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• Kolmogorov’s probability axioms (sentential form):

1. Non-negativity: For any sentence p, P(p) ≥ 0.

2. Normality: For any tautology T, P(T) = 1.

3. Finite Additivity: For any mutually exclusive p, q, P(p ∨ q) = P(p) + P(q).

• Conditional probability: For any p, q, if P(p) > 0 then

P(q | p) =
P(p & q)

P(p)

Consider all of the following to be universally quantified over p, q, r, . . ., except that when a conditional probability
expression appears we assume the sentence after the “ | ” has a positive unconditional probability.

• P(∼p) = 1 − P(p)

• P(p ∨ q) = P(p) + P(q) − P(p & q)

• If p ` q then P(q) ≥ P(p), P(q | p) = 1, and P(p ⊃ q) = 1.

• If p a` q then P(p) = P(q).

• P(p & q) = P(p)·P(q | p)

• For any p (such that P(p) > 0), P(· | p) is itself a probability function.

• P(p ⊃ q) ≥ P(q | p)

• P(p ⊃ q) = 1 iff P(q | p) = 1.

• For any mutually exclusive p, q, if P(r | p) = x and P(r | q) = x then P(r | p ∨ q) = x.

• Substitution rules: If P(p ≡ q) = 1, then p can be replaced by q anywhere in a true probability fact to yield
another true probability fact. Corollary: If p a` q, then p can be replaced by q anywhere in a true probability
fact to yield another true probability fact.

• Law of Total Probability: P(p) = P(p | q)·P(q) + P(p | ∼q)·P(∼q)

• Bayes’ Theorem:

P(p | q) =
P(q | p)·P(p)

P(q)
=

P(q | p)·P(p)
P(q | p)·P(p) + P(q | ∼p)·P(∼p)

More generally, suppose there is a set of hypotheses {h1, h2, . . . , hn} that is mutually exclusive and exhaustive
(this is called a partition) and some evidence e. Then for each hi,

P(hi | e) =
P(e | hi)·P(hi)

n∑
j=1

P(e | h j)·P(h j)

The P(hi) terms are called priors, the P(hi | e) terms are called posteriors, and the P(e | hi) terms are called
likelihoods.

• The following are all equivalent:

P(p | q) > P(p)
P(p | q) > P(p | ∼q)

P(p) > P(p | ∼q)
P(q | p) > P(q | ∼p)

When these conditions hold, p and q are positively correlated. Replacing the inequalities with equals-signs
yields equivalent conditions under which p and q are probabilistically independent.
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• Regularity holds that all non-contradictory sentences have positive probability. Note that Regularity is an
additional condition one might impose on probability functions; it doesn’t follow from the axioms. Given the
probability axioms, Regularity is equivalent to the converse of Normality (it says that anything with a probability
of 1 is a tautology).

• Updating by Conditionalization: Taking the probability function P0 and updating it by conditionalization on
e generates a probability function P1 such that

P1(·) = P0(· | e)

• Jeffrey Conditionalization: When the probability function P0 is updated by Jeffrey Conditionalization on the
elements of a partition {e1, e2, . . . , en}, the resulting probability function P1 satisfies

P1(·) =

n∑
i=1

P0(· | ei)·P1(ei)

• Arithmetic Approach to Probabilities: Given any sentential language, the state descriptions in that language
will have non-negative probabilities that sum to 1. Specifying the probabilities of all state descriptions suffices
to specify an entire probability distribution over sentences in the language. The probability of a sentence is the
sum of the probabilities of all the state descriptions on which that sentence is true.

• Expected Utilities: On classical (evidential) decision theory, expected utility is calculated by

EU(p) =

n∑
i=1

u(p & S i)·P(S i | p)

Here u is a utility function, {S 1, S 2, . . . , S n} is a partition of possible states of the world, and p typically repre-
sents a proposition (though sometimes p is taken to represent an act).

On causal decision theory the probability P(S i | p) is replaced by the probability of something related to causal
influence. On the Gibbard-Harper theory, for instance, it is replaced by P(p � S i), where� is the counter-
factual conditional.
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