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The standard use of the propositional calculus ('P.C.') in analyzing the validity of
inferences involving conditionals leads to fallacies, and the problem is to determine
where P.C. may be 'safely' used. An alternative analysis of criteria of reasonableness of
inferences in terms of conditions of justification rather than truth of statements is pro-
posed. It is argued, under certain restrictions, that P. C. may be safely used, except
in inferences whose conclusions are conditionals whose antecedents are incompatible
with the premises in the sense that if the antecedent became known, some of the
previously asserted premises would have to be withdrawn.

1. The following nine 'inferences' are all ones which, when symbol-
ized in the ordinary way in the propositional calculus and analyzed
truth functionally, are valid in the sense that no combination of truth
values of the components makes the premises true but the conclusion
false.

Fl . John will arrive on the 10 o'clock plane. Therefore, if John does
not arrive on the 10 o'clock plane, he will arrive on the 11 o'clock
plane.

F2. John will arrive on the 10 o'clock plane. Therefore, if John
misses his plane in New York,' he will arrive on the 10 o'clock
plane.

F3. If Brown wins the election, Smith will retire to private life.
Therefore, if Smith dies before the election and Brown wins it,
Smith will retire to private life.

F4. If Brown wins the election, Smith will retire to private life. If
Smith dies before the election, Brown will win it. Therefore, if
Smith dies before the election, then he will retire to private life.

F5. If Brown wins, Smith will retire. If Brown wins, Smith will not
retire. Therefore, Brown will not win.
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F6. Either Dr. A or Dr. B will attend the patient. Dr. B will not
attend the patient. Therefore, if Dr. A does not attend the patient,
Dr. B will.

F7. It is not the case that if John passes history, he will graduate.
Therefore, John will pass history.

F8. If you throw both switch S and switch T, the motor will start.
Therefore, either if you throw switch S the motor will start,
or if you throw switch T the motor will start.

F9. If John will graduate only if he passes history, then he won't
graduate. Therefore, if John passes history he won't graduate.

We trust that the reader's immediate reaction to these examples
agrees with ours in rejecting or at least doubting the validity of these
inferences — one would not ordinarily 'draw' the inferences if one
were 'given' the premises. If this is so, it poses a problem for the
application of formal logic: either applied formal logic is wrong (and
it is only as an applied theory that formal logic can be said to be right
or wrong at all) or, if it is right and these inferences are valid after
all, then we have to explain why they 'appear' fallacious. This is the
problem which this paper is concerned with. More exactly, we shall
be concerned with criteria of validity for inferences involving ordinary
conditionals, and with determining to what extent formal logical
theory may safely be applied to analyzing and formalizing arguments
involving conditionals. As will be seen, this objective is only partially
achieved, if at all, and this partial 'solution' itself raises what are
probably more profound difficulties.

2. Before passing to a detailed discussion, it may be useful to con-
sider briefly the significance of these examples. If these inferences are
truly fallacious, then clearly they call into question some of the prin-
ciples of formal logic and its application. The use of formal logic in
the analysis of the logic of conditionals rests on two principles, one
general, the other specific to conditionals. These are:

Principle 1 (general)
An inference is deductively valid if and only if it is logically
impossible for the premises to be true and the conclusion false.

Principle 2
At least for purposes of formal analysis, 'if then' statements can
be treated as truth functional — true if either their antecedents
are false or their consequents true, false only if their antecedents
are true and the consequents false.
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Thus baldly stated, of course, Principle 2 appears very dubious,
and one might immediately be led to expect that fallacies would arise
in applications of the formal theory which tacitly make the assumption.
Examples F1-F9 might be regarded simply as confirmation of this
expectation. Fl and F2 are in fact counterparts of the paradoxes of
material implication.

It should be noted, however, that the principles of material impli-
cation (i.e. the truth conditions for material conditionals) are not
themselves arbitrary, but can be 'deduced' from still more funda-
mental principles which must in turn be questioned if Principle 2 is
questioned. For instance, the 'law' that a conditional is true if its con-
sequent is true follows from Principle 1 together with the principle
of conditionalization. The argument goes thus, / and q logically imply
p (Principle 1). If p and q imply/, t hen / implies 'if q t hen / ' (prin-
ciple of conditionalization), hence / implies 'if q then / ' . If / implies
'if q then/ ' , a n d / is true, then 'if q then/ ' is true (Principle 1), hence,
if / is true, so is 'if q then / ' . Therefore, if we reject Principle 2, we
must reject either the principle of conditionalization or Principle 1,
or both, as well.

Similarly, the truth conditions for the material conditional follow
from the apparent logical equivalence of 'not / or q' and 'if / then q'
plus Principle 1. Therefore, rejection of Principle 2 requires either
that Principle 1 be rejected or that the supposition that 'not / or q'
is equivalent to 'if / then q' be re-examined. A closely related suppo-
sition is in fact at the heart of example F6.

Looked at in another way, example F6 seems to bring into question
a principle which follows from Principle 1 alone: namely, that if a
conclusion follows logically from a single premise, then it also follows
logically from two premises one of which is the same as the original
premise. One might be willing to grant that 'If Dr. A does not
attend the patient, Dr. B will' follows logically from 'Either Dr. A or
Dr. B will attend the patient', but if one rejected the inference in
F6, this would be a counterinstance to the above consequence of
Principle 1.

Finally, examples F3 and F4 call into question laws of conditionals
not specifically associated with material implication. F4, if it is falla-
cious, is a counterinstance to the hypothetical syllogism (if 'if q
then r' and 'if / then q' then 'if / then r'). A closely related principle
is taken as a postulate in G. I. Lewis' [4, p. 125] theory of strict
implication. It is unlikely, therefore, that fallacies of the kind given

168



here can be entirely avoided by going over to formal analysis in terms
of strict implication or related systems.

3. Are the inferences in examples F1-F9 fallacious? We may
concentrate for the present on Fl and ask whether

C If John does not arrive on the 10 o'clock plane, then he will
arrive on the 11 o'clock plane.

is a logical consequence of

P John will arrive on the 10 o'clock plane.

To avoid irrelevant misunderstandings, let us specify that both state-
ments are about the same person, and that both P and the antecedent
of G are about the same event — John's arrival on the 10 o'clock
plane. If we attempt to answer this question by applying the criterion
of validity of formal logic, formulated in Principle 1, we must ask:
Is it logically possible for P to be true, but G false?

To attempt to answer this question is to see that it has no clear
answer. The reason is that the term 'true' has no clear ordinary
sense as applied to conditionals, particularly to those whose antece-
dents prove to be false, as the antecedent of G must if P is true. This
is not to say that conditional statements with false antecedents are
not sometimes called 'true' and sometimes 'false', but that there are
no clear criteria for the applications of those terms in such cases.
This is, of course, an assertion about the ordinary usage of the terms
'true' and 'false', and it can be verified, if at all, only by examining
that usage. We shall not conduct such an examination here, but leave
it to the reader to verify by observation of how people dispute about
the correctness of conditional statements whose antecedents prove
false, that precise criteria are lacking.

Formal logicians might perhaps be inclined to dismiss the vagueness
of the ordinary usage of 'true', and provide a new and more precise
definition which is appropriate to their needs. This is in fact what
Tarski has done with very fruitful results in the Wahrheitsbegriff. One
might even regard the truth conditions of material conditionals not
as defining a new sentential connective, but rather as defining the
term 'true' precisely as applied to ordinary conditionals. The danger
in this approach lies in the likelihood of begging the question raised
at the beginning of this section. If the application of 'true' is defined
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arbitrarily for those cases in which it has no clear ordinary sense, then
this arbitrariness will extend to the determination as to whether state-
ment G is a logical consequence of P or not.

It may, of course, be argued that the imprecision of the truth con-
ditions for conditional statements shows that these statements are
vague, and not that the term 'true' is. This argument would, it seems
to us, prove too much. Conditional statements are ubiquitous in argu-
ment, including the most rigorous, and it seems doubtful to us that
even in the case of conditional statements which occur in rigorous"
mathematical demonstration the word 'true' has any clear ordinary
sense.

