians make precisely these assumptions. To get a sense of the variety of 

Bayesian approaches, see, e.g.: (Alexander 1958); (Chihara 1981); (Earman 1992); (Eells 1982); (Gaifman 1979); 

(Gibson 1969); (Good 1960, 1961); (Hesse 1974); (Hooker & Stove 1968); (Horwich 1982), (Hosiasson-

Lindenbaum 1940); (Howson & Urbach 1993); (Jardine 1965); (Mackie 1963); (Nerlich 1964); (Suppes 1966); 

(Swinburne 1971, 1973); (Wilson 1964); (Woodward 1985); (Hintikka 1969); (Humburg 1986); (Maher 1999, 

2004); (Vranas 2004). 

11  See Fitelson (1999) (2001) for historical surveys. Notice taking logarithms of the ratio measures makes them 

positive in cases of confirmation, negative in cases of disconfirmation, and zero in cases of neutrality of irrelevance. 

This is a useful convention, but since logs don’t alter the ordinal structure of the measures, it is a mere convention. 
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  The Difference: d[H, E | K] = P[H | E · K] − P[H | K] 

  The Log-Ratio: r[H, E | K] = log(P[H | E · K] / P[H | K]) 

  The Log-Likelihood-Ratio: l[H, E | K] = log(P[E | H · K] / P[E | ~H · K]) 

  The Normalized Difference: s[H, E | K] = P[H | E · K] − P[H | ~E · K] 

Measures d, r, and l all satisfy the following desideratum, for all H, E1, E2, and K: 

(†)  if P[H | E1 · K] > P[H | E2 · K], then c[H, E1 | K] > c[H, E2 | K]. 

But, interestingly, measure s does not satisfy (†). So, putting s aside, if one uses either d, r, or l to 

measure confirmation, then one can establish the desired comparative claim simply by 

demonstrating that: 

(COMPP)  P[(∀x)(Rx ⊃ Bx) | Ra · Ba · Kα] > P[(∀x)(Rx ⊃ Bx) | ∼Ba · ∼Ra · Kα] 

(If one uses s, then one has a bit more work to do to establish the desired comparative 

conclusion, because (COMPP) does not entail (COMPs).)
12  

 Some Bayesians go farther than this by trying to establish not only the comparative claim 

(COMPc), but also the quantitative claim that the observation of a non-black non-raven confirms 

“All ravens are black” to a very minute degree. That is, in addition to the comparative claim, 

some Bayesians also go for the following QUANTative claim: 

(QUANTc)  c[(∀x)(Rx ⊃ Bx), (∼Ba · ∼Ra) | Kα] > 0, but very nearly 0. 

                                                 
12 This has led some former defenders of s to abandon it as a measure of incremental confirmation. See Joyce (2004, 

fn. 11). See, also, Eells and Fitelson (2000, 2002) and Fitelson (2001) for further peculiarities of the measure s. 
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 Let’s begin by discussing the canonical contemporary Bayesian comparative analysis of the 

paradox. In essence, almost all such accounts trade on the following three assumptions about Kα 

(where we may suppose that the object a is sampled at random from the universe):13 

(1)  P[~Ba | Kα] > P[Ra | Kα] 

(2)  P[Ra | (∀x)(Rx ⊃ Bx) · Kα] = P[Ra | Kα] 

(3)  P[~Ba | (∀x)(Rx ⊃ Bx) · Kα] = P[~Ba | Kα] 

 Basically, assumption (1) relies on our knowledge that (according to Kα) there are more non-

black objects in the universe than there are ravens. This seems like a very plausible distributional 

constraint on Kα, since − as far as we actually know − it is true. Assumptions (2) and (3) are 

more controversial. We will say more about them shortly. First, we note an important and pretty 

well-known theorem. 

THEOREM. (1)−(3) entails (COMPP). Therefore, since d, r, and l each satisfy (†), it follows 

that (1)−(3) entails (COMPd), (COMPr), and (COMPl). 

                                                 
13 Often, Bayesians use a two-stage sampling model in which two objects a and b are sampled at random from the 

universe, and where Kα entails (Ra · ~Bb) (e.g., Earman 1992). On that model we still have (2), but (3) is replaced 

with P[~Bb | H · Kα] = P[~Bb | Kα], and (COMPP) is replaced by (COMPP′) P[H | Ra · Ba · Kα] > 

P[H | ~Bb · ~Rb · Kα]. However, no real loss of generality comes from restricting our treatment to “one-stage 

sampling” − i.e., to the selection of a single object a, which Kα doesn’t specify to be either an R or a ~B (Vranas 

2004, fns. 10 and 18).  We prefer a one-stage sampling approach because it simplifies the analysis somewhat, and 

because we think it is closer in spirit to what Hempel and Goodman took the original paradox to be about − where 

Kα is assumed not to have any implications about the color or species of the objects sampled, and where a single 

object is observed “simultaneously” for its color and species.  
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In fact, (1)−(3) entails much more than (COMPP), as the following theorem illustrates:  

THEOREM. (1)−(3) also entail the following: 

(4)  P[(∀x)(Rx ⊃ Bx) | ∼Ba · ∼Ra · Kα] > P[(∀x)(Rx ⊃ Bx) | Kα] 

(5)  s[(∀x)(Rx ⊃ Bx), (Ra · Ba) | Kα] > s[(∀x)(Rx ⊃ Bx), (∼Ba · ∼Ra) | Kα] 

In other words, (4) tells us that assumptions (1)−(3) entail that the observation of a non-black 

non-raven positively confirms that all ravens are black − i.e., that the paradoxical conclusion 

(PC) is true. And, (5) tells us that even according to measure s (a measure that violates (†)) the 

observation of a black raven confirms that all ravens are black more strongly than the 

observation of a non-black non-raven. 

 The fact that (1)−(3) entail (4) and (5) indicates that the canonical Bayesian assumptions go 

far beyond the minimal comparative claim most Bayesians were looking for. Why, for instance, 

should a Bayesian be committed to the qualitative paradoxical conclusion (PC)? After all, as 

Patrick Maher and I.J. Good have made so clear, probabilists don’t have to be committed to 

qualitative claims like (NC) and (PC). It would be nice (and perhaps more informative about the 

workings of Bayesian confirmation) if there were assumptions weaker than (1)−(3) that sufficed 

to establish (just) the comparative claim (COMPP), while implying no commitment to specific 

qualitative claims like (PC). Happily, there are such weaker conditions. But, before we turn to 

them, we first need to briefly discuss the quantitative Bayesian approaches as well. 

 Various Bayesians go farther than (COMPc) in their analysis of the ravens paradox. They 

seek to identify stronger constraints, stronger background knowledge Kα, that entails both 

(COMPc) and (QUANTc). The most common strategy along these lines is simply to strengthen 

assumption (1), as follows: 



20 

 

(1′)  P[~Ba | Kα]  >>  P[Ra | Kα]  − e.g., because there are far fewer ravens than non-black 

things in the universe. 

Peter Vranas (2004) provides a very detailed discussion of quantitative Bayesian approaches to 

the ravens paradox along these lines. We won’t dwell too much on the details of these 

approaches here. Vranas has already done an excellent job of analyzing them. However, some 

brief remarks on a result Vranas proves (and uses in his analysis) are worth considering.  

