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v, ,
logical (Conditional) Probability

VilA. Introduction

In the preceding chapter we encountered the view that the probability
of an event might be assessed from a balance of evidence, or lack of
evidence, in favor of the occurrences of each of an exhaustive set of
mutually exclusive alternatives, some subset of which comprises the
event. However, the classical theory lacked guidelines for the identifica­
tion of a balance of evidence and was open to inconsistent application.
Furthermore, the domain of the classical theory, although not the domains
of its reformulations, covered only those situations where the alternatives
were of equal weight; only equiprobability assignments were possible.
Spurred by the goals of classical probability and its failure to achieve
them, there has been a development, by Keynes [I], Jeffreys [2],
Koopman [3], Carnap [4], and others, of more flexible theories of logical
probability. These theories of inductive logic or nondemonstrative
reasoning aim at providing rational or reasonable assessments of the
degree to which an hypothesis H is supported by evidence E or, more
loosely, the probability that H is true given E.

The formal domain of a theory of logical probability is generally a set
of inferences between statements or propositions in a language, rather
than the set of statements themselves, and it is distinct from the domain
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of an empirical theory (set of events or experimental outcomes) and the
domain of a subjective theory (set of beliefs of an individual). Formally
the distinction between an inference-domain theory and one with a
statement-domain is parallel to that between conditional and absolute
probability. In general, we can generate a statement-domain theory from
an inference-domain theory by restricting the latter to the case of a fixed,
reasonably selected, evidence proposition (e.g., a tautology or logical
truth). However, the generation of an inference-domain theory from a
statement-domain theory is likely to be more difficult (see Sub­
section I1E3).

Logical probability attempts to explicate induction by defining a
logical relation between an evidence statement and an hypothesis
statement that is a generalization of the relations of implication and
contradiction available from deductive logic. There are several views,
however, as to the formal and interpretive nature of the evidence­
hypothesis relation.

As was mentioned in Chapter I, there is a weak formal concept of
classificatory probability. While ignored by other approaches to proba­
bility, the classificatory concept has some interest when examined from
the viewpoints of modal logic and logical probability. We then examine
Koopman's somewhat stronger theory of comparative logical probability.
While Koopman discusses an agreeing quantitative logical probability
theory, his subjective interpretation of probability gives us few guidelines
for the actual determination of logical probability. Finally, we consider
Carnap's more ambitious program for quantitative logical probability.
Carnap originally sought a unique, quantitative logical relation, called
degree of confirmation (d.c.), to measure the support one statement
lends to another. This support is seen as being of an analytical, necessary,
or logical nature rather than of a synthetic, contingent, or empirical
nature. Just as implication is determinable from the meaning of state­
ments irrespective of their truth, so should a degree of confirmation be
determined without regard to either the truth of the statements involved
or the contingent, factual aspects of the world. While it appears that
Carnap's theory is as yet incomplete, it is sufficiently developed for us
to give examples of its application.

The various theories of logical probability have in common, beyond
agreement as to the domain of probability properly being that of infer­
ences, the derivation of quantitative probability by guarded use of the
principle of indifference and the desire to justify themselves by demon­
strating some form of agreement with a relative-frequency outlook.
In Carnap's and Koopman's theories, logical probability is either an
estimate of or converges to the relative-frequency of the number of

individuals for which the hypothesis statement proved to be correct
(truth frequency). Going further, Carnap insists that.logical probability
also be pragmatically justifiable by appeal to a theory of rational decision
making. Correct reasoning is to find its 'raison d'etre in correct or rational
decisions and judgments.

VIIB. Classificatory Probability and Modal Logic

While the classificatory concept of probability ("A is probable") is
a very weak characterization of randomness or uncertainty in many
interpretations of probability and has therefore been ignored, it finds
a place in logical probability through modal logic [5, 6]. Paralleling
common usage and notwithstanding OUf earlier remarks, we will treat a
version of classificatory logical probability in which the domain is the set
of propositions rather than the set of inferences between propositions.
Although we will not do so, the ensuing discussion can be formally
applied to inferences.

In brief, a modal probabilistic logic for propositions adjoins to a
propositional logic the operator "iY''' which when prefixed to a proposi­
tion p, "flllp," is read either as "probably p" or "p is probably true."
The operator iY' is a mapping from the space of propositions into the space
of propositions. The relation between iY' and the usual propositional
logic symbols of conjunction (A), disjunction (v), negation (~),

implication (~), and parenthesis [ ( , ) ], can be axiomatized in several,
inequivalent, ways. A reasonable set of axioms for iY' might include the
following:

Ml. (lifp) (iY'(p v "1')).

M2. (lifp) ~ (iY'p A iY'(~p)).

M3. (lifp, q) (p ~ q) A iY'p ~ iY'q).

Axiom MI asserts that a certain kind of tautology is probable. In an event
language model in which the propositions describe the occurrences of
events, the counterpart of Ml is that the occurrence of the certain
event (.0) is probable. Axioms MI and M3 together assert the probability
of any tautology. Axiom M2 denies the existence of a proposition p for
which p and "1' are both probable. In terms of the usual quantitative
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probability P, M2 could be modeled for a proposition PA describing an
event A by

iff "P(A) > t."

Axiom M3 is an axiom of detachment. In the event model M3 corresponds
to "B is probable and A J B implies A is probable." While Hempel [7]
has challenged the acceptability of detachment rules in probability,
we will accept M3.

Another possible axiom is

the truth of these implications depends on extralogical considerations.
The preceding formulation of the modal operator "fI'"' is quite different

from any of the several formulations of the modalities of possibility"M"
or necessity "N." While

(V p) (p => Mp),

it is not true that

(Vp)(p => i!i'p);

M4. (Vp) (fI'p v fI'(--p)).
an event can have occurred without its having been probable to occur.
Furthermore, a consequence of MI-M4 is

(Vp)(i!i'p v ~i!i'p);

With this interpretation, suitable for the commonly encountered
problems of parametric estimation and decision-making, we see that the
reduction ,of iterated modalities is contingent upon e. and 7T and cannot
be axiomatized. Hence we cannot assert, for example,

Axiom M4 asserts that for any proposition, either it or its contradictory
is in the domain of the operator fI'. However, it might be felt that the
implications of M2 and M4 are too strong. In particular, M2 and M4
imply that

that is, for every proposition we can determine whether or not It ,s
probable. Some propositions may be neither probable nor improbable.