In view of the foregoing remarks, it seems to us to be a mistake to
attempt to analyze the logical properties of conditional statements
in terms of their truth conditions. But, if the notion of truth has no
clear sense as applied to conditionals, then it no longer makes sense
to apply the criterion of deductive validity formulated in Principle 1
to inferences involving conditionals. That is, the question as to whether
C can be validly inferred from P cannot be decided by asking whether
it is possible for P to be true and C false, and some other way of char-
acterizing the validity of inferences involving conditionals must be
sought.

The foregoing observations do not answer the original question,
which was: Do the conclusions in the examples follow logically from
their premises ? In one sense, the conclusions do follow logically from
the premises, because it is possible to give logical arguments that the
truth conditions of ordinary 'if then' statements are the same as those
of the material conditional, and once this is granted, the conclusions
in the examples follow directly from the premises. Aren't these ex-
amples, then, merely cases — like countless others in mathematics —in
which a conclusion which really does follow from assumptions is not
'seen' to follow because the argument which proves it is not given?
In fact, the missing 'proof of the conclusion in Fl is very easily
supplied:

Assume P: John will arrive on the 10 o'clock plane.
Therefore: Either John will arrive on the 10 o'clock plane

or he will arrive on the 11 o'clock plane.
Therefore C: If John does not arrive on the 10 o'clock plane,

he will arrive on the 11 o'clock plane.

Q,. E. D.
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This settles the question as to whether G follows logically from P
unless we are inclined to suspect that the argument is fallacious —
and why should we suspect that? It seems to us that most people
would have doubts about the soundness of this argument (even if
they could not verbalize them), and the reason for this suspicion could
only be in the fact that there can be independent, non-deductive
grounds for rejecting the conclusion, even while accepting the premise.
As we have argued, these grounds cannot be that the premise may be
true but the conclusion false. In the following sections we shall inquire
into what these grounds might be. It will then remain, of course, to
re-examine the above and like arguments to 'prove' the conclusions
in the examples, to determine where, if anywhere, they go astray.

4. Let us return again to example Fl and ask what grounds there
might be for accepting P (that John will arrive on the 10 o'clock
plane) and rejecting G (that if John does not arrive on the 10 o'clock
plane, he will arrive on the 11 o'clock plane), other than the knowledge
that P is true and G is false. It seems to us that in a very general sense
of 'grounds', the following telegram from John might do just this:

I will arrive on the 10 o'clock plane. If I don't arrive on that
plane, I will arrive on the 2 o'clock plane.

The receipt of the telegram does not, of course, logically imply P nor
contradict G. We hope, though, that the reader will grant, without
necessarily being able to explain why, that the telegram would give
its recipient reason for accepting P, for asserting it and for acting
accordingly (for instance, by meeting the 10 o'clock plane in case he
wanted to meet John). It would also give reason for rejecting G, for
denying it, and acting accordingly (for instance, by not meeting the
11 o'clock plane in case John proved not to be on the 10 o'clock
plane). We might say that example Fl violates a condition for reason-
able inferences. Condition for reasonableness of inferences: If an inference
is reasonable, it should not be the case that on some occasion the as-
sertion of its premises would be justified, but the denial of its conclu-
sion also justified.

That the foregoing condition, vague as it is, cannot be maintained
in full generality is shown from the example of complicated arguments
such as occur frequently in science and mathematics. In such argu-
ments it often occurs that the premises (accepted principles) are
justified, but in the absence of the argument justifying the conclusion,
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one would be justified in denying it. The condition seems more com-
pelling as applied to immediate inferences, though to clarify this idea
and the application of the principle to it would be hard. In any case,
we are concerned here with the question of whether such inferences
as those in examples F1-F9 can be justified at all and not just whether
they are reasonable immediate inferences (which they obviously are
not). For the present we shall take the above condition as a rough
heuristic guide in inquiring into the justification of such specific in-
ferences as those in F1-F9, and the justification of the general rules of
inference of which they are particular applications. The cash value
of this will be to direct inquiry to conditions of 'justified assertability'
rather than conditions of truth in assessing inferences. Later we will
give the condition a precise mathematical formulation within the
calculus of probability, which will provide a systematic means of
exploring the reasonableness of formal inference schemata which
represent many simple rules of inference.

5. In the following section we will be discussing justifications for
the assertion and denial of conditionals and their components. What
we will be concerned with is not what ought to be required in order
to justify the assertion of statements, but rather what is expected in
practice. It is important to note that what is expected in practice
depends to an extent on the context of the assertion. In certain 'criti-
cal' contexts, the required justification for the assertion of a mathemat-
ical statement is a rigorous proof, which leads to 'logical' certainty in
the thing asserted. The justification demanded for the assertion of
generalizations in empirical science is clearly different, and seldom
yields as complete certainty as does mathematical proof. The assertions
in the examples which presently concern us are neither typically
mathematical nor scientific. As in example Fl , one is usually justified
in asserting such statements even where there is a distinct possibility
of their later being 'contradicted by the facts'.

The foregoing observations suggest that reasonable inferences in-
volving conditionals asserted in 'everyday' situations should be ana-
lyzed in terms of requirements of justification or 'assertability' which
yield something less than certainty in the statement asserted. As we
shall see, it can happen that it is reasonable to infer certain conse-
quences from a statement if its assertion is very strictly justified, which
would not be reasonable inferences from the same statement made
with less strict justification. We shall argue, in fact, that it is this
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difference in the strictness of the requirements of assertability which
explains why such fallacies as F1-F9 arise in 'everyday speech', but
do not (at least, they are hard to find) in mathematical argument.
Also looking ahead, we shall suggest that where strict requirements
of assertability are satisfied, conditional statements can safely be ana-
lyzed as though they were material conditionals, but they cannot if
they are less strictly justified.

6. We shall not be able to explain in detail what are the ordinary
requirements of 'assertability' for the sorts of statements which occur
in the examples. What we shall do instead is to suggest a hypothesis
which connects 'justification of assertion' with another sort of justifi-
cation (and makes a similar connection for 'justification of denial'),
which we hope will be illuminating. Actually, this hypothesis applies
only to a rather limited class of statements, and not, unfortunately,
to most of those of mathematics and science which have traditionally
been the center of the logician's interests. We shall state the hypothesis
first, and then discuss its scope and significance.

Hypothesis 1
The assertion of a statement is justified if and only if a bet on
it is justified in the same situation; the denial of a statement
in a situation is justified if and only if a bet against it is justified
in that situation.

Of course, we are under no illusions as to the precision of this re-
quirement. What it does is to link the justified assertion of a statement
with a particular kind of 'action in accordance' with a belief in what
it says. The particular action in this case is betting, and in speaking
of a bet's being justified, we shall pay attention only to what might be
called the 'game-theoretic' aspects of the situation; that is, ethical
justifications, even such long-range strategic considerations as 'it is
foolish to bet if you can't afford to lose', etc. are to be left out of
account.

The hypothesis applies only to those statements for which there
are clear ordinary procedures for settling bets on them.2 The conditions
for settling bets are just the conditions under which they win or lose.
For such particular 'empirical' statements as 'John will arrive on the
10 o'clock plane' these conditions are well defined, and our hypothesis
applies to that sort of statement. On the other hand, many meaningful
statements do not have such clear conditions: we would argue that
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all 'infinite' general statements (e.g. 'There is no highest prime') have
less clear conditions, if any, for settling bets.8 We shall speak of state-
ments for which the ordinary conditions of settling bets on them are
clear as 'bettable'.

