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 PROBABILITY AND CONDITIONALS*

 ROBERT C. STALNAKER'

 University of Illinois

 The aim of the paper is to draw a connection between a semantical theory of
 conditional statements and the theory of conditional probability. First, the prob-
 ability calculus is interpreted as a semantics for truth functional logic. Absolute
 probabilities are treated as degrees of rational belief. Conditional probabilities are
 explicitly defined in terms of absolute probabilities in the familiar way. Second, the
 probability calculus is extended in order to provide an interpretation for counter-
 factual probabilities-conditional probabilities where the condition has zero prob-
 ability. Third, conditional propositions are introduced as propositions whose absolute
 probability is equal to the conditional probability of the consequent on the antecedent.
 An axiom system for this conditional connective is recovered from the probabilistic
 definition. Finally, the primary semantics for this axiom system, presented elsewhere,
 is related to the probabilistic interpretation.

 According to some interpretations of probability theory, a conditional prob-

 ability statement represents a semantic or pragmatic relation between two pro-
 positions. An if-then statement in English, or an analogue in some formal
 language, also represents a relation between two propositions-the antecedent and
 the consequent. A lot of philosophical effort has been devoted to the clarification of
 these two conditional relations, and recently a few philosophers have tried to draw a
 connection between them.2 There are at least two reasons motivating the attempts
 to bring these two problems together. First, although the interpretation of prob-

 ability is controversial, the abstract calculus is a relatively well defined and well
 established mathematical theory. In contrast to this, there is little agreement about
 the logic of conditional sentences. Diverse systems of strict implication, conditional
 logic, entailment, connexive implication, and causal implication have been pro-
 posed and defended on the basis of the vague set of linguistic and methodological
 intuitions about conditionality, which is all we have to go on. Probability theory
 could be a source of insight into the formal structure of conditional sentences.
 Second, one approach to the philosophical problems of induction and confirm-
 ation has linked these problems to the analysis of counterfactual conditionals.
 Other approaches have discussed the problem in the context of interpretations of
 probability. A connection between the semantics of conditionals and the inter-
 pretation of probability might help to bring together the different treatments of
 these philosophical problems.

 In this paper, I shall use probability theory to defend an analysis of conditional
 propositions which was proposed in another context. My argument has three steps;
 each step consists of the construction of a probability system. By analogy with

 * Received May, 1968.
 1 The preparation of this paper was supported under National Science Foundation Grant,

 GS-1567.

 2 For some of these discussions, see [4], [1], [2], and [12].
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 PROBABILITY AND CONDITIONALS 65

 Quine's grades of modal involvement, I might call the systems three grades of
 conditional involvement, since each is an extension of the preceding one, and with
 each, conditionality plays a more central role.

 In the first system, an absolute probability function is interpreted as an auto-
 nomous semantics for propositional calculus, based on the concept of knowledge
 rather than truth. Conditional probabilities are introduced by definition in the
 usual way, but are left undefined for some pairs of wffs. The fact that conditional
 probabilities are sometimes undefined proves a crucial limitation to the system.

 The second system provides an interpretation for an extension of the probability
 calculus in which conditional probabilities are primitive. This system is also an
 autonomous semantics for propositional calculus based on a concept of conditional
 knowledge.

 The third system introduces conditional propositions by adding a primitive
 conditional connective to the object language and a requirement to the definition
 of the conditional probability function. The leading idea of the added requirement
 is that the probability of a conditional statement should equal the conditional
 probability of the consequent on the antecedent. An axiom system for the condition-
 al connective is then recovered from this probabilistic definition. This system is
 the formal system of conditional logic, C2, which was developed and interpreted
 independently. I shall conclude the paper by discussing briefly the relation between
 the probabilistic interpretation of conditional logic and the standard semantics.

 1. Absolute Probability Functions. The first system that I shall discuss, P1, consists
 of two semantical functions, an absolute probability function and a truth valuation
 function. I shall first characterize the syntax of the object language, and define
 these functions. Second, I shall discuss the intuitive content of the functions, and
 show how one can justify the definition of the probability function in terms of the
 definition of the truth valuation function. Finally, I shall introduce conditional
 probabilities as abbreviations, and discuss their interpretation and their limitations.

 The primitive symbols of the object language consist of an infinite set of pro-
 positional variables, {P, Q, R, P', . . . }, two primitive connectives, A and
 (conjunction and negation, respectively), and parentheses. Any variable is a wff.
 also, if A and B are wffs, then A and (A A B) are wffs. The additional con-
 nectives, -, V, (material conditional, disjunction and material equivalence,
 respectively) may be defined in terms of the primitives. In this exposition, we shall
 abbreviate wffs in the usual way.

 (1) A truth valuation function (tvf) is any function v taking wffs into {1, O} which
 meets the following two conditions for all wffs A and B:

 (a) v(- A) = 1- v(A)
 (b) v((A A B)) = v(A) x v(B)

 (2) An absolute probability function (apf) is any function, Pr, taking wffs into real
 numbers which meets the following six conditions for all wffs A, B, and C:

 (a) 1 ? Pr(A) 2 0

 (b) Pr(A) = Pr(A A A)
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 66 ROBERT C. STALNAKER

 (c) Pr(A A B) = Pr(B A A)
 (d) Pr(A A (B A C))- Pr((A A B) A C)
 (e) Pr(A) + Pr(- A) = 1
 (f) Pr(A) = Pr(A A B) + Pr(A A -B)

 (3) A P1 interpretation is an ordered pair, <v, Pr> where v is a tvf and Pr is an apf,
 and where for all wffs A, if Pr(A) = 1, then v(A) = 1.

