2. Reformulations

2.1 Multiple Modalities

There are various ways to formulate my analysis of counterfactuals as
variably strict conditionals based on comparative similarity of worlds.
Let us look at some of the alternative formulations. Some are exactly
equivalent to my first formulation by means of systems of spheres;
others are equivalent only to special cases thereof.

Suppose there are no more than a certain finite number n of non-
empty spheres around any world. Then we can number the spheres
around each world i in order of increasing size. We begin with S?, the
empty set; then comes S}, the innermost nonempty sphere (assuming
centering, S} is {i}); then S?, the next smallest; and so on out to S%,
the largest sphere around i. (In case i has fewer than its full complement
of n distinct nonempty spheres, we give all the left-over numbers to the
outermost sphere. If there are only #—2 nonempty spheres around a
certain world i, for instance, the outermost of them counts as S} ~2, as
St—1, and as S7'.) We introduce a family of increasingly strict necessity
operators (7, ..., [, together with the corresponding possibility
operators <y, . . ., Oy For any number m from 1 through n, [J,¢ is to
be true at a world i if and only if ¢ holds throughout S7*; and <pé
is to be true at i and if only if ¢ holds at some world in S". In other
words, the spheres ST are the spheres of accessibility for the mth pair of
modal operators, [, and <y *

Given such a family of modalities, the counterfactual connectives are
definable.

0>y =i &L (d2¢) V...V
(<>n¢ & O, (d’ = l)t‘)) \ ~0n¢’

PO =%(C1p> 1 & P &... &
(Ond 2 On (B &) & Ond

* Such a system of multiple modalities is discussed in M. K. Rennie, ‘Models
for Multiply Modal Systems’, Zeitschrift fiir mathematische Logik und Grundlagen
der Mathematik 16 (1970): 175~186, and in L. F. Goble, ‘Grades of Modality’,
Logique et Analyse 51 (1970): 323-334.
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More generally, if we were willing to assume that there are no infinite
descending sequences of smaller and smaller spheres around any one
world, we could number the spheres around each world by ordinals,
including perhaps transfinite ordinals. We could then introduce an
infinite family of increasingly strict necessity operators, together with
the corresponding possibility operators, indexed by ordinals and thereby
placed in correspondence with the spheres around each world. We
could then define the counterfactual connective by an infinite dis-
junction (for [}-+) or an infinite conjunction (for ©&—) of disjuncts or
conjuncts like those in the finite definitions above.

2.2 Propositional Quantification

Infinite disjunctions or conjunctions often can be replaced by existential
or universal quantifications. They can be thus replaced in this case; and
as a bonus we can drop the restriction against infinite descending
sequences of smaller and smaller spheres around a world. We could
quantify over modalities themselves;* instead of a disjunction or con-
junction of parallel clauses involving different modalities, we could have
a definiens in which an initial quantifier over suitable modalities binds
a modal-operator-variable in its scope. But for our present purposes we
need nothing so exotic. Propositional quantification will serve as well.

Suppose that our language has the following resources: (1) pro-
positional variables, grammatically interchangeable with sentences;
(2) existential and universal quantifiers 3 and ¥ that may be used to
bind these variables; (3) the operators (] and < of outer necessity and
possibility; (4) the truth-functional connectives; and (5) a special one-
place sentential operator O, called the sphericality operator. A sentence
O#¢ is to be true at a world 7 if and only if there is some sphere S around
i such that ¢ is true at all and only the worlds in S. More precisely,
since ¢ may be an open sentence with free propositional variables:
O¢ is true at i, relative to a given assignment of values to its free
propositional variables (if any), if and only if there is some sphere S
around 7 such that ¢ is true, relative to that assignment of values, at all
and only the worlds in S.}

Now we are ready to define the counterfactual connectives. We have

* A system that permits quantification over modalities is given in Richard
Montague, ‘Universal Grammar’, Theoria 36 (1970): 373-398; reprinted in
Montague Formal Philosophy.

{ Alternatively, suppose we are given the logical modalities rather than tne
outer modalities; then we may begin by defining the outer modalities using the
given apparatus.
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only to copy their truth conditions into the object language. We no
longer assume any special restrictions on the system of spheres.

¢ ¢ =12 (0O & O (£ & ¢) & T(¢ & ¢.2¥)),
pO>¢h =4 Op & VEOE & O(¢ & 4).2 O & ¢ & ).

Here £ is any variable that does not occur in ¢ or .

The values of propositional variables are, of course, called proposi-
tions. It does not much matter what propositions are, so long as (1) they
are entities that can be true or false at worlds, and (2) there are enough
of them. They must have truth values at worlds so that an open sentence
consisting of a propositional variable standing alone will have truth
values at worlds, relative to an assignment of a value to the variable:
the truth value of the sentence is the truth value of the proposition
assigned as value to the variable. For every proposition, as for every
sentence, there is a set of the worlds where it is true. Conversely, for
each set of worlds, there should be a proposition true at all and only
the worlds in that set. Otherwise we cannot safely transform quantifica-
tion over sets of worlds in the metalanguage into propositional quanti-
fication in the object language, as we did to obtain our definitions of
the counterfactual operators.