 Vranas shows that assumptions (1′) and (3) (without (2)) are sufficient for (QUANTc) to hold 

− i.e. for (∀x)(Rx ⊃ Bx) to be positively confirmed by (~Ba · ~Ra) given Kα, but only by a very 

small amount. He shows this for all four measures of confirmation d, r, l, and s. Moreover, he 

argues that in the presence of (1′), (3) is “approximately necessary” for (QUANTc). That is, he 

proves that given (1′), and supposing that P[H | Kα] is not too small, the following approximate 

claim is necessary for (QUANTc): 

  (3′)   P[~Ba | (∀x)(Rx ⊃ Bx) · Kα]  ≈  P[~Ba | Kα]. 

Vranas then argues that Bayesians have given no good reason for assuming this (necessary and 

sufficient) condition. Thus, he concludes, Bayesian resolutions of the paradox that claim non-

black non-ravens confirm by a tiny bit, due to assumption (1'), have failed to establish a 

condition they must employ to establish this claim − they have failed to establish (3').14 

                                                 
14 However, Vranas does not argue that (3′) is false or implausible − only that no good argument for its plausibility 

has been given. So, it is consistent with his result that one might be able to find some plausible condition X that, 

together with (1′), implies (QUANTc). Vranas’ result would then show that condition X (together with (1′)) also 

implies (3′) − and so in effect would provide a plausibility argument for (3′). Some of the results we prove in the 

next two sections will provide such conditions, X. 
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 Vranas’ claim that (3) is “approximately necessary” for (QUANTc) may be somewhat 

misleading. It makes it sound as if (3) has a certain property. But, in fact, nothing about (3) itself 

follows from Vranas’ results. It is more accurate to say (as Bob Dylan might) that 

“approximately (3)” (i.e., (3′)) is necessary for (QUANTc). To see the point, note that (3) is a 

rather strong independence assumption, which entails many other identities, including: 

  (3.1) P[(∀x)(Rx ⊃ Bx) | Ba · Kα]  =  P[(∀x)(Rx ⊃ Bx) | Kα], and 

  (3.2) P[(∀x)(Rx ⊃ Bx) | Ba · Kα]  =  P[(∀x)(Rx ⊃ Bx) | ~Ba · Kα]. 

But, (3′) is not an independence assumption. Indeed, (3′) is far weaker than an independence 

assumption, and it does not entail the parallel approximates: 

  (3′.1) P[(∀x)(Rx ⊃ Bx) | Ba · Kα] ≈ P[(∀x)(Rx ⊃ Bx) | Kα], and 

  (3′.2) P[(∀x)(Rx ⊃ Bx) | Ba · Kα] ≈ P[(∀x)(Rx ⊃ Bx) | ~Ba · Kα]. 

 Vranas argues convincingly that strong independence assumptions like (3) [and (2)] have not 

been well motivated by Bayesians who endorse the quantitative approach to the ravens paradox. 

He rightly claims that this is a lacuna in the canonical quantitative Bayesian analyses of the 

paradox. But, what he ultimately shows is somewhat weaker than appearances might suggest. In 

the next two sections we will describe (pace Vranas and most other commentators) considerably 

weaker sets of assumptions for the comparative and the quantitative Bayesian approaches. 

8. A New Bayesian Approach to the Paradox 

 As we have seen, Bayesians typically make two quite strong independence assumptions in 

order to establish the comparative claim that a black raven confirms more than does a non-black 

non-raven. In addition they usually suppose that given only actual background knowledge Kα , a 

non-black instance is more probable than a raven instance. Happily, there is a quite satisfactory 
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analysis of the ravens that employs none of these assumptions up front. This solution to the 

ravens paradox is more general than any other we know of, and it draws on much weaker 

assumptions. It solves the paradox in that it supplies plausible necessary and sufficient conditions 

for an instance of a black raven to be more favorable to ‘All ravens are black’ than an instance of 

a non-black non-raven. Our most general result doesn’t depend on whether the Nicod Condition 

(NC) is satisfied, and does not draw on probabilistic independence. Nor does it assume the more 

plausible claim that (given background knowledge) a non-black instance is more probable than a 

raven instance (i.e. assumption (1) in the previous section). Indeed, the conditions for this result 

may be satisfied even if an instance of a black raven lowers the degree of confirmation for ‘All 

ravens are black’. In that case it just shows that non-black non-ravens lower the degree of 

confirmation even more. Thus, this result strips the Bayesian solution to bare bones, decoupling 

it from any of the usual assumptions. It then permits additional strengthening via the separate 

introduction of whatever additional suppositions may seem plausible and fitting (e.g. those that 

lead to positive confirmation). 

 For the sake of notational simplicity, let ‘H’ abbreviate ‘All ravens are black’ − i.e., 

‘(∀x)(Rx ⊃ Bx)’. Let ‘K’ be a statement of whatever background knowledge you may think 

relevant − e.g. K might imply, among other things, that ravens exist and that non-black things 

exist, ((∃x)Rx · (∃x)~Bx). One object, call it ‘a’ will be observed for color and to see whether it is 

a raven. The idea is to assess, in advance of observing it, whether a’s turning out to be a black 

raven, (Ra·Ba), would make H more strongly supported than would a’s turning out to be a non-

black non-raven, (~Ra·~Ba). We want to find plausible conditions for P[H | Ba·Ra·K]  > 

 P[H | ~Ba·~Ra·K] to hold. Equivalently, we want to find plausible conditions for the ratio 
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P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] to exceed the ratio P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K].15  

We will attack the paradox by finding plausible sufficient and necessary conditions for this 

relationship between likelihood-ratios.16 Notice that in general this relationship, 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K]  >  P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K], may hold 

regardless of whether the instance (Ba·Ra) raises the confirmation of the hypothesis − i.e., 

regardless of whether P[H | Ba·Ra·K] is greater than, or less than, P[H | K].17 Thus, no condition 

that implies black ravens raise the degree of confirmation can be a necessary condition for black 

ravens to yield greater support than non-black non-ravens. Any such positive confirmation 

implying condition goes beyond what is strictly needed here. 

                                                 
15 P[H | Ba·Ra·K] > P[H | ~Ba·~Ra·K] iff P[~H | Ba·Ra·K] < P[~H | ~Ba·~Ra·K]. So, P[H | Ba·Ra·K] 

> P[H | ~Ba·~Ra·K] iff P[H | Ba·Ra·K] / P[~H | Ba·Ra·K] > P[H | ~Ba·~Ra·K] / P[~H | ~Ba·~Ra·K] iff 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] > P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K]. 

16 Throughout the remainder of the paper our treatment will focus on the relationship between these likelihood-

ratios. However, for 0 < P[H | K] < 1, we have P[H | Ba·Ra·K] > P[H | ~Ba·~Ra·K] if and only if c[H, Ba·Ra | K] > 

c[H, ~Ba·~Ra | K], where c is any of the three measures of incremental confirmation d, r, and l. This is the result (†) 

discussed in the previous section, together with its (easy to established) converse. So, a specific qualitative 

relationship (>, or =, or <) holds between these likelihood-ratios just in case it holds between P[H | Ba·Ra·K] 

and P[H | ~Ba·~Ra·K], just in case it holds between c[H, Ba·Ra | K] and c[H, ~Ba·~Ra | K], where c is any of the 

measures d, r, and l. 