In modal logic we are also concerned with the formal properties of
iterated modalities, a simple example being "fI'fI'p" (read "probably p is
probable"). A possible basis for interpreting the iterated modality of
probability might be the following analogy with parametric statistical
models, wherein we do not assume M4. Assume that there is a family
{P, , eE 6!} of probability measures, one of which correctly describes
the random experiment, and that there is a prior distribution 7T on a
suitable a-field of subsets of 6! that includes singleton events. Introduce
the correspondences:

(Vp) (i!i'p = ~fI'( '"'1')).

unless we make the strange identification M = N. Hence, "probability"
and "possibility" are very different modalities.

(Vp) (Mp = ~N('"'1')),

This conflicts with the usually assumed relation

VIIC. Koopman's Theory of Comparative Logical Probability

Koopman's theory of logical probability [3] applies to inferences
between what he, informally, designates as experimental propositions
(statements about events whose truth or falsity is determinable from the
performance of an experiment). He introduces a quaternary conditional
comparative probability relation, involving two evidence statements,
E, and E2 , and two hypotheses, H, and H 2 , that is written "HIIE, ::S
H

2
1E2" and read "H, on E, is no more probable than H 2 on E2 ·"

It is presumed that ::S is prescribed by an individual, based on his
intuition, subject to rationality properties established in nine axioms.
With respect to the origin of the ::S relation, Koopman has said,

.. . the authority for the first «) proposition does not reside in any general law of
probability, logic, or experim';.tal science. And the notion presents itself that
such primary and irreducible assumptions are grounded on a basis as much of the
aesthetic as of the logical ordert [3, p. 774].

1. Structure of Comparative Probability

Statistical
Event "A" described by "PA"

L 7T(8) P,(A) > t ;;, i
Bee

7T({8: P,(A) > t}) > t

Classificatory logical probability
Proposition "PA"

fl'p => i!i'i!i'p or fl'i!i'p => i!i'p;
t Reprinted with permission of the publisher, The American Mathematical Society,

from Bulletin of the American Mathematical Society, Copyright © 1940, Vol. 46, p. 774.
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Koopman's axioms for ;$ are as follows. The axioms connecting ;$
to logical implication are

Kl. (E2 """ H.) """ (H,IE, ;$ H.IE.).

K2. (E, """ H,) A (H,IE, ;$ H.IE.) """ (E. """ H.).

The axioms extending the ;::; relation, or imposing constraints on
permitted assignments, include

K3. (Reflexivity) HIE;$ HIE.

K4. (Transitivity) (H,IE,;$ H.IE.) A (H,IE. ;$ H 31E3)

""" (H,IE, ;$ H 3IE3).

The next two axioms essentially state the product rule for conditional
probability.

K6a. Let S, and S. be non-self-contradictory statements and
(S, """ S,' """ S~), (S, """ S,' """ S;). Then

(S,IS,' ;$ S,IS;) A (S,'IS~ ;$ S;IS;) """ (S,IS~ ;$ S,IS;).

K6b. (S,IS,' ;$ S,'IS;) A (S,' IS~ ;$ S,IS,') """ (S,IS~ ;$ S,IS;).

K7. Assume the notation of K6 and S,/S~ ;$ S,IS; . If either symbol
in (S,IS,', S,'18;) has the relation ;$ to either symbol in (8,18,', S,'18~),

then the remaIning symbol in the second set has the relation ;$ to the
remaining symbol in the first set.

The remaining two axioms, omitted here, become theorems if the
ordering of ;$ is complete; that is, if for all E, , E, , H, ; and H, either
H,IE, ;$ H,IE, or H,IE, ;$ H,IE,. Koopman, of course, does not
require that all HIE pairs be comparable by ;$; even comparative
probability is not assumed to be universally applicable.

Koopman's axioms for the conditional comparative probability of
hypothesis statements given evidence statements have parallels with the
axioms presented in Section IIE for the conditional comparative proba­
bility of events. Curiously, K2 implies that the only event at least as
probable as the certain event is the certain event or equivalently, that

null-equivalent events must be null. We did not make this assumption,
nor is it usual in probability theory. Interestingly tirough in the com­
plexity approach to probability it appears that a zero probability event
never occurs [8].

2. Relation to Conditional Quantitative Probability

The transition from a "subjectively" selected comparative relation ;:$
to a quantitative probability assignment for HIE is based on the postu­
lated existence of an infinite sequence of un-scales."

Definition. A set {S, , ..., Sn} is an n-scale if and only if:

(I) At least one S, is non-self-contradictory.
(2) The conjunction 8, A 8; (to be read "s, and S;") of any two

distinct statements is a contradiction.
(3) If E is the logical disjunction of the {S,},

n

E= VSi'
i=l

where V~l Si is read as "81 or 8 2 or ... or Sn ,JJ then

(Vi,j) S,IE ;$ SiIE.

Koopman's axiom is

K8. ('In) 3{S,} an n-scale.

Axiom K8 can be recognized as a stronger form of Savage's almost
uniform partition hypothesis (Subsection IIC4). As we would expect
from the discussion of Savage's axiom, K8 only assures us of the existence
of a finitely additive, almost agreeing probability P; that is,

(HIE ;$ H'IE') """ P(HIE) ,:;; P(H'IE'),

but the reverse implication is not necessarily true. Nor does it follow
from K8 that P(HIE) has the usual property of conditional probability
that

P(HIE E') = P(H A E'IE)
A P(E'IE)'

Insight into the existence of a quantitative theory is available from the
analyses of Sections IIe and IIE, and we will not reinvestigate this
question here.
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3. Relation to Relative-Frequency VIID. Carnap's Theory of Logical Probability

4. Conclusions

A relation between Koopman's quantitative logical probability P
and relative-frequency can be drawn as follows. Consider a language
describing repeated experiments in which {a,} represent the trials, Sa,
is the statement of a "success" on trial i, and On is the integer corre­
sponding to the number of successful trials in the first n repetitions.
Koopman [9, p. 185] establishes

Theorem 1. Let the evidence E be such that

P(Sa,fE) = p.

The evidence E must be such that the order of the trials is irrelevant
(permutation invariance); the logical probability of the events of at least
one success in n trials does not depend on Which n trials we examine.
The theorem also assumes that the limit of the relative-frequency of
success actually exists, is known, and stated in E. The permutation
invariance hypothesis is just de Finetti's hypothesis of exchangeable
events (see Sections IVB and VIlE).

The significance of Theorem I is not the justification of the use of
Koopman's logical probability as the estimate of "true" relative­
frequency but rather a verification of the reasonableness of the proposed
definition of quantitative logical probability. It would be surprising if
under the stringent hypotheses of the theorem we found that
P(Sa,/E) "'" p. As for the determination of probability directly from
relative-frequency, Koopman is well aware that a conclusion asserting
a probability relation must be preceded by an antecedent assumption
involving a probability relation.