For the sake of definiteness, we may take sets of worlds to be proposi-
tions.* A proposition P is true at a world i if and only if i belongs to the
proposition—the set—P. There is a proposition for every set of worlds
because the set itself is the proposition true at all and only the worlds

* Asis done in much recent work in possible-world semantics. (Sometimes with a
trivial difference: propositions are taken to be the characteristic functions of sets of
worlds rather than the sets themselves.) The idea goes back at least to Clarence 1.
Lewis, ‘The Modes of Meaning’, Plulosophy and Phenomenological Research 4
(1944): 236-249, in which the set of worlds is called the ‘comprehension’ of the
proposition; and to Rudolf Carnap, Meaning and Necessity (University of
Chicago Press: Chicago, 1947), in which propositions are taken as sets of state
descriptions, and state descriptions are said to ‘represent Leibniz’ possible worlds
or Wittgenstein’s possible states of affairs’. No theory can fit all that philosophers
have said about ‘propositions’—they have said too much—but the identification
of propositions with sets of worlds captures a good part of the tradition. Proposi-
tions so understood are non-linguistic entities capable of being true or false.
They exist eternally, non-contingently, and independently of us. One proposition
may be expressed by many sentences, in one language or in many, or by non-
verbal means of communication; on the other hand, there may be propositions
that we have no way to express. Two sentences that are logically equivalent, or
that do not differ in truth value at any world for whatever reason, express the
same proposition. But one part of the tradition about propositions must be given
up: propositions understood as sets of worlds cannot serve as the meanings of
sentences that express them, since there are sentences—for instance, all the logical
truths—that express the same proposition but do not, in any ordinary sense, have
the same meaning.
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in the set. For any sentence ¢, let [¢]) be the set of worlds where ¢ is
true. [$], being a set of worlds, is a proposition; call it the proposition
expressed by the sentence ¢. Then a sentence ¢ is true at a world i if and
only if the proposition [¢]] expressed by ¢ is true at i; that is, if and
only if i belongs to the proposition [¢]. All the tautologies express the
same proposition: the necessary proposition, in other words the set of all
worlds. All contradictions express the same proposition: the impossible
proposition, in other words the empty set. A proposition expressed by
some or other sentence of a language is said to be expressible in that
language. We cannot safely assume that every proposition is expressible
in our language, or indeed in any practical enrichment thereof. There
are apt to be too many propositions and too few sentences. (I shall
argue in Section 4.1 that there are more worlds than sets of sentences. 4
fortiori there are more propositions than sentences.) That is why we
need to quantify over propositions. Quantification over sentences—in
effect, over expressible propositions—could not substitute for meta-
linguistic quantification over sets of worlds.

If sets of worlds are propositions, the truth conditions for many
sentential connectives and operators can be restated by means of an
algebra of propositions. With an n-place connective we associate an
n-place operation on propositions, so that the proposition expressed by a
compound sentence is obtained by applying the operation to the
propositions expressed by the sentences whence it was compounded.
Negation corresponds to complementation relative to the set I of all
worlds; conjunction to intersection; disjunction to union; and so on for
the other truth functions. Then the truth conditions for compound
sentences are given by propositional equations:

[~¢1 = I-[4]
(¢ & 41 = [¢I N [¥],
(¢ v ¢1=[¢]V [¥].

Our counterfactual connective [} corresponds to a more complicated
two-place operation on propositions; call it the counterfactual operation.
Given as arguments two sets of worlds P and Q, this operation yields as
value the set of all worlds i such that if P overlaps any sphere around i,
then P overlaps some sphere S around i such that the intersection
PN S is included in Q. We can now state the truth conditions for
counterfactuals by saying that, for any ¢ and ¢, the proposition
[¢ O— ¢ is the result of applying this counterfactual operation to the
propositions [¢]] and [¢]. We can say that the connective expresses
the operation. If we want to give the connective an entity to be its
meaning, the operation can serve the purpose.
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2.3 Comparative Similarity

Our system of spheres is nothing but a convenient device for carrying
information about the comparative similarity of worlds. We could do
away with the spheres, and give the truth conditions for counterfactuals
directly in terms of comparative similarity of worlds, together with
accessibility. Let us introduce the notation

J<ik

to mean that the world j is at least as similar to the world i as the world
k is; also '

J <ik (defined as: it is not the case that k <,j)

to mean that j is more similar to i than k is. We may posit an assign-
ment to each world i of two items: a two-place relation <, among
worlds, regarded as the ordering of worlds in respect of their compara-
tive similarity to i, and a set S; of worlds, regarded as the set of worlds
accessible from i. Call such an assignment a (centered) comparative
similarity system if and only if, for each world i, the following six
conditions hold.

(1) The relation <; is transitive; that is, whenever j <,k and k <, A,
then j < A.

(2) Therelation'<is strongly connected; that is, for any worlds j and k,
either j <,k or k <j. (Equivalently: if j <, k thenj <, k.)

(3) The world iis self-accessible; that is, i belongs to S;.

(4) The world i is strictly <-minimal; that is, for any world j different
fromi,i <j.

(5) Inaccessible worlds are <;-maximal; that is, if k does not belong to
S;, then for any world j, j <, k.

(6) Accessible worlds are more similar to i than inaccessible worlds: if
J belongs to S; and k does not, then j <, k.

A relation that is transitive and strongly connected is called a weak
ordering or a (total) preordering.* We can state the six conditions
concisely as follows: each <, is a weak ordering of the worlds, with i
alone at the bottom and all the worlds inaccessible from i, if there are
any, together at the top above all the accessible worlds. All inaccessible

* ‘Weak’ because, unlike a strong (or linear) ordering, ties are permitted: two
different things can stand in the relation to each other, and thus be tied in the
ordering. ‘Preordering’ because if we take equivalence classes under the relation
of being thus tied, the induced ordering of the equivalence classes is a strong
ordering. Familiar weak orderings are the relations of being at least as tall as, at
least as far north as, etc. When I speak simply of an ordering, I shall mean a weak
ordering; we shall be little concerned with strong orderings.
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worlds are equally dissimilar to i; if j and k both are outside S, then
j €<ik and k <,j. If there are no worlds inaccessible from i, then it may
be that there are remoter and remoter accessible worlds without end,
or it may be that some of the accessible worlds are maximally remote
from i.