 A tvf and an apf are two ways to provide an interpretation for wffs, the first in
 terms of truth and falsity, the second in terms of knowledge and degrees of rational
 belief. A tvf provides a representation of a possible world. Wffs receiving a value of
 one correspond to propositions which are true in that world, and those with value
 zero correspond to propositions which are false. An apf provides a representation
 of a state of knowledge.3 A state of knowledge is here understood to include not
 only a specification of those propositions known to be true and false, but also a
 measure of the degree to which the knower has a right to believe propositions
 which are neither known true nor known false. Values of the function between
 zero and one exclusive represent the degrees assigned to propositions whose truth
 value is unknown. Wffs having values of one and zero represent propositions
 known to be true, and false, respectively.4

 These two modes of interpretation are not exclusive alternatives, but comple-
 mentary. A P1 interpretation combines the two: it provides a representation of a
 possible world and of the state of knowledge of a knower in that world. The two
 components of a P1 interpretation are not completely independent, since a knower
 cannot know something that is not true. But any probability value between the
 extremes is compatible with any truth value. Therefore, there is a wide range of
 apfs which are compatible with any given tvf; this is to say, there may be a diversity
 of knowers in a single possible world. Also, most apfs are compatible with a
 variety of tvfs, which is to say that knowledge need not be omniscient: a single state
 of knowledge may be compatible with many possible states of the world.

 For any given state of knowledge, there is a class K of possible worlds which are
 compatible with that state of knowledge. If the relevant state of knowledge is
 represented by the apf, Pr, and possible worlds are represented by tvfs, then the
 class can be defined as follows:

 (4) K = df {vI<v, Pr> is a P1 interpretation}.

 The class K is the class of epistematically possible worlds.

 3More properly, I should say that an apf represents an idealized state of knowledge, or a
 state of virtual knowledge, or implicit knowledge. I assume that a knower knows implicitly all
 of the consequences of his knowledge, and more generally, that where A entails B, the degree of
 rational belief in B is at least as great as that in A. Cf. [3], pp. 31-39.

 4 Some will perhaps be tempted to argue that the identification of knowledge with prob-
 ability of one is too stringent a condition on knowledge. This temptation should be resisted,
 since it misses the point of this identification. I am not using a well-established interpretation of
 probability to provide an analysis of knowledge. Rather, I am using the intuitive notion of
 knowledge to place constraints on the less clear intuitive notion of probability. No claims about
 the nature of knowledge are implied by the identification except that knowledge entails truth,
 and that a state of knowledge is, ideally, deductively closed.
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 PROBABILITY AND CONDITIONALS 67

 Because an apf is compatible with a range of possible states of the world, it is not
 possible to define "degree of rational belief" in terms of truth. We can, however,
 justify all of the constraints on the belief function given in definition (2) in terms of
 the definition (1) of the tvf. This is accomplished by linking the general concept of
 degree of rational belief to the general concept of a logically possible world, or a
 model. This connection is drawn independently of any particular language. In
 terms of it, the specification of the models for a particular language can be used to
 evaluate the specific definition of the belief function for that language.

 A degree of rational belief in a given proposition for a given subject is interpreted
 as a number determining the minimum odds which the subject should be willing to
 accept were he to bet on the truth of that proposition. If Pr(A) = r, then the
 subject should be willing to bet on A at odds r/(l - r), and he should be unwilling to
 accept a bet at odds less favourable than this. The ratio, rl(l - r) is the ratio of the
 probability that the proposition is true (that he wins the bet) to the probability that
 it is false (that he loses the bet). This characterization seems reasonable, since it is
 reasonable to act on one's beliefs. If you find gambliing games a narrow and un-
 suitable basis on which to build the interpretation of a belief function, consider a
 "bet" as any action in the face of uncertainty, and the "odds" as the ratio of the
 value of what you risk by taking the action to the value of what you hope to gain,
 should the uncertain event turn out in your favor.

 A probability assignment to a set of propositions is defined to be incoherent if
 there exists a set of bets for or against those propositions that should be accepted by
 the subject (according to the assignment), but are such that the subject would
 sustain a net loss from the set of bets in every possible outcome. A probability
 function is coherent if it is not incoherent. If possible outcomes are identified with
 models of the language, then we have a general condition of adequacy, stated in
 terms of the notion of a model, for any belief function. It is obviously reasonable to
 require that any function determining odds be coherent. If you are willing to accept
 bets which you are logically certain to lose, then you are as irrational as if you had
 beliefs which are logically certain to be false.

 We may use the general definition of coherence to evaluate the system P1. It
 can be shown that the conditions defining apf in (2) above are necessary and
 sufficient to ensure coherence, relative to the class of all models, or tvfs, defined in
 (1). Every apf is coherent, and every coherent probability function of propositional
 logic is an apf.5

 In so far as coherence is our only constraint, the definition of apf is demonstrably
 correct. But we may still ask, are there further purely logical conditions which
 should be used to evaluate the adequacy of a definition of belief function? One
 stronger condition-strict coherence-has been suggested.6 Strict coherence
 appears to be a simple and natural strengthening of coherence, and has generally
 been treated as such. It turns out, however, to require the introduction of some

 5 The notion of coherence was developed by the subjective probability theorists, F. P.
 Ramsey and Bruno de Finetti. See [6] for the classic papers. For proofs that the probability
 calculus provides necessary and sufficient conditions for coherence, see [5] and [8].

 6 Strict coherence was first discussed by Abner Shimony in [11].
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 68 ROBERT C. STALNAKER

 rather different considerations. Strict coherence is not a logical constraint on the
 belief function, but rather a constraint on the intuitive interpretation of the
 function, as defined.

 A function determining reasonable betting odds is coherent if there is no set of
 bets consistent with it such that the bettor is certain to suffer a net loss. A function
 determining betting odds is strictly coherent if it is coherent, and also, there is no
 set of bets consistent with it such that the bettor cannot possibly win, and might
 lose. The first criterion rules out bets that must lose; the second rules out those that
 might lose, and cannot win. This strengthening of coherence seems perfectly

 reasonable. It is surely irrational to take a risk with no hope of gain, even if there is

 some hope of breaking even.