We can now inquire further into the conditions which justify bets
on bettable statements (and which therefore justify their assertion, if
Hypothesis 1 is correct). Consider first particular unconditional state-
ments, such as that John will arrive on the 10 o'clock plane, uttered
on a particular occasion. It seems to us intuitively obvious that a bet
that John will arrive on the 10 o'clock plane is justified (in a situation)
just in case there is reason to believe that John will arrive on the 10
o'clock plane — i.e. that the statement 'John will arrive on the 10
o'clock plane' will prove true. Such reasons may be better or worse.
Very good reasons would yield certain knowledge that the statement
would prove true, and that the corresponding bet would win; weaker
but still frequently 'adequate' reasons would only yield a high prob-
ability that the statement would prove true and the bet would win.
We shall speak of the bet and the corresponding assertion as 'strictly
justified' in the former case, as 'probabilistically justified' in the latter.
We formulate these requirements in a second hypothesis:

Hypothesis 2
a. The assertion of a particular bettable statement is strictly
justified on an occasion if what is known on that occasion makes
it certain to prove true; its denial is strictly justified if it is cer-
tain to prove false.
b. The assertion of a particular bettable statement on an occa-
sion is probabilistically justified if what is known on that occasion
makes it probable that the statement will prove true; its denial
is probabilistically justified if it is probable that the statement
will prove false.

Again, of course, we have a vague hypothesis which more than any-
thing else can be useful only as pointing in the direction of an analysis
of the logic of conditional statements. We are not yet able to go much
deeper than this, however, and can only hope that as it stands (and
in the mathematical form we shall give it later) it will yield some in-
sight into the problems we have been discussing, and in particular
'explain' what is paradoxical about examples F1-F9. However, we
must first attempt to formulate a similar hypothesis about conditional
statements.
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For many conditional statements, the conditions of settling bets on
them are just as clear as they are on particular non-conditional state-
ments. Normally, bets on conditional statements are considered to be
themselves conditional: for instance, a bet on the statement 'If John
does not arrive on the 10 o'clock plane, he will arrive on the 11
o'clock plane' is conditional on John's not arriving on the 10 o'clock
plane. More generally, a bet that 'if p then ^' is conditional — in
force only if p proves true, and in that case winning if q is true, and
losing if q is false.4-8

Under what circumstances would a bet that 'if p then q' be justified
(and therefore, if our Hypothesis 1 is correct, the conditional statement
'if p then j ' be justified) ? We may expect, as before, differing degrees
of strictness in the requirements of assertability. However, here the
situation proves somewhat more complicated than in the unconditional
case. It would be too much to require to justify betting that 'if p then
g' that the bet be certain or even very likely to win, since this would
mean that 'if p then g' would be justified only if both p and q were
(because the bet that 'if p then y' wins only if both/> and q prove true).
It would be too little to require merely that the bet be very likely not
to lose, since it might be much more likely not to win (thus, a bet that
'If the Chinese land first on the moon, they will plant rice paddies on
it' would be irrational because, though it would probably not be lost
it would far more certainly not be won). Tentatively we shall suggest
that a conditional bet is justified in case it is much more likely to be
won than lost (though it may be more likely still to be called off). If
the bet on the conditional were certain not to be lost, then, of course,
it could not be still less likely to win, and we may regard the bet in
this case as 'strictly' justified. Correspondingly, we may say that the
assertion of a conditional statement is strictly justified in case it is
certain that either the antecedent is false or the consequent true
(that is, that the corresponding conditional bet would not lose), and
that it is probabilistically justified if the likelihood that both the
antecedent and consequent are true is much greater than that the
antecedent is true and the consequent false.

Before formulating the foregoing criteria as another 'hypothesis',
though, we must briefly consider a difficulty. What about the case of
a conditional asserted in the certainty that its antecedent is false ? In
this case the corresponding bet would be certain to be called off, and
it makes no sense to speak of it as being either more or less likely to be
won than lost (hence our criterion of 'probabilistic justification'
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breaks down). On the other hand, the bet would be certain not to
lose and therefore, according to the 'strict' criterion just outlined, the
bet on it would be justified, and so would the assertion. Worse, the
bet against the same statement would be equally justified, and hence,
by parity of reasoning, we should say that under these circumstances
both the assertion and the denial of the conditional are strictly
justified.

It is significant that indicative conditional statements are seldom
made in the knowledge that their antecedents are false. The reason is
clear: such an assertion would be misleading. Where conditionals are
stated in such knowledge, they are usually put in the subjunctive
mood. It is doubtful that ordinary usage prescribes criteria either for
the rationality of bets made on such conditionals, or for the justification
of the making of such conditional assertions (grammatically they are
unjustified, but this is a different sense of justification, we believe,
from that which we have so far been discussing). Nonetheless, require-
ments of theoretical completeness demand that we give a place to
such 'vacuous' conditionals, and that we say something about their
justification. We choose to say that they are vacuously both strictly and
probabilistically justified. In doing this, though, we are simply
making an arbitrary stipulation in the interests of theoretical complete-
ness and simplicity, and not one which is in any sense based on an
analysis of the concepts of 'justification' or 'rationality'. In this case
also, the same argument leads us to denominate the denials of these
vacuous conditionals (which are equally vacuous) as justified in both
senses, vacuously. Thus, we have a special category of statements
which, according to our arbitrary stipulation, may be justifiably both
asserted and denied. This, of course, leads to some awkward compli-
cations in the logical laws which these statements obey, but we have
reason to think that any attempt to bring vacuous conditionals into a
logical theory must be paid for at a price at least as high.

Now we are ready to formulate these hypotheses, and give a def-
inition of vacuous justification.

Hypothesis 3
a. The assertion of a bettable conditional 'if p then y' is strictly
justified on an occasion if what is known on that occasion makes
it certain that either p is false or q is true; its denial is strictly
justified if it is certain that either p is false or q is false.
b . The assertion of a bettable conditional 'if p then j ' is prob-
abilistically justified on an occasion if what is known on that
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occasion makes it much more likely that p and q are both true
than that p is true and q is false; its denial is probabilistically
justified if it is much more likely that p is true and q is false
than that p and q are both true.
c. (Definition) The assertion and denial of a bettable conditional
cif p then g' are both vacuously probabilistically and strictly
justified on an occasion if what is known on that occasion makes
it certain that p is false.

One effect of making this arbitrary stipulation in 3c is to make strict
assertability and deniability special cases of probabilistic assertability
and deniability respectively. In a later section (section 13) we will
formulate these hypotheses mathematically within the framework of
the calculus of conditional probability, and on that basis derive some
general results. However, it is possible to apply these criteria of justi-
fied assertion and denial, together with the necessary condition for
reasonable inference formulated in section 4, directly to the examples
F1-F9, which we now proceed to do.

7. Before taking up the examples F1-F9 one by one, we must
first modify the condition for reasonable inference slightly to take into
account the 'odd' case of the vacuous conditional. The modification
is self-explanatory.

Modified condition for reasonableness of inferences:
If an inference is reasonable, it cannot be the case that on any

occasion the assertion of its premises is justified, and the non-vacuous
denial of its conclusion is justified.

Now for the examples. Fl has already been discussed (in fact, it is
the one whose discussion led to the formulation of the criterion), and
F2 is so similar that no discussion seems necessary. F3 and F4 are
slightly more complicated, but can be dealt with in the same way.
To take F3, it is clear that in an election campaign between Smith
and Brown, in which Smith had intimated his intention to retire to
private life in the event of Brown's winning, a conditional bet that
if Brown won Smith would retire would be justified, but the con-
ditional bet that in the event of Smith's death prior to the election and
Brown's winning, Smith would retire would not be justified. According
to our 'betting' criterion of justification, therefore, the assertion of
the premise would be justified, and the denial of the conclusion would
be too (the conditional would not be vacuous since it would be
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certain that Smith would not die or Brown would not win). The same
kind of analysis applies to F4. Later, of course, we must attempt to
explain why it is that, in spite of counterexamples such as F3 and F4,
we are inclined to look on the general logical laws of which they are
special cases (e.g. the hypothetical syllogism) as valid, whereas the
'paradoxical' laws of material implication which lead to Fl and F2
are almost universally regarded with suspicion.