We may now give the truth conditions for the ‘would’ counterfactual
in terms of a comparative similarity system, as follows.

¢ O3> ¢ is true at a world i (according to a given comparative

similarity system) if and only if either

(1) no ¢-world belongs to S; (the vacuous case), or

(2) there is a ¢-world k in S, such that, for any world j, if j <; k then
¢ O ¢ holds at j.

The counterfactual is true at i if and only if, if there is an antecedent-
world accessible from i, then the consequent holds at every antecedent-
world at least as close to i as a certain accessible antecedent-world.

The present formulation is exactly equivalent to the original formu-
lation by means of spheres, without any restrictive assumptions.
Recalling the way in which systems of spheres are supposed to carry
information about comparative similarity, it is easily seen that we can
put systems of spheres in one-to-one correspondence with comparative
similarity systems, in such a way that the corresponding systems agree
on the truth value at every world of every counterfactual. Starting with
a comparative similarity system that assigns to each world i the relation
<, and the set S, let $ be the assignment to each world i of the set §;
containing all and only those subsets S of S; such that, whenever j
belongs to S and k does not, j <, k. Then it is easy to show (1) that §is a
system of spheres, and (2) that a counterfactual is true at a world
according to the defined system of spheres $ if and only if it is true
at that world according to the original comparative similarity system.
Call $ the system of spheres derived from the original comparative
similarity system. To go the other way, suppose we start with a system
of spheres $. For each world 7, let j <, k if and only if every sphere S in
$, that contains k also contains j; and let S; be {_$,. Then it is easy to
show (1) that the assignment to each world i of the relation <; and the
set S, so defined is a comparative similarity system, and (2) that a
counterfactual is true at a world according to this defined comparative
similarity system if and only if it is true at that world according to the
original system of spheres $. Say that this comparative similarity system
is derived from the system of spheres $. We can show, finally, that for any
comparative similarity system and system of spheres, the latter is de-
rived from the former if and only if the former is derived from the latter.

The assignment to each world i of the sphere of accessibility S; is the
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accessibility assignment corresponding to the outer necessity operator.
It seems clumsy to assign the two separate items <; and S; to each
world i, but S is independent of <,. If there are no <,~-maximal worlds,
we know that S; must be the whole set of worlds; but if there are some
< ;-maximal worlds, we do not know from <, alone whether these are
inaccessible worlds, to be left out of consideration in determining
whether a counterfactual is true at i, or maximally remote accessible
worlds. An alternative method * would be to let <, be an ordering not of
all worlds, but only of accessible worlds, so that S; could be defined as
the field of the relation <,; but this method is even clumsier.

There is something to be said for a philosophic conscience untroubled
by possible worlds, but troubled by sets. After all, possible worlds have
not led into paradox. The owner of such a conscience should prefer the
present formulation to the original formulation involving an assignment
to each world of a set of sets of worlds. He should regard a comparative
similarity system, however, not as an assignment to each world of a
two-place comparative similarity relation and a set of worlds regarded
as accessible, but rather as a single three-place comparative similarity
relation and a single two-place accessibility rélation; or better still, as
the two predicates ‘____is at least as similar to---as...is’ and
‘____is accessible from . ...

2.4 Similarity Measures

I have sometimes spoken informally of degrees of similarity, as if
similarity of worlds could be measured numerically; but I have not
assumed that it could be. I have not used any quantitative concept of
similarity, but only a comparative concept. One world is more similar
than another to a third; but we need never say how much more, and the
question how much more need not make sense.

Suppose, however, that we did have a quantitative concept of the
similarity of worlds, so that we could speak sensibly of the degree of
similarity, measured numerically, of one world to another. Then the
truth conditions of ‘would’ counterfactuals would be as follows:
¢ (1 ¢ is true at a world i if and only if either (1) no ¢-world is similar
to i to a degree greater than zero, or (2) for some positive number d,
there are ¢-worlds similar to i to degree at least d, and ¢ holds at every
¢-world similar to i to degree at least d. (Worlds too unlike i to be
considered—those that we previously regarded as lying outside all
the spheres around i—are now assigned zero degree of similarity to i.)

* Followed in my ‘ Completeness and Decidability of Three Logics of Counter-
factual Conditionals®, Theoria 37 (1971): 74-85.
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What additional assumptions do we make about comparative
similarity orderings if we assume that they can be obtained from a
numerical measure of similarity ?

For one thing, we limit the number of gradations of similarity to the
number of numbers, and we limit the order type of the comparative
similarity ordering to the order types of orderings of numbers. Every
similarity ordering with only countably many distinct gradations of
similarity can be represented as derived from a numerical measure. Not
every similarity ordering with more than countably many distinct
gradations can be so represented; and no ordering with more distinct
gradations than there are real numbers can be. This limitation hardly
seems serious.

If we measure similarity numerically, and make uninhibited use of the
analogy of similarity ‘distance’ between worlds to spatial distance
between places, we are liable to make a much more serious and ques-
tionable assumption: that the degree of similarity of i to j equals the
degree of similarity of j to i.* This assumption of symmetry for the
similarity measure implies a constraint on similarity orderings derived
from that measure: if j <, k and k <, i, then j <, i. But that constraint
would be unjustified if we suppose that the facts about a world i help
to determine which respects of similarity and dissimilarity are important
in comparing-other worlds in respect of similarity to the world i. The
colors of things are moderately important at our world, so similarities
and dissimilarities in respect of color contribute with moderate weight
to the similarity or dissimilarity of other worlds to ours. But there are
worlds where colors are much more important than they are at ours;
for instance, worlds where the colors of things figure in fundamental
physical laws. There are other worlds where colors are much less im-
portant than they are at ours; for instance, worlds where the colors of
things are random and constantly changing. Similarities or dissimilari-
ties in color will contribute with more or less weight to the similarity
or dissimilarity of a world to one of those worlds where color is more
important or less important. Thus it can happen that j is more similar
than k to i in the respects of comparison that are important at i; k is
more similar than i to j in the respects of comparison that are important
at j; yet i is more similar than j to k in the respects of comparison that
are important at k.