 Kemeny showed, in his paper on fair betting odds, that to ensure that a coherent
 probability function be strictly coherent, it is necessary and sufficient to add the
 following requirement:

 (5) If Pr(A) = 1, then A is true in all possible outcomes.

 The application of this condition depends not only on the truth semantics for the
 language, but also on an independent specification of a class of possible outcomes, or
 models.7 Any P1 interpretation can be shown to be strictly coherent if we take the
 possible outcomes to be the epistemically possible worlds: the situations consistent
 with the subject's knowledge. This seems reasonable; I take no risk if I bet on the
 truth of a statement that I know to be true, so I should be willing to accept any odds.
 And no matter what the odds, I would not bet on something that I know to be
 false. The set of epistemically possible outcomes is the set K defined in terms of a
 given apf in (4) above. With K as the set of all possible outcomes, Kemeny's
 condition (5) follows from the definition of P1 interpretation. Therefore, we may
 conclude that every apf is strictly coherent, relative to the set of possible outcomes
 defined in this way, and that every probability function which is strictly coherent
 relative to some set of possible outcomes is an apf.

 To characterize conditional probabilities in terms of absolute probabilities, we
 use the familiar definition:

 = fPr(A A B)
 (6) Pr(A, B)-di Pr(B) (provided Pr(B) 0 0)

 Pr(A, B) is undefined when Pr(B) = 0.
 Since a conditional probability is simply an abbreviation for a ratio of two

 absolute probabilities, it is already fully interpreted. We do require, however, a

 7 The requirement, "If A is true in all possible outcomes, then Pr(A) = 1" may be treated as
 a purely logical constraint, with all possible outcomes interpreted as all tvfs. Then the require-
 ment comes down to "If A is a tautology, Pr(A) = 1, which is entailed by the coherence con-
 dition. The converse requirement, however, cannot be treated in the same way without making
 a host of untenable assumptions. To interpret (5) to mean "If Pr(A) = 1, then A is a tautology,"
 is to confuse a formula with the proposition it represents. Under this interpretation, we should
 have to accept that every necessary truth-in fact, everything that is known-is a tautology,
 and that all atomic formulas represent contingent propositions, each of which is logically
 independent of all the others. If we wish to accept the strict coherence condition without
 accepting logical atomism, we must allow for an independent specification of a class of models,
 representing the possible outcomes.
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 PROBABILITY AND CONDITIONALS 69

 justification for calling this ratio a conditional probability. We can get this justifi-
 cation by giving a separate interpretation to conditional probabilities in terms of
 odds for conditional bets, and showing that the definition is appropriate to this
 interpretation.

 A conditional bet is a bet that is called off unless a specified condition is met.
 A bet that P on the condition Q is a bet that is won if P and Q are both true, lost if
 P is false, and Q is true, and called off is Q is false. A conditional probability is
 taken as representing reasonable odds for a conditional bet. Where Pr(P, Q)-r,
 the fair odds for a bet that P on the condition Q are r/(l - r).

 We can justify the definition by showing that such a conditional bet is equivalent
 to a pair of simple bets in the sense that the outcome of the conditional bet (win,
 lose, or draw) is the same in each possible world as the net outcome of the pair of
 simple bets. Rather than betting X dollars on the truth of P, conditional on Q,
 I can achieve the same result by dividing my X dollars in a specifiable way between
 two bets, one that both P and Q are true, and the other that Q is false. I can always
 divide the money in such a way that I break even in case I win the second bet (and
 thus lose the first). For any coherent belief function, if I do divide the money in this
 way, then I will obtain a net gain or at least break even, should I win the first bet,
 and lose the second.

 Since the two betting situations are equivalent no matter what the outcome, I
 can determine the fair odds for conditional bets by calculating the ratio of the net
 gain (in case P and Q are both true) to the net loss (in case P is false and Q true)
 in the simple betting situation. This calculation gives the same result in every case as
 the above definition of conditional probability.

 Under the intuitive interpretation that we have given to the system P1, con-
 ditionality is given a meaning only when the condition is consistent with the
 subject's knowledge. In terms of conditional bets, this restriction makes sense:
 there can be no rational criteria for determining the odds on conditional bets where
 it is known that the condition will remain unfulfilled, and the bet neither won nor
 lost. This restriction also fits in with some interpretations of conditional assertions.
 Quine, for example, argues that an

 affirmation of the form 'if p then q' is commonly felt less as an affirmation of a conditional
 than as a conditional affirmation of the consequent. If, after we have made such an
 affirmation, the antecedent turns out true, then we consider ourselves committed to the
 consequent, and are ready to acknowledge error if it proves false. If, on the other hand, the
 antecedent turns out to have been false, our conditional affirmation is as if it had never
 been made ([10], p. 12).

 On this view of conditional assertions, to affirm something on a condition known to
 be false is to commit oneself to nothing at all, since in such a case it is already
 known that the affirmation is "as if it had never been made."

 Completely excluded by this concept of conditionality, however, is counter-
 factual knowledge, and partial belief. I may believe that if Kennedy had not been
 assassinated, it is highly probable that he would have won the 1964 presidential
 election. I know that the condition is false, but that does not prevent me from
 speculating-and perhaps speculating rationally-about what would have
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 70 ROBERT C. STALNAKER

 happened contrary-to-fact. Perhaps I could not place a bet on my counterfactual

 belief, but this is only because there would be no decisive way of telling who wins.

 For the same reason, I would not normally bet, say, that no woman will ever run a

 four-minute mile, or that Moses was actually an Egyptian. For a bet to be practical,
 there must be an operational decision procedure for determining the truth or

 falsity of the proposition in question. There must be some expected future event
 which both I and my gambling opponent would regard as decisively and un-

 ambiguously settling the issue. But this is a fact about bets, not about degrees of
 rational belief or knowledge. The lack of an operational procedure for settling

 disagreements about what would have been true contrary-to-fact shows not that

 counterfactual conditional probabilities should not be interpreted, but rather that

 their interpretation requires an extension of the idea of coherence. Counterfactual
 assertions are the most controversial and interesting conditional statements. If we

 are to use probability theory to throw light on these cases, we must first extend the
 theory to cover counterfactual probabilities. Section 2 presents a generalization of

 the system P1 which attempts to do this.