8. F5 represents a somewhat more complex situation. According
to our criterion, the only situation in which two 'inconsistent' con-
ditionals 'if p then q' and 'if p then not q' may justifiably be asserted
is that in which both are vacuous — i.e. in which p is certain to be
false. Thus, in one sense, the inference in F5 satisfies our necessary con-
dition for reasonable inference since in this case the assertion of not
p is justified and its denial is not. However, as we previously suggested,
one of the requirements of proper usage demands that conditionals
not be asserted in the knowledge that their antecedents are false
(though subjunctive conditionals are not subject to this restriction).
Therefore a pair of conditional statements of the forms 'if p then g'
and 'if p then not q' are seldom if ever justifiably asserted on the same
occasion. When such a pair of statements are made on the same
occasion, it is usually the case that one is asserted in contradiction
to the other, and this carries the implication that the contradicted
statement is false or at least that it may justifiably be denied (and
non-vacuously). Thus, in the case of a contradiction, it is usually the
case that at least one of the two contradicting statements is not justi-
fied.6 And, if one of the premises of the inference is not justifiably
asserted, then it does not follow that the conclusion can be justifiably
asserted. That is, we would be quite right in not concluding that Brown
would not win, upon hearing it said by one person that if Brown won,
Smith would retire, and by another that if Brown won, Smith would
not retire; rather, we would be justified in concluding that one of the
statements we heard was not justified.

9. Example F6 raises what are perhaps the most interesting issues
of all of F1-F9. For purposes of ready reference, let us symbolize
its three assertions (letting ' - • ' stand for the 'if then' of English):

A v B Either Dr. A or Dr. B will attend the patient.
-B Dr. B will not attend the patient.
-A -+B If Dr. A does not attend the patient, Dr. B will.
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As noted, this seems to be a case in which, though the consequence
-A-*B follows from premise A v B alone, it does not from premises
A v B and -B together. Nor is this a case (like F5) in which one would
refrain from 'inferring' -A-*B on hearing Av B and -B asserted, on the
grounds that they appeared to contradict each other and therefore
that not both of the assertions were justified.

According to our criterion of justification, the inference from Av B
to -A-*B does not satisfy the condition for reasonable inference.
The reason is that there can be a situation in which, though the asser-
tion of A v B is justified, the non-vacuous denial of -A -*B is justified.
This is that in which the grounds for asserting the disjunction Av B
are just the probable knowledge of its first member; that is, the know-
ledge that Dr. A would attend the patient. Knowing that Dr. A
would attend the patient would be sufficient reason for making a
bet that either Dr. A or Dr. B would attend the patient, and hence
would justify asserting that one of them would attend the patient, if
our Hypothesis 2 is correct. On the other hand, this same knowledge
would not justify the making of a conditional bet that if Dr. A did not
attend the patient, Dr. B would. Thus, F6 appears to be simply a case
in which the premises and conclusion do not satisfy a criterion of
reasonable inference.

Unfortunately, we are here left with a difficulty: why, if the in-
ference from the disjunction 'either p or 5' to the conditional 'if not p
then q' is not always reasonable, do we normally accept it without
hesitation ? Part of the answer is to be found in a further condition of
correct assertability for disjunctions (beyond simply grounds for believ-
ing that they will prove true). This is a requirement that disjunctions
not be asserted in the knowledge (either certain or probable) that one
of the parts is true. Though the assertion of disjunctions violating this
requirement is justified in the 'betting' sense we have been concen-
trating on, such a statement is misleading, and therefore probably runs
against standards (at least implicit ones) of correct communication,
and hence is seldom made. Now, as we shall see later, on any occasion
on which the assertion of a disjunction 'either p or q' is justified, but
neither p nor q can be justifiably asserted, the assertion of 'if not p
then q" is justified. Therefore, the inference of 'if not p then q' from
the correct assertion of the disjunction 'either p or q' is justified in the
betting sense, and this may help to explain why we do not hesitate
to make the inference.

But this leaves us just where we started: if the inference from 'either
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p or q\ correctly and justifiably asserted, to 'if n o t / then q' is justified,
why is it apparently not in F6 ? There is, in fact, no prima facie reason
to suppose that premise A v B was not either justifiably or correctly
asserted. It seems to us that the answer is this. The two statements
Av B and -B in F6 have the look of ones uttered on the same occasion
by different speakers, Av B being asserted first. We shall suppose that
this in fact was the situation. If both speakers were justified, and the
first speaker spoke correctly, it could only be that the second speaker
knew something the first one did not: namely that Dr. A would attend
the patient. Now consider the inferences which a third person, listen-
ing to the conversation, would be entitled to draw. Having heard
statements A v B alone, he would be justified in asserting -A -*B, but
having heard the second statement -B as well, he would no longer be
justified in doing this. This can be seen more clearly, perhaps, in
considering what bets it would be reasonable to make in the circum-
stances. Having heard that either Dr. A or Dr. B would attend the
patient, it would be reasonable to bet that if Dr. A did not, then Dr.
B would. Later, having received the additional information that Dr.
B would not attend the patient, it would no longer be reasonable to
make this bet.

What the foregoing shows is that increasing the amount of infor-
mation (which corresponds to adding further premises) may not just
add to the number of statements which may be reasonably inferred
from them; it can also subtract. Of course, there should be no sur-
prise at this in view of the fact that we are dealing with only proba-
bilistic requirements of assertability. If a statement can be justifiably
asserted under circumstances in which it may be later 'contradicted by
the facts', it is clear that there will be occasions on which a statement
whose assertion is justified at one time is not justified (must be with-
drawn) at another. Of course, this cannot occur where strict require-
ments of assertability are demanded (which may partially explain
why the logic of mathematical inference is comparatively simpler than
that of everyday life).

10. The most interesting feature of the next two fallacies is that
they both involve what are normally regarded as 'truth-functional'
compounds of conditionals — a denial in F7 and a disjunction in F8.
If, as we have argued, the concept of truth has no clear sense as applied
to conditionals, these 'truth-functional' compounds of them cannot be
defined in the usual way: by giving a truth table in which for each
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combination of truth values of the components, the truth value of
the compound statement is listed. Thus, we should expect the logical
laws of these compounds to be different from those which they obey
when applied to components for which the notion of truth has a clear
sense. This expectation is fulfilled.

As has already been suggested, the ordinary meaning of the denial
'it is not the case that if p then q1 is just to assert 'if p then not q\
and clearly the antecedent of the denied conditional is not a logical
consequence of this. This is probably obvious, and the only significance
it has in this context is to lend indirect support to our contention that
the concept of truth is not clear as applied to conditionals.

11. Disjunctions of conditionals present a special and interesting
problem in their own right. This is that disjunctions of most of the
conditionals occurring in the examples F1-F7 have no clear ordinary
sense. Consider, for example, the grammatically correct disjunction:
'Either if John passes history he will graduate, or, if John does not
pass history he will not graduate.' It is difficult to see what the quoted
sentence means because it is hard to imagine what anyone uttering
it might mean by it, what would justify its assertion, etc. The most
likely interpretation (the one most commonly given the author on
occasions on which he has asked people how they would interpret this
statement) is very close to a 'meta-assertion' to the effect that at least
one of the two conditionals could be justifiably asserted, but it was not
known which. Under such an interpretation, of course, the meaning
of the disjunction is clearly different from that of the corresponding
disjunction of material conditionals. (If the conditionals disjoined in
the sentence quoted were material, that disjunction would be equi-
valent to the tautology 'If John passes and doesn't pass history, then
he will either graduate or not graduate'.)

As further evidence that disjunctions including conditionals some-
times have this meta-assertive character, consider the following:

F10. Either the restricted continuum hypothesis is provable, or, if
the restricted continuum hypothesis is provable, then so is the
general continuum hypothesis.