Koopman's analysis of comparative and quantitative probability
leaves to the intuition of the user the selection of the comparative rdation
and a suitable sequence of n-scales. He does not believe it possible to
supply compulsory instructions for either selection and is content to
leave matters with an axiomatic system capable of supporting an infinite
variety of comparative assignments.

Q = /\ Pi.;,

In Carnap's view the theory of logical probability concerns a quanti­
tative relation C(H/E) between an hypothesis H and evidence E, called
the degree of confirmation function (d.c.), that expresses the degree to
which E implies or supports H. Inductive reasoning or inference is a
process of assessing the degrees of confirmation of various hypotheses
given an evidence statement rather than a process of choosing the
uniquely correct or true hypothesis. The choice of a rational or "best"
d.c. is to be made on analytic or logical grounds rather than on synthetic
or empirical grounds and is to be independent of contingent facts.
In this, induction parallels deduction, wherein determinations of
implication or contradiction are made without regard to the contingent
truth of the statements. All empirical or synthetic knowledge is presumed
included in the evidence E. We reserve to Section VII G our doubts as
to the meaningfulness of this analytic/synthetic dichotomy.

Carnap structures the confirmation function C through three sets
of axioms [10]. t The first set of axioms relates to strict coherence and
arises from a desire to develop C so that it will be useful for the purpose
of making rational decisions. The second set of axioms concerns
invariance properties for C and is motivated by the desires that there be
no a priori distinguished predicates or individuals and that the relation
between propositions Hand E depends only on the subset of predicates
and individuals they reference. The third set of axioms is concerned with
ensuring the ability to learn from experience; they prescribe the behavior
of C in certain "intuitively clear" instances of inductive inference.

The sort of languages Sf for which Carnap was able to develop his
theory of logical probability most fully have finitely many individuals {a,}
and finitely many families {&'i} of one-place "primitive" predicates.
By a family &', of predicates we mean a finite collection {P,.;} of predicates
such that each individual is describable by one and only one predicate
in each family. Other terms and notations of interest to us are as follows.

Definition. A complete description of an individual is a predicate Q
of the form

t Carnap's final remarks on logical probability appear to be those in [22].

where the conjunction IS over all families.

1. Introduction

(lfn)(If{i;), {k;}) (Cy, sail/E) ::S CY, saki/E));

lim(On/n) = p.
n~oo

(2)

(I)

Then
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The set of all complete descriptions of an individual will be denoted
by fl, and q will denote the number of elements in fl. If there are K
families of predicates and f!lJi has ni elements, then

K

q=ITni'
i=l

the notion of a gamble g on a set {Hi} of mutually contradictory statements
«Vi oF j) ~ (Hi A Hi»); g assigns a numerical payoff-g(Hi) to each Hi'
The d.c. C(HjE) is to have the role of evaluating gambles through the
"expected value"

v(g) = L C(H,jE)g(H, A E)

Definition. A state description S is a proposition of the form
when

E c> VH" (Vi "" j) E c> ~(H, A H,).

where the conjunction is over all individuals.

A state description is a complete description of the world consistmg
of all the individuals {ai}' The set of all state descriptions will be denoted
by /7'.

Definition. The range 9i(H) of a proposition H is given by

[!i!(H) = {S: S E.'1', S c> H).

For example, we may take N individuals {ai } to refer to the N repe­
titions of an experiment such as the toss of a die, and assume one family
f1i' = {Pi} of predicates, where "Pia;" means "i spots appeared on
trial j." When there is only one family of predicates each Pi is itself a
cOIWlete description. A state description S would be of the form
"Aj=l PiP;" meaning "il spots appeared on trial 1 and ... and iN spots
appeared on trial N". The range of, say, Piak is given by

and contains 6N - 1 state descriptions.
After presenting and examining Carnap's axioms for logical probability

or d.c., we consider the relation of d.c. to relative-frequency phenomena,
illustrate possible applications for d.c., and proceed to a brief critique
of d.c.

2. Compatibility with Rational Decision-Making

In his later writings Carnap grew more insistent on the point that
the formal analytic theory of d.c. be compatible with applications to
rational decision-making. To relate d.c. to decision-making we introduce

Gamble g, is to be as good as g2 if and only ifV(g,) ? V(g2)' This evaluation
procedure would be more compelling if g is a <:tility function [II], but
it is not. The status quo is taken as a gamble With zero payoffs. Hence,
g is as good as the status quo if and only if ~(g) ? O. ..

The requirement of strict coherency anses from the ratlOnahty. of
rejecting gambles such that given E you can never achie.ve a pOSitive
payoff but can sustain a negative payoff. Formally we reqUlre of the d.c.
that to be useful in decision-making it satisfy

Ll. (Strict coherence)(E c> VH, , 0Ii "" j)E c> ~(H, A Hi),,

(Vi)g(H,A E) ,,;; 0, (3j) g(H, A E) < 0) c> v(g) < O.

A characterization of the class of strictly coherent d.c. is given by

Theorem 2 (de Finetti-Kemeny [12]). C is strictly coherent iff
(throughout E, E', and E" are not self-contradictory):

(I) 0,,;; C(HjE) < 00.

(2) (H.". H', E.". E') c> C(HjE) = C(H'jE').

(3) «E c> H), (E' ef.> H'») c> (C(HjE) > C(H'jE'»).
(4) (E c> ~(H A H'» c> (C(H v H'jE) - C(HjE) + C(H'jE»).

(5) C(H A E'jE) = C(HjE A E') C(E'jE).

Hence C(HjE) has the basic formal properties of a finitely additive
conditional probability providing that we adopt the convention that

(E => H) => C(HjE) ~ I.

and remember that

C(HjE) = 1 => (E => H).
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m(H) = C(H/T),

Furthermore, if we select a tautology (logical truth) T and define

The function m has the formal properties of a finitely additive probability
measure with the added constraint that

C(H/E) = LSE9j!(H AE) m(S) .
LSE9f(E) m(S)

L5. C(H/E) is invariant under any permutation of two families i!i'i and
i!i'; provided that ni = n; . . .

A strengthened version of L4 and L5 is .

L6. C(HjE) is invariant under any permutation of the complete
descriptions in fl.

Finally, Carnap suggests

L7. C(H/E) is invariant under augmentation of the set {i!i'i} of families
of predicates.

