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To conclude, the analysis above suggests that both solutions above may be seen |
to conflate somehow. For, if common cause completability is applied to the “Venice-
Britain’ scenario we obtain physically meaningless screening-off events. And this
suggests that the “Venice-Britain® correlation is just an artificial one. Thus, whether
“Venetian sea levels and British bread prices’ does constitute indeed a genuine coun-
terexample to RPCC is just a matter of whether or not purely formal correlations are
in need of (causal} explanation. : :

Chapter 30
C01nc1dences and How to Reason About Them

Elliott Sober
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30.1 A Familiar Dialectic

The naive see causal connections everywhere, Consider the fact that Evelyn Marie
Adams won the New Jersey lottery twice. The naive find it irresistible to think
that this cannot be a coincidence. Maybe the lottery was rigged or perhaps some
uncanny higher power placed its hand upon her brow. Sophisticates respond with an
indulgent smile and ask the naive to view Adams’ double win within a larger per-
spective. Given all the lotteries there have been, it isn’t at all surprising that someone.
would win one of them twice. No need to invent conspiracy theories or invoke the
paranormal—the double win was a mere coincidence.

- The naive focus on a detailed description of the event they think needs to be
explained. The New York Times reported Adams’ good fortune and said that the
odds of this happening by chance are 1 in 17 triilion; this is the probability that
‘Adams would win both lotteries if she purchased a single ticket for each and the
drawings were at random. In fact, the newspaper made a small mistake here. If
‘the goal is to calculate the probability of Adams’ winning those two lotteries, the -
reporter should have taken into account the fact that Adams purchased multiple tick-
ets; the newspaper’s very low figure should have been somewhat higher. However,

e sophisticated response is that this modest correction misses the point. For sophis-

:ticates, the relevant event to consider is not that Adams won those two lotteries, but

‘the fact that someone won two state lotteries at some time or other. Given the many

‘millions of people who have purchased lottery tickets, this is “practically a sure

thing” (Diaconis and Mosteller 1989, Myers 2002).

Another example of reasoning about coincidence in which the same dialectic

nfolds begins with the fact that my birthday (06061948) occurs at the 16,769,633th

lSoher (=)
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position of the decimal expansion of 7 (not counting the initial “3”).! The proba-
bility of this occurring is very small, if numbers appear at random in the decimal
expansion. The naive conclude that my birthday’s occurring at that exact position
cannot be a mere coincidence; perhaps my date of birth was so arranged that the
number 16,769,633 would provide me with an encrypted message that points the
way to my destiny. The sophisticated reply that the probability of my birthday’s
occurring somewhere in the first 100 million digits is actually very high-—about
2/3. Given this, there is no reason to think that my birth date’s showing up where it
does is anything but a coincidence.

30.2 How the Naive and the Sophisticated Reason

The naive and the sophisticated? agree about one thing but disagree about another.
Both rely on a rule of inference that I will call probabilistic modus tollens. This is
the idea that you should reject a hypothesis if it tells you that what you observe is
enormously improbable. The naive think that the hypothesis of Mere Coincidence
strains our credulity too much, Since the hypothesis of Mere Coincidence says that
the probability of Adams’ double win is tiny, we should reject that hypothesis.
Sophisticates grant the authority of probablllsnc modus tollens, but contend that the
hypothesis of Mere Coincidence should be evaluated by seeing what it says about
the observation that someone wins two state lotteries at some time or other, Since
this is very probable according to the hypothesis of Mere Coincidence, we should
decline to reject that hypothesis. The naive and the sophisticated thus seem to agree
on the correctness of probabilistic modus tollens. Their disagreement concerns how
the event to be explained should be described. .

Sophisticates avoid rejecting the hypothesis of Mere Coincidence by replacing a
. logically stronger description of the observations with one that is logically weaker.
The statement -

(1) Evelyn Adams, having bought four tickets for each of two New Jersey lotteries,
wins both.

is logically stronger than the statement

(2) Someone at sometime, having bought some number of tickets for two or more
lotteries in one or more states, wins at least two lotteries in a single state,

Itis a theorem in probability theory that logically weakening a statement can’t lower
its probability—the probability will either go up or stay the same. In the case at

YGoto http:/fwww.angio.net/pi/piquery to see if your birthday appears m the first 100 million

digits.

2 The naive and the sophisticated are characters in my story; I do not mean to suggest that all

sophisticated thinkers in the real world reason exactly in the way I'l] describe the sophisticated as
reasoning.
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.hand the hypothesis of Mere Coincidence says that (1) is very improbable, but that

(2} is very probable. .

Diaconis and Mosteller (1989, 859) say that the relevant principle to use when
reasoning about coincidences is an idea they term the Law of Truly Large Numbers.
This says that “with a large enough sample, any outrageous thing is likely to hap-
pen.” They cite Liitlewoed (1953) as having the same thought; with tongue in cheek,
Littlewood defined a miracle as an event whose probability is less than 1 in a mil-
lion. Using as an example the U.S. population of 250 million people, Diaconis and
Mosteller observe that if a miracle “happens to one person in a million each day,
then we expect 250 occurrences a day and close to 100,000 such occurrences a
year.” If the human population of the earth is used as the reference class, miracles
can be expected to be even more plentiful,

30.3 Two Problems for Sophisticates

Sophisticates bent on using probabilistic modus tollens should be wary about the
strategy of replacing a logically stronger description of the observations with one
that is logically weaker. The reason for wariness is that this strategy allows one
to decline to reject hypotheses of Mere Coincidence no matter what they are and
no matter what the data-say. Even when there is compelling evidence that the
observations should not be explained by this hypothesis, the hypothesis of Mere
Coincidence can be defended by logically weakening the observations..

Consider, for example, Alfred Wegener's (1924) defense of the hypothesis of
continental drift. Wegener noticed that the wiggles in the east coast of South
America correspond rather exactly to the wiggles in the west coast of Africa. The
pattern is “as if we were to refit the torn picces of a newspaper by matching their
edges and then check whether the lines of print run smoothly across (Wegener 1924,

“T7).” Wegener also noticed that the distribution of geological strata down one coast

maiches the distribution down the other. In addition, he observed that the distri-
bution of organisms down the two coasts—both fossilized and extant—shows the
same detailed correlation, Wegener argued that this systematic matching should not
be explained by the hypothesis of Mere Coincidence. His preferred alternative was
that the continents had once been in contact and then had drified apart.