It seems to us that this disjunction would normally be taken to mean
that either the restricted continuum hypothesis had been proved, or
that it had been proved that if the restricted hypothesis could be
proved, then so could the general. Analyzed as a material conditional,
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of course, the foregoing statement is one of the simplest of tauto-
logies.

The problem which these usages present to logic as a descriptive
theory is to explain why disjunctions of conditionals have no clear
ordinary sense in many cases, and not to give a meaning to such expres-
sions. However, we are only able at present to raise the problem, and
not to give a solution to it.

The conditionals disjoined in example F8 are somewhat different
from those occurring in the previous examples, in that their ante-
cedents refer to repeatable conditions, whereas the antecedents of the
earlier conditionals could only be fulfilled once. Thus, the antecedent
of the conditional 'If you throw switch S and switch T, the motor will
start' can be fulfilled several times by throwing the switches repeatedly,
whereas in the conditional 'If John does not arrive on the 10 o'clock
plane, he will arrive on the 11 o'clock plane' the antecedent can only
be fulfilled once, since John can only not arrive once on the 10 o'clock
plane. We suggest, without attempting to pursue it in detail here, that
such conditionals as these demand a rather different analysis from the
'unrepeatable' conditionals (quantifying over occasions on which the
antecedent is fulfilled, and at the same time making the standard
model-theoretical analysis more nearly applicable).7

12. The last example, F9, presents two problems: (1) the meaning
and conditions of assertability of 'only if constructions, and (2) the
conditions of assertability of conditionals whose antecedents are not
themselves particular statements. We shall make only very brief re-
marks on both, chiefly with the object of giving an understanding of
what is wrong with the inference in the example.

One rather striking difference between 'if then' and 'only if' state-
ments is that the latter are never bettable. Thus, for example, there
are no ordinary conditions for settling a bet that 'John will graduate
only if he passes history'. In one sense, therefore, the quoted statement
is not equivalent to either of the two conditionals 'If John graduates,
then he will have passed history', and 'If John does not pass history,
then he will not graduate', which are alternative ways of analyzing
the 'only if statement customarily used in formal logic (as we shall
see later, the two conditionals are not themselves probabilistically
equivalent).

One reason why 'only ifs are frequently not bettable is that they
assert, in effect, a conjunction of conditionals. If, for instance, some-

182



one asserts of a player X in a card game 'X will win only if he gets an
ace on his last card', he asserts in effect that for anything other than
an ace as a last card, if X gets that he will not win. Such a conjunction
of conditionals is closely related to, but is not probabilistically equi-
valent to a single conditional with a disjunctive antecedent (which
is bettable): i.e. the conditional 'If X gets either a 2 or a 3, or anything
besides an ace, he will not win'.8

Conjunctions of conditionals are never bettable in the sense that
there are standard conditions for the settling of a single bet on the
conjunction (e.g. a bet that 'If John passes history he will graduate,
and if he doesn't pass history he won't graduate'). On the other hand,
the assertion of a conjunction is justified on an occasion just in case
the assertion of each of its members is justified. Hence, if 'only if's
can be analyzed as conjunctions of conditionals, the requirement of
assertability for conditionals can be extended to include 'only if's as
well.

The analysis of the conditions of assertability for bettable condi-
tionals does not extend to those whose antecedents are not particular
bettable statements, and therefore it is not possible to apply the cri-
terion of justified assertability stated in Hypothesis 3 to showing that
there may be situations in which the premise of example F9 may be
justifiably asserted, whereas the conclusion may not. It is, however,
possible to apply the general criterion of reasonable inference directly
to show that the inference in this example is not reasonable. That is,
it is possible to describe a circumstance in which (at least intuitively)
we would say that the assertion of 'If John will graduate only if he
passes history, then he won't graduate' is justified, but the statement
'If John passes history, he won't graduate' can be justifiably denied.
This is one in which there is good reason to believe: (1) that John
won't pass history, and (2) that if John passes history he will graduate
(perhaps he has been promised this by the dean).

The general problem of describing conditions of justified asserta-
bility for non-bettable statements is one which we are not prepared
to discuss at present. Hence we cannot go further here into the ana-
lysis of statements such as the premise of F9. With this we end our
discussion of the examples.

13. In view of the foregoing discussion, one might well wonder
whether there are any general rules of inference involving conditionals
which are reasonable in the sense we have defined. In order to investi-
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gate this question we have formalized the criterion of reasonableness
using the calculus of probability, and studied its consequences. In this
and the next section we will describe the basic assumptions of this
formulation and some of its more significant consequences. Except
for giving precise statements of the assumptions, the discussion will be
informal, although the results described have been rigorously proved.

We begin with a formal language for representing truth-functional
compounds of atomic statements, and conditionals whose antecedents
and consequents are such truth-functional compounds. We here use
the '&', V and '-' in their usual senses as the truth-functional 'and'
'or' and 'not', respectively, and use the arrow '-+' to symbolize the
non-material 'if-then'. For the sake of formal simplicity it is also useful
to include two atomic sentences "P and 'F\ representing logically
true and logically false statements, respectively. The formal language
is then defined recursively in the obvious way:

The formal language
A formula is any expression of one of the following three kinds:

i) Atomic — 'T, 'F', and lower case letters (e.g.'/»', 'q\ etc.)
possibly with numeral subscripts;

ii) Truth functional — atomic formulas and expressions con-
structed from them using the binary connectives '&' and
V and the unary connective '-';

iii) Conditional — all formulas of the form <p -* y>, where tp and
y> are truth functional.9

In view of the fact that we are able to characterize the conditions
of assertability for denials of conditionals, we might have included
them too in our formalism. However, there would be little point in
doing so since, if what we have previously argued is correct, 'it is
not the case that if p then q' is equivalent to 'if p then not q\ and hence
can be replaced by it.

The notions of tautology and tautological consequence will be assumed
to be applicable in the usual way to truth-functional formulas of the
formal language. Later we shall also speak of conditional formulas
as tautological consequences of other formulas ('premises', conditional
or truth functional), in the sense that if the conditionals were replaced
by material conditionals (i.e. all formulas of the form <p-*y> were
replaced by -p v y»), then the resulting formula would be a tautologi-
cal consequence of its premises.

Next we define the notion of a conditional probability function for the
formal language, modifying slightly the definition given in Kolmo-
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gorov [3, p. 47]. The modification consists in defining the probability
of a conditional <p-+y> to be 1, in case the probability of its antecedent,
<p, is 0. This is in accord with our convention to regard a conditional
as assertable in case its antecedent is known with certainty to be false.

Conditional probability functions
A real-valued function Pr whose domain is the class of formulas
is a conditional probability function if and only if:

i) for all formulas A, 0 ^ Pr{A) ^ 1 and Pr(F) = 0 and
P ( F ) l( ) >

ii) for all truth-functional formulas q> and y>, if y> is a tautologi-
cal consequence of <p then Pr(<p)^ Pr{y);

iii) for all truth-functional formulas q> and %p, if q> tautologically
implies -y> then Pr(q> v y) = Pr(q>) + jfV(v) >

iv) for all truth-functional formulas tp and y>, if Pr(<p) ̂  0
then Pr(<p-+y))=Pr(<p&.y))IPr(<p), and if Pr(9?) = 0 then
Pr(<p-*y>) = 1.

It remains now to formulate the condition for a formula A to be
reasonably inferable from a set of formulas, S1. The general require-
ment is that it should not be the case that there be a situation under
which all of the formulas of S are assertable, but A is non-vacuously
deniable. We will actually formulate a slightly stronger requirement:
namely, that in any situation in which all of the formulas of S are
assertable, A must also be assertable (not just not deniable), though it
can be shown that this apparently stronger requirement is actually
equivalent to the weaker one. There are two degrees of assertability,
strict and probabilistic, and two corresponding requirements of
reasonableness for inferences. Thus, we shall call the inference of A
from S strictly reasonable in case the strict assertability (corresponding
to probability 1) of all formulas of S guarantees the strict assertability
of A. Roughly, we may say that the inference of A from S is probabil-
istically reasonable in case the fact that all formulas of S have high
probability guarantees that the probability of A is high. The latter
idea is vague, and so there is necessarily some arbitrariness about the
precise definition given below.