The axioms apply as well of course to m{H) = C(HjT).
To understand the implications of these invariance axioms it suffices,

since C is determined by m and m is finitely additive, to characterize
m( A7~1 Qi,a;) where the conjunction A7~1 Qi,ai would be a state descrip­
tion if !l! had only n individuals. A first result is given by

m(H A E)
m(E)C(H/E)

m(H) = I => H a tautology.

In terms of the language !l! described in Subsection VnD I, we see
that the confirmation C can be represented by

then we can represent

(lfS E 9') (m(S) > 0).

The strictly coherent confirmation functions, called regular by Carnap,
satisfy the constraint

If we wish to extend !l! to include countably many individuals, then
we have to relax the requirement of strict coherence to that of coherence:

(lfS E 9') (m(S) ~ 0), C(H/E)
LSE9f(H AE) mrS)

LSE9f(E) m(S) .

Lemma 1. If C satisfies LI-L3, then there is a unique measure F
such that

Rq~ \(PI"",Pq):p,~o,tp,=It,
1 i=l)

F(Rq ) = I,

m (61Q,p,) ~ f··· f (Up,,) F(dPI , ..., dpq),

3. Axioms of Invariance

In his attempts to narrow the class of confirmation functions to a
unique "best" confirmation function, Carnap [10] invoked several
axioms of invariance much as is done in classical probability. In terms
of the language!l! we may state Carnap's axioms as

and q is the number of complete descriptions.

Proof. All proofs of results can be found in the Appendix to this
chapter. I
Equivalently, we may write that under LI-L3

L2. C(H/E) is invariant under any permutation of the individuals {ai }. where 0, is the number of occurrences ofQi in {Qi,};

L3. C(H/E) is invariant if the set of individuals {a,} is augmented
provided that no quantifiers (If,3) appear in either H or E.

q

L 0, = n.
i=l

L4. C(HjE) is invariant under any permutation of the predicates {Pi;}
within a family i!i'i .

Given Lemma I, we can directly, but not too fruitfully, explore the
consequences of adjoining L4 and L5 to LI-L3. If there are K families
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of predicates with the ith family containing ni predicates, then define an
array

x = [Xu]

having K rows with the ith row being a permutation of (I, ... , nil. The
set ?f all such arrays will be denoted tl". The array X EO tl" applied to the
famllles of predicates {.9'i} with .9'i = {Pi ,1 , ... , Pi.n ,} induces a new
famIly {.9'/} with

Furthermore, X induces a permutation of the complete description .!2
with

Qi = APij ----+ APi,Xid = Q.".•.
j j

The set of all such permutations 7T of .!2 induced by some X EO tl" will
be denoted 7T,2 • We can now state

Lemma,2. If C satisfies LI-L4, then m is characterized by (*) with
the provIso that the measure F has the invariance property

('17T E 7T,2)F(dp" .. " dp,) = F(dP." ... , dp.,).

Lemma 3. If C satisfies LI-L5, then m is characterized as in Lemma 2
with the additional constraint on F that

Let {O'} denote the rank ordered (Oi ? Oi+1) set of frequencies {Oi}'

Corollary. If C satisfies LI-L3 and L6, then there IS a umque,
symmetric measure F such that

m (6,Q,p;) = f ... f (ilpr) F(dp, , ... ,dp,).

Unfortunately, while L6 and L7 are individually attractive they are
inconsistent.

Lemma 5. There is no C satisfying Ll-L3, L6, and L7.

The set (L1-L5 and L7) is consistent but not categoric. Further
axioms are required to define a uniquely "best" confirmation function.
Before turning to such axioms, we observe that in the impossibility of
substituting L6 for L4 and L5, when L7 is desired, lies an inadequacy
of logical probability that cannot be corrected by subsequent axioms.
Whatever d.c. we are led to will unavoidably assign degrees of confirma­
tion in a manner that depends on features of 2 which may be irrelevant
to the meaning of the hypothesis and evidence statements. That is to
say, changing the language 2 without apparently cbanging the meaning
of Hand E will lead to a change in C(HIE).

7T and 7T' the permutations induced on .!2 by X and X' (respectively),

F(dp., ' ..., dp.) ~ F(dp., ' ..., dp.;).

The role of L6 is mOre readily indicated than were the roles of L4
and L5.

lX,,;
x·= x·t,' T,1

XS,j

X = [X,.,],

if i =F r, S

if i = s
if ,= r,

4. Learning from Experience

Carnap supplemented the characterization of d.c. by postulating
properties of C which govern its behavior in certain instances of inductive
reasoning. Unfortunately, of the three axioms he proposed, the first
is implied by the second, the second does little to narrow the class of
acceptable d.c., and the third is merely Johnson's sufficiency postulate
(Subsection IVJ2, axiom Al) previously discussed in connection with
relative-frequency.

The first axiom concerns the property of instantial relevance, and in a
weak form is given by

Lemma 4. If C satisfies LI-L3 and L6, then m satisfies (*) with the
proviso that F is symmetric, that is,

('1{7T,) permutation of {I, ..., q})F(dp" ..., dp,) = F(dP." ..., dp.,). This axiom asserts that confirmation does not decrease when we add
confirming instances to the evidence.
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Lemma 6. If C satisfies LI-L3, then C satisfies L8a.

A strict form of instantial relevance would be

L8b. C (Qkan+2/Qkan+1 A (6. Q,,a,)) > C (Qkan+2/,~.Q,,a,).

Lemma 7. If C satisfies LI-L3, then C satisfies L8b if and only if
the measure F in the characterization (*) of m has nondegenerate
marginal distributions.

Hence, even strict instantial relevance does little to restrict the set of
possible confirmation functions. The reader should also consult [22,
pp. 228-251] for related analyses of which we were unaware.

A second axiom concerns the asymptotic behavior of C as the number n
of individuals {a,} increases. Let Ok(n) be the number of occurrences ofQk
in (Q, , ... , Q, )., .
L9. (\f{Qi,})l~ [c (Qka<~2 Qi,a,) - Ok~n)] = O.

The significance of L9 is immediate from

Lemma 8. If C satisfies LI-L3, then C satisfies L9 if and only if the
measure Fin (*) has as support the set

R, = I(p., ...,P,) : p, ;" 0, t p, = II.
l i=l ~

We note that L9 does not considerably narrow the class of possible
confirmation functions. Furthermore L6 is now seen to imply L8b, and
therefore the pair of axioms is no more useful than is L9 alone.

The final axiom is the Johnson sufficiency postulate [14].

Ll0. (3g) C ~kan+1/;& Qi,a,) = geOk , n).