This assumption of symmetry is, of course, not an inevitable con-
sequence of assuming that similarity of worlds admits of numerical
measurement. We could have an asymmetric similarity measure. It

* Sobel, in ‘Utilitarianisms: Simple and General’, formulates essentially my
analysis of counterfactuals by means of a numerical similarity measure, and does
make this assumption.
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would give us the degree of similarity of j to i, from the standpoint of i;
that might not equal the degree of similarity of i to j, from the stand-
point of j, because the relative importances of respects of comparison
might differ from the standpoints of the two different worlds. (Having
gone that far, we might as well have a function of three arguments that
gives the degree of similarity of i to j from the standpoint of k, whether
or not k is the same as 7 or j.) But why bother ? The appeal of a numerical
similarity measure comes from the analogy between similarity ‘distance’
and spatial distance. To the extent that the analogy breaks down, the
point of having a numerical measure is lost.

2.5 Comparative Possibility

Ordinarily we think of possibility as an all-or-nothing matter. Some-
thing is possible or it is not, and the only way for it to be more possible
that ¢ than that ¢ is for it to be possible that ¢ but not possible that .
Given the notion of comparative overall similarity of worlds, however,
there is a natural comparative concept of possibility. It is more possible
for a dog to talk than for a stone to talk, since some worlds with talk-
ing dogs are more like our world than is any world with talking stones.
It is more possible for a stone to talk than for eighteen to be a prime
number, however, since stones do talk at some worlds far from ours,
but presumably eighteen is not a prime number at any world at all, no
matter how remote.

We may introduce into our language three comparative possibility
operators:

<
read as ‘It is at least as possible that ____ as it is that ...’, or as ‘It is no
more far-fetched that _____ than that ..., or as ‘It is no more remote
JSrom actuality that ____ than that . . .,

<
read as ‘It is more possible that ____ than that...’, or as ‘It is less
Sfar-fetched (less remote from actuality) that ____than that...’; and

~y

read as ‘It is equally possible (equally far-fetched, equally remote from
actuality) that and that...’. The pair of <X and < are inter-
definable, and =~ is definable from =, as follows:

$<U =~ <),
$<4 =%~ <9
PRY="P<4 & IS
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Let us take < as primitive and the other two as defined. The truth con-
ditions for <X are given thus:

é < ¢ is true at a world i (according to a system of spheres $) if and
only if, for every sphere S in §;, if S contains any y¢-world then S
contains a ¢-world.

We thence obtain derived truth conditions for the defined operators
< and %~

é < ¢ is true at i (according to $) if and only if some sphere in §
contains a ¢-world but no ¢-world.

é ~ ¢ is true at i (according to $) if and only if all and only those
spheres in §; that contain ¢-worlds contain g-worlds.

The outer and inner modalities, previously defined from the counter-
factual, may now be redefined in terms of comparative possibility. The
following definitions give the same derived truth conditions as the
original ones. For the outer modalities:

O =4 <1,
¢ =4 ~O ~ ¢ (or,directly, L & ~¢).

For any ¢, ¢ <X L is everywhere true; thus the everywhere-false sentence
1 is minimally possible. Outer possibility, then, is more-than-minimal
possibility—possibility at least exceeding that of L. For the inner
modalities:

¢ — af ¢ T
e =4 ~> ~ ¢ (or, directly, T < ~4¢).

For any ¢, T < ¢ is everywhere true; thus the everywhere-true sentence
T is maximally p0551ble Inner possibility, then, is maximal possibility—
possibility equal to that of T. In a centered system of spheres, all and
only truths are maximally possible; as we noted before, the inner
modalities are trivial in this case.

Now we can reintroduce our counterfactual operators by definition
from comparative possibility (and outer possibility, defined in turn
from comparative possibility). The following definitions give the correct
truth conditions.

¢ O ¢ ‘"(¢&¢)<(¢&~¢),

¢ O=> ¢ =4 ~ (¢ O— ~¢) (or; directly, (4 & ¢) < (4 & ~¢)),
¢ O0—¢ ‘“<>¢ ¢ O— ¢,

$ Oy =4 ~($ 0> ~§) (or, Op & ¢ O=> ).
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We can just as well go the other way. Taking [J— again as primitive,
and defining &= and [J=> from it as in Section 1.6 (or taking one
of the latter as primitive), we can introduce comparative possibility,
with the correct derived truth conditions, by either of the following
definitions. If we want to introduce < first,

$<XY=Y@VP)O—>¢;
if we prefer to introduce < first,

¢ <¢ =%V ) O ~¢

We now have six alternative primitives: all of [(J—, &—, O—, O—>,
=, and < can be defined from any one of them.

So far, I have only been introducing new operators into the language
to be interpreted. Truth conditions for sentences with this new vocabu-
lary have been given by means of the same system of spheres already
used to give truth conditions for counterfactuals. When we consider
taking < rather than [J— as our primitive, however, it becomes con-
venient to give truth conditions not by means of the system of spheres
but by means of relations of comparative possibility among proposi-
tions (sets of worlds). Let us write

P<,Q

to mean that the proposition P is at least as possible, at the world i, as
the proposition Q; let us write

P <, Q (defined as: it is not the case that Q <, P)
to mean that P is more possible at i than Q; and let us write
~; Q (defined as: P <; Q and Q X, P)

to mean that P and Q are equally possible at i. The symbols <, <, and
~ thus lead a double life, but there is no danger of confusion: un-
subscripted, they are sentential connectives of the object language;
subscripted, they are terms of the metalanguage denoting relations
between propositions.