Reasonable inferences
Let S be a set of formulas and let A be a formula. Then the in-
ference of A from 5 is strictly reasonable if and only if for all con-
ditional probability functions Pr such that Pr(B) = 1 for all B
is S, Pr(A) = 1. The inference of A from S is probabilistically
reasonable if and only if for all e > 0 there exists d > 0 such that
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for all conditional probability functions Pr such that Pr(B) 2>
1 - 8 for all B in S, Pr(A) ^ 1 -e .

According to the above definition, the inference of A from S is
probabilistically reasonable in case an arbitrarily high probability
(at least 1 — e) can be guaranteed for A by requiring the probabilities
of all the members B of S to be at least 1 — 8. Under the circumstance
that the inference of A from S is strictly or probabilistically reasonable,
we shall also say that A is a strict or probabilistic consequence of S.

We list now some consequences of the fundamental definitions,
and discuss their significance.

Consequence 1
Probabilistic reasonableness implies strict reasonableness, and
strict reasonableness is equivalent to tautological implication.

Thus, according to the above, the requirement that the inference
of A from S be probabilistically reasonable is, in a sense, the strictest
requirement, since it entails both that this inference is strictly reason-
able, and that A is a tautological consequence of the formulas of S
(in the generalized sense of tautological consequence applying to
conditional formulas). The second part of Consequence 1 is important
in that it guarantees that symbolizing 'if-then' by the material
conditional and applying truth-functional inference cannot lead from
assertable premises to deniable conclusions so long as the premises are
logically certain. It is also important in that it shows that the only
formal problem remaining to investigate is the nature of probabilistic
reasonableness.

Concerning the properties of the relation of probabilistically reason-
able inferability which are of primarily formal significance, it can be
shown that the relation of probabilistic consequence has most of the
general properties of deducibility relations. For instance, every ele-
ment of a set is a probabilistic consequence of it, and probabilistic
consequences of probabilistic consequences are probabilistic conse-
quences. It is also the case that any probabilistic consequence of a
subset is a probabilistic consequence of the whole set. This shows that
no more than the standard truth-functional logic does our calculus
admit the possibility that adding premises may actually detract from
what can be inferred. The reason for this is implicit in the use of the
calculus of probability: it, like the truth-functional logic, treats prob-
abilities (analogous to truth values) as things fixed, and not susceptible
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to change in the light of evidence. One rather interesting respect in
which our calculus differs from the standard one is that ours does not
satisfy the compactness requirement — there are infinite sets S of
formulas and formulas A such that A is a probabilistic consequence
of S, but A is not a probabilistic consequence of any finite subset of S.

Coming now to the more detailed properties of probabilistic conse-
quence, these are most simply explained in terms of the auxiliary
notions of a truth assignment's verifying or falsifying a formula.

Verification and falsification
Let A be a formula and let f be a function with domain the
class of truth-functional formulas and range {0,1}./is a truth-
assignment if and only iif{F) = 0,f(T) = 1, and for all truth-
functional formulas q> and y>,f((p & y) = /(9>)'/(v)>/(9'v v) =

f(<P) + / (V) -/(?>) -f(v), and/(-9>) = 1 -f(<p). If A is truth
functional, then A is verified or falsified under f according asf(A)
= 1 orf(A) = 0 . If A = <p-+y> then A is yerified under / i f

f(<p) = / (y ) = 1, and A is falsified under / i f f(<p) = 1 a n d /
(V) = 0.

Going back to our analysis of justification in terms of bets, we may
say that a statement is verified just in case a bet on it wins, and is
falsified in case the bet on it loses. Note that in the conditional case,
the statement q>-*y> is neither verified nor falsified under a truth-as-
signment/for which f(<p) = 0 (i.e. f is false). The notions of verifi-
cation and falsification are used to define a new pair of 'entailment'
relations:

Strong and weak entailment
Let S be a set of formulas and A be a formula. Then S weakly
entails A if and only if all truth-assignments / which falsify A
falsify at least one member of S. S strongly entails A if and only
if it weakly entails A, and all truth-assignments / which falsify
no members of S and verify at least one of them also verify A.

Intuitively, we might say that S weakly entails A in case not losing
on any bet on a member of S guarantees not losing on a bet on A,
and S strongly entails A in case not losing on any bet on S, and win-
ning on at least one of them entails winning on a bet on A. In case S is
empty, then strong and weak entailment coincide. We are now ready
to state our most important result:
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Consequence 2
Let S be a finite set of formulas and let A be a formula. Then
A is a strict consequence of S if and only if S weakly entails A,
and A is a probabilistic consequence of & if and only if there is
a subset S' of S such that iS" strongly entails A.

The first part of Consequence 1 simply states the not surprising
fact that weak entailment coincides with strict consequence and hence
with tautological consequence. The second part is the more significant:
intuitively, the inference of A from a (finite) set S is probabilistically
reasonable in case there is a subset S' of S such that (1) not losing on
bets on any member of S' guarantees not losing on A, and (2) winning
on at least one bet on a member of iS" and not losing on the others
guarantees winning on A. It is easy to check the inferences in examples
F1-F4 to see that they don't satisfy the requirement of strong entail-
ment. In the case of the hypothetical syllogism, for example, any truth-
assignment / such t h a t / ( / ) = 0 and/(^) = f(r) = 1 verifies q-+r,
does not falsify p-*q, but fails to verify p-+r, which it should do if
q-*r and p-*q strongly entailed p-*r.

Some significant corollaries follow immediately from Consequence 2.

Corollaries to Consequence 2
Let S be a finite set of formulas and let A be a formula. Then:
2.1 If S is empty or A is truth functional, then A is a probabilis-

tic consequence of S if and only if A is a strict consequence
of S.

2.2 If A = <p -*tp and all of the formulas of S are truth functional,
then A is a probabilistic consequence of S if and only if
either both q> and ip are tautological consequences of S,
or tp is a tautological consequence of <p.

2.3 If A = p-*ip, where p is an atomic formula not occurring
in any formula of S, then A is a probabilistic consequence
of S if and only if p tautologically implies y>, or F is a strict
consequence of S.

The importance of 2.1 is obvious. Truth-functional logic is 'safe'
as applied to inferences whose conclusions are truth functional (even
if some of the premises are not). To the extent that what ultimately
interests us in reasoning are unconditional conclusions (and we reason
only with simple conditionals), this suggests that it can do no harm to
treat conditionals as truth functional. Corollary 2.2 is cited only to
show agreement between consequences of our calculus and intuition:
essentially it says that unconditional premises can only probabilisti-
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cally entail a conditional conclusion if in fact they entail both its
antecedent and its consequent (in which case one would not normally
assert the conditional anyway). Corollary 2.3 is cited for the same
reason: it says in effect that if the antecedent of a conditional is not
mentioned among a set of premises, then the conclusion can only be
a probabilistic consequence of the premises if either the premises are
themselves inconsistent or the conclusion is tautological.

There are some particular inferences with conditional consequences
which are probabilistically reasonable, among which we list the fol-
lowing (let us abbreviate 'probabilistic consequence' by 'p.c.'):

Some probabilistically reasonable inferences
Let <p, f ana r\ be truth-functional formulas.
1. If 99 is tautologically equivalent to y> then y-+t) is a p.c.

of tp-*rj.
2. <p is a p.c. of T-*<p and conversely.
3. If 97 tautologically implies y) then <p -*y is a p.c. of the empty set.
4. q> v f-*T] is a p .c . of <p-*r] and y>-*t].
5. <p-*i) is a p .c . of q> v ip-*r] and y>~* -rj.
6. <p-*y> is a p.c. of q>-+y> & rj.
7. <p-*y> & 7/ is a p.c. of q>-*y> and <p-*r].
8. 95-H7 is a p.c. of <p-*y> and <p & y-+r}.