The exact distribution of occurrences of predicates other than Qk is
irrelevant with respect to the confirmation of Qkan+1' Carnap asserts
that when there is only one family £1'. of n. predicates in 2, then the
d.c. satisfying LI-L4 and LIO can be characterized as follows:

( I n ) Ok +A/n.
(30 < A< 00) C, Qka'+1 ,~. Qi,a, = n + A .

This one-parameter family of d.c. {C,} comprises what Carnap grandly
called the continuum of inductive methods [15].

To derive the measure m, corresponding to C, , note that if T is any
tautology, then ' .

From the definition of C, we have that

I
C, (Q"a./T) = Ii'

wh.ere O· (r) is the number of individuals in (a. , ..., a,) that are described
1,r+l

by Q, . It is now immediate that
'H

The properties of m, become more apparent after rewriting. Let {O'} be
the rank ordered (0' ;" 0'+1) set of frequencies of occurrence {O,}.
With the understanding that rr~~d(i) = I, we find that

(
n ) I (n-. ) , (0' [. A])

m, ~.Q,,a, = Ii IT [r + ,1]-' nn1 + Ii .

5. Selection of a Unique Confirmation Function

If we have only a single family of predicates, and we follow Carnap,
then we can conclude with a representation for confirmation functions
that involves one free parameter AE (0, DC). Selection of a unique C,
confirmation function requires us to choose A. Carnap [15, pp. 56-79]
has indicated several arguments that might form the basis for a selection
of A, although these arguments do not all lead to the Same choice of A.
One interesting argument is that Areflects our a prlori anticipations as to
the balance between the occurrences of individuals satisfying each of
the n. predicates in the single family 17'•. Small values of Acorrespond to
anticipating that the predicates {P,,} do not occur equally often in
descriptions of {a.}, whereas large values of A correspond to anticipating
a balance in the f~equencies of occurrence of the {P,,} in descriptions of
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the individuals {a j }. Such a vague argument, however, leaves much to be
desired in an a priori theory of rational induction and rational decision­
making.

In his earlier work Carnap [4, pp. 562-577] had proposed, albeit with
little enthusiasm, a confirmation function C* as the most appropriate
choice; C* is defined through m* by

* (A Q. .) = (q - I)! m-, (o;!)
m :~\ ,p, (n + q _ I)! .

C* is easily seen to satisfy LI-L6. We may interpret m* as arising from
a desire to assign equal weight to all state descriptions having the same
set of ranked frequencies {Oi} and equal weight to all statements (called
structure descriptions) of the form

The measures m* and m, agree in assigning equal weight to all statements
having the same structure descriptions {Oi} but disagree in their assign­
ments of weights to different structure descriptions.

The grounds for preferring one confirmation function to another as
the explication of correct or rational inductive inference or as the basis
for rational decision-making include the intuitive or a priori acceptability
of the axioms used to characterize the "best" confirmation function as
well as our willingness to forgo those properties of a desirable confirma­
tion function that the "best" function does not possess. As we have seen
in the discussion of L6 and L7 there does not exist a function having
all of what might be thought to be the desirable properties of confirmation.
With respect to the choice of axioms for inductive logic, Carnapt has
commented:

(a) The reasons are based upon our intuitive judgments concerning inductive
validity, i.e., concerning inductive rationality of practical decisions (e.g., about
bets).
Therefore:
(b) It- is impossible to give a purely deductive justification of induction.
(c) The reaSOns are a priori [10, p. 978J.

The interested reader can find arguments for the acceptability of the
axioms we have presented in the referenced writings of Carnap and
Kemeny.

t P. A. Schilpp, ed., The Philosophy of Rudolf Carnap, p. 978. La Salle, Illinois: The
Open Court Publishing Co., 1963.

VilE. Logical Probability and Relative-Frequency

Carnap has suggested that while logical probability attaches only to
inferences, it can also serve as a rational estimate of empirical probability,
especially in the relative-frequency interpretation. A language !f to
describe the model of unlinked, indefinitely repeated experiments would
contain individuals {ai}, where ai is the outcome of the ith experiment,
and a single family g; of predicates {Qi} that completely describe the
possible outcomes of the experiment. An evidence statement might be
of the form /\~_, Q. a .. and we might be interested in assessin.g the'}- 1,1 '} , . •

probability of the hypothesis Qkan+1' The hypotheses ·of unhnkedness
and indefinite repeatability seem to justify L2 and L3 for C. It is then
immediate from Lemma 8 that if C satisfies L 1-L3 and the measure F
in (*) has Rq as support, then

. [( ./n ) O,(n) ]!~~ C Qkan+l!' QiPi - ~-n- = O.
3=1

Hence, if the frequency Ok(n)/n of outcomes Qk converges to Pk' then
so will C; that is, logical probability will approximate relative-frequency­
based empirical probability when the latter is "appropriate."

If we do not wish to assume that F has Rq as support and/or are wisely
not content with asymptotic arguments, then Carnap has proposed
a less direct link between logical and relative-frequency-based proba­
bility. We first define a logical probability version of an estimator.

Definition. If a functionI of the states of the world takes on the possible
values {Ii} and Hi is the hypothesis that I = Ii' then the estimate of I
relative to evidence E based on a confirmation function C is

e(j, E, C) ~ IJ,C(H,/E).

These estimates are similar to expected values, and their merits are
argued by Carnap [4, Chapter IX]. If, for example, we have a set of
statements L, , ... ,L, and wish to estimate the proportion I of true
statements in the set, given evidence E and a confirmation function C.
satisfying Ll, then letting Hm be the hypothesis that exactly m of {Li }

are true we have
, m

e(j, E, C) = L: - C(Hm/E).
m=l r

Carnap [4, p. 543] proves the following.
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Theorem 3. Under the preceding definition of terms,

, ,
L mceHmjE) = L ceL,jE).

m=l i=l

we may be interested in an hypothesis H of the form San+1 • If there
were s successes in the first n trials, then recourse-t<i c:* yields,

C*(HjE) = (s + w)j(n + q).

C,(HjE) = (s + wAjq)j(n + A).

From the representation for m, given at the end of Subsection VIID4,
we can easily calculate that

The form of this conditional probability for a future success is identical
to that of the Bayes estimator p of the probability p of success calculated
using a quadratic loss function (p - p)2 and a Beta prior density for p;
that is,

Clearly, for this problem choosing A = q would produce agreement
between c* and C, as to the degree of confirmation of the hypothesis of
a success at a future trial given the record of past outcomes. Furthermore,
C, can also be viewed as the Bayes estimator p of the probability p of
success calculated using a quadratic loss and Beta prior density for p.
Hence both c* and C, are not unreasonable confirmation functions in
that they are statistically admissible for some problem.