Wegener encountered intense opposition from geophysicists, who didn’t see how

: continents could plough through the ocean floor. T will return to this criticism later.
- My present point is that it would have been bizarre to counter Wegener’s argument

by weakening the data. A sophisticate bent on retaining the hypothesns of Mere
Coincidence could point out that there are billions of planets in the universe that
contain continents separated by wide oceans. If wiggles in coast lines and distri-
butions of geological strata and of organisms are in each continent independently
caused, there surely will exist at least one pair of continents on some planet or
other that exhibits the kind of matching that Wegener found so interesting, With the
data suitably weakened, probabilistic modus tollens no longer tells you to reject the
hypothesxs of Mere Coincidence.”
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impress them; their trick of weakening the data works against all comers, What we
need is guidance on when the description of the data may be weakened, not the
imperative to always do so or the permission to do so whenever we please.

Statistics provides guidance on the question of when one’s description of the
data may be weakened. It is given in the theory of sufficient statistics. R.A. Fisher
{1959) intreduced this idea in the context of his theory of point estimation. Suppose
you want to estimate a coin’s probability 8 of landing heads when tossed and you
assume that the tosses are independent and identically distributed (i.i.d.) — each toss
has the same probability of landing heads and the results-on some tosses don't infly-
ence the probabilities of others. To figure out which estimate is best, you toss the
coin 1000 times, say, and obtain a particular sequence of heads and tails. Do you
need to use this exact sequence as your description of the data, or can you just
attend to the number of heads (which, let us suppose, was 503)7 As it happens, this
weaker description suffices; it is a sufficient statistic in the sense that it captures all
the evidentiaily relevant information that the exact sequence contains. More specifi-
cally, the frequency of heads is a sufficient statistic in the context of using maximum
likelihood estimation (MLE) as one’s method for estimating 6 because

MHARDING

A similar point is illustrated by the accompanying cartoon (reprinted here with
the kind permission of its creator, Nick Harding). If life forms from another planet
turn out to speak English, the irresistible inference will be that we and they have
had some sort of prior contact. The idea that the detailed resemblance of the two _
languages is a Mere Coincidence strains our credulity too much. However, if we
wish to hold fast to the belief that the resemblance is a Mere Coincidence, we can .
avold having probabilistic modus tollens force us to reject that hypothesis merely
by weakening our description of what the two languages have in common, Instead
of focusing on the fact that the two languages match in a thousand specific ways,
we can restrict our attention to the modest fact that both contain nouns, We then can
reply that it isn’t at all surprising that two languages should both contain nouns if
they developed independently; after all, nouns are useful.? Notice that I just weak-
ened the description of the data in a way that differs from the kind of weakening
I considered in connection with Wegener. I didn’t ask what the probability is that
somewhere in the universe two languages would match even though they evolved
independently {which is not to deny that that question will lgad to the same con-
clusion). This brings out a further problem with the strategy of weakening the datd
at will. There are many ways to weaken the data. Which weakening should one
employ? Why not simply replace the data with a tautology? ‘

I began by noting that the naive seem to think that nothing is a Mere Coincidence:
Sophisticates who constantly weaken their description of the data to avoid rejec
ing hypotheses of Mere Coincidence seem to think that everything is a Mer¢’
Coincidence. These sophisticates are not just sophisticated—they are jaded. Noco
relation, no matter how elaborate and detailed, impresses them, In fact, none ca

3) Pr(the exact sequence|d = p) __ Pr(the number of heads|@ = p)
Pr(the exact sequence|f = g)  Pr(the number of heads|8 = ¢)

In ail these conditional probabilities, I assume that the coin was tossed 1000 times.

The reason (3) is true is that ~ .
o) Pr(the exact sequence|f = x) = x°% (1 — x)*97

and

%) Pr(number of heads|f = x} = ( 15%0%0) 20 (] — )47

This is why the left-hand and right-hand ratios in (3) must have the same value,
The maximum likelihood estimate of 6 is the same whether you use the stronger or
the weaker description of the data, and the likelihood ratio of that best estimate,
compared to any inferior estimate, will be the same, again regardless of which
description of the data you use. Notice that what counts as a sufficient statistic
depends on the method of inference you use and on the range of possible hypothe-
ses you want to consider.? In the example just described, MLE is the method used
and the assumption is that tosses are i.i.d. If MLE were used in the context of rest-
ing whether tosses are independent of each other, the number of heads would not
be a sufficient statistic; information about the exact sequence would additionally be
relevant. s

4 Notice also that the argument that appeals to (3) to show that the number of heads s a sufficient
statistic depends on using the likelihood ratio as the relevant method for comparing the 1wo esti-
maies. If the likelihood difference were used instead, the corresponding equality would not be true.
How one measures weight of evidence matters; see Fitelsan (1999) for further discussion.

3 Darwin (1859, ch. 13) argued that adaptive similarities between species provide poor eviden
for common ancestry and that it is useless and deleterious similarities that provide more poy
erful evidence; see Sober (2008, 2011) for discussion. Darwin (1871, ch. 6) noticed the parall
epistemological problems that connect historical linguistics and phylogenetic inference.
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With these ideas in mind, let’s return to the example of Evelyn Marie Adams’
double win .in the New Jersey lottery. If we use probabilistic modus tollens, the
weakened description of the data given in (2) is not endorsed by the idea of sufficient
statistics, The point is that shifting from (1) to (2) makes a difference in the context
of probabilistic modus tollens, even though shifting from (4) to (5) does not matter
from the point of view of MLE under the i.i.d. assumpfion, Shifting from a highly
specific description of the data to one that is logically weaker is often permissible,
but that is not enough to justify the sophisticate’s pattern of reasoning about Adams.
If a statistic is sufficient, you are permitted to shift to that weaker description of the
data; you are not obliged to do so. The shift is permissible when and only when it
doesn’t change what you infer,