 2. Counterfactual Probabilities. The second system P2, again provides a pair of

 complementary interpretations to a formulation of classical propositional calculus.
 The object language, and its primary semantics given by the truth valuation func-

 tion, are the same as before, but the second semantical function is a conditional
 probability function. I shall first characterize this function, and P2 interpretation,

 and then discuss their intuitive rationale.

 (7) An extended probability.function (epf) is any function, Pr, taking ordered pairs
 of wffs into real numbers which meets the following six conditions for all wffs,
 A, B, C, and D:

 (a) Pr(A, B) > 0
 (b) Pr(A, A) = I
 (c) If Pr(, C, C) + 1, then Pr(- A, C) = I - Pr(A, C).
 (d) If Pr(A, B) = Pr(B, A) = 1, then Pr(C, A) = Pr(C, B)
 (e) Pr(A A B, C) = Pr(B A A, C)
 (f) Pr(A A B, C) = Pr(A, C) x Pr(B, A A C)8

 (8) A P2 interpretation is an ordered pair, <v, Pr>, where v is a tvf and Pr is an epf,
 such that for all wffs A and B, if Pr(A, B) = 1, then v(B- A) = 1.

 8 The extended probability function is based on one constructed by Sir Karl Popper. Cf. [9],
 appendix iv. Popper presents his system as an abstract calculus rather than as a semantics.
 Also, his system has the additional postulate that there must be elements, A, B, C and D such
 that Pr(A, B) 0 Pr(C, D). This has the effect of ruling out the limiting case where Pr(A, B) = 1
 for all A and B. In [7], Hughes Leblanc presents two formulations of Popper's system without
 the added postulate, as a measure on formulas of propositional logic. One of his two formu-
 lations is equivalent to the definition of epf.

 It should be noted here that Leblanc confuses validity with necessity in the above mentioned
 article, defining validity so that it is a function of the probability assignment to the variables.
 Also, the proof that he offers for the equivalence of his two formulations is defective and the
 equivalence claim is false.
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 An epf represents an extended state of knowledge. An extended state of know-
 ledge includes, not only a measure of the degree to which the knower has a right to
 believe certain propositions, but also the degree to which he would have a right to

 believe certain propositions if he knew something which in fact he does not know.
 An epf represents, not just one state of knowledge, but a set of hypothetical states
 of knowledge, one for each condition. For example, the set of values of Pr(A, B)
 for all wffs, A and for a fixed wff B represents the state of knowledge that the
 knower would be in if he knew B.

 Absolute probabilities, are not represented by a primitive function, but they may
 be defined as a special case of conditional probabilities as follows:

 (9) Pr(A) = df Pr(A, t),

 where t is some arbitrarily specified tautology.
 In the case where the condition is a tautology, conditional knowledge coincides

 with knowledge tout court. It can also be shown that if the condition is known to be
 true, then the conditional probability is equal to the absolute probability defined in
 this way. Where Pr(B, t) = 1, Pr(A, B) = Pr(A, t) for all A.

 Where the condition is itself not known to be true, but also not known to be
 false, then the conditional state of knowledge will be a function of the actual state
 of knowledge, exactly as in the classical probability system. An analogue of defi-
 nition (6), will be a simple consequence of the characterization of epf, (7) together
 with the above definition of absolute probabilities, (9). In this case, the set of
 epistemically possible worlds relative to the hypothetical state of knowledge will be a
 proper subset of the set of epistemically possible worlds, relative to the actual state
 of knowledge.

 When the condition has an absolute probability value of zero, however, the
 conditional probability values are logically independent of the absolute probability

 values. Where Pr(B) = 0, Pr (A, B) may equal zero, one, or anything in between,
 whatever the absolute probability value of A. In this case, the set of epistemically
 possible worlds relative to the hypothetical state of knowledge, will be disjoint from
 the set of epistemically possible worlds relative to the actual state of knowledge.

 In the case where the selected state of knowledge is independent of the given one,
 we require only two things: first, that the resulting hypothetical state of knowledge
 contain the supposition as an item of knowledge, and second, that the state of
 knowledge be itself consistent and coherent. For some suppositions, however, it is
 impossible to meet even these modest requirements. For the supposition may be
 itself inconsistent or impossible, in which case no coherent state of knowledge can
 suppose it.

 A proposition is an impossible proposition if its negation is known true no
 matter what. A represents an impossible proposition just in case Pr( A, A) = 1.
 A state of knowledge obtained by assuming an impossible proposition to be true,
 I shall call an absurd state of kniowledge. For reasons of determinateness and
 formal convenience, it is stipulated that where B is impossible, Pr(A, B) = 1 for all
 A. In the absurd state of knowledge, everything is "known."

 An epf, then, is intended to represent an actual state of knowledge and a set of
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 72 ROBERT C. STALNAKER

 hypothetical states of knowledge, related in a certain way. To show that it succeeds

 in this intention, I must prove that the constraints set down in the formal definition

 of an epf are necessary and sufficient for this representation. A few more definitions
 are needed to make this criterion of adequacy precise.

 (10) A bet that A at odds r/(l - r) is acceptable under condition C if and only if
 Pr(A, C) 2 r.

 (1 1) A conditional bet that A on condition B at odds r/(l - r) is acceptable under
 condition C if and only if Pr(A, B A C) > r.

 (12) KPcJ df {v/for all A, if Pr(A, C) = 1, then v(A) = 1}.