We may posit an assignment to each world i of a two-place relation
=<, among propositions, regarded as the ordering of propositions in
respect of their comparative possibility from the standpoint of the
world i. Call such an assignment a (centered) comparative possibility
system if and only if, for each world i, the following five conditions
hold.

(1) The relation <, is transitive; that is, whenever P <; Q and Q <, R,
then P <, R.



2.5 Comparative Possibility 55

(2) The relation <, is strongly connected; that is, for any propositions
P and Q, either P <, Q or Q <, P. (Equivalently: if P <, Q then
P<,0)

(3) All and only truths are maximally possible; that is, the world i itself
belongs to a proposition P if and only if, for every proposition
0, P x; Q. (Equivalently: if i belongs both to a proposition P and
to a proposition Q, then P =, Q; if i belongs to P but not to Q,
then P <; Q.)

(4) The union of a set of propositions is the greatest lower bound of the
set. Let 7 be a set of propositions and let | JT be the proposition
containing all and only the worlds contained in members of the set
T. Then Q <{P for every P in ¥ if and only if Q <, UJ. (If T is
finite, this means that { ¢ is as possible as the most possible member
of T.)

(5) A singleton proposition that is more possible than every member of
a set of propositions is also more possible than the union of the set.
Let § and \UJ be asin (4) and let § be nonempty; thenif {j} <, P
forevery Pind, {j}<. 7.

A comparative possibility system thus assigns to each world i a weak
ordering of all propositions, with the propositions true at i itself—that
is, containing i—together at the bottom. It follows from (4) that when-
ever Q is a subset of P, P <{; Q. From that it follows further that for any
proposition P, P <; A, where A is the empty set—in other words, the
proposition true at no world, expressed by 1 or any contradiction. As
we shall see, the five conditions are required by the connection we
intend between comparative possibility of propositions and compara-
tive similarity of worlds.

It is easy to give the truth conditions for comparative possibility
sentences according to a given comparative possibility system:

¢ < ¢ istrue atiif and only if [¢] <, [¢].
(Recall that for any sentence ¢, [#]] is the set of worlds where ¢ is true,

or in other words the proposition expressed by ¢.) The derived truth
conditions for < and ~ are similar:

¢ <4 istrueatiif and only if [¢] <, [¥],

¢~ ¢ istrue atiif and only if [é] =, [¢¥].
The derived truth conditions for modal sentences and counterfactuals
can simply be read off from the definitions of these in terms of the
connectives of comparative possibility. For instance:

<O is true at i if and only if [¢] <, A.

é 1= ¢ istrue at i if and only if, if [¢]] <; A,

then [[] N [¢] <. [¢]-[¥]-
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The present formulation by means of comparative possibility is
exactly equivalent to the original formulation by means of spheres,
with no restrictive assumptions. We can put systems of spheres in
one-to-one correspondence with comparative possibility systems, in
such a way that the corresponding systems agree on the truth value at
every world of all counterfactuals and comparative possibility sentences.
Starting with a comparative possibility system that assigns to each
world i the relation <, let $ be the assignment to each world i of the
set $, of all and only those sets S of worlds such that, whenever a
proposition P overlaps S and a proposition Q does not, then P <; Q.
Then it is easy to show (1) that § is a system of spheres, and (2) that a
counterfactual or comparative possibility sentence is true at a world
according to the defined system of spheres $ if and only if it is true at
that world according to the original comparative possibility system.
Call $ the system of spheres derived from the comparative possibility
system. Starting rather with a system of spheres $, let P <; Q if and
only if every sphere S in $; that overlaps Q also overlaps P. Then it is
easy to show (1) that the assignment to each world i of the relation <, so
defined is a comparative possibility system, and (2) that a counter-
factual or comparative possibility sentence is true at a world according
to this defined comparative possibility system if and only if it is true
at that world according to the original system of spheres $. Say that the
comparative possibility system is derived from the system of spheres.
Then we can show that for any comparative possibility system and
system of spheres, the latter is derived from the former if and only if the
former is derived from the latter.

Since comparative possibility systems and comparative similarity
systems both can be put into one-to-one truth-preserving correspon-
dence with systems of spheres, it follows that they can also be put into
one-to-one truth-preserving correspondence with each other. This
correspondence is quite simple: a comparative similarity ordering of
worlds is, essentially, the corresponding comparative possibility
ordering of singleton propositions, and accessible worlds are worlds
that are more than minimally possible. More precisely: if the com-
parative similarity system that assigns to each world i the similarity
ordering < of worlds and the sphere of accessibility S; corresponds to
the comparative possibility system that assigns to each world i the
ordering <,of propositions, then (1) j <, k if and only if {j} <, {k}, and
(2) j belongs to S; if and only if {j} <; A.
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2.6 Cotenability

In order to compare my theory with most previous theories of counter-
factuals (this will be done in Sections 3.1-3.3) it will be helpful to
reformulate my truth conditions in terms of relations of logical impli-
cation and of ‘cotenability’ between sentences.

Let us say that x is cotenable with ¢ at a world i (according to a system
of spheres $) if and only if either (1) x holds throughout {J$,, or (2) x
holds throughout some ¢-permitting sphere in $,. In other words: if
and only if either (1) x holds at all worlds accessible from i, or (2) some
#-world is closer to i than any ~x-world. A necessary truth (in the
sense of outer necessity) is cotenable with anything; a falsehood is
cotenable with nothing; between these limits, cotenability is a matter of
comparative possibility. If ¢ is entertainable at i, y is cotenable with ¢
at 7 if and only if [¢]] <; [~xI.