The problem of whether to weaken one’s description of the evidence, and how
to do so, is a problem for the sophisticate, not for the naive. However, there is a
second problem that both must face—both rely on probabilistic modus tollens. This
is a form of inference that no one should touch with a stick. The similarity between
modus tollens and its probabilistic analog may suggest that the latter must be legit-
imate because the former is deductively valid; however, this is an illusion. Modus
tollens says that if H entails O and O turns out to be false, then you should conclude
that H is false. Probabilistic modus tollens says that if Pr(O | H) is very high and O
turns out to be false, that you likewise should conclude that H is false. My beef with
probabilistic modus tollens is not that the conclusion does not deductively follow

from the premises. I've drawn a double line between premises and conclusion in -

Prob-MT below to acknowledge that this is so, but that isn’t enough to rescue the
principle. Rather, my objection is that the occurrence of an event that a hypothesis
says is very improbable is often evidence in favor of the hypothesis, not evidence
against it. What is evidence in favor of H cannot be a sufficient reason to reject H.

If H then O. Pr(O|H) isvery high.
(MT) not-O. (Prob-MT) not-O.
not-H. : not-H.

Consider, for example, the use of DNA testing in forensic contexts, DNA evi-
dence can be used to draw an inference about whether two individuals are related
(for example, in paternity suits) or to draw an inference about whether a person sus-
pected of a crime was at the crime scene. In both cases, you begin by detérmining
whether two DNA samples match. This may seem to be a context in which proba-
bilistic modus tollens is plausible. Suppose two individuals match at the genetic loci
examined, and that the probability of this match is only, say, 6.5 x 1078 if the two
individuals are unrelated. This may seem to provide ample grounds for refecting the
hypothesis that the individuals are unrelated. However, what is missing from this
exercise is any representation of how probable the data would be if the individu-
als were related. The National Commission on the Future of DNA Evidence report
(2000, 66) discusses an example of this sort in which two individuals match at 13
loci for genes that happen to be rare. The authors of this report calculate the above
figure of 6.5 x 107 as the probability of the data under the hypothesis that the
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individuals are unrelated. However, it also is true that if the individuals were full
sibs, the probability of the match would be 7.7 x 10732, Surely it would be absurd
to apply probabilistic modus tollens twice over, first rejecting the hypothesis that the
two individuals are unrelated and then rejeciing the hypothesis that they are related.
In fact, the data lend support to the hypothesis that the two individuals are sibs; it
would be wrong to use the data to reject that hypothesis. The evidence favors the
hypothesis that the two individuals are sibs over the hypothesis that they are unre-
lated because the observations are more probable under the first hypothesis than they
are-under the second. This is the Law of Likelihood (Hacking 1965, Edwards 1972,
Royall 1997, Sober 2008). It isn’t the absolute value of the probability of the data
under a single hypothesis that matters; rather, the relevant issue is how two such
probabilities compare. The Law of Likelihood allows for the possibility that evi-

~dence may differentially support a hypothesis even though the hypothesis says that

the evidence was very improbable. Notice also that the Law of Likelihood avoids an

~embarrassing question that defenders of probabilistic modus tollens must answer—

how improbable is improbable enough for the hypothesis to be rejected? Defenders
of Prob-MT have had to admit that this question has only a conventional answer.
What I have dubbed probabilistic modus totlens shows up in statistics in the form
of Fisher’s test of significance. There is more to a significance test than Prob-MT,
but it remains true that significance tests reject a hypothesis (at a given “level of

significance™) when a certain description of the observations is less probable than

a threshold that has been chosen arbitrarily. It is interesting to reflect on this prac-
tice.in light of what Fisher (1959, 39) said about significance tests. According to
Fisher, you have two choices when a hypothesis says that your observations are very
improbable—either the hypothesis is false or something very improbable has just
occurred. Fisher was right about the dlsjunction However, what does not follow is
that the hypothesis is false or that it is probably false; in fact, as just noted, it doesn’t
even follow that you have obtained evidence against the hypothesm (Hacking 1965,
Edwards 1972, Royall 1997). .

When the naive and the sophisticated reason about whether Evelyn Marie
Adams’ double win was a Mere Coincidence, both help themselves to probabilis-
tic modus tollens. Our task in what follows'is to understand this problem without
appealing to that faulty rule of inference. Sophisticates also allow themselves to
violate the Principle of Total Evidence. They are happy to substitute a weaker

~ description of the data for a stronger one, even though that changes the conclusion

that the rule of inference they use instructs them to draw. We need to explain why

~ the naive are wrong to think that nothing is a Mere Coincidence without violating

that principle. This may seem to return us to square one, but it does not. There is
something right about the sophisticate’s demand that the data about Evelyn Adams
be placed in a wider perspective. We need to consider not just her double win, but
the track records that others have had and whether she bought tickets in other lotter-
ies that did not turn out to be winners, However, moving to this wider data set does
not involve weakening the initial descrlpuon of the data, but adding to it; the key i is
to make the data stronger.
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30.4 Coinciding Observations, Coincidence Explanations,
and Reichenbach’s Principle of the Common Cause

Some regimentation of vocabulary is in order. First of all, what is a coincidence?
Diaconis and Mosteller (1989, 833) suggest a working definition: a coincidence
is “a surprising concurrence of events, perceived as meaningfully related, with no
apparent causal connection.” This is a good start, but it has the drawback of entail-
ing that whether something is a coincidence is a subjective matter. There are two
elements in this definition that we should separate. First, there is the idea of coin-
ciding observations. When you and I meet on a street corner, our locations coincide.
The same is true of the east coast of South American and the west coast of Africa—
their wiggles, geological strata, and biogeography coincide. And perhaps it doesn’t
offend too much against the rules of English usage to say. that the person who won
the New Jersey lottery in one week “coincides” with the person who won it a few
weeks later (they are identical}. Observations coincide when they are similar in some
“respect. There is no need to be precise about how much (or what kind of) similarity
is required for two observations to coincide, since the main point is to distinguish the
observations from a kind of hypothesis that might be offered to explain them. Here

we need the idea of a coincidence explanation. A coincidence explanation asserts

that the observations are not causally connected. By this I mean that neither causes
the other and they do not have a common cause. Thus, to say that it is a “mere”
coincidence that two events are similar is to suggest a certain kind of explanation;
each event was produced via a separate and independent causal process. Saying that
the similarity of the observations is a coincidence does not mean that the similar-
ity is inexplicable or that there is no need to explain the similarity. Understood in

this way, it is an objective matter whether a given coincidence explanation is true,

assuming as I will that causation is an objective matter.