 (13) A knower's probability function, Pr is strictly coherent with respect to con-
 dition C if and only if there does not exist a set of bets and/or conditional bets
 acceptable to the knower under condition C such that the knower suffers a net

 loss in some v E K C and a net gain in no v e K C.

 (14) A function Pr is admissible as an extended belieffunction if and only if it is a
 function taking ordered pairs of wffs into real numbers which meets the

 following three conditions:

 (a) For all wffs C, v(C) = 1 for every v E K C
 (b) Pr is strictly coherent with respect to every C

 (c) If KCPr is empty, then Pr(A, C) = 1 for every A.

 Definition (10) interprets conditional probabilities not as the odds for a con-
 ditional bet which are actually fair, but rather as the odds for an unconditional bet
 which would hypothetically be fair if the knower were in a different state of knowl-
 edge. Definition (11), however, requires that conditional probabilities also repre-
 sent fair odds for conditional bets-both actual and hypothetical conditional bets.
 This seems reasonable: the odds that I would accept if I knew C to be true for a bet
 that A should be the same as the odds that I will now accept for a conditional bet
 that A on condition C.

 Definition (12) defines a set of tvfs relative to a belief function Pr and a condition

 C. This set represents the set of possible worlds that are epistemically possible with
 respect to the proposition represented by C, or the set of worlds consistent with
 the hypothetical state of knowledge selected by condition C. Note that where C is a
 tautology, KPcr represents the set of worlds which are in fact epistemically possible
 to the knower, and where C is an impossible proposition, KPcr is empty.

 Definition (13) is the obvious generalization of the standard definition of strict
 coherence, and definition (14) states the criterion of adequacy for an extended
 belief function. Requirement (a) ensures that each hypothetical state of knowledge
 be the right one-namely one in which the condition C is known to be true.
 Requirement (b) ensures that each hypothetical state of knowledge meet the same
 standard of strict coherence that a simple state of knowledge, represented by an apf,
 must meet. Requirement (c) isolates the absurd state of knowledge and gives the
 probabilities definite values for it.
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 PROBABILITY AND CONDITIONALS 73

 Using the results discussed in the first section, I shall sketch a proof of the
 following theorem:

 (15) A function is admissible as an extended belief function if and only it is an

 epf.

 First, the reader can easily verify that for each condition, (a)-(f) of (7), if it is
 violated, then one of the conditions, (a)-(c) of (14) will be violated. This suffices to
 prove the first half of the theorem: If a function is admissible as an extended belief
 function, then it is an epf. To prove the converse, we shall assume that the function,
 Pr, is an epf and show that each of the three conditions, (a) to (c) of (14) holds.

 (a) By (7b), Pr(C, C) = 1 for all C. Therefore, by definition of K'CJ, for all
 C, v(C) = 1 for every v E K C.

 (b) Let a function taking single wffs into real numbers be defined for any given

 C as follows: Prc(A) = df Pr(A, C). The function Prc will either be an apf, or else it
 will be a constant function: Prc(A) = 1 for all A. If Prc is an apf, then it will be
 strictly coherent with respect to the class of tvfs, KPcr. Therefore, in this case, the

 strict coherence condition is met. If Prc is the constant function, then the strict
 coherence condition is trivially met, since KCPr is empty.

 (c) Finally, if KCPr is empty, then there must be some class of wffs, 1, such that
 (i) for all A E r, Pr(A, C) = 1, and (ii) for every tvf v, there is some A E P such that
 v(A) = 0. That is, there is a class of wffs all having probability values of one on the
 condition C, which is not simultaneously satisfiable. Therefore, by the semantical
 completeness of propositional calculus, P 1 B for all wffs B, from which it follows

 that for some finite set of wffs, {A1, A2, .. ., An} all members of P, A1 A A2 A ... A
 An F B. But if Pr(Al, C)- Pr(A2, C) = ... = Pr(An, C) = 1, then Pr(Al A
 A2 A ... A An, C) = 1. Therefore, since the probability of a proposition is always
 equal to or greater than the probability of something that entails it, Pr(B, C) = 1
 for all wffs B. This completes the proof.

 To conclude this section I wish to contrast the intuitive content of the extended
 probability system with that of the standard system. What is the nature of the

 additional information which would be contained in an extended system? A
 classical probability function as I have interpreted it, provides a measure of the
 simple epistemological status of propositions. Things are better or less well known
 according as their probability values are greater or less. The standard function
 does not, however, make any distinctions among propositions which are known to
 be true, and it can say nothing about the relations between propositions which are
 known to be true. Mathematical theorems may be ranked with empirical hypotheses.
 Simple facts are not distinguished from basic scientific principles. And one state-
 ment may be evidence for another, or independent of it, without this difference
 being reflected in the probability values. An extended function, on the other hand,
 contains information which is relevant to these differences in at least three ways:

 First, an epf distinguishes between items of knowledge which are contingent and
 items of knowledge which are necessary. The former are merely known, while the
 latter would be known in all states of knowledge, or under every supposition. That
 is, A is a necessary truth if Pr(A, C) = 1 for all C. What would be known under any
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 condition is the same as what is true in all possible worlds, where the set, K of

 possible worlds is defined as the union of the sets KCPr for all C. A world is onto-
 logically possible if it is epistemologically possible relative to some supposition.

 Second, an epf allows for a distinction between superficial facts-things we just

 happen to know-and items of empirical knowledge which have profound syste-
 matic interconnections with other parts of our knowledge. A superficial bit of
 information is an item of knowledge which would easily be called into question by

 counterfactual suppositions, and which could be hypothetically denied with only

 minor changes in the state of knowledge. An entrenched systematically important
 truth, on the other hand, would remain an item of knowledge under diverse

 counterfactual suppositions, and its hypothetical denial would force a radical
 change in the state of knowledge.