17 That is, the conditions we will establish do not imply that likelihood-ratio P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] is 

itself greater than 1. And, since this likelihood-ratio will be greater than 1 just when H receives positive support 

from (Ba·Ra) (i.e. just when P[H | Ba·Ra·K] > P[H | K]), it follows that we will not be requiring that H receive 

positive support from (Ba·Ra). (See Claim 2 in the Appendix for more about this.) 
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 We assume throughout the remainder of the paper the following very weak and highly 

plausible non-triviality conditions: 

Non-triviality Assumptions:  P[Ba·Ra | K] > 0, P[~Ba·~Ra | K] > 0, P[~Ba·Ra | K] > 0,  

0 < P[H | Ba·Ra·K] < 1, 0 < P[H | ~Ba·~Ra·K] < 1.18 

That is, we assume that it is at least epistemically (confirmationally) possible, given only 

background K, that observed object a will turn out to be a black raven; and possible that a will 

turn out to be a non-black non-raven; and even possible that a will turn out to be a non-black 

raven − a falsifying instance of H. Furthermore, we assume that finding a to be a black raven 

neither absolutely proves nor absolutely falsifies ‘All ravens are black’, nor does finding a to be 

a non-black non-raven do so. 

 Our analysis of the ravens will draw on three factors, which we label ‘p’, ‘q’, and ‘r’. 

Definition: Define q = P[~Ba | ~H·K] / P[Ra | ~H·K], define r = P[~Ba | H·K] / P[Ra | H·K], 

and define p = P[Ba | Ra·~H·K]. 

Given Non-triviality, p, q, and r are well-defined (q and r have non-zero denominators); q and r 

are greater than 0; and p is greater than 0 and less than 1. (See Lemma 1 in the Appendix.) 

 The factor r represents how much more likely it is that a will be a non-black thing than be a 

raven if the world in fact contains only black ravens (i.e. if H is true). Given the kind of world we 

think we live in, r should be quite large, since even if all of the ravens are black, the non-black 

things far outnumber the ravens. Similarly, the factor q represents how much more likely it is 

that a will be a non-black thing than be a raven if the world in fact contains non-black ravens (i.e. 

if H is false). Given the kind of world we think we live in, q should also be quite large, since the 

                                                 
18 P[Ba·Ra | K] > 0 and P[~Ba·~Ra | K] > 0 are required for P[H | Ba·Ra·K] and P[H | ~Ba·~Ra·K] to be well-defined; 

0 < P[H | Ba·Ra·K] < 1 implies 0 < P[H | K] < 1. Other implication of Non-trivality are in Appendix Lemma 1. 
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non-black things far outnumber the ravens even if some of the non-black things happen to be 

ravens. However, though plausibly r and q are very large, for now we will assume neither this 

nor anything else about their values except what is implied by the Non-triviality Assumptions − 

i.e. that r and q are well-defined and greater than 0. 

 Suppose that H is in fact false − i.e. non-black ravens exist − and suppose that a is a raven. 

How likely is it that a will turn out to be black? The factor p represents this likelihood. This 

factor may be thought of as effectively representing a “mixture” of the likelihoods due to the 

various possible alternative hypotheses about the frequency of black birds among the ravens. It 

would be reasonable to suppose that the value of p is pretty close to 1 − if there are non-black 

ravens, their proportion among all ravens is most plausibly some small percentage; so the 

proportion of black birds among ravens should be a fairly small increment below 1. However, for 

now we will not assume this, or anything else about the value of p, except what is implied by the 

Non-triviality Assumptions − i.e. that 0 < p < 1 (shown in Lemma 1 of the Appendix). 

 It turns out that the relative confirmational support for H from to a black raven instance as 

compared to that from a non-black non-raven instance is merely a function of p, q, and r. 

Theorem 1: Given Non-triviality, it follows that q > (1−p) > 0 and 

 P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
 ------------------------------------------------  = [q−(1−p)]/(p·r)  >  0. 
 P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

(This and the other theorems are proved in the Appendix.) 

 This theorem does not itself express the necessary and sufficient conditions for black ravens 

to favor ‘All ravens are black’ more strongly than do non-black non-ravens. But an obvious 

Corollary does so. 

Corollary 1:  Given Non-triviality, 
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 P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
 ------------------------------------------------   >   1  if and only if  q − (1−p) >  p·r. 
 P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

 And, more generally, for any real number s, 

 P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
 ------------------------------------------------ =  s  =  [q−(1−p)]/(p·r) > 1  if and only if 
 P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

               [q − (1−p)]  =  s·p·r  >  p·r.  

This gives us a fairly useful handle on what it takes for a black raven to support H more than a 

non-black non-raven. For instance, suppose that q = r. Then the corollary implies that the value 

of the ratio of likelihood-ratios is greater than 1 just in case q = r > 1.19 Thus, if the likelihood 

that an object is non-black is greater than the likelihood that it’s a raven, and is greater by the 

same amount regardless of whether or not every raven is black, then a black raven supports ‘All 

ravens are black’ more strongly than does a non-black non-raven. 

 Notice that none of this depends on either Ba or Ra being probabilistically independent of H. 

Such independence, if it held, would make P[~Ba | ~H·K] = P[~Ba | H·K] = P[~Ba | K] and make 

P[Ra | ~H·K] = P[Ra | H·K] = P[Ra | K]. In that case we would indeed have q = r, and so the 

result discussed in the previous paragraph would apply. However, that result applies even in 

cases where probabilistic independence fails miserably − even when P[~Ba | ~H·K]/P[~Ba | H·K] 

is very far from 1, provided only that P[Ra | ~H·K]/P[Ra | H·K] is equally far from 1. 

 What if q ≠ r? Theorem 1 tell us that q > (1−p) > 0, so q−(1−p) is positive and a little smaller 

than q itself. As long as this q−(1−p) remains larger than r, the corollary tells us that the 

likelihood-ratio due to a black raven favors H more than does the likelihood-ratio due to a non-

                                                 
19 Since for q = r, s > 1 iff q−(1−p) > p·q iff q·(1−p) = q − p·q > (1−p) iff q > 1.  
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black non-raven. Indeed q−(1−p) need only remain larger than a fraction p of r in order to yield 

the desired result. 

 It turns out that 1/p is a convenient benchmark for comparing the size of the black-raven 

likelihood-ratio to the size non-black-non-raven likelihood-ratio. 

Corollary 2:  Given Non-triviality, for real number s such that 

 P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
 ------------------------------------------------  =  s = [q−(1−p)]/(p·r), we have the following:  
 P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

  (1)  s > (1/p) > 1  iff  q−(1−p) > r 

  (2)  s = (1/p) > 1  iff  q−(1−p) = r 

  (3)  (1/p) > s > 1  iff  r  > q−(1−p) > p·r.  

Notice that when q = r, Clause 3 applies (because then r > q−(1−p)); so the value of the ratio of 

the likelihood-ratios, s, must be strictly between 1/p and 1. Alternatively, when q diminished by 

(1−p) is greater than r, Clause 1 applies; so the ratio of likelihood-ratios s must be greater than 

(1/p), possibly much greater. Indeed, looking back at Corollary 1, we see that the value of the 

ratio of likelihood ratios s can be enormous, provided only that [q−(1−p)] >>> (p·r).   

 The emergence of 1/p as a particularly useful benchmark is no accident. For, p is just 

P[Ba | Ra·~H·K], so 1/p = P[Ba | Ra·H·K] / P[Ba | Ra·~H·K]. Furthermore, if the usual 

independence assumption (2) were to hold (i.e. if P[Ra | H·K] = P[Ra | K]), it would follow that 

P[Ra | H·K] = P[Ra | ~H·K]; and then we’d have 1/p = P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K]. 