With coinciding observations distinguished from coincidence explanations, we
can kick away the ladder and see that coinciding observations are not required for
the question to arise of whether a hypothesis of Causal Connectedness is superior to
a hypothesis of Mere Coincidence. We sometimes need to consider this choice when
the observations exhibit a pattern of dissimilarity, Cartwright (1994, 117) describes
the following example. Suppose I go shopping each week at a grocery store with
$10 to spend. I spend some portion of the $10 on meat and the rest on vegetables.
Suppose, when you observe my cash register receipts over the course of a year, you
see that I never spend exactly $5 on the one and exactly $5 on the other. The dollar
amounts never coincide. But the fact that they always sum to $10 is not a mere

coincidence. They are two effects of a common cause. So observations need not be

similar for the question of coincidence to arise. If you and 1 always order different
desserts when we dine together at a restaurant, the waiter may rightly suspect that
this is not a coincidence. ' _ '
The match, or mismatch, of two foken events is a rather small data set. When
there are many pairs of token events, a pattern involving kinds of evenis may

emerge. Based on the relative frequencies of kinds of events, one may infer that
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a correlation, either positive or negative, exists. Correlation is a probabilistic con-
cept. Dichotomous event types A and B are positively correlated precisely when
Pr{A&B) > Pr(A)Pr(B). Cartwright’s shopping example involves a negative corre-
lation; let A = my spending more than $5 on meat and B = my spending more than
$5 on vegetables, If you infer the probabilities of these two event types from their
frequencies in the data set describing my 52 trips to the grocery store, you'll infer
that Pr(A) ~ Pr(B) = %, but that Pr(A&B) = 0. Given a correlation (positive or neg-
ative), the question is whether the pattern of matching (or mismatching) of the token
events should be explained by saying that the correlates are causally connected or
by saying that the correlation is a mere coincidence.

Rejchenbach (1956) elevated our natural preference for hypotheses of cansal con-
nection to the status of a metaphysical principle.’ His principle of the common cause
says that whenever two events are correlated, the explanation must be that the two
correlates are causally connected. This principle is central to recent work on causal
modeling and directed graphs (Spirtes et al. 2001, Pearl 2000, Woodward 2003).
I think it is better to treat Reichenbach’s idea as an epistemological principle that
should be evaluated in terms of the Law of Likelihood {Sober 1988a, b, 2001, 2008).
The question is whether a hypothesis of Causal Connection renders the observations
more probable than does the hypothesis of Mere Coincidence. When this is so, the
evidence favors the first hypothesis over the second; it does not guarantee that the
Causal Connection hypothesis must be true.%

Reichenbach was able to show that the fact that two events are correlated deduc-
tively follows from a certain type of Common Cause model, one in which the
postulated common cause raises the probability of each effect and renders them
conditionally independent. Viewed from the point of view of the Law of Likelihood,
Reichenbach’s argument can be adapted to cases in which the explanandum is the
coinciding of two token events, rather than the correlation of two event types (Sober
1988b). And the mismatch of two events sometimes points towards a common cause
explanation and away from a separate cause explanation, depending again on the
details of how the common cause and separate cause hypotheses are formulated.
Thus, in a wide range of cases, the question of whether it is a mere coincidence that
the two events E; and Ez occurred can be addressed by comparing the likelihood of
the hypothesis of Causal Connection with the likelihood of the hypothesis of Mere
Coincidence.

> 1 do not use the term “metaphysical” here in the inejorativc sense sometimes used by logical
positivists. Rather, my use of the term contrasts with “epistemological.” The former has to do with
the way the world is, the latter with the beliefs we should form about the world.

6 One reason that Reichenbach’s principle should not be formulated metaphysically is the fact that
it is at least a defensible position to maintain thai quantum mechanics describes event types that
are lawfully correlated but not causally connected. Arthur Fine has pointed out to me that these
correlations also show that my categories of Mere Comcadence and Causal Connection are not
exhaustive,
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30.5 The Limits of Likelihood

The I.aw of Likelihood is a useful tool in the project of reasoning about coinci-
dences, but it doesn’t provide the complete epistemology we need. The problem is
that likelihood considerations favor hypotheses of causal connection in contexts in
which this seerns to be the wrong diagnoesis of which of the competing hypothesis is
better. Evelyn Adams won the lottery twice. Under the hypothesis that these events
were causally unconnected and that each win was due to a random draw from the
tickets purchased, the probability of the observations is very small. It is easy to con-
struct hypotheses of Caunsal Connection that have much higher likelihoods. One of
them says that her winning the first time was a random event, but that the occurrence
of that first win guaranteed that she would win the next time. Another says that both
lotteries were rigged so that she would win. This latter hypothesis has a likelihood
than which none greater can be conceived; it has a likelihood of unity. The Law of
Likelihood seems to endorse the naive impulse to see conspiracies everywhere, (o
always think that a hypothesis of Causal Connection is better than the hypothesis of
Mere Coincidence. : '
Bayesianism provides a natural solution to this type of problem for a wide range
of cases, If prior probabilities can be defended by appeal to evidence, and aren’t
merely reflections of someone’s subjective degrees of belief, then perhaps the like-
lihood advantage that conspiracy theories have can be overcome. Do we know that
most state lotteries are fair? If so, this frequency data allows us to justify the assump-
tion that the New Jersey lottery is probably fair, If the value of this defensible prior

is high enough, we may be able to show that the conspiracy theory about Adams’ _

double win has a low posterior probability even if it has a high likelihood.”