A counterfactual ¢ [1— ¢ is true at i (according to my truth con-
ditions) if and only if the premise ¢ and some auxiliary premise y,
cotenable with ¢ at i, logically imply . Proof: Suppose there is some
such premise x. Perhaps there is no ¢-permitting sphere around i, in
which case ¢ [J— ¢ is vacuously true at i. Otherwise there is a ¢-per-
mitting sphere throughout which x holds; since ¢ and y jointly imply
¥, ¢ = ¢ also holds throughout this sphere; so ¢ [J-> ¢ is true. Con-
versely, suppose ¢ [1— ¢ is true at i. Either there is no ¢-permitting
sphere around i, in which case ~¢ is a premise, cotenable with ¢ at i,
which together with ¢ implies ¢; or else there is a ¢-permitting sphere
throughout which ¢ = ¢ holds, in which case ¢ > ¢ is a premise,
cotenable with ¢ at i, which together with ¢ implies y. Q.E.D.

If each of x4, . . ., xa is cotenable with ¢, then so is their conjunction;
so we can also say that ¢ (J— ¢ is true at i if and only if ¢ together with
finitely many premises x, . . ., x., €ach cotenable with ¢ at 7, logically
imply 4.

That would be the customary way to give truth conditions by means
of cotenability, but there is an easier way: ¢ [J— ¢ is vacuously true at i
if and only if ~¢ is cotenable with ¢ at i, non-vacuously true at i if and
only if ¢ > ¢ is cotenable with ¢ at i.

2.7 Selection Functions

The simplest and most direct formulation of the idea that a counter-
factual is true if and only if the consequent holds at the closest ante-
cedent-worlds depends, unfortunately, on the objectionable Limit
Assumption. Suppose we are given a system of spheres $ that satisfies
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the Assumption (for antecedents in our language). That means, we
recall, that for every world i and antecedent ¢ (in our language) that is
entertainable at i, there is a smallest ¢-permitting sphere around i.
The ¢-worlds in that sphere are the closest ¢-worlds to i. If an antecedent
¢ is not entertainable at i, then the set of closest ¢-worlds to i is empty.

We may define a function f which selects, for any sentence ¢ and
world i, the set f(¢, 7) of closest ¢-worlds to i. Let

the set of ¢-worlds belonging to every ¢-permit-
N ting sphere in §;, if there is any ¢-permitting
f($, 1) = sphere in $,,
the empty set otherwise.

We call f a selection function (or a set-selection function, when we wish
to compare these with Stalnaker’s world-selection functions to be
considered in Section 3.4). We will say that f is derived from the given
system of spheres $§. We have already seen how to give the truth con-
ditions for counterfactuals under the Limit Assumption. In terms of the
selection function: the ‘would’ counterfactual ¢ [} ¢ is true at a
world i if and only if ¢ is true at every world in f(¢, i). Similarly the
‘might’ counterfactual ¢ O— ¢ is true at i if and only if ¢ is true at
some world in f(¢, i).*

When f'is derived from a system of spheres $§ that satisfies the Limit
Assumption, then these truth conditions will agree with my original
truth conditions given in terms of the system of spheres. But if § does
not satisfy the Limit Assumption, then there will be disagreement.
Sometimes f(¢, i), as I have defined it, will be empty because, although
there are ¢-permitting spheres around i, yet there is no ¢-world that
belongs to every ¢-permitting sphere. Then ¢ [ ¢ will incorrectly
come out as vacuously true at i for any consequent ¢, contrary to my
original truth conditions in terms of the system of spheres.

We may call a function ffrom sentences and worlds to sets of worlds a
(centered) (set-) selection function if and only if, for all sentences ¢ and ¢
and for each world i, the following four conditions hold.

(1) If ¢ is true at i, then f(¢, i) is the set {i} having i as its only member.
(2) f(¢, i) is included in [¢]].
(3) If [¢] is included in [] and f(¢, i) is nonempty, then f(y, i) also is
nonempty.
(4) If [¢] is included in []) and [¢] overlaps f(i, i), then f(¢, i) is the
intersection of [¢]] and f(¥, i).
* The use of set-selection functions in this way to give an analysis of counter-
factuals has been suggested by John Vickers, and further studied by Peter Wood-

ruff in ‘Notes on Conditional Logic’ (duplicated, May 1969, University of
California at Irvine).
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Such selection functions turn out to be all and only the selection
functions derived from (centered) systems of spheres satisfying the
Limit Assumption. If fis derived from some such system of spheres,
then it is easily verified that conditions (1)-(4) are satisfied. Conversely,
suppose f satisfies conditions (1)-(4). Let $ be the assignment to each
world i of the set $§; of all and only those sets .S of worlds such that,
first, every world in S belongs to some f(¢, i); and, second, whenever
[¢] overlaps S, f(¢, i) is included in S. Then it is easily verified that $
is a system of spheres satisfying the Limit Assumption. It remains to
show that fis derived from $. Proof: first consider the case that there
is no ¢-permitting sphere in $,. The union of the sets f(y, i) for all
sentences Y—including ¢—is obviously a sphere in §;; if this sphere
is not ¢-permitting although it includes f(¢, i), then f(¢, i) must
be empty, so in this case f(¢, i) agrees with the selection function
derived from §. Next consider the case that there is some ¢-permitting
sphere in $;. By (2) and the definition of $, f(¢, i) is included in the
intersection of [[¢]] and any ¢-permitting sphere; so to show that in
this case also f(¢, i) agrees with the selection function derived from
$, it suffices to find a sphere S in §; such that the intersection of [¢]]
and S is exactly f(¢,i). Take S to be the union of the sets f(, i),
for all sentences ¢ such that [¢] is included in []. Whenever [x]
overlaps S, [x] overlaps some f(y, i) such that [[¢] is included in
[¥]. [¢] is included also in [y Vv ¥, so f(x V ¥, i) is included in S.
[[x] overlaps f(x V ¥, i); if not, it would follow by (2)-(4) that (¢, i)
and f(x Vv ¢,i) are the same, contradicting the fact that [x]) does overlap
S, i). It now follows by (4) that f(x, i) is included in f(x Vv ¢, i), and
hence in S; so S is a sphere. The intersection of [¢] and S is the union
of all intersections of [[¢] with a set f(i, i) such that [¢] is included in
[¥]. By (4), each such intersection is either the empty set or f(¢, i);
and by (2), one such intersection—that of [¢]] with f(¢, i)—is f($, i);
so the intersection of [[¢]] and the sphere S is exactly f(¢, i), as desired.
Q.E.D.