 Third, an epf contains some information about the inductive relations among
 propositions known to be true. If there is a strong correlation between the rise and
 fall of the probability values of A and B under different counterfactual assumptions,
 for example, then one could conclude that the events described by A and B were
 causally connected in some way. By looking at the values of Pr(A, C) and Pr(B, C)
 for various particular C's, one might determine how they were causally
 connected.

 In general, counterfactual suppositions allow us to go beneath the surface of our
 knowledge in order to get at both the inductive and the conceptual relations among
 the things that we know, or believe to various degrees. The rules defining an epf do
 not, of course, provide any procedures for answering questions about these under-
 lying relations, any more than logic provides criteria for truth. They do, however,
 offer a framework in which the counterfactual beliefs, which we undoubtedly have
 and use, can be represented.

 In the final section, I shall extend this system by introducing conditional pro-

 positions. This will make it possible for the inductive and conceptual relations
 reflected in an extended probability system to be represented as explicit beliefs and
 items of knowledge.

 3. Conditional Propositions. The third system, P3, involves not only an extension of
 the probability function defined in section 2, but also a change in the object
 language, and the truth semantics. In defining this system, I shall proceed somewhat

 differently than in the first two cases. First, I shall describe the syntax of the new
 object language, C2. Second, I shall add a requirement to the definition of prob-
 ability function which establishes a connection between conditional propositions
 and conditional probabilities. Third, I shall ask what logical properties conditional
 propositions must have in order that the probability function have the form that it
 does have. Thus, our procedure is here the reverse of what it was in sections 1 and 2.
 In those sections, the established primary semantics was used, in conjunction with
 an idea of coherence, to justify the probability semantics. In this section, a natural
 extension of the probability semantics in conjunction with the idea of coherence
 will be used to discover and justify the rules of truth for conditional propositions.

 The object language, C2, is as before except that one connective, > (called the
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 corner) is added to the list of primitive symbols, and one clause is added to the

 definition of wif as follows: if A and B are wffs, then (A > B) is a wff.
 A C2-epf is defined as a function taking ordered pairs of wffs of C2 into real

 numbers. The function must meet all of the requirements of an ordinary epf, as set

 down in definition (7), section 2 above. It must also meet one additional require-

 ment. Our first problem is to determine exactly what that should be.
 The absolute probability of a conditional proposition-a proposition of the

 form A > B-must be equal to the conditional probability of the consequent on
 the condition of the antecedent.

 (16) Pr(A > B) = Pr(B, A)

 The probability of the proposition, if Nixon is nominated then Johnson will win,
 should be the same as the probability that Johnson will win, on the condition that

 Nixon is nominated. This is the basic requirement, but by itself it is too weak, since
 it sets no limits on the conditional probability of conditional propositions. On the

 basis of the requirement (16), we could draw certain conclusions about the absolute

 probabilities of conditional propositions-for example that for all wffs A and B,

 Pr(A > B) = 1 - Pr(A > B) whenever Pr(A > A) = 0. But we could draw

 no conclusion at all about conditional probabilities of conditionals. For example,

 for any wffs C such that Pr(C) < 1, the relation between Pr(A > B, C) and
 Pr(A > B, C) would be completely open. Thus no real constraints would be

 placed on the logic of conditionals since any set of conditional formulas would be

 simultaneously satisfiable in the sense that there would exist a C2-epf which assigned
 each formula the value one on some consistent condition.

 The following generalization of the proposed requirement suggests itself:

 (17) Pr(A > B, C) = Pr(B, A A C)

 This condition, however, is clearly too strong.

 The antecedent A may be a counterfactual assumption with respect to the con-

 dition C. That is, the antecedent A may be incompatible with the state of knowledge
 selected by the condition C. In this case the antecedent A cannot simply be added
 to the set of things known in that state of knowledge. Some deletions and adjust-

 ments will have to be made, and the condition C may be one of the things that gets
 deleted. In fact, the adoption of the strong requirement, (17) would trivially give all
 counterfactual propositions a probability of one, collapsing the distinction between
 knowledge and necessity, and reducing the probability system, P3 to one roughly
 equivalent to P1. This can be seen by the following argument: suppose A > B
 represents a counterfactual-that is a conditional proposition whose antecedent is
 known to be false. Then Pr(A) = 0, so Pr( A) = 1. But for all C such that
 Pr(C) = 1, and for all D, Pr(D, C) = Pr(D). Therefore Pr(A > B) - Pr(A > B,
 - A). But by requirement (17), Pr(A > B, - A) = Pr(B, A A - A), which always
 equals one. Therefore Pr(A > B) = 1. But all we assumed was that A > B was
 counterfactual.

 In order to steer a course between the unacceptably weak condition (16) and the
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 unacceptably strong (17), we must generalize (16) in a different way. In order to

 carry out this generalization, we need a few more definitions.

 (18) A function, Prc, taking ordered pairs of wffs of C2 into real numbers is a
 subfunction of Pr with respect to C iff Pr is also a function taking pairs of wffs
 into real numbers, C is a wif of C2, and for all wffs A and B, Prc(B, A)
 Pr(A > B, C).

 (19) A function Pr taking ordered pairs of wffs of C2 into real numbers is acceptable
 on thefirst level iff it is an epf and for all wffs A and B, Pr(A > B) = Pr(B, A).

 (20) A function Pr taking pairs of wffs of C2 into real numbers is acceptable on the
 (n + I)th level if for every wff C, the subfunction of Pr with respect to C is
 acceptable on the nth level.

 (21) A function Pr taking pairs of wffs of C2 into real numbers is a C2-epf if it is

 acceptable on the nth level for every n.

 The introduction of subfunctions is simply a device to allow the weak requirement
 (16) to be applied more generally without collapsing conditions as does the rejected
 requirement (17).

 Definition (21) gives a complete semantical characterization of a conditional
 concept, not in terms of its truth relations, but in terms of its probability relations.
 The next step in the investigation is to define notions of satisfiability and validity
 for the wffs of the language C2, relative to this probability semantics. Then I shall
 present an axiom system which implicitly defines syntactical notions of consistency
 and theoremhood for conditional logic. This system, will then be proved semantic-
 ally sound and complete relative to the probability semantics.