30.6 The Limits of Bayesianism

The problem with this Bayesian solution is that there are lots of cases in which it
isn’t possible to back up assignments of prior probabilities with evidence and yet we
still feel that there is something fishy about conspiracy theories and other hypotheses
of causal connection. :

In discussing the example of Wegener and continental drift, I noted that the
hypothesis of Continental Drift has a much higher likelihood than the hypothesis of
Continental Stasis: Pr(Data | Drift) >> Pr(Data | Stasis). However, this doesn’t settle
the matter of which hypothesis has the higher posterior probability. To decide that
question, we must say something about the values of the prior probabilities, Pr(Drift)
and Pr(Stasis). Geophysicists rejected Wegener’s theory because they were sure that
continents cannot plough through the ocean floor. Biologists and other friends of
continental drift replied that this, or something like it, had to be possible, since the
data are overwhelming. One aspect of the controversy that retarded the achievement

of consensus was the way in which Wegener formulated his hypothesis. He could |

have restricted himself to the claim that the continents were once in contact, and
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not hazarded a guess about how they moved apart. He did not do this; as noted, he
argued that the continents move across the ocean floor. He turned out to be right
about the géneral claim, but wrong about the specifics. The continents don’t move
across the ocean floor. Rather, they and the ocean floor move together, the continents
atop plates that slide across the viscous material that is deeper inside the earth.

A Bayesian will represent the disagreement between critics and defenders of
continental drift by saying that they had different prior probabilities. Since the like-
lihoods overwhelmingly favor Drift over Stasis, the critics must have assigned to-
the drift hypothesis a prior probability that was incredibly small. Were they ratio-
nal to do so? Or should they have assigned the hypothesis a somewhat larger prior,
one that, though still small, allowed the data to give the drift hypothesis the higher
posterior probability? It is hard to see how there.can be an objective answer to
that question. The prior probabilities were not estimated from frequency data. It’s
not as if a team of scientists visited a large number of planets, recording in each
case whether the continents move, and then estimated from that data how proba-
ble it is that the continents move here on earth. Of course, there’s another possible
source of objective probabilities—ones that are derived from a well-confirmed the-
ory. Did geophysicists have such a theory? If so, what probability did that theory

. entail for the hypothesis of continental drift? If the theory entails that continen-

tal drift is impossible, the Bayesian has a problem. The problem derives from the
tact that a hypothesis assigned a prior probability of zero cannot have its probabil-
ity increase, no matter what the evidence is. This is why Bayesians usually advise
assigning priors of zero only to contradictions. Following this advice, we should
decline to assign continental drift a prior of zero, even if our best confirmed theo-
ries say that drift is impossible. But what smal! prior should one then choose? If we
choose a value that is extremely tiny, Drift will have a lower. posterior probability
than Stasis, even though Drift has the higher likelihood. If the prior probability is
assigned a value that is a bit bigger, though still very small, Drift will end up with

 the larger posterior probability. No wonder the two communities were so divided.

It is hard to see how the Bayesian can help decide what the correct assignment of
prior probabilities is. Different groups of scientists had different degrees of belief;
that appears to be all one can say, )

Another scientific problem exhibits the same pattern. Consider the fact that the
correlation of the phases of the moon and the tides were known for hundreds of
years. It was not until Newton’s theory of gravity that a systematic explanation of
the correlation was developed. Newton'’s theory says that the two events are causally
connected—the moon exerts a gravitational attraction on the earth’s surface, with
the result that there are tides. It is an objective matter that this hypothesis of causal
connection has a higher likelihood than the hypothesis that says that it is a Mere
Coincidence that the tides and the phases-of the moon coincide: Pr(data | Newtonian
Theory) >> Pr(data | Mere Coincidence). But does that mean that Newtonian the-
ory is more probable than the hypothesis that the moon and the tides are causally .
unconnected? That depends on one’s choice of priors. If Pr(Newtonian Theory) isn’t
enormously tiny, then Pr(Newtonian Theory | data) > Pr(Mere Coincidence | data).
But if Newtonian theory is assigned a small enough prior, the theory will not be more
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probable than the hypothesis of Mere Coincidence, Unfortunately, there appears to
be no objective basis for assigning priors in one way rather than the other:

Does a Bayesian analysis provide a convincing explanation of why Evelyn
Adams’ double win on the New Jersey lottery should be thought of as a Mere
Coincidence? We need priors on the two hypotheses. Does any of us have fre-
quency data on how often state lotteries, and the lottery in New Jersey specifically,
are fixed? Surely if fixes occur, the parties will have every reason to prevent them
from becoming public: How often they will succeed is another matter. My hunch is
that the slogan “the truth will out” is too optimistic. In addition, how often the truth
outs is more or less unknown. For this reason, we should be somewhat reluctant to
interpret absence of evidence as evidence of absence in this instance.” I do not say
that there is no objective basis for assigning prior probabilities here, Still, it would
be nice if an analysis of this problem could be developed that did not require this. In
other examples, the prospect for coming up with defensible priors for the candidate
hypotheses is even more daunting.

The problem with Bayesianism isn’t just about its use of priors. Its handling of

likelihoods also raises questions when one or more of the hypotheses one wishes to
consider is composite. It is perfectly clear what the probability of Adams’ double
win is, given the hypothesis that the two lotteries were fixed so that she would win.

And it also is clear what the probability would be, given the hypothesis that each |

lottery was fair. But these two hypotheses are not exhaustive. Let us consider the
complement of the first. What is the probability of Adams’ double win if the lotteries
were not fixed so as to ensure that she would win? There are many specific ways
(W1, Wa, ..., W,} in which the lotteries could fail to be fixed to ensure Adams’
double win. The likelihood of Not-Fixed.is an average over all of these:

Pr(Adams wins both|Not—Fixéd) = Z:‘ Pr{Adams wins both|W;) Pr(W;|Not-Fixed)

It is the second product term in this summation that can be difficult to judge.
Of course, if the goal is merely psychological—to describe how agents actually
reason—this may not be an impediment. Perhaps people do have degrees of belief
of the kind required. But if the goal is normative—to describe how we ought to
reason—this can be a problem. In other examples, the prospect for coming up with
defensible likelihoods for composite hypotheses is even more daunting

30.7 Models for a Larger Data Set

Imagine that we have data on all the people who bought tickets in all the New Jersey
lotteries that have ever occurred, as well as information on who won what. Evelyn
Adams’ double win is part of this large data set, but only a small part. [ want to

7 There is an observation selection effect here: for discussion, see Sober (2004, 2009).

8 See Griffiths and Tenenbaum (2007) for an interesting psychological study of how people actually
think about coincidences that uses a Bayesian framework.
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consider a variety of models that might be offered for these multiple lotteries. What
I mean by a “model” will be clarified in due course. To simplify discussion, I'll
assume that there is just one winner in each lottery,

The first model I'll consider says that each lottery is fair—each ticket in a lottery
has the same probability of winning:

(FAIR) If ticket ¢ is purchased in lottery i (1 < i < r), Pr(¢ winsjt was purchased in
lottery @) = g,

The FAIR model is an r-fold conjunction:

Pr(r wins|t was purchased in lottery 1) = ;.
Pr(t wins}f was purchased in lottery 2) = ay.