Of course, these schemata of inference are all valid in the truth-func-
tional calculus. It will be noted that schemata 5 and 8 are weakened
versions of the frequently used rules that pvq-*r entails p-*r, and
p-*q and q-*r entailsp-*r (hypothetical syllogism). What is significant
about this particular set of probabilistically reasonable inference
schemata is that it is complete in the sense that using these as rules of
inference in a natural deduction system is sufficient to yield all prob-
abilistically reasonable consequences of any finite set of premises.

Let us note, in concluding this section, some inferences which are
not probabilistically reasonable. These are easily determined, using
the result stated in Consequence 2. We have already noted the hypo-
thetical syllogism, and the law that pvq-*r entails p-*r. Clearly, in
view of our earlier discussion, -p-*q is not a p.c. of p, or of the dis-
junction pvq (any situation under which p is true verifies pvq but not
-/-> q). Likewise, the law of contraposition, inferring -q-*-p from
p-*q is not probabilistically reasonable, since verifying p-*q actually
precludes verifying -q-*-p. We will attempt to explain in the next
section why most of these inferences might be said to be 'normally
reasonable' in spite of the fact that it can happen that the probabilities
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of the premises can be high but those of the conclusions low. For the
present, we record the following remarkable fact: if any of the above
laws are added to those which have been listed as probabilistically
reasonable, as rules of inference, then the inferences which they allow
include all tautological consequences. The same, it might be added,
applies to the rule of conditionalization: if y> can be inferred from S
and q>, then y-*\p can be inferred from S. Thus, if S tautologically
implied a conditional, say q>->y>, then S and <p would tautologically
imply y>, and, in virtue of Corollary 2.1, S and <p would probabilistically
imply f, so, if the principle of conditionalization held, S would prob-
abilistically imply <p-+y>; hence probabilistic consequence would
coincide with tautological consequence. What this shows, we think, is
how very strong the 'logical forces' are which lead to the identification
of 'if-then' with the material conditional.

14. Probably the most useful employment of the calculus of prob-
ability is in determining the nature of the situations in which rules of
inference, like the hypothetical syllogism, which are valid in truth-
functional logic, can lead from premises with high probability to
conclusions with low probability. To carry out this kind of inquiry
we have developed a routine procedure which can be used to deter-
mine certain essential aspects of these situations, and which can be
used as a guide in the search for actual 'counterexamples' to the
rules of inference in question. This method was used in fact to obtain
examples F3, F4 and F6. The detailed description of the method would
be too tedious to justify inclusion here, but we will describe the intui-
tive idea upon which it is based, as it applies to a particular example.

Consider contraposition as a rule of inference: i.e. that -q-*-p
can be inferred from p-*q. The atomic sentences p and q can be asso-
ciated with sets (the sets of states of affairs in which these sentences
would be true), and these sets repre-
sented by a Venn Diagram in the usual
way (see diagram at right). The prob-
abilities of p and q and their sentential
combinations can be regarded as being
represented by the areas of the corre-
sponding regions in the diagram. Thus,
the probability of p&q is proportional
to area c and that of p&-q is propor-
tional to area b in the diagram. We
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can represent the fact that p-*q has a high probability by requiring
that the probability of p&.-q be much smaller than that of pScq: i.e.
by requiring that area b be much smaller than area c (which we will
indicate by writing 'b<^c'). The fact that -q-* -p has high probability
corresponds to the condition that the probability of -q&.p is much
smaller than that of -q&.-p: i.e. that b<^a (b is much smaller than a).
If the fact that p-*q had high probability guaranteed that -q-> -p also
had, it would also have to be the case that b «̂  c entailed b <| a. But
clearly this is not the case, since it is easy to describe a situation in
which b<^c but not b<^a. What would such a situation be like? It
would clearly have to be one in which both a and b were much smaller
than c, and therefore were smaller than c-+-d: i.e. in this situation,
the probability of -q (corresponding to a and b) would have to be
much smaller than that of q. Hence, we can assert: in any situation
in which p -* q has a high probability and -q -* -p has a low probability,
q must have a high probability.

Do such situations as described above arise in practice ? The answer
is yes. They are ones in which one would assert both p-*q, and also
q outright. Under such circumstances, however, it seems that correct
usage demands the employment of the locution 'even if, rather than
'if then'. Thus, in asserting:

The game will be played, even if it rains,
one implies both

The game will be played,
and

If it rains, the game will be played.
Clearly the inference of the contrapositive

If the game is not played, it will not have rained.

would not be reasonable from such a pair of premises.
The observation that standards of correct usage demand the em-

ployment of 'even if' in situations in which a speaker is in a position
to assert both q and p-*q explains, we think, why the contrapositive
inference -q-*-p from p-* q is normally warranted: i.e. if saying 'if'
p then q* is not correct when one is in a position to assert q outright,
then one can legitimately infer -q-* -p iromp-* q correctly and justi-
fiably asserted. Note, however, that this standard of correctness is one
we have not represented in our analysis of the conditions of justification
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of assertions. To attempt to represent it formally would lead to a far
more radical revision of the traditional laws of logic than we have here
considered. The reason is that standards of correctness such as that
one should not assert 'if p then q' simpliciter when one is in a position to
assert q outright are ones which demand the withdrawal of assertions
in the light of evidence, even where the evidence in one sense does not
conflict with the original assertion.10

Very similar remarks apply to the inference of the conditional -p-* q
from the disjunction pvq (already briefly discussed in section 9), and
also show what is 'wrong' in the argument given in section 3 to derive
-p-*q horn p. The Venn Diagram analysis applied to the inference of
-p ~* q from pvq shows that the only situation under which pvq has high
probability but -p-*q has low probability is that in which p also has
a high probability: i.e. the inference of -p-*q from pvq is only un-
warranted in the case in which the first member of the disjunction,
p, can be asserted outright. As we noted in section 9, if standards of
correct usage demand that disjunctions not be asserted when one is
in a position to assert one of their members outright, then the inference
of -p-*q from pvq, correctly and justifiably asserted, is reasonable.

The derivation of -p -*q from p given in section 3 consisted in two
steps: (1) to derive pvq from p, and (2) to derive -p~*q from pvq.
What our analysis has shown is that the 'error' lies in step 2, but this
is an error of a rather odd sort. Under normal circumstances of cor-
rect usage the inference of -p-*q from pvq is reasonable, but pvq is
here derived from premise p which justifies the assertion of pvq in
the betting sense, but in fact makes the 'correct' use of pvq unjustified.

It is possible to analyze the other ordinarily accepted rules of in-
ference for conditionals, such as the hypothetical syllogism, in a man-
ner similar to the analysis of contraposition and the inference of con-
ditionals from disjunctions. The analysis is quite complicated, and in
any case leads to rather similar conclusions as those reached about
contraposition. The upshot is to yield an explanation as to why,
though these rules are not reasonable in our 'betting' sense, they are
nevertheless usually accepted without question. The rule of condition-
alization deserves special comment.

15. As noted at the end of section 13, the rule of conditionalization
does not hold for reasonable inference: if S is a set of premises and <p
and y are truth-functional formulas, then the fact that %p is a probabil-
istic consequence of S and q> does not guarantee that tp-*y> is a probabil-
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istic consequence of S. There is, however, an informal argument to
show that the rule of conditionalization ought to hold, even for prob-
abilistic inference, which we shall examine. The argument goes as
follows. Suppose that y> is a probabilistic consequence of S and q>:
i.e. suppose that on all occasions in which all the members of S and
<p have high probability, so does ip. To show that <p-+y> is a probabil-
istic consequence of S it should be sufficient to show that on all occasions
on which the assertions of the members of S are all justified, the con-
ditional bet that if <p then y> is a good one. Now, consider any occasion
on which all the members of S could be justifiably asserted: i.e. they
all have high probabilities. The bet that if <p then y> would be a good
one in that situation in case one were justified in supposing that, in
the event of gs's proving true, y> would be very likely to prove true.
But the fact that y> is a probabilistic consequence of S and q> would
appear to provide this justification, since, in the event of <p's proving
true, all of the members of S and <p would have high probability, and
therefore so would y>.