Following this thought further, the usual Bayesian analysis adds independence assumption (3) 

(i.e. P[~Ba | H·K] = P[~Ba | K]) to get P[~Ba | H·K] = P[~Ba | ~H·K]; from which we’d have 

P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] = P[~Ba | H·K] / (P[~Ra |~Ba·~H·K]·P[~Ba | ~H·K]) = 

1/P[~Ra |~Ba·~H·K] , where P[Ra |~Ba·~H·K] should be just a smidgen, ε, above 0 − because, 
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very probably, only a really minuscule proportion of the non-black things are ravens, regardless 

of whether H is true or false. Thus, the usual analysis would peg the ratio of likelihood-ratios at a 

value s = (1−ε)/p (for ε almost 0), which is just a tiny bit below 1/p − which is only within the 

range of possible values for s encompassed by Clause 3 of Corollary 2, and merely within the 

uppermost end of that range. In light of this, the benchmark 1/p in Corollary 2 provides a telling 

indicator of the extent to which our treatment supersedes the usual approach. 

 Theorem 1 and its Corollaries show that for a very wide range of probabilistic confirmation 

functions P, a black raven is more confirming of ‘All ravens are black’ than is a non-black non-

raven. These functions are so diverse that some of them even permit a black raven to provide 

evidence against ‘All ravens are black’ (i.e. make P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] < 1). Only a 

small range of these functions abide by the usual independence claims. For black ravens to be 

more confirming, all that matters are the relative sizes of q and r, as mediated by the factor p. 

 Let’s now look at one more theorem that solves the paradox by drawing on additional 

conditions that restrict the values of q and r in a plausible way. This result is less general than 

Theorem 1 and its corollaries, but closely related to them.20 

Theorem 2:  Given Non-triviality, both of the following clauses hold: 

(2.1) If P[~Ba | H·K] > P[Ra | H·K] (i.e. if r > 1) and  

O[H | Ra·K] / O[H | ~Ba·K]  >  p + (1−p)/r, then 

  P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------   >  1. 

  P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

(2.2)  If P[~Ba | H·K] ≤ P[Ra | H·K] (i.e. r ≤ 1), but either P[~Ba | K] > P[Ra | K]  

                                                 
20 One clause of this result draws on the notion of odds, O. By definition, O[X | Y] = P[X | Y] / P[~X | Y]. 
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or (at least) P[~Ba | ~H·K] > P[Ra | ~H·K] (i.e. q > 1), then 

  P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------   >  1. 

  P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

 Clause (2.1) is the more interesting case, since its antecedent conditions are a better fit to the 

way we typically judge our world to be. The first antecedent of (2.1) draws on the idea that, 

provided all of the ravens are black, a randomly selected object a is more likely (in our world) to 

be a non-black thing than a raven. This seems really quite plausible. Indeed, not only does it 

seem that P[~Ba | H·K] is merely greater than P[Ra | H·K], quite plausibly P[Ra | H·K] is close 

enough to 0 that P[~Ba | H·K] is billions of times greater than P[Ra | H·K] (though the theorem 

itself doesn’t suppose that). 

 Now consider the second antecedent to (2.1). One wouldn’t normally think that the mere fact 

that an object is black (without also taking account of whether it’s a raven) should provide more 

evidence for ‘All ravens are black’ than would the mere fact that an object is a raven (without 

taking account of its color). Indeed, generally speaking, one would expect O[H | Ra·K] to be very 

nearly equal to O[H | ~Ba·K]. However, the second condition for Clause (2.1) is even weaker 

than this. Notice that for r > 1 the term p + (1−p)/r is less than p+(1−p) = 1; and the larger r 

happens to be (i.e. the greater the ratio r = P[~Ba | H·K] / P[Ra | H·K] is), the smaller p + (1−p)/r 

will be, approaching the lower bound p = P[Ba | Ra·~H·K] for very large r. Thus, the second 

condition for (2.1) will be satisfied provided that either O[H | Ra·K] is bigger than or equal to 

O[H | ~Ba·K] (perhaps much bigger) or O[H | Ra·K] is a bit smaller than O[H | ~Ba·K]. Thus, 

this second condition can fail to hold only if (without taking account of whether it’s a raven) a 
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black object provides more than a bit more evidence for ‘All ravens are black’ than would a 

raven (without taking account of its color).21 

 Although the antecedent conditions for Clause (2.2) seem a less plausible fit to our world, it 

fills out Theorem 2 in an interesting way. Think of it like this. It is reasonable to suppose, given 

plausible background knowledge, that the non-black things will be much more numerous than 

ravens, regardless of whether all the ravens are black. But perhaps this intuition is confused. It is 

clearly guided by the fact that we inhabit a world in which there are far more non-black things 

than ravens. Problem is, if our world is one in which there are non-black ravens, we may only be 

warranted in taking the non-black things to outnumber the ravens in worlds like our − i.e. worlds 

where H is false. If, on the other hand, ours happens to be a world in which all of the ravens are 

black, then we may only be warranted in taking the non-black things to outnumber the ravens in 

worlds like ours − i.e. worlds where H is true. But we don’t know which of these two kinds of 

worlds ours happens to be. That is precisely what is at issue − precisely what the evidence is 

supposed to tell us. Nevertheless, we can easily fineness this apparent difficulty. For, the 

apparent dilemma takes it as granted that either non-black things are much more numerous than 

                                                 
21 An equivalent (and perhaps more illuminating) alternative to the second condition for Clause (2.1) is this: the ratio 

P[Ra | H·K] / P[Ra | ~H·K]  is no less than the ratio P[~Ba | H·K] / P[~Ba | ~H·K], or perhaps only a bit less − i.e. 

(P[Ra | H·K] / P[Ra | ~H·K]) / (P[~Ba | H·K] / P[~Ba | ~H·K])   ≥  (p+(1−p)/r). Here p+(1−p)/r < 1 because the first 

condition of Clause 2.1 requires r > 1. This condition (and the equivalent odds condition) is strictly weaker than the 

usual independence assumptions. For, if independence assumption (2) holds, then the P[Ra | H·K] / P[Ra | ~H·K] = 

1, and if independence assumption (3) holds, then the P[~Ba | H·K] / P[~Ba | ~H·K] = 1. Thus, the two usual 

conditions entail the much more restrictive P[Ra | H·K] / P[Ra | ~H·K] = P[~Ba | H·K] / P[~Ba | ~H·K] − i.e. 

O[H | Ra·K] = O[H | ~Ba·K]. 
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ravens if H holds, or non-black things are much more numerous than ravens if ~H holds. Thus, 

given reasonable background knowledge, for an object a about which nothing else is known, 

either P[~Ba | H·K] > P[Ra | H·K] (i.e. r >1) or P[~Ba | ~H·K] > P[Ra | ~H·K] (i.e. q >1) (or 

perhaps P[~Ba | K] > P[Ra | K]). But Clause (2.1) of the theorem already takes account of the 

case where P[~Ba | H·K] > P[Ra | H·K]. So Clause (2.2) deals with the remaining case: that in 

case P[~Ba | H·K] ≤ P[Ra | H·K] (i.e. r ≤ 1) holds, at least P[~Ba | ~H·K] > P[Ra | ~H·K], or 

maybe P[~Ba | K] > P[Ra | K] holds. This is the only condition required for (2.2), and it’s a very 

weak condition indeed. 