 The final step of the argument-the construction of an appropriate truth
 semantics-has already been taken. The axiom system for C2 has elsewhere been
 shown to be semantically sound and complete relative to a primary semantics
 which was given an independent philosophical justification.9 In the conclusion to
 this paper, I shall discuss the relation between the two semantical systems.

 (22) A class r of wffs of C2 is p-simultaneously satisfiable if there exists a C2-epf Pr
 and a wff C such that Pr(- C, C) # 1, and for all A E r, Pr(A, C) - 1.

 (23) A wff A is p-valid if (- A) is not p-simultaneously satisfiable.

 A simultaneously satisfiable class, by this definition, represents a class of proposi-
 tions, all of whose members might be known to be true. A valid formula represents
 a proposition whose negation could not possibly be known to be true.

 To specify the formal system, I shall use two nonprimitive modal operators,
 defined as follows:

 (24) Definition schemata:

 (a) OA df-A > A
 (b) OA-d,f O IFIA

 'The completeness proof is presented in [14]; [13] is an informal exposition and philosophical
 defense of the theory.

This content downloaded from 132.174.254.127 on Fri, 17 Feb 2017 18:29:21 UTC
All use subject to http://about.jstor.org/terms



 PROBABILITY AND CONDITIONALS 77

 These definitions bring out the fact that by moving from conditional probabilities
 to conditional propositions, we have also implicitly moved from a modal predicate
 of propositions, in the meta-language, to a modal operator, in the object language.
 In Quine's terminology, we have moved from the first to the second grade of modal
 involvement. In the system, P2, Pr(A, -A) = 1 just in case A is a necessary truth.
 Therefore, in P3, we have a proposition which states that A is a necessary truth.

 The following two rules and seven axiom schemata determine the formal system
 C2:

 (25) Rules:

 (a) If A D B and A are theorems, then B is a theorem

 (b) If A is a theorem then W2A is a theorem

 (26) Axiom schemata:

 (a) Any tautologous wff is an axiom

 (b) M(A B)D-LA zD B
 (c) E(A DB) -A>B
 (d) OA -A > B z-(A > -B)
 (e) A > (B V C) -. (A > B) V (A > C)
 (f) A>B-.A-B
 (g) (A > B) A (B> A) . (A > C) -. (B> C)

 In the usual way, these rules and axioms determine the syntactical notions, C2-
 provability, C2-derivability and C2-consistency.

 Before stating the semantical completeness theorem, I shall list some object
 language theorem schemata which will be useful in the metaproof.

 (27) Theorem schemata:

 (a) F(t > A) _ A (where t is any tautology)

 (b) IA > A
 (c) FKCz. (C > A) (C > -A)
 (d) FIC> (A A B) (C> (B A A))
 (e) FC > (A A B) ((C > A) A ((A A C) > B))

 We are now equipped to sketch a proof of the following semantical complete-
 ness theorem:

 (28) A class r of wffs of C2 is p-simultaneously satisfiable if and only if it is C2-
 consistent.

 The first half of the proof consists of validating the axioms and showing that the
 rules preserve validity. First, note that for any wffs A and C, if there exists a C2-
 epf Pr which satisfies A on condition C then there exists a C2-epf which satisfies A
 on condition t (where t is a tautology), namely the subfunction of Pr, Prc. There-
 fore, to validate an axiom, it suffices to show that it is not satisfiable on condition t.
 Second, note that every axiom, in unabbreviated form, is the negation of a con-
 junction. For each axiom, assume that this conjunction has an absolute probability
 value of one (that is, assume that the negation of the axiom is satisfiable on
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 condition t). In each case, a contradiction will fall out relatively easily. To show that

 modus ponens, (25a) preserves validity, assume that Pr(A - B) = 1 and Pr(A) 1
 for all C2-epfs. Then Pr(A A - B) = Pr(A) x Pr(- B, A) = Pr(- B, A) 0.

 So Pr(B, A) = 1. But since Pr(A) = 1, Pr(B, A) = Pr(B), so Pr(B) = 1 in all

 C2-epfs. To show that the necessitation rule, (25b) preserves validity, assume A is

 valid. Then {- A} is not p-satisfiable, so for all C2-epfs Pr and wffs C such that

 Pr(- C, C) + 1, Pr(- A, C) < 1. But for all C2-epf's, Pr, Pr(- A, - A) = 1, so to
 avoid contradiction we must conclude that Pr( A, A) = 1, and hence that

 Pr(A, A) = 1 for all C2-epfs Pr. Therefore Pr( A > A), which is the same as

 Pr(LnA), must be equal to one. So both rules preserve validity.
 To prove the converse, I shall show that given any C2-consistent class of wffs, 17,

 it is possible to construct a C2-epf and a wif C such that Pr( C, C) :A 1 and
 Pr(A, C) = 1 for all A E F. The argument follows the familiar method developed

 by Henkin. First, in the usual manner, construct a maximally consistent class, r*
 which contains r. Then let a function, Pr, taking ordered pairs of wffs into real
 numbers be defined as follows: For all wffs A and B, Pr(A, B) = 1 if (B > A) E ]*,
 and Pr(A, B) = 0 otherwise. Let C be an arbitrarily selected tautology, t. Sub-

 stituting - t for A in theorem (27a), we get f(t > - t) -=- t. Since ]P* is con-
 sistent, -t 0 P*, and therefore t > -t 0 ]r*, so Pr(Qt, t) = 0. Also by theorem,
 (27a) and the consistency of ]r*, it is evident that Pr(A, t) = 1 iff A E r*. Since
 r c 7r* Pr(A, t) = 1 for all A E r. Therefore, the function, Pr and the wif C that
 we have constructed meet the conditions of definition (22). It remains only to show
 that the function Pr is a C2-epf. This we shall do by going through the six defining
 requirements for epf given in (7), and the added requirement for C2-epf given in
 (21).