As an additional illustration of the use of C* and C, we consider the
following communications problem. A source or transmitter, about
which we have little prior knowledge, generates messages that are binary
sequences of length N. These messages are communicated through a
poorly understood channel and received as possibly different binary
sequences of length N. We collect data in the form of M pairs of trans­
mitted and received sequences; the pair may be thought of as a binary
sequence of length 2N with the initial segment the transmitted sequence.
We are now informed that a given (M + I )th sequence has been received
and wish to infer what has been transmitted. For example we may wish
to know the degree of confirmation for the hypothesis that more O's
were transmitted than I's. A formulation of this problem in the terms of
logical probability is as follows.

There are M + I individuals {a,} representing the pairs of transmitted
and received binary sequences of length N. There are 22N predicates {Q,},
each one specifying one of the possible binary sequences of length 2N.
Let {QiJ denote the 2N predicates describing each possible sequence of
length 2N which terminates in the observed received sequence and {Q,,}

for p([O, IJ).(q - 1)1 pW-l(1 _ p),-W-l
(w - I)l(q - w - 1)1

VHF. Applications of C* and C,

W

Sai = VQ1kai;
k=l

n

E = /\ Q,,a;,
;=1

The estimate of the proportion of true statements in a set can be
determined directly from the degrees of confirmation of the statements.

We can now relate degree of confirmation to the estimation of relative­
frequency-based empirical probability. Let there be r trials; let L, be
the statement of success on trial i; and let E be an evidence statement
implying that the outcomes of the trials are uninfluenced by their order,
that is, (Vi) C(L,!E) = C(L,!E). It is now apparent from Theorem 3 that
C(L,!E) is the estimate of the relative-frequency of success in the r
trials. Furthermore, since this conclusion is independent of r, we see
that for suitable E, C(L,!E) is also an estimate of the limit of relative­
frequency as r goes to infinity. Note that this estimate does not require
the assumption that the actual relative-frequency of success has a limit.
Thus C(L,!E) is an estimate of relative-frequency-based empirical
probability in the same sense that 2::;'~, mC(Hm!E) is an estimate of the
number of true {L,}.

Clearly, since any C satisfying L I can serve to calculate an estimate of
relative-frequency-based probability, the "estimate" is in nowise bound
to be empirically correct. Theorem 3 is only a mathematical tautology
concerning a suggestively labeled quantity and cannot, despite appear­
ances, be expected to yield empirically significant conclusions.

As a first illustration of the use of quantitative logical probability
consider an experiment such as repeated die tossing in which there is
one family {Q,} of predicates to describe the outcome of each of the
repeated trials {a,}. Let a success Sa, at trial i be defined by

a success occurs if any of w outcomes described by Qi , ... , Qi. occurs.
Given evidence E of the form •
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describe the M known pairs of transmitted-received sequences. Then
the range f!2(E) of the evidence or data is

VIIG. Critique of Logical Probability

To calculate C,(HJE) through m, as represented at the end of Sub­
section VIID4 we need to introduce the following.

Hence we have found logical probabilities for the (M + I)th trans­
mitted sequence to contain more D's than 1's given the received sequence
and M transmitted-received pairs of sequences. Both C* and C, yield
probabilities that differ from a straight relative-frequency assessment of
n,Jn•.

n3 number of distinct Q; in E such that Q; describes a sequence with
more O's sent than 1's and a received sequence that agrees with that of

aM+1o
n. number of distinct Q; in E such that Q; describes a sequence in

which the received sequence agrees with that of aM +1 •

Recourse to m, yields

Possible roles for logical probability'include

(1) formalization of inductive reasoning via a measure of inferential
support,

(2) source of rational estimates of empirical probability,
(3) explication of classical probability,
(4) basis for rational decision-making.

Too little is known about the modal and comparative concepts of logical
probability to discuss them here. Extensive discussions as to whether
present concepts of quantitative logical probability can, or do, fulfill any
of these roles are available in Hempel [7], Kyburg [16], and Schilpp [10],
and are not reproduced here. While we will indicate a few objections to
the way present concepts of logical probability fulfill the above-men­
tioned roles, it is more difficult to determine whether these objections
must bear against any concept of logical probability.

A serious objection to Carnap's concept of logical probability is that
it is not applicable to the full range of uses of inductive reasoning. The
limited languages that are treated by Carnap are unequal to the descrip­
tion of most of the usual scientific observations such as those involving
numerical measurements. Hence we cannot apply Carnap's logical
probability to discuss the degree to which laboratory observations support
an hypothesis or theory. Furthermore, in Carnap's formulation all
"laws" (propositions involving universal quantifiers) always have a zero
degree of confirmation given any finite number of supporting instances.
Albeit, universal statements being of no importance in the formulation
of real problems, we are not inclined to take this latter defect of the
Carnapian concept of logical probability seriously.

Reformulations of logical probability by Scott and Krauss and by
Hintikka promise to avoid the aforementioned difficulties. Scott and
Krauss [17] and Krauss [18] avail themselves of model theory in an
attempt to define logical probability for richer and more realistic
languages. Hintikka [19] has developed a version of logical probability
wherein universal statements can have positive degrees of confirmation.

While we feel that logical probability may serve to explicate an
objective version of classical probability, through an algorithmic assess­
ment of the support provided by statements of prior knowledge for the
various alternative outcomes, we are less inclined to agree that logical

1. Roles for Logical Probability

if N is even.

if N is odd,n, + 2N - 1

n, + 2N

n, + ~ (2N
- (;:2))

n, + 2N

C*(HJE) =

The range f!2(H A E) of the conjunction of hypothesis H [more O's sent
than I's in the (M + I)th message] and evidence E is the subset of f!2(E)
for which Q;, described only those sequences where there are more O's
than I's in the first N symbols and the observed (M + I)th received
sequence for the remaining N symbols. If n, is the number of the M
observed transmitted-received sequences for which the first N symbols
contained more O's than I's and the last N symbols agreed with the last N
symbols of the (M + I)th sequence (whose initial segment we are
inferring), and n. is the number of observed sequences agreeing in the
last N symbols with the (M + I )th sequence, then use of m* yields
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probability is the proper basis for estimating empirical (say relative­
frequency-based) probability. There is a significant informal and sub­
jective component in the selection of good estimates that may be
uneliminatable; an experimenter can rarely write out in some simple
language all he knows about an experiment.

There may be a role for logical probability in rational decision-making,
although the form it will take is as yet unclear. The Anscombe-Aumann
development of subjective probability (Section VIIIC) suggests one way
of linking logical probability with decision-making. However, this link
has yet to be detailed and the resulting relationship justified.