 Consider the disjunction of the antecedent conditions for Clause (2.1) with the antecedent 

conditions for Clause (2.2). This disjunction is a highly plausible claim – even more plausible 

than each antecedent taken alone. Given realistic background knowledge K, any reasonable 

probabilistic confirmation function P should surely satisfy the full antecedent of at least one of 

these two clauses. Thus, a black raven should favor ‘All ravens are black’ more than a non-black 

non-raven over a very wide range of circumstances. Furthermore, neither of the usual 

approximate independence conditions is required for this result. Thus, Theorem 1 and its 

corollaries together with Theorem 2 dissolve any air of a qualitative paradox in the case of the 

ravens. 

9. Quantitative Results 

 Traditional quantitative Bayesian approaches also make rather strong independence-like 

assumptions. For example, in order to establish that a non-black non-raven positively confirms 

‘All ravens are black’ by (only) a very small amount − the thesis we’ve labeled (QUANTc), 

c[H, ~Ba·~Ra | K] > 0 but very near 0 − the usual approach employs an (at least approximate) 
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independence assumption like (3) or (3′), P[~Ba | H·K] ≈ P[~Ba | K], together with an 

assumption like (1′), P[~Ba | Kα]  >>  P[Ra | K].22 

 Quantitative claims like (QUANTc) are most informative when cashed out in terms of a 

specific measure of confirmation c. That is, although several of the well-studied measures of 

incremental confirmation (d, r, and l) agree with regard to qualitative confirmational 

relationships, their quantitative scales differ in ways that that make quantitative results difficult 

to compare meaningfully across measures. So in this section we’ll restrict our discussion to a 

single measure of incremental confirmation.  In our judgment the most suitable Bayesian 

measure of incremental confirmation is the (log) likelihood-ratio measure.23 We have detailed 

reasons for this assessment (see Fitelson 2001 and 2004), but we’ll not pause to discuss them 

here. Let’s see what the likelihood-ratio measure can tell us quantitatively about the ravens. 

 In terms of the likelihood-ratio measure, and drawing on our factors p, q, and r, a reworking 

of Vranas’s (2004) result leads to the following: 

Theorem 3: If the degree to which a non-black non-raven incrementally confirms ‘All 

ravens are black’, as measured by the likelihood-ratio, is in the interval 

1 < P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] ≤ 1+ε, for very small ε > 0, then 

([q−(1−p)]/q) <  P[~Ba | H·K] / P[~Ba | ~H·K]  ≤  ([q−(1−p)]/q)·(1+). 

If instead (1−ε) < P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] ≤ 1, then  

([q−(1−p)]/q)·(1−ε) <  (P[~Ba | H·K] / P[~Ba | ~H·K])  ≤  ([q−(1−p)]/q). 

                                                 
22 Vranas (2004) provides a detailed exposition. 

23 We’ll suppress the “log”, since nothing we’ll say depends on the re-scaling of likelihood-ratios by taking the log. 
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In both cases, for large q, ([q−(1−p)]/q) ≈ 1, so P[~Ba | H·K] / P[~Ba | ~H·K] ≈ 1.24 

 (Recall that q = P[~Ba | ~H·K] / P[Ra | ~H·K], which is plausibly quite large.) 

So, the approximate independence of Ba from the truth or falsehood of H, given K, is a necessary 

condition for a non-black non-raven to provide only a very small amount of positive (or 

negative) support for ‘All ravens are black’. Vranas’s point is that traditional Bayesian 

treatments of the ravens paradox almost always employ the “small positive confirmation from 

non-black non-ravens” idea, and they inevitably draw directly on some such independence 

assumption to achieve it. But, Vranas argues, no plausible justification for assuming this (near) 

independence has yet been given by those who employ it. 

 Our approach sidesteps this issue completely. None of our results have relied on assuming 

approximate independence; indeed, our results haven’t even supposed that non-black non-ravens 

should yield positive confirmation for H, either small or large. We’ve only given sufficient (and 

necessary) conditions for a black raven to confirm H more than would a non-black non-raven. 

 In order to address the ravens in quantitative terms, let’s consider the sizes of r = 

P[~Ba | H·K] / P[Ra | H·K] and of q = P[~Ba | ~H·K] / P[Ra | ~H·K]. Given background K that 

reflects how all of us generally believe our world to be, both r and q should presumably be quite 

large, and should be very nearly the same size. However, notice that such suppositions about r 

                                                 
24 This approximate independence condition implies approximate independence condition (1’), since P[~Ba | K] = 

P[~Ba | H·K]·P[H | K] + P[~Ba | ~H·K]·(1−P[H | K]) ≈ P[~Ba | H·K]·P[H | K] + P[~Ba | H·K]·(1−P[H | K]) = 

P[~Ba | H·K]. The two versions of approximate independence are equivalent if P[H | K] isn’t extremely close to 1. 
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and q, even if we take q to precisely equal r, don’t imply the approximately independence of 

either Ra or of Ba from H or from ~H (given K).25 

 Under such circumstances, let’s consider how much more a black raven confirms ‘All ravens 

are black’ than does a non-black non-raven. 

Theorem 4: Given Non-triviality, suppose P[~Ba | H·K] / P[Ra | H·K] ≥ L > 1 (i.e. r ≥ L > 1); 

and suppose P[~Ba | ~H·K] / P[Ra | ~H·K] is very nearly the same size as r – i.e., for some δ 

> 0 but near 0, 0 < 1−δ ≤ (P[~Ba | ~H·K]/P[Ra | ~H·K]) / (P[~Ba | H·K]/P[Ra | H·K])  ≤ 1+δ  

(that is, 1−δ ≤ q/r ≤ 1+δ). Then the “ratio of likelihood ratios” is bounded as follows: 

         P[Ba·Ra | H·K]/P[Ba·Ra | ~H·K] 

(4.1) [(1−δ) − (1−p)/L]·(1/p)  < ---------------------------------------------  <  (1+δ)·(1/p).      
         P[~Ba·~Ra | H·K]/P[~Ba·~Ra | ~H·K] 
 
If in addition P[Ba | Ra·~H·K] > 1/2, then we get an improved lower bound: 

        P[Ba·Ra | H·K]/P[Ba·Ra | ~H·K] 

(4.2) (1−δ)·(1/p) − 1/L < ---------------------------------------------  <  (1+δ)·(1/p)      
        P[~Ba·~Ra | H·K]/P[~Ba·~Ra | ~H·K] 
 

In either case, for large very L > 1 and positive δ near 0 the “ratio of likelihood ratios” is 

almost exactly equal to (1/p).26 

                                                 
25 To see this clearly, supposes that P[Ra | H·K] is larger than P[Ra | ~H·K] by a very large factor f > 1 – i.e. 

P[Ra | H·K] = f · P[Ra | ~H·K] – and suppose that P[~Ba | H·K] is larger than P[~Ba | ~H·K] by the same factor – i.e. 

P[~Ba | H·K] = f · P[~Ba | ~H·K]. Then we’d have r = P[~Ba | H·K] / P[Ra | H·K] = P[~Ba | ~H·K] / P[Ra | ~H·K] = q 

even though neither Ra nor Ba would be anywhere close to independence of H or ~H. The same goes for 

P[Ra | ~H·K] larger than P[Ra | H·K] and P[~Ba | ~H·K] larger than P[~Ba | H·K], both by very large factor f > 1. 