 (a) Pr(A, B) = 0 or 1 for all A and B, so Pr(A, B) ? 0.
 (b) FA > A by (27b), so Pr(A, A) = 1 for all A.

 (c) Assume Pr(-C, C) : 1. Then Pr((C > -C), t) = Pr(oC, t) = 1, so
 C E r*. Then by (27c), (C > A) _ -(C > - A) E 1r*. Therefore Pr(A, C) = 1(0)

 iff Pr(-A, C) = 0(1). Hence provided Pr(-C, C) + 1, Pr(-A, C) = 1-
 Pr(A, C).

 (d) Assume Pr(A, B) = Pr(B, A) = 1. In this case, A > B E '* and B > A E P*.
 Therefore, by an axiom, (26g), (A > C) _ (B > C) Ec r*, so Pr(C, A) = Pr(C, B),
 provided Pr(A, B) = Pr(B, A) = 1.

 (e) By (27d), C > (A A B) E * iff c >(B A A) E '*, so Pr(A A B, C)
 Pr(B A A, C).

 (f) By (27e), C > (A A B) E P* iff C > A E r* and (A A C) > B E r*. There-
 fore, Pr(A A B, C) 1 iff Pr(A, C) = 1 and Pr(B, A A C) = 1. Therefore,
 Pr(A A B, C) Pr(A, C) x Pr(B, A A C).

 (g) That the function Pr is acceptable on the first level follows from a special
 case of(27a) Ft> (A > B) _(A > B).

 (h) To show the function acceptable on the n-th level, in general, it suffices to

 show that every subfunction of Pr, and subfunction of a subfunction of Pr, etc.
 meets the first six conditions, and that each is acceptable on the first level. We do
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 this by generalizing each of the above seven arguments. Using the following
 derived rules and distribution principles, the generalizations are quite straight-
 forward, although in a few cases tedious.

 (29) Derived rules and theorems schemata

 (a) If IA, then I-C1 > (C2 > ... > (Cn, > A).
 (b) If IA - B, then F(C > A) D (C > B)

 (c) FC > (A _ B) ((C > A) (C > B))
 (d) FC > (A A B) (C > A) A (C > B)

 These generalizations complete the argument. The function Pr is a C2-epf, and
 thus the arbitrary consistent class P is p-satisfiable.

 4. Possible Worlds and Knowledge. In conclusion, I shall explain briefly the intuitive
 idea behind the primary sematics for C2 and consider the relation between this
 system and the one based on probability that I have been discussing.

 A conditional statement, according to a theory of conditionals that I have
 defended elsewhere, is a statement about a particular possible world. Which
 possible world it is about is a function of the antecedent. Which statement is made
 about that world is a function of the consequent. The particular possible world
 selected by the antecedent cannot be just any world. First, it must be one in which
 the antecedent is true; when we say "if A . . ." We are supposing A to be true.
 Second, it must resemble the actual world as closely as possible, given the first
 requirement. This latter restriction means that, where the antecedent is true in the
 actual world, the actual world is the world I am talking about. That is why when
 one asserts a conditional which turns out to have a true antecedent, he is com-
 mitted to the consequent. The latter restriction also means that the world selected
 carries over as much of the explanatory and descriptive structure of the actual
 world as is consistent with the antecedent. That is why causal laws and well
 entrenched empirical relations are relevant to the evaluation of a counterfactual.

 These intuitive ideas can be represented in a semantical theory for a formal
 language which includes a primitive conditional connective. An interpretation of a
 set of formulas is defined on a model structure which consists of a structure of
 possible worlds. The interpretation on the structure is relative to a selection
 function, f-a function that selects, for each formula A and possible world a
 a possible world in which A is true. The truth rule for conditional formulas-
 formulas of the form (A > B)-can be stated as follows:

 (30) For all wffs A and B, and all possible worlds a, (A > B) is true in a if B is
 true inf(A, a).

 These truth conditions, together with constraints on the selection function which
 are appropriate to the intuitive picture sketched above, give rise to semantical
 concepts of satisfiability and validity for the formulas of C2. The axiom system
 given in section 3 is sound and complete with respect to these concepts.

 According to this semantical theory, the evaluation of a conditional statement
 involves, implicitly, the weighing of possible worlds against each other. To decide

 6-P.s.
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 about a conditional, I must answer a hypothetical question about how I would
 revise my beliefs in the face of a particular potential discovery. We are all, of

 course, continually making such revisions, both actual and hypothetical, and this
 process of change reflects methodological patterns and principles. There are always

 alternative ways to patch up our structure of beliefs, as Quine has persuasively
 argued, but the choice among the alternatives is not arbitrary. Some opinions

 acquire a healthy immunity to contrary evidence and become the core of our
 conceptual system, while others remain near the surface, vulnerable to slight shifts
 in the phenomena. The policies by which we make distinctions like this lend some

 stability to the changing process of inquiry.

 A selection function, selecting and ordering possible worlds, is intended as a
 representation of these methodological policies. A probability system is also a
 representation of them, since the same policies would be involved in the determin-
 ation of degrees of belief. The difference is that a probability system represents in
 addition the limited perspective of an individual knower. The move through the

 various grades of conditional involvement-P1 to P3-is an attempt to sort out the
 general principles from the factors that depend on the particular part of the actual
 world a knower has experienced, or learned about. The primary semantics for C2 is
 the final step in this sorting out.

 My intention in developing these formal and intuitive parallels between the
 theory of conditional probability and the semantics for conditional logic has been
 to give some additional support to the analysis of conditional statements sketched
 above. Beyond this, it is hoped that with the further development of the theories
 (for example the addition of quantifiers), this approach may provide some tools for
 the philosophical analysis of induction and confirmation.
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