The truth-preserving correspondence between systems of spheres
satisfying the Limit Assumption and the selection functions derived
from them is not, in general, one-to-one. Given a system of spheres $
satisfying the Limit Assumption, we may be able to add a new sphere S
around some world 7 in such a way that S does not become the smallest
¢-permitting sphere around i for any sentence ¢é. Let $ be the new
system of spheres obtained by the addition of S; then $§ also satisfies
the Limit Assumption, and $ and §' yield the same derived selection
function. This means that systems of spheres sometimes carry more
information about comparative similarity than is needed to determine
the truth values at all worlds of all counterfactuals. The same is true of
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comparative similarity and comparative possibility systems since these,
as we have seen, stand in one-to-one truth-preserving correspondence
with systems of spheres.

My conditions (2)—(4) imply that if [¢]] and [¢] are the same—if ¢
and ¢ are different sentences expressing the same proposition—then
f(é, i) and f(¢, i) are the same. Therefore instead of taking the first
arguments of selection functions to be sentences, as I did, I could just
as well have taken them to be propositions expressible by sentences.

Instead of taking a single function f of two arguments, I could just as
well have taken an assignment to each world i of a function f; of one
argument—a sentence or a proposition, according to taste. Instead of
f(¢, i) we then have f(¢) or fi([¢#]). If we take the arguments to be
propositions rather than sentences, and if we let U; be the set of
expressible propositions 4 such that f(4) is nonempty, then each
(U, £ is what Bengt Hansson has called a choice structure.*

We might also reformulate a selection function as a family, indexed
by sentences or by propositions, of assignments to worlds of spheres of
accessibility; or, more traditionally, as a family, indexed by sentences or
by propositions, of accessibility relations between worlds. A world j is
accessible, (or accessibleyy; if we prefer) from a world i if and only if j
isin f(¢, i). For any fixed antecedent ¢, we can regard ¢} and ¢ O—- as
if they were a pair of one-place modal operators, interpreted as usual
by means of accessibility,. ¢ [1— ¢ is true at i if and only if ¢ holds at
every world accessible, from i; ¢ O— ¢ is true at i if and only if ¢
holds at some world accessible, from i. My analysis of variably strict
conditionals, as restricted by the Limit Assumption, can thus be
subsumed as a special case under a general theory of sententially or
propositionally indexed modalities.} My analysis in its full generality,
on the other hand, cannot be thus subsumed—the Limit Assumption is
essential.

* ‘Choice Structures and Preference Relations®, Synthese 18 (1968): 443-458.
We saw that every selection function is derived from a system of spheres; this
could have been obtained as a corollary of Hansson’s theorem that whenever
<V, f>is a choice structure such that U is closed under finite unions, there is a
weak ordering R underlying {°U, f)—that is, for each A4 in VU, f(A) is the set of
members of A that bear R to every member of 4. In this case, the ordering under-
lying <%, f,) is the comparative similarity ordering <,.

1 A general account of propositionally indexed modalities is to be found in
Brian F. Chellas, ‘Basic Conditional Logic’, Journal of Philosophical Logic 4 (1975):
133-153.
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2.8 The Selection Operator

If we tolerate the Limit Assumption and use a selection function to
interpret the counterfactual, we can express the selection function by an
operator in the object language. We can define the counterfactual
connectives from that operator, plus other logical apparatus.

Introduce a one-place sentential operator ¢, called the selection
operator. We may read it as ‘Things are the way they would be if it were
the case that ____. The sentence /¢ is to be true at all and only the
selected, closest ¢-worlds given by our selection function f. The counter-
factual may (provisionally) be defined thus:

¢ O =Y0(/¢ > ).

This definition makes the counterfactual into a strict conditional after
all; however the antecedent ¢ of the counterfactual is not the same as
the antecedent /¢ of the strict conditional. According to this definition
the counterfactual is true if and only if ¢ holds at all /¢-worlds—that is,
at all of the selected, closest ¢-worlds.

That is more or less what we want, but the account so far is incom-
plete. The /¢-worlds are the ‘selected, closest ¢-worlds’. Selected
from, and closest to, what world? A selection function has two argu-
ments. I said that /¢ was to be true at all and only the worlds in f(¢, i)}—
but without specifying which world is i.

Lennart Aquvist, in first proposing the use of a selection operator,
specified that the selection was to be done always from the standpoint
of our actual world.* That is, /¢ was to be true at all and only the
closest ¢-worlds to ours—all and only the worlds in f(¢, i) where i is our
actual world. Since Aqvist selects always from the standpoint of a
single world, ours, his selection functions have no need of a second
argument.