26 Proof: (P[Ba·Ra | H·K]/P[Ba·Ra | ~H·K]) / (P[~Ba·~Ra | H·K]/P[~Ba·~Ra | ~H·K]) = (q/r)·(1/p) − [(1−p)/p]/r, by 

Theorem 1. We get the upper bounds as follow: (q/r)·(1/p) − [(1−p)/p]/r < (q/r)·(1/p) ≤ (1+δ)·(1/p). To get the lower 
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The larger r is, and the closer the size of q is to the size of r (i.e. the smaller δ is), the closer will 

be the "ratio of likelihood ratios" to 1/p. And, if instead of being nearly the same size as r, q is 

significantly larger than r, then q/r is significantly larger than 1 and (according to Theorem 1) the 

"ratio of likelihood ratios" must nearly be (q/r)·(1/p) (precisely ([q−(1−p)]/r)·(1/p)), which must 

be significantly larger than 1/p. 

 Let’s illustrate this theorem by plug in some fairly realistic numbers. Suppose, as seems 

plausible, that r is at least as large as L = 109. (L should really be much larger than this since, 

given H·K, it seems highly probable that there will be trillions of times more non-black things 

than ravens, not just billions of times more). And suppose that q is very nearly the same size as r 

– say, within a million of r, q = r ± 106, so that q/r = 1±10−3. Then Theorem 4 tells us that for 

P[Ba | Ra·~H·K] = p > 1/2, the “ratio of likelihood-ratios” is bounded below by (1−10−3)·(1/p) − 

1/109 = (.999)·(1/p) −10−9; and the upper bound is (1+10−3)·(1/p) = (1.001)·(1/p). Thus, to three 

significant figures the “ratio of likelihood ratios is (1/p) ± (.001)/p. 

 Suppose P[Ba | Ra·~H·K] = p is somewhere around .9 or .95; so (1/p) is somewhere around 

1/.9 ≈ 1.11 or 1/.95 ≈ 1.05. Then a single instance of a black raven may not seem to yield a 

whole lot more support for H than a single instance of a non-black non-raven. However, under 

plausible conditions a sequence of n instances (i.e. of n black ravens, as compared to n non-black 

non-ravens) will yield a “ratio of likelihood-ratios” on the order of (1/p)n, which blows up 

significantly for large n. E.g., for n = 100 instances, (1/.95)100 ≈ 169, and (1/.9)100 ≈ 37649 – that 

                                                                                                                                                             
bound in (4.1): (q/r)·(1/p) − [(1−p)/p]/r  >  (1−δ)/p − 1/pr  ≥  [(1−δ) − 1/L]·(1/p). To get the lower bound in (4.2), 

first notice that for p > 1/2, [(1−p)/p] < 1, so (q/r)·(1/p) − [(1−p)/p]/r  ≥  (1−δ)·(1/p) − 1/r  >  (1−δ)·(1/p) − 1/L. 
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is, for p = .95, 100 black raven instances would yield a likelihood-ratio 169 times higher than 

would 100 instances of non-black non-ravens. 

 Nothing in the previous paragraphs draws on the assumption that a non-black non-raven 

yields (at most) a tiny amount of support for H − i.e. that P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

= (1±). But this may be a plausible enough additional supposition. When it holds we have the 

following result. 

Theorem 5: Suppose Non-triviality, and suppose that r is large and q is very nearly the same 

size as r in the sense that (1−δ) ≤ q/r ≤ (1+δ), for very small δ (i.e., suppose the conditions for 

Theorem 4 hold). And suppose, in addition, that the support for H by a non-black non-raven 

is very small – i.e. 1−ε ≤ P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] ≤ 1+ε for very small ε. Then 

the support for H by a black raven must be 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] = (1±δ)·(1±)·(P[Ba | Ra·H·K] / P[Ba | Ra·~H·K]) ≈ 1/p, 

where, of course, P[Ba | Ra·H·K] / P[Ba | Ra·~H·K] = 1/p.27 

 Notice that the suppositions of this theorem permit a non-black non-raven to provide 

absolutely no support for H (ε = 0), or a tiny bit of positive support (ε > 0), or to even provide a 

tiny bit of evidence against (ε < 0). Here, rather than assuming the near probabilistic 

independence of Ra and Ba from H and ~H (given K), we’ve effectively gotten it for free (via 

Theorem 3), as a consequence of the more plausible direct supposition that non-black non-ravens 

                                                 
27 Proof: From Theorem 3 we already have that P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] = (1±ε) implies 

P[~Ba | H·K] / P[~Ba | ~H·K] = (1±ε). Then P[Ra | H·K] / P[Ra | ~H·K] = [(P[Ra | H·K] / P[Ra | ~H·K]) / 

(P[~Ba | H·K] / P[~Ba | ~H·K])] · (P[~Ba | H·K] / P[~Ba | ~H·K]) = (q/r)·(1±) = (1±δ)·(1±). And 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] = (P[Ba | Ra·H·K] / P[Ba | Ra·~H·K])·(P[Ra | H·K] / P[Ra | ~H·K]). 
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don’t confirm much, if at all. This shows how the effect of near independence is accommodated 

by our analysis, if it happens to be implied by some additional plausible supposition − e.g. the 

assessment that no more than a minute amount of confirmation could come from an observation 

of a single non-black non-raven instance. 

 Thus, under quite weak, but highly plausible suppositions, a black raven favors ‘All ravens 

are black’ more than would a non-black non-raven by about (1/p) − i.e., by about the amount that 

a black object supports ‘All ravens are black’, given that it is a raven, since 

   P[Ba | Ra·H·K] / P[Ba | Ra·~H·K] = 1/p.28 

This quantitative result, together with the results derived in Section 8, shows that a careful 

Bayesian analysis puts the paradox of the ravens to rest. 

 

                                                 
28 The factor p = P[Ba | Ra·~H·K] is a reflection of both likelihoods and priors probabilities for the whole range of 

alternative hypotheses Hf, where each says that the frequency of black things among ravens, F[Bx, Rx] = f, is a 

specific fraction f. When p is pretty close to 1, the only alternative hypotheses Hf that can have non-miniscule prior 

probabilities are those for which f is pretty close to 1 as well. So a single black raven doesn’t provide very much 

confirmation for H (i.e., only about 1/p, which isn’t much), because it takes a lot of instances to distinguish between 

H and the alternatives that have f near 1. To see this formally, consider: for each k ≥ 1 such that 1/(1−p) > k, 

p = P[Ba | Ra·~H·K] = 1> f ≥ 0 P[Ba | Ra·Hf·K] P[Hf | Ra·~H·K] = 1> f ≥0 f · P[Hf | Ra·~H·K] < 

1>f ≥ 1−k·(1−p) P[Hf | Ra·~H·K] + [1−k·(1−p)]·1−k·(1−p) > f ≥0 P[Hf | Ra·~H·K] =  

1 − k·(1−p)·1−k·(1−p) > f ≥0 P[Hf | Ra·~H·K], so 1−k·(1−p) > f ≥0 P[Hf | Ra·~H·K] < 1/k; thus 1 > f ≥1−k·(1−p) P[Hf | Ra·~H·K] 

> (k−1)/k. For example, for p = .98 and k = 5 we have that 1 ≥ f > .90 P[Hf | Ra·~H·K] > .80. Indeed, in this case one 

only gets 1 ≥ f > .90 P[Hf | Ra·K] to be as small as .80 by making P[H.9 | Ra·~H·K] = .20 and P[H.999 | Ra·~H·K] = .80, 

and P[Hf | Ra·K] = 0 for all other values of f. If non-zero priors are more evenly distributed throughout the interval 

between .9 and 1, then 1 ≥ f > .90 P[Hf | Ra·~H·K] has to be quite a bit larger than .80 (in order to permit p = .98). 
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Appendix: Proofs of Various Results. 