Pr(t wins|r was purchased in lottery r) = &,.

By assigning a different parameter to each lottery, FAIR allows, but does not require,
that the probability a ticket has of winning in one lottery differs from the probabil-
ity a ticket has of winning in another. Notice also that this model does not say
what the probability is of a ticket’s winning any lottery. This model has r adjustable

_parameters, one for each lottery; each parameter “e;” is bound to its own existential

quantifier. The values of these probabilities must be estimated from the data. In each
lottery £, there are #; tickets sold and exactly one ticket was the winner, This means
that the maximum likelihood estimate (the MLE) of o; is 1/n;.

The second model I'fl describe is more complicated than FAIR. It assigns a
separate parameter to each player-lottery pair; :

'(PL_) If ticket ¢ is purchased in lottery i (1 £ { < r) by playerj (1 < J =9,
Pi(r wins[t was purchased in lottery i by player j) = Bij.

This model is a conjunction that contains rs conjuncts. It allows for the posstbility
that some or all the lotteries are unfair, but does not require this. The MLE of ps; for
player j on lottery i is 0 if the player lost, and 1/n;; if the player won, where n is the
number of tickets the player purchased on that lottery.

The third model T'll consider is even more complicated. Like the one just
described, it treats each player-lottery pair as a separate problem, but it introduces
the possibility that different tickets purchased by the same player on the same lottery
may have different probabilities of winning, .

- (PLT) If ticket ¢ is the kth ticket purchased (1 < k< n) inlottery i (1 <i < r) by player
J(L =7 =5, Pt winsit is the kth ticket purchased in lottery { by player j) = Yijk-

This model is a conjunction with 7sn conjuncts, Notice that FAIR has the smallest
number of parameters of the models described so far, and that PL and PLT both say
that each lottery might be unfair but need not be.

The fourth and Iast model I'll consider (not that there aren’t many others),
involves circling back to the beginning to find a model that is even simpler than
FAIR. FAIR allows that tickets in different lotteries may have different probabilities
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of winning. This is why that model has r parameters in it, one for f.?ach lottery. It we
constrain tickets in all lotteries to have the same probability of winning, we obtain
the following one-parameter model:

(ONE) If ticket 1 is purchased in any lottery, Pr( wins|r was purchased in a lottery) = 3.

In a sense, this model says the lotteries have a greater degree of “fairness” than FAIR
itself asserts. According to FAIR, players who buy a ticket in one lottery might have
better odds than players who buy a ticket in another. The ONE model stipulates that
this isn’t so-—every ticket in every lottery is in the same boat.

These different conceptualizations of how the lotteries work are “models” in the
sense of that term that is standard in statistics. Each contains one or more adjustable
parameters whose values can be estimated from the data. To clarify how Ehese mgd—
cls are related to each other, let me describe two of their properties. First, notice
that the models are nested; they are linked to each other by the relation of logical

implication:
ONE — FAIR — PL — PLT

Logically stronger models are special cases of models that are logically weaker. A
stronger model can be obtained from a weaker one by stipulating that various param-
¢ters in the weaker model have equal values. Because of this, FAIR cannot be more
probable than either PL or PLT, regardless of what the data are. Bayesians who 'vyalmt
to argue that one of the simpler models has a higher prior or posterior probability
than a model that is more complex might reply that the right way to set up models is
to ensure that they are incompatible with each other; they should not be nested. This
imperative requires that we compare ONE with FAIR*, PL*, and PLT*, where each
of the starred models stipulates that different parameters must have different values.
There is no logical barrier to stipulating that FAIR has a higher prior probability
than either PL* or PLT™, but it is questionable whether there is a convincing reason
to think that this stipulation is true. Is it really more probable that all tickets have
exactly the same probability of winning a lottery than that they differ, if only by a
little? T myself think it is very improbable that lotteries are exactly fair. Lotteries are
like coins. I think that no coin is exactly fair. Coins in the real world have probabil-
ities of landing heads that are approximately %, not exactly %. The other property
of these models that I want to mention concerns the likelihoods they have when
adjustable parameters are replaced by their maximum likelihood estimates. What I
want to consider, for example, is not Pr(data | FAIR), but Pr[data | L(FAIR)], where
L(FAIR) denotes the instance of FAIR obtained by assigning values to ité param-
cters that make the data most probable. The point of interest here is that L(FAIR)
can't have a higher likelihood than either L(PL) or L(PLT).? Increasing the num-
ber of adjustable parameters allows the resulting, more complex, deel to fit the

? L{FAIR) can’t have a higher likelihood than L(PL*) or L(PLT*), either.
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data better, In fact, the two most complex models, PL and PLT, are so complex that
L(PL) and L{PLT) both say that Evelyn Adams was certain to win the two lotteries
she did win, and that the winners of the other lotteries also had probabilities of unity
of winning theirs. L{PLT) goes even farther; it says, not just that Adams was certain
to win each of those two lotteries, but that it was a certainty that the tickets that won
the two lotteries for her would do so. L(PL) doesn’t go that far; if Adams purchased
multiple tickets on one of the lotteries she won, L{PL) says that those tickets had
equal probabilities of winning. '
Comparing these models leads to a point that I think is of the first importance in
our quest to understand how we should reason about coincidences. The naive think
that nothing is 2 Mere Coincidence, And the explanations they suggest for coincid-
ing observations often seem to be very simple. When the naive propose to explain
Adams’ double win by saying that the two lotteries were fixed, it would seem per-
verse to complain that this is a complicated explanation. What’s so complicated
about it? However, if we view this explanation as deriving from a model whose
parameters are estimated from the data, and if we require that model to address
a data’set that is considerably more inclusive than these two facts about Adams,
it turns out that the model that the naive are implicitly using is vastly complex.
They seem to be using a model that, when fitted to the data, says that each event
that occurred had to occur. The hypothesis that all state lotteries have been FAIR

is much simpler. Understanding the epistemic relevance of simplicity would throw

light on the problem at hand.