That will do so long as we care only to say how the actual truth
values of counterfactuals depend on the truth values at various worlds of
their antecedents and consequents. But we have been more ambitious
hitherto. Counterfactuals are, for the most part, contingent. We have
been trying to give their truth conditions in general: to say how the
truth value of a counterfactual at any world depends on the truth
values at various worlds of its antecedent and consequent. Even if we
are ultimately interested only in the actual truth values of sentences,
still we must consider the truth values of counterfactuals at other
worlds than ours to obtain the actual truth values of sentences in

* ‘Modal Logic with Subjunctive Conditionals and Dispositional Predicates’,
Journal of Philosophical Logic 2 (1973): 1-76.
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which counterfactuals are embedded inside other counterfactuals. For
instance, Aqvist’s method cannot be made to account for the truth of
the sentence

(I look in my pocket [1— I find a penny) & (There is no penny in my
pocket (1> ~(I look in my pocket (1— I find a penny)).

In order to make proper use of the selection operator, we must
recognize that there are sentences that cannot naturally be assessed
simply for truth or falsehood at a world, but rather call for a three-
place truth relation: truth of a sentence ¢ at a world i with reference to a
world j. For instance, ‘Things are better’ is true at i with reference to j
if and only if things are better at i than at j, but there is no natural way
to assess ‘ Things are better’ for truth at a world without some reference
world to serve as a standard of comparison. Similarly, we cannot give a
satisfactory general account of the truth conditions for the selection
operator by means simply of the two-place truth-at relation. We should
rather use the three-place truth relation and say that /¢ is true at a
world i with reference to a world j if and only if i belongs to f(¢, j)—
that is, if and only if i is a closest ¢-world to j.

What shall we do when we need to mix these special sentences that
require the three-place truth relation with ordinary sentences that can
be treated adequately by means of the two-place truth relation?
Although it is unsatisfactory to treat special sentences as though they
were ordinary, it is harmless to treat ordinary sentences as though they
were special. Let us call an ordinary sentence true at i with reference to
any j if and only if it is true at i. Given this stipulation, we can explain
the difference between ordinary and special sentences by saying that an
ordinary sentence is true at a world with reference to all worlds or
none, whereas a special sentence is sometimes true at a world with
reference to some worlds but not others.

Just as the truth conditions for ordinary sentences are formulated in
terms of the two-place truth relation, so parallel truth conditions for
special sentences—or for ordinary sentences treated as special in order
to compound them with special sentences—may be given in terms of the
three-place truth relation. The reference world tags along throughout.
For instance, a material conditional is true at i with reference to j if and
only if either the consequent is true at i with reference to j or the ante-
cedent is false at i with reference to j. A sentence [J¢ is true at i with
reference to j if and only if ¢ is true with reference to j at every world
accessible from i; the appropriate accessibility assignment for outer
modality is given in terms of the selection function by specifying that a
world is accessible from i if and only if it belongs to some f(x, i) or
other.
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Suppose ¢ and ¢ are ordinary sentences. Then the strict conditional
(/4 = ) that we took provisionally to define ¢ [J— ¢ is in many
cases a special sentence. It is true at a world i with reference to a world j
if and only if /¢ > ¢ is true with reference to j at every world accessible
from i; that is, if and only if  is true with reference to j at every world
accessible from i where /¢ is true with reference to j; that is, if and only
if ¢ is true at every world in f(4, j) that is accessible from i. Taking j as i,
the accessibility restriction becomes redundant. Thus (/4 > ¢) is
true at i with reference to i itself if and only if ¢ is true at every world in
f(, i); that is, if and only if ¢ [J— ¢ is true at i.

That is good enough to explain our success with actual truth values,
but it is not quite right. We want to define ¢ [J— ¢ by an ordinary
sentence that will be true at a world i if and only if our provisional
definiens [)(/¢ > ¢) is true at i with reference to i. We must provide a
new operator t with truth conditions as follows: ty is an ordinary
sentence true at 7 if and only if y is true at i with reference to i. (When x
is ordinary, tx has the same truth conditions as y itself.) Prefixing the
t-operator to our provisional definens, we obtain the correct definition.*
With it we have a parallel definition for the ‘might’ counterfactual.

¢ O ¢ =" 10(/¢ = ¥),
¢ O—=> ¢ =" 1O(/¢ & ¥).

We could go instead in the other direction and define the selection
operator from the counterfactual, using propositional quantification
and another special operator for the three-place truth relation. Let }y
be true at i with reference to j if and only if y is true at j with reference
to j; a sentence |x will in most cases be special. Now we may define 4

thus:
/o =4VE(P O €) > ).

(Here ¢ is to be any propositional variable that does not occur in ¢.)
Intuitively, the definiens says that whatever would hold, if ¢ did, does
hold.}

* Correct on the assumption that the antecedent and consequent are ordinary.
But we might want to drop that assumption. For instance, if we want to handle
countercomparatives like ‘ If my yacht were longer, things would be better® without
quantifying in, we will want to take the antecedent and consequent as special
sentences. But if we want to use the object-language selection operator in the
presence of special antecedents and consequents, then we must consider extra-
special sentences that require a four-place truth relation—and so on up.

1 The -operator and the t-operator, or rather their temporal analogs, were
first introduced by Hans Kamp and Frank Vlach, respectively. They are needed
for symbolizing such sentences as ‘Jones is going to remember (simultaneously)
everyone now living’ and ‘Jones was once going to remember (simultaneously)
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everyone then living’ in a language without overt quantification over times.
‘Now’ or ‘then’ is }, ‘once’ is t. See Kamp, ‘Formal Properties of “Now™’,
Theoria 37 (1971): 227-273; and Vlach, *“Now” and “Then”: a Formal Study in
the Logic of Tense and Anaphora’ (Ph.D. dissertation, 1973, University of California
at Los Angeles). Aqvist, in an appendix to ‘Modal Logic with Subjunctive Con-
ditionals and Dispositional Predicates’ (written subsequently to the body of the
work) has adopted my suggestion to use the t-operator along with a selection
operator that yields special rather than ordinary sentences.