It seems to us that what is wrong with the foregoing argument is
its tacit assumption that, though all of the members of the set S were
assumed to have a high probability, they would continue to have these
high probabilities in the event of p's proving true. That this need not
be so becomes evident if one considers particular examples, and it
should not be surprising in view of the fact that statements made with
less than complete certainty are always liable to being withdrawn. If
this analysis is correct, it is significant in two ways. First, by empha-
sizing once again the importance of the fact that probabilities may
change, it brings out more sharply a basic limitation in the kind of
analysis we have used up to now, which treats conditional probabilities
as static. Indeed, in view of this limitation, it may seem surprising
that our calculus is somehow able to account for the fact that the
principle of conditionalization sometimes fails. That is, our analysis
of the informal argument to justify the principle of conditionalization
seemed to suggest that its error lay in the tacit assumption that
probabilities don't change — but our calculus does not represent
probabilities as changing, so it ought to imply the validity of condi-
tionalization. We have as yet no solution to this little puzzle which
satisfies us, so we will just leave it here, with the comment that we
think that to analyze it clearly should involve consideration of diffi-
cult questions concerning the 'intended interpretation' of the calculus
of probability.
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The second inference to be drawn from the argument for condi-
tionalization and its analysis has to do with the nature of situations
under which, though an inference involving conditionals is truth-
functionally valid, nevertheless the assertions of its premises are prob-
abilistically justified, but its conclusion is probabilistically unjustified.

Our discussion above leads to the following:

Consequence 3 (informal)
Let S be a set of bettable particular or conditional statements,
and let p and q be particular bettable statements such that
p-*q is a truth-functional consequence of S. If it is the case that
all statements of S have high probability but p -*• q has low
probability, then p is incompatible with S in the sense that in
the event of p's proving true, not all statements of S would
continue to have high probability.

The foregoing rule is satisfied in examples F1-F4 and F6, as well as
in the counterexample to the principle of contraposition given in
section 14. Note that it does not say that if an inference of a conditional
from premises is truth-functionally but not probabilistically valid, then
the premises entail the falsity of the antecedent of the conditional.
What it suggests rather is that if it is evident (as it must be in convincing
counterexamples) that the premises have high probability but the
conclusion does not, then it must also be evident that some of the
premises would have to be withdrawn in the event of the antecedent
of the conditional's being found true.

16. We conclude this paper with a brief comment on some of its
limitations. Two critical limitations have already been noted, which
ought to be re-emphasized. The first is that our formal calculus applies
only to particular bettable statements and to conditionals with such
statements as antecedents and consequents. The conclusions of this
analysis therefore apply only to such statements, and in particular
not to compounds involving conditionals or other statements of non-
bettable types. This is made clear in examples F7-F9. The second
limitation lies in the fact that the use of the calculus of probability is
not entirely appropriate to the representation of conditions of assert-
ability even for bettable statements, especially in view of the fact
that it treats probabilities as static. Its employment here was ne-
cessitated by the fact that it is the only existing calculus of probability
with sufficient precision and generality to help us with the problem
at hand.
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The final limitation to be noted is the fact that, in dealing only with
the question of what can reasonably be inferred from assertions, we
have left aside uses of reasoning in evaluation. In applying logic in
evaluation, one typically considers what follows from a supposition
(i.e. the supposition that the proposition in question is true). Our
analysis does not deal with what follows from suppositions, and, indeed,
our argument in section 3 suggests that there is no clear sense in the
supposition that a conditional is true. It seems to us significant that
conditionals are seldom put as suppositions, and we hypothesize
that when this does occur, in effect what is being supposed is that the
conditional is assertable. Similarly, we suggest that questions concerning
conditionals can be understood as properly answered in the affirma-
tive if the questioned conditional is assertable: e.g. the question 'Is
it the case that if Brown wins, Smith will retire?' is to be answered
'yes' just in case the assertion 'If Brown wins, Smith will retire' is
justified.

Though conditionals are seldom put as suppositions, they are ubi-
quitous as consequences of suppositions — in which case they are no
more asserted than are the suppositions themselves. The crucial lack
in our analysis is, we believe, its failure to apply to inferences involving
conditionals derived from suppositions. At the present we can do no
more than note this lack, as showing the need for further study. We
close with the suggestion that conditionals employed in this way prob-
ably obey rather different logical laws than do asserted ones, and that
this, in fact, is what is at the heart of Lewis Carroll's 'Barbershop
Paradox' [1].
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2 Talk of 'betting on a statement' (rather than on an event) is a slight perversion
of ordinary usage which we think has no harmful consequences. We may, if
we wish, simply define a bet on a statement as being a bet on the event which
the statement says will take place. As will be seen, though, this must be modified
in the case of bets on conditional statements.
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3 Of course, one can define 'extraordinary' ways of settling such bets at will: for
example, we might agree that a bet on such a statement as 'there is no highest
prime' won, in case the person making it could convince his opponent of its
truth by an argument (i.e. a proof). The 'ordinary' way of settling a bet on a finite
generalization (e.g. that all of the men in a room on an occasion had on red ties)
is to examine all of its instances, and not to argue about its truth.

4 In connecting conditional statements with conditional bets we are doing some-
thing akin to what Quine [5, p . 12] has suggested: that is to regard conditional
statements as having truth values only in case their antecedents are true. On
this view, conditional statements might more properly be described as statements
made conditionally, the condition being that the antecedent be true, and the
consequent being what is asserted subject to that condition. Seen in this way,
nothing is asserted in case the antecedent is not 'fulfilled', just as nothing is bet
(i.e. the bet is called off) in case its conditions are not fulfilled in a conditional bet,
and in a conditional promise nothing is promised in case its conditions are not
met.

5 It is important to note that there are many conditional statements for which
there arc no ordinary conditions for settling bets on them. One very important
class of these non-bettable conditionals consists of the subjunctive ones, and
hence our analysis does not apply to them.

6 A problem which will arise more acutely in connection with F6 is also implicit
here. It may happen that each of two people who make a pair of contradictory
assertions are justified, from their own points of view, or even that a single person
is justified within a short space of time in saying contradictory things: when he
gets new information and 'changes his mind'. We can do no more than note the
problem here, though, and not solve it.

7 It is worth noting that it is this kind of repeatable conditional which occurs usually
in the standard definitions of so-called 'dispositionaP terms: e.g. 'x is malleable
= df if x is subject to moderate stress, it is permanently deformed'.

8 This is a little over simple. There is a rather interesting logical phenomenon con-
nected with conditionals whose antecedents are disjunctions. This is that such
conditionals are not equivalent in meaning to the conditional statement obtained
when the disjunction is replaced by another expression which is probabilistically
and strictly equivalent to it. The two conditionals 'If that animal is a tiger it is
dangerous' and 'If that animal is either a harmless tiger or not a harmless tiger,
it is dangerous' furnish an example. What this shows is that often conditionals of
the form 'if p or q, then r' are asserted as a conjunction of conditionals 'if p then
r' and 'if q then r', and not as a single conditional. The foregoing example suggests
that the single conditional is not equivalent to the conjunction, and we shall show
later that they are not probabilistically equivalent since it can happen that,
though the assertion of the single conditional may be justified, the assertion of
one (but not both) of the conjuncts may not.

9 Henceforth, we will ordinarily use Greek letters as variables ranging over truth-
functional formulas, and capital roman letters as variables ranging over formulas.

10 A theory of conditionals which does formally represent the situation in which
statements have to be withdrawn in this way is presented in the Ph.D. dissertation
of W. Cooper [2].
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