2. Formulation of Logical Probability

Questions of formulation concern the axiomatic structure of logical
probability and the manner in which a choice is made, consistent with
the axioms, of a logical probability relation to resolve a specific problem
of inductive inference. Our discussion of modal logical probability
completely ignored the problem of selecting a specific modal quantifier [JjJ

and thus represents but a fragment of a useful theoq. Koopman supplied
us not only with a weak axiomatization of comparative logical probability
but also with the directive that the specific choice be made subjectively.
However, in contrast to the development of subjective probability in
Chapter VIII, where the choice of subjective measure is guided by the
desire for good decisions, Koopman in no way guides our subjective
selection of order relations. At best Koopman has motivated and
supplied a starting point for a useful theory of comparative logical
probability.

Carnap and others attempted axiomatic specifications of quantitative
logical probability or degree of confirmation (d.c.). Carnap's original
objective of a categoric axiomatization to uncover the unique logically
necessary d.c. would have resolved the problem of a specific choice of
relation. However, the goal of a logically necessary d.c. seems to have
been abandoned in the. face of criticisms that were leveled at all of the
candidates. Furthermore, results such as Lemma 5 suggest that there
cannot exist a "best)) d.c. function. The many desirable properties of
rational inductive inference procedures, as reflected in the axioms for
logical probability, are inconsistent. Failing a "best" choice of d.c.,
we need to know more about the bases for choosing between those d.c.
functions satisfying the agreed upon axioms so as to resolve specific
problems of inductive inference properly. There has been some discus­
sion of this question, particularly as it affects C, [15, pp. 56-79]. However,

we expect that it will prove to be very difficult to illuminate this subject.
Turning to the axiomatic formulations themselves~e'have previously

noted the existence of systems of logical probability intended to overcome
certain problems with Carnap's construction [17,18]. A generic difficulty
with these various formulations is the dependence of the re)3ulting d.c. on
the choice of language in which the evidence and hypothesis are expressed.
Syntactical considerations intrude on questions that seem to be purely
semantical. (This difficulty is analogous to the irksome dependence of
complexity evaluations on the arbitrary choice of AUTM.) Possibly
though this conflict with Salmon's seemingly reasonable criterion of
linguistic invariance (Subsection IVJ2) is inevitable and its direct
confrontation a virtue of the approaches to logical probability.

3. Justifying Logical Probability

A widely espoused criticism of logical probability is, in the words
of Black [20],

The most difficult question that any "logical" theory has to answer is how a priori
truths can be expected to have any bearing upon the practical problem of anti­
cipating the unknown on the basis of nondemonstrative reasons.

Carnap responded to this objection by pointing out that the degree of
confirmation of a statement by an evidence statement E is not a priori
in that it contains the synthetic content of our asserting E to be true.
We might also note the relevance, to a defense of logical probability, of
the difficulties encountered in selecting a unique d.c. While Carnap
desires a definition of a d.c. that can be stated in purely logical terms
without reference to contingent matters of fact, the choice of a best d.c.
seems to involve extralogical, intuitive considerations. These considera­
tions are at least in part to be distilled from our awareness of the pur­
poses of a theory of probability as well as our extensive experience with
inductive reasoning and are not a priori; vide the arguments for choosing
,\ in C, [15, pp. 56-79]. Of course, this defense is also an attack against
the conception that the best d.c. could be selected on logical or analytic
grounds alone. Perhaps part of the difficulty here stems from the dubious
assumption of a dichotomy between the analytic and the synthetic [21].

It is essential that the relations between logical probability, empirical
probability, and practical concerns be clarified and strengthened, if
possible. We noted in Section VIlE that logical probability is compatible
with relative-frequency-based empirical probability. Albeit our studies
in Chapter IV and elsewhere lead us to take little comfort from this.
More significant has been Carnap's interest in pragmatically justifying
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logical probability as leading to a fair betting quotient, or better yet,
as appropriate for calculating the expected utilities of decisions. However,
the justification of logical probability through a role in rational deeision­
making does not seem to have been fully argued, the several invocations
of such a justification notwithstanding. Strict coherence, when possible,
and it is not always possible, may be necessary, but it is hardly a sufficient
guide to decision-making. Overall, Carnap's conception of logical
probability seems most nearly to be a clarification and refinement of
classical probability.

The attempt to base a theory of probability on its role in. decision­
making is at the root of the theories of subjective probability. As we see
in Chapter VIII, subjective theories typically admit the use of individual
judgment, as did Koopman, and do not yield the uniquely "correct"
probability distribution that was Carnap's original goal.

VII. Appendix: Proofs of Results

Lemma 1. If C satisfies Ll-L3, then there is a unique measureF such
that

R." = I(p', ... ,P.): p,;;' 0, t Pi = 11,l ~=l ~
F(R.) = I;

m (~,Q,,a,) = J---S (fiPii ) F(dp' , ..., dP.),

and q is the number of complete descriptions.

Proof. By Ll, C can be represented by a measure m. By L2 and L3
true for all n, m is an exchangeable measure. The representation of m
is that stated for exchangeable measures by de Finetti and Hewitt and
Savage [13].

Lemma 2. If C satisfies Ll-L4, then m is characterized by (*) with
the proviso that the measure F has the invariance property

('f,r E Tr.2)F(dp', ..., dP.) = F(dp., , ..., dP.,).

Proof. From L4

Hence by (*)

f··· f (ilp1') F(dp' , ... , dp.) = f··· f (ilp~;,) F(dp, , ...; dp.).

Note that each permutation 17 E 'TT.!£ has an inverse 77'-1 E;12 . Changing
variables in the right-hand side of the preceding equation yields

Since the measureFis unique, the lemma follows with Tr-' in place of 77. I

Lemma 3. If C satisfies Ll-L5, then m is characterized as in Lemma 2
with the additional constraint on F that

x = [X",],

if i "" r, s
if i = s
if '~r,

Tr and Tr' the permutations induced on !1 by X and X' (respectively),

F(dp." ..., dP.,) = F(dP." , ..., dP.,.).

Proof. Parallels that of Lemma 2 and is omitted. I

Lemma 4. If C satisfies Ll-L3 and L6, then m satisfies (*) with the
proviso that F is symmetric, that is,

(\f{Tril permutation of {I, ..., q})F(dp, , ..., dP.) ~ F(dp., ' .." dP.,J.

Proof. This lemma is a corollary to Lemma 2 restricted to the case of
only one family of predicates. I

Lemma 5. There is no C satisfying Ll-L3, L6, and L7.