Claim 1:  Given the Non-trivality Assumptions, 
 
P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------    >  1 
P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

just in case P[H | Ba·Ra·K]  >  P[H | ~Ba·~Ra·K]. 

Proof: Assuming Non-triviality we have:  P[H | Ba·Ra·K]  >  P[H | ~Ba·~Ra·K]  iff  both 

P[H | Ba·Ra·K]  >  P[H | ~Ba·~Ra·K] and P[~H | Ba·Ra·K]  <  P[~H | ~Ba·~Ra·K]  iff   

P[H | Ba·Ra·K]/P[~H | Ba·Ra·K]  >  P[H | ~Ba·~Ra·K]/P[~H | ~Ba·~Ra·K]  iff   

(P[Ba·Ra | H·K]/P[Ba·Ra | ~H·K]) · (P[H | K]/P[~H | K])  >   

           (P[~Ba·~Ra | H·K]/P[~Ba·~Ra | ~H·K]) · (P[H | K]/P[~H | K])  iff   

(P[Ba·Ra | H·K]/P[Ba·Ra | ~H·K]) / (P[~Ba·~Ra | H·K]/P[~Ba·~Ra | ~H·K])  >  1. 

 

The following lemma establishes that all of the terms used to define p, q, and r are non-zero. 

Lemma 1: Given Non-triviality, it follows that P[Ra | H·K] > 0, P[~Ba | H·K] > 0, 1 > 

P[Ra | ~H·K] > 0, 1 > P[~Ba | ~H·K] > 0, and 1 > P[Ba | Ra·~H·K] > 0.  

Proof:  From Non-triviality we have:  

(i) 0 < P[H | Ba·Ra·K] = P[Ba·Ra | H·K] · P[H | K] / P[Ba·Ra | K], so P[Ra | H·K] = 

P[Ba·Ra | H·K] > 0;  

(ii) 0 < P[H | ~Ba·~Ra·K] = P[~Ba·~Ra | H·K] · P[H | K] / P[~Ba·~Ra | K], so P[~Ba | H·K] = 

P[~Ba·~Ra | H·K] > 0;  

(iii) 0 < P[~H | Ba·Ra·K] = P[Ba·Ra | ~H·K] · P[~H | K] / P[Ba·Ra | K], so P[Ba | ~H·K] ≥ 

P[Ba·Ra | ~H·K] > 0 and P[Ra | ~H·K] ≥ P[Ba·Ra | ~H·K] > 0 and P[Ba | Ra·~H·K] > 0;  
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(iv) 0 < P[~H | ~Ba·~Ra·K] = P[~Ba·~Ra | ~H·K] · P[~H | K] / P[~Ba·~Ra | K], so 

P[~Ba | ~H·K] ≥ P[~Ba·~Ra | ~H·K] > 0 and P[~Ra | ~H·K] ≥ P[~Ba·~Ra | ~H·K] > 0. 

(v) 0 < P[~Ba·Ra | K] = P[~Ba·Ra | H·K] · P[H | K] + P[~Ba·Ra | ~H·K] · P[~H | K] = 

P[~Ba·Ra | ~H·K] · P[~H | K]  <  P[~Ba·Ra | ~H·K]  ≤ P[Ra | ~H·K], so 0 < P[~Ba | Ra·~H·K], 

so P[Ba | Ra·~H·K] < 1. 

 

The next claim shows how positive support for H depends on p and q. Our solution of the ravens 

will not depend on H receiving positive support (as can be seen by comparing this claim to the 

main Theorem, which will come next). But it’s useful and interesting to see what positive 

support requires. 

Claim 2: P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K]  >  1 (i.e. H is positively supported by (Ba·Ra)) if 

and only if  P[Ra | H·K]/P[Ra | ~H·K]  >  p  (where p = P[Ba | Ra·~H·K]); and  

P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K]  >  1 (i.e. H is positively supported by (~Ba·~Ra)) if and 

only if  P[~Ba | H·K]/P[~Ba | ~H·K]  >  [q − (1−p)]/q. 

Proof: P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K]  =  P[Ra | H·K] / (P[Ba | Ra·~H·K] · P[Ra | ~H·K]) 

   =  (1/p) · P[Ra | H·K]/P[Ra | ~H·K] 

   >  1  iff  P[Ra | H·K]/P[Ra | ~H·K]  >  p. 

P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K]   

      =  P[~Ba | H·K] / (P[~Ba | ~H·K] − P[~Ba·Ra | ~H·K]) 

  =  P[~Ba | H·K] / (P[~Ba | ~H·K] − (1−p)·P[Ra | ~H·K]) 

      =  (P[~Ba | H·K]/P[Ra | ~H·K]) / (q − (1−p)) 

  =  [q/(q − (1−p))] ·  P[~Ba | H·K]/P[~Ba | ~H·K] 

   >  1  iff  P[~Ba | H·K]/P[~Ba | ~H·K]  >  [q − (1−p)]/q. 
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  

Now we prove Theorem 1. We’ll prove it in terms of two distinct names, ‘a’ and ‘b’, where ‘a’ is 

taken to be an instance of a black raven and ‘b’ is taken to be an instance of a non-black non-

raven. We do it this way to assure the careful reader that no funny-business is going on when, in 

the main text, we treat only a single instance ‘a’ to see how its turning out to be a black raven 

compares with its turning out to be a non-black non-raven. To proceed with the treatment in 

terms of two possibly distinct instances we’ll just need to suppose the following: 

P[Bb | H·K] = P[Ba | H·K], P[Rb | H·K] = P[Ra | H·K], P[Bb | ~H·K] = P[Ba | ~H·K], 

P[Rb | ~H·K] = P[Ra | ~H·K], and P[Bb | Ra·~H·K] = P[Bb | Ra·~H·K]. The idea is that we have 

no special knowledge about b that permits us to treat it probabilistically any differently than a 

(prior to actually observing it). When a and b are the same instance, as in the main text, these 

equalities are tautological. 

Theorem 1: Given Non-triviality,  q > (1−p) > 0  and      

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------ = [q−(1−p)]/(p·r)  >  0. 
P[~Bb·~Rb | H·K] / P[~Bb·~Rb | ~H·K] 

Proof: 

To see that q > (1−p), just observe that q = P[~Ba | ~H·K] / P[Ra | ~H·K]  =  

(P[~Ba·Ra | ~H·K] + P[~Ba·~Ra | ~H·K]) / P[Ra | ~H·K]  =   

P[~Ba | Ra·~H·K] + (P[~Ba·~Ra | ~H·K] / P[Ra | ~H·K])  >  (1−p),  since Non-triviality 

implies P[~Ba·~Ra | ~H·K] > 0, . 

Non-triviality also implies (via Lemma 1) p = P[Ba | Ra·~H·K] < 1; so 0 < 1−p. 