30.8 Simplicity and Model Selection

Not only do we need to consider a larger data set instead of focusing exclusively
on Adams’ double win; we also must adjust our conception of what the goals are in
model evaluation. The point is not to find a mode! that summarizes the data we have,
but to find a model that will do a good job predicting data that we do not yet have,
For example, suppose we were to use data on past New Jersey lotteries to compare
models where our goal is to figure out which model will allow us to make the most.
accurate predictions about next year’s lotteries. Of course, there’s no getting around
the Humean point that we have no assurance that future lotteries will play by the
rules that governed past lotteries. But let us assume that this is true. How can we use
the old data to estimate how well models will do in predicting new data?

Scientists who work on empirical problems by trying out maltiple ‘models
inevitably learn that hugely complicated models often do a poor job predicting new
data when fitted to old data. These models are able to accommodate the old data; as
noted earlier, adding parameters to a model will allow it to fit the data better, and if
M is sufficiently complex, Prold data | L{M)] = 1. However, Pr{new data | L(M)]
will often be very low, or, more precisely, the distance between the predicted values
and the observed values in the new data will often be great. This doesn’t lead scien-
tists to think that they should use the simplest possible model to make predictions..
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Rather, some sort of trade-off is needed—the best model among the cam;lidate m.od-
els considered will embody the most nearly optimal trade-off bct.ween its fit to old
data and its simplicity. How is that optimal balancing to be ascertained? Is itamatter
of art, but not of science? Must young scientists simply work away atagiven Erob.—
lem and gradually develop a feel for what works? Is this a reﬂeqtlon of the tacit
dimension” that Polanyi (1966} discussed? Well, there’s no ;ubsutute fo_r practn?al
experience. However, there s, in addition, a body of results in r_nathematlcal statis-
tics that shows that it is not a mere coincidence that very complicated models often

make very inaccurate predictions. One central result in this literature is a theorem ‘

due to H. Akaike (1973), which says that
An unbiased estimate of the predictive accuracy of model M #log [Pr(data | L{M))] -k,

where k is the number of adjustable parameters in M. Akaike’s theorem shows
how goed fit-to-data, as measured by the log-likelihood, improves expect.ed pre-
dictive accuracy, while complexity, as measured by the number of adjustable
parameters, diminishes that expectation. It also specifies a precise ratc‘-of—exchange
between log-likelihood and simplicity. It tells you how much of an improvement
in fit-to-data is needed for the shift from a simpler to a more complex model to
embody a net improvement in expected predictive accuracy (Forster and Sober 1994,
Sober 2008). y ‘

Akaike’s theorem is the basis for the Akaike Information Criterion (AIC), Whl?l‘l
scores a model by computing —2[log{Pr(data | L(M))} — k]; the best model will
have the lowest AIC value. There are other model selection criteria on the market.
Most of them are intended to help one identify models that are predictively accurate,
and most of them include a penalty for complexity!?; for discussion, see Burnham
and Anderson (2002). There seems to be a broad consensus that different model
selection criteria are appropriate for different inference problems.

If we use AIC to evaluate different models of the New Jersey lotteries, what
will be the upshot? That will depend on the data, L{FAIR) will have a lower log-

likelihood than L(LP) and L(LPT), but that doesn’t ensure that FAIR is the worst

of the three. The reason is that FAIR is far simpler than LP and LPT. It would not
be surprising if FAIR scored better than these two more complicated models, but
I cannot assert that this is true, since I have not looked at the data. However, the
relevant epistemological point is visible without us having to carry out this set of
calculations. FAIR may be a better model of the New Jersey lotteries than models
like LP and LPT, which say that one or all of the lotteries may have been rigged,
and this can be true even though L(FAIR) has a lower lHkelihood than L(LP} and
L(LPT). : _
The model selection framework is not a magic bullet that will instantancously
convert the naive into sophisticates. The naive might reject the goal of predictive
accuracy; they also may insist on focusing just on Adams’ double win and refuse

18 Cross validation makes no explicit mention of simplicity, but shares with AIC the goal of finding

meodels that will be predictively accurate. It is interesting that there is a form of cross-validation
ftala.nne.cnt” nrace validatinn) that ic acumntatically panivalant viath AT (Qfana 10T
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to consider the other data that constitute the history of the New Jersey Lottery. If
they do so, they will have built a mighty fortress. If you look just at the double
win, and don’t want anything besides a hypothesis of maximum likelihood, there
s no denying that the hypothesis that the two lotteries were both fixed o’ ensure
that Adams would win beats the pants off the hypothesis that the two lotteries were
fair.!! But if you are prepared to ask the data to help you decide among the models
Just described, it may turn out that the FAIR model is superior to the PL and the
PLT models. It is interesting that you don’t need to evaluate the prior probabilities
of PL and PLT to see what is wrong with these models. Indeed, since PL and PLT
are consequences of FAIR, neither of these more complex models can have prior or
posterior probabilities thiat are lower than the ones that attach to FAIR.