Proof. The assumption that we can adjoin arbitrarily many families
of predicates to !l! and still leave m(A Q"a;) invariant corresponds,
through Lemma 4, to assuming the existence of an infinite family of
consistent, symmetric measures {Fq(dp" ... , dpq)). Hence from the
de Finetti and Hewitt and Savage [13] characterization of symmetric
(exchangeable) families of measures we have the following.
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There exist a probability measure H and a conditional probability
measure G such that

(Vq)(VA)F.(A) = f H(d~) J---J fI G(dpi I ~).
A ~=l

However, we assert that this characterization of Fq is incompatible with
the re.quirement

(Vq)F.(R.) = I.

we have that

C (Qkan+2/QT!'n+, A (&Qi,a,)) = EXyn+2jEXyn+l,

C(Qkan+2/AQiP') = EXyn+l/EXyn..
,~,

Note that the random variables X and Yare nonnegative. Hence, by
Schwarz's inequality,

To verify the asserted incompatibility, consider the following mutually
exclusive and exhaustive possibilities:

It is immediate that

(a.e. F).

(a.e. F).(Vk) Pk is a constant

Lemma 7. If C satisfies LI-L3, then C satisfies L8b if and only if
the measure F in the characterization (*) of m has nondegenerate
marginal distributions.

Proof. Examination of the proof of Lemma 6 shows that equality
between confirmations occurs only when there is equality in the Schwarz
inequality

Hence the condition for equality between the confirmations is that

As is well known, there is equality in the Schwarz inequality only if
there is linear dependence; that is,

The lemma follows immediately. I

Under (I),

F. O(P" ·..,P.): it. Pi> II) > fA H(da)!e G(dP Ia)l' > o.

(I) (3A) (H(A) > 0) (V~ E A) r G(dp I ~) > 0;
11.

fll'
(2) (3A) (H(A) > 0) (V~ E A) 0 G(dp I ~) > 0;

(3) (3A)(H(A)~ 1)(V~EA)G(p=~la) ~ I.

Lemma 6. If C satisfies LI-L3, then C satisfies L8a.

Proof. From the characterization (*) of m and introducing the notation

Both of these conclusions conflict with F.(Rq) = I, leaving only (3).
However, (3) is not invariant with respect to the number q of complete
descriptions and therefore violates L7. I

F. (i(p, ,...,P.) : t,Pi < I\» o.

Similarly, under (2),

Y=p.,
Lemma 8. If C satisfies LI-L3, then C satisfies L9 if and only if the
measure Fin (*) has as support the set

R. = I(p" ...,P.): Pi;;' 0, t Pi = I I.
~ i=l)



208 VII. LOGICAL (CONDITIONAL) PROBABILITY VII, APPENDIX: PROOFS OF RESULTS 209

Proof. We first show that if F as Rq as support and m satisfies LI-L3,
then m satisfies L9. Define

,
f(p) = L p, !ogp"

i=1

where Pi = O,jn and p denotes the vector (p, , ... , pq). It follows from
the continuity and concavity of log x that f is continuous and concave
in the interior of Rq • It is easily shown that I has a unique maximum
in Rq at p = p, where p denotes the vector (p" ..., pq). Furthermore,
for all q and 0 <s; A <s; 1,f(Aq + (1 - A)p) is strictly decreasing in A.
To verify these statements, note that

8f(Aq + (I - A)p) = t P,(qi - p,) ,
8A ,~, Aq, + (I - A) p,

and write

p, = -A(q, - p,) + (I - A) p, + Aq,

to find

8f' '(q, - p,)'
8A = L (q, - p,) - AL Aq + (I _ A) p .

t=l t=l t i

Noting that as q and pare hoth in Rq ,

L (q, - p,) ~ 0,

From the preceding inequality we conclude that

(Vp,.) sup f(p) <S; f(p) - .'/2.
p¢B(p"J

Define

R' = {(p" ...,p,): (V,)p,;;" 8} n R,.

From the continuity ofIon R' and the compactness of R' we have

(v. > 8 > 0)(3yo > O)(Vp E R,)(Vp E B(p, Yo) n R')f(p) > f(p) - .'/4.

Furthermore, from the hypothesis that F has Rq as support we can
choose Yo such that .

(V. > 8 > 0)(3c".,)(Vp)F(B(p, Yo) n R') ;;" c"", > O.

Noting that

we see that for 0 < y <S; min(., Yo),

f"I e,f(P'F(dp" ..., dp,) ;;" f"·I e'fF(dp" ... , dp,)
R(p ••) B(p,y)

;;" Cy .' exp(n[f(p) - .'/4]),

I·..I en/'P'F(dp" ... , dp,) <S; exp(n[f(p) - "/2])F(B) <S; exp(n[f(p) - .'/2]).
B(p,()

we see that 81/8A is strictly negative unless q = p.
An inequality that will be useful to us is derived as follows. Note that

(Vq, pER,) Aq, + (I - A) p, <s; I,

to conclude that

Hence,

f .. · i_exp[nf.(p)]F(dp" ..., dp,)
(V{P.)) lim "(P...) <S; lim

'.00 f .. · i exp[nf'(p)]F(dp" ..., dp,) '.00
1J(Pll'£)

where

exp(-n.'/4) = 0,

cYo.<'l

8f e ,
8A <S; -A L (qi - p,) .

i=1
P. ~ (p,(n), ... , pin)),

,
f.(p) = L p,(n) logp, .

£=1

Hence,

'8f 'f(q) = f(p) + I 8A dA <S; f(p) - 1/2 L (q, - Pi)'·
o ~=l

Define the open ball B(p, .) in R, with center p and radius € by

B(p,,) ~ !(P" ...,p,): p, ;;" 0, f'p' = I, it, (p, - p,)' < .,\.

Applying this result to the d.c. C we find that

(V. > O)(V{Pn}) ~~~ [c (Qka,/;~, Q,,a;)
f ... f p. exp(nf.)F(dp" ..., dP,)]

_ B(pll'!) = O.
f ... f exp(nfn)F(dp, , ..., dp,)

B(p.. ,E:)
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It follows upon taking E arbitrarily small that

and the sufficiency of the hypothesis is now apparent.
To verify the necessity that F have Rq as support we need only assume

to the contrary that

(3p, E)F(B(p, E)l = o.

It can now be easily shown by examining a sequence {Qi,} such that
piCn) ->- Pi that

C - Pk(n) +> O.

We omit the details. I
The proof of the preceding lemma could also have been recast in
probabilistic terms involving the convergence of E(p. I {OiCn)}).
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