To get the main formula, observe that  

(P[Ba·Ra | H·K] / P[Ba·Ra | ∼H·K]) / (P[∼Bb·∼Rb | H·K] / P[∼Bb·∼Rb | ∼H·K])  =   
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(P[Ra | H·K] / {P[Ra | ~H·K] · p}) / (P[∼Bb | H·K] / {P[∼Bb | ~H·K] − P[∼Bb·Rb | ~H·K]})  = 

(1/p)·(P[Ra | H·K] / P[Ra | ~H·K]) · (P[∼Bb | ~H·K] − P[Rb | ~H·K] · (1−p)) / P[∼Bb | H·K]  = 

 (1/p) · (P[Ra | H·K] / P[Ra | ~H·K]) · (q − (1−p)) · ( P[Rb | ~H·K] / P[∼Bb | H·K])  = 

 (1/p) · (q − (1−p)) · (P[Ra | H·K] / P[∼Bb | H·K]) ·  ( P[Rb | ~H·K] / P[Ra | ~H·K])  = 

 (1/p) · (q − (1−p))/r. 

 

Corollary 1: Given Non-triviality, 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------   >   1  if and only if  q − (1−p) >  p·r. 
P[~Bb·~Rb | H·K] / P[~Bb·~Rb | ~H·K] 

And, more generally, for any real number s, 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------  =  s  =  [q−(1−p)]/(p·r) > 1  if and only if 
P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

             [q − (1−p)]  =  s·p·r  >  p·r. 
 
Proof: 

The first biconditional follows from Theorem 1 together with the obvious point that 

[q−(1−p)]/(p·r)  >  1  iff  q − (1−p)  >  p·r. 

To get the second biconditional just observe that (for any real number s),  

s = [q−(1−p)]/(p·r)  >  1  iff  s·p·r  = [q−(1−p)] >  p·r.   

Corollary 2: Given Non-triviality, for real number s such that 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------   =  s = [q−(1−p)]/(p·r), we have the following: 
P[~Bb·~Rb | H·K] / P[~Bb·~Rb | ~H·K] 

 (1) s > (1/p) > 1  iff  q − (1−p) > r 

 (2) s = (1/p) > 1  iff  q − (1−p) = r 
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 (3) (1/p) > s > 1  iff  r  > q − (1−p) > p·r.  

Proof: Follows easily from Theorem 1. 

 

Theorem 2:  Given Non-triviality, both of the following clauses hold: 

(2.1) If P[~Ba | H·K] > P[Ra | H·K] (i.e. if r > 1) and  

O[H | Ra·K] / O[H | ~Ba·K]  >  (p + (1−p)/r), then 

  P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------   >  1. 

 P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

(2.2)  If P[~Ba | H·K] ≤ P[Ra | H·K] (i.e. r ≤ 1), but either P[~Ba | K] > P[Ra | K]  

or P[~Ba | ~H·K] > P[Ra | ~H·K] (i.e. q > 1), then 

  P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------   >  1. 

  P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] 

Proof:  Assume Non-triviality. 

Both parts of the theorem draw on the following observation: 

Theorem 1 tells us that q > (1−p) > 0 and 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
------------------------------------------------ = [q−(1−p)]/(p·r). 
P[~Bb·~Rb | H·K] / P[~Bb·~Rb | ~H·K] 

P[Ba·Ra | H·K] / P[Ba·Ra | ~H·K] 
So  ------------------------------------------------ > 1  iff  [q−(1−p)]/(p·r) > 1  iff  

P[~Bb·~Rb | H·K] / P[~Bb·~Rb | ~H·K] 

q > p·r + (1−p)  iff  q/r > (p + (1−p)/r). We will established each of the two parts of Theorem 

2 by showing that their antecedents imply q/r > (p + (1−p)/r). 

(2.1) Suppose that r  > 1 and O[H | Ra·K] / O[H | ~Ba·K]  >  (p + (1−p)/r). Then 
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q/r  =  (P[~Ba | ~H·K]/P[Ra | ~H·K]) / (P[~Ba | H·K]/P[Ra | H·K])  = 

(P[Ra | H·K]/P[Ra | ~H·K]) / (P[~Ba | H·K]/P[~Ba | ~H·K])  = 

(P[Ra | H·K]/P[Ra | ~H·K]) · (P[H | K]/P[~H | K])   O[H | Ra·K] 

---------------------------------------------------------------  = -----------------  > (p + (1−p)/r). 
(P[~Ba | H·K]/P[~Ba | ~H·K]) · (P[H | K]/P[~H | K])  O[H | ~Ba·K] 

(2.2) Suppose P[~Ba | H·K] ≤ P[Ra | H·K] (i.e. r ≤ 1), but either P[~Ba | K] > P[Ra | K] or 

P[~Ba | ~H·K] > P[Ra | ~H·K] (i.e. q > 1). 

First we show that we must have q > 1 in any case. This is shown by reductio, as follows: 

Suppose q≤1. Then P[~Ba | K] > P[Ra | K]. 

So we have P[~Ba | ~H·K] ≤ P[Ra | ~H·K] (i.e. q ≤ 1) and  

P[~Ba | H·K] ≤ P[Ra | H·K] (i.e. r ≤1). Then 

 P[~Ba | K] = P[~Ba | H·K] P[H | K] + P[~Ba | ~H·K] P[~H | K] ≤ 

    P[Ra | H·K] P[H | K] + P[Ra | ~H·K] P[~H | K] =  P[Ra | K]  <  P[~Ba | K] 

  Contradiction !!!  

Thus we have q > 1 and r ≤ 1; so1/r ≥ 1. Then (p + (1−p)/r) ≤  p/r + (1−p)/r = 1/r < q/r. 

 

Theorem 3: If the degree to which a non-black non-raven incrementally confirms ‘All ravens are 

black’, as measured by the likelihood-ratio, is in the interval 

1 < P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] ≤ 1+ε, for very small ε > 0, then ([q−(1−p)]/q) <  

P[~Ba | H·K] / P[~Ba | ~H·K]  ≤  ([q−(1−p)]/q)·(1+). 

If instead (1−ε) < P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] ≤ 1, then  

([q−(1−p)]/q)·(1−ε) <  (P[~Ba | H·K] / P[~Ba | ~H·K])  ≤  ([q−(1−p)]/q). 

In both cases, for large q, ([q−(1−p)]/q) ≈ 1, so P[~Ba | H·K] / P[~Ba | ~H·K] ≈ 1. 



44 

 

Proof: P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] = P[~Ba | H·K] / (P[~Ba | ~H·K] − 

P[~Ba·Ra | ~H·K]) = P[~Ba | H·K] / (P[~Ba | ~H·K] − (1−p)·P[Ra | ~H·K]) = (P[~Ba | H·K] / 

P[Ra | ~H·K]) / (q − (1−p)) = (P[~Ba | H·K] / P[~Ba | ~H·K]) · q/(q − (1−p)). So, for 1 < 

P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] ≤ (1+ε), ([q−(1−p)]/q) < (P[~Ba | H·K] / P[~Ba | ~H·K]) ≤ 

([q−(1−p)]/q)·(1+ε). Also, if (1−ε) < P[~Ba·~Ra | H·K] / P[~Ba·~Ra | ~H·K] ≤ 1, then 

([q−(1−p)]/q)·(1−ε) < (P[~Ba | H·K] / P[~Ba | ~H·K]) ≤ [q−(1−p)]/q. 

 
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