30.9 Conclusion

Having come this far—from probabilistic modus rollens to the Law of Likelihood
to Bayesianism and then to model selection—let’s return to an idea [ mentioned
towards the beginning. This is Diaconis and Mosteller’s (1989, 859) Law of Truly
Large Numbers, which says that “with a large enough sample, any outrageous thing
is likely to happen.” This principle implicitly assumes a certain type of model, As
Diaconis and Mosteller are well aware, it isn’t true in a suitably arranged determin-
istic model that any- outrageous thing is likely to happen with enough trials, and
the same point applies to many models that are probabilistic. The heuristic value of
their principle is that it recommends that we look at the world in a certain way—
we should use models that say that coinciding events can and do occur as Mere
Coincidences, and have very high probabilities of doing so when the sample size is
very large. But what are the rules of inference that recommend such models above
others? The Law of Truly Large Numbers is not intended to address this question.
When two or more events are observed 1o coincide, the Law of Likelihood
allows us to compare hypotheses of Mere Coincidence with hypotheses of Causal
Connection, but often seems unable to identify a respect in which the first type
of hypothesis is superior to the second. This is especially clear when the Causal
Connection Hypothesis is deterministic and the Mere Coincidence hypothesis is
probabilistic. The Bayesian response to this problem is to assign prior probabilities.
Sometimes these can be justified by appeal to evidence; at other times, they seem

to be merely subjective. It is in the latter kind of case that model selection criteria
seem like a breath of fresh air.

"1 Tt might be suggested that the hypothesis that the two lotteries were fixed to ensure that Adams
would win is a hypothesis that would occur to you only after you observe Adams’ double win,
and that it js a rule of sciertific inference that hypotheses must be formulared before the data
are gathered to test them, This temporal requirement is often invoked in frequentist statistics. For
discussion, see Hitchcock and Sober (2004). 1t is a point in favor of the model selection approach

that one does not have to invoke this temporal requirement to explain what is wrong with the PL
and the PLT models.
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Some years ago; cognitive psychologists discussed the pl‘le.no.meno.n of “hot
hands” in sports. Everyone with even the most superficial familiarity with profes-
sional basketball believes that players occasionally have “hot hands.” When players
are hot, their chance of scoring improves, and team-mates try to feed the. ball to
them. However, when Gilovich et al, (1985) did a statistical analysis of scoring pat-
terns in the NBA, they concluded that one cannot reject the null hypothesis that
each player has a constant probability of scoring throughout the season. These and

many other statistically sophisticated scientists concluded that belief in hot hands is -

a “cognitive illusion.” A scoring streak is not due to the play.er’-s getting hot, but is
a Mere Coincidence.'? Basketball mavens reacted to this statistical pronouncernent
with total incredulity. : .
What would a Bayesian analysis of this problem look like? Surely we havellots. of
evidence that physical injury, influenza, upset stomach, Iack' (?f sleep, ar'lcl migraine
impair athletic performance. The idea that a player’s probability of scoring through
the season is absolutely constant should therefore be assigned a very low prior prob-
ability. For this reason, Bayesianism scems predestined to side with common sense
on this issue. I do not see this as a defect in Bayesianism, nor df’ I' have any sym-
pathy with the argument that defends the mull hypothesis by psnr%tmg out that the:
data do not sanction its rejection. Is this another case of probabilistic moa.fus tollens
rearing its ugly head? In any event, the model selection framework prov_ides a very
different and useful perspective. K o
Recall that the goal in model selection is to find models that will be predictively
accurate. It is an important philosophical fact about this ffamework that we can
have evidence that a model known to be false will be a better predictor than a model
known to be true (Sober 2002, 2008, Forster and Sober 2011), Bayes.ia.n.s are rigl}t to
say that the null hypothesis has very low prior and posterior pr'obabl.hues. The idea
that players never waiver in their scoring probabilities, even a little, is preposterous.
However, this doesn’t settle which model will make the most accurate pn?dmnons.
Presumably, the truth about basketball players is very complex. Tl_leir scoring pFob-
abilities change as subtle responses to a large number of interacting causes. GxYen
this complexity, players and coaches may make better predictions by relymg on sim-
plified models. Hot hands may be a reality, but trying to predict when players have
hot hands may be a fool’s errand. :
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12 See Wardrop (1999) for a skeptical assessment of Gilovich et al.’s analysis. Wa.rdrop argues that
Gilovich et al. tested hypotheses about correlation (whether a pIayer"s probablh.ty o'f scoring on
‘a given shot if he scored on earlier shots is greater than his probabi_hty of scoring if he m:s§ed
previcusly), but did not assess the issue of stationarity (maybe a player’s probability of scoring
suddenly shifis from one value to another). Wardrop suggests that the latter may be the rf:levant
consideration.
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Chapter 31 : :
Stopping Rules and Data Monitoring
in Clinical Trials ‘

Roger Stanev

31.1 Introduction

Stopping rules—rules dictating when to stop accumulating data and start analyzing
it for the purposes inferring from the experiment—divide Bayesians, Likelihoodists
and classical statistical approaches to inference. 'Although the relationship between
Bayesian philosophy of science and stopping rules can be complex (cf. Steel 2003),
in general, Bayesians regard stopping rules as irrelevant to what inference should

‘be drawn from the data. This position clashes with classical statistical accounts. For

orthodox statistics, stopping rules do matter to what inference should be drawn from
the data. “The dispute over stopping rule is far from being a marginal quibble, but is
instead a striking illustration of the divergence of fundamental aims and standards
separating Bayesians and advocates of orthodox statistical methods” {Steel 2004,

- 195), -

But philosophers who subscribe, on theoretical grounds, to particular principles
of statistical inference need to recognize the limitations of the statistical approach
they endorse when it comes to important matters, such as the conduct of random-
ized clinical trials (RCTs). In broadest terms, I am concerned with the following
problem: what if no single statistical approach is best-suited to address all the nec-
essary demands of clinical research? The paper focus on a specific version of this
problem: the apparent inability of existing statistical approaches to accommodate
two such demands. The first is that RCTs incorporate some basic stopping rule, and
the second is that RCTs incorporate policies for early termination (at times in vio-
lation of the basic stopping rule). Whilé many statistical approaches can meet one
of these demands, no extant approach appears capable of meeting both. I suggest
that this type of predicament requires new ways of thinking about the problem in
order to give credit to distinct approaches where it might be due. Rather than solving
the problem by formulating yet another universal paradigm for statistical inference,

R. Stanev (=) ; :
Department of Philosophy, University of British Columbia, Vancouver, BC, Canada
e-mail: rstanev @interchange.ubc.ca



