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1. Deriving Bayes’ Theorem

Bayes theorem is a piece of mathematics. It is called atheorem becauseit is derivable from a
ample definition in probability theory. Asa piece of mathematics, it isnot controversd. Bayesanism,
on the other hand, isa controversa philosophica theory in epistemology. It proposes that the
mathematics of probability theory can be put to work in explicating various concepts connected with
issues about evidence and confirmation.

Before | make an observetion, | assgn a probability to the hypothesis H; this probability may
be high, medium, or low. After | make the observation, thereby learning that some observation
gsatement O istrue, | want to update the probability | assgned to H, to take account of what | have just
learned. The probability that H has before the observation is caled its prior probability; it is
represented by Pr(H). The probability that H hasin the light of the observation O is cdled its posterior
probability; it is represented by the conditiona probability Pr(H*O) (read this as “the probability of H,
given O”). Bayes theorem shows how the prior and the posterior probability are related.

The conditiond probability Pr(A* B) is defined asfollows:

Pr(A*B) = Pr(A&B)/Pr(B.)

Thisdefinition is intuitive. Whét is the probability that a card drawn at random from a standard deck is
aheart, giventhat it isred? Wadll, the probability that it isared heart is 1/4; the probability that itisred
is¥2 Thus, the answer is. Y.
By switching A's and B's with each other, it will aso be true that

Pr(B*A) = Pr(A&B)/Pr(A).

These two expressions alow the probability of the conjunction (A& B) to be expressed in two different
ways

Pr(A&B) = Pr(A*B)Pr(B) = Pr(B*A)Pr(A).
From thislast equdlity, we can obtain Bayes theorem:

Pr(A*B) = Pr(B*A)Pr(A)/Pr(B).



2. Bayesian Definitions of Confirmation and Disconfirmation

Let'srewrite Bayes theorem with some new letters. We want to figure out what the
probability of ahypothessH isin the light of observations O. According to Bayes theorem, this
conditiond probability, Pr(H*O), can be expressed as follows:

Pr(H*O) = Pr(O*H)Pr(H)/Pr(O).
This expresson can be rewritten as an equality between two ratios:
*) Pr(H*O)/Pr(H) = Pr(O*H)/Pr(O).

When an observation O is obtained, it may have three different kinds of significance for the question of
whether the hypothesisH istrue. O may confirm H, O may disconfirm H, and

O may be evidentidly irrdevant to H. Bayesian theory says that each of these ideas can be
undergtood in terms of areationship between the prior and posterior probabilities of H. Hereisthe

Bayesian proposdl:

(1)  OconfirmsH iff Pr(H*O) > Pr(H)
O disconfirms H iff Pr(H*O) < Pr(H)
Oisevidentidly irrdevant to H iff Pr(H*O) = Pr(H).

Notice that these proposals have implications for whether the left-hand ratio in (*) is grester than, less
than, or equd to unity. Thus, if O confirms H, Pr(O*H)/Pr(O) will be greater than unity.

Let's consider some implications of this. First, suppose that H deductively implies O. If o,
Pr(O*H)=1. In this case, notice tha Pr(O*H)/Pr(O) can't be less than unity. It followsvia (*) that
Pr(H*O)/Pr(H) can't be less than unity. This makes sense of the following idea: when you deduce an
observationa prediction from a hypothesis, and the prediction comes true, this result

can't disconfirm the hypothesis. The hypothesis may go up in probability or it may stay the same, but it
can't declinein probability.

If Pr(O*H)=1, how could the obsarvation that O istruefail to confirm the hypothesis? This
will happenif Pr(O) =1. Thatis, if you werecertain that O would be true before you medethe
observation, the fact that the observation comes true does not confirm H. If H deductively implies
O and the truth of O isto confirm H, then Pr(O)<1. True predictionsthat are totaly unsurprising fall
to confirm.



In thinking about the idea of confirmation, there isa smple fact that you want to bear clearly in
mind. An observation may confirm a hypothess, even though the hypothesisis gill very improbable
inthelight of the observation. Suppose Pr(H*O) = 1/1,000 and Pr(H) = 1/1,000,000. In this case,
the observation increased the probability of the hypothesis athousand fold. Even so, H remains very
improbable. Bayesans use the term “ confirm” to mean “probability raisng;” a“confirmed” hypothes's
may not be worthy of belief.

3. Comparing Posterior Probabilities

According to Bayesanism, confirmation isa“diachronic” relation -- it involves a
before-and-after comparison. However, we sometimes are interested in making a distinct, synchronic,
comparison -- we want to say whether an observation makes one hypothesis more probable than
another hypothesis. Here we are comparing two posterior probabilities -- Pr(H1 * O) and Pr(H2 *
0O). Two gpplications of Bayes theorem yields

Pr(H1*0) = Pr(O*H1)Pr(H1)/Pr(O).
Pr(H2*0) = Pr(O*H2)Pr(H2)/Pr(O).
From these two Statements, we obtain:
2 Pr(H1*O) > Pr(H2*0) iff Pr(O*HL)Pr(H1) > Pr(O*H2)Pr(H2).

Which hypothesis has the higher posterior probability depends on two considerations -- the prior
probabilities of the hypotheses, and the probabilities that each hypothesis confers on the observations.

It follows from (2) that H1 might have the higher posterior probability even though
H1 saysthat the observations were very improbable, whereas H2 says that they were very probable.
It dsoispossblefor O to raise the probability of H1 (a diachronic result), even though, synchronicaly,
Pr(H1*O) < Pr(H2*O).

Hereisacasetha illudrates these possihilities. Suppose | sample three bals with replacement
fromanurn. That is, | take abdl out, note its color, and then return it to the urn, which | then shake; |
then draw another. Suppose my observation isthat the three bals I've drawn are dl green. That is,
the statement O, which | have learned to be true by observation, is "the three sampled bals are green.”
There are two hypotheses | want to consider. These are:

H1: All the balsin the urn are green.
H2: 50% of the bdlsin the urn are green.



We want to answer two separate questions. Does O makes H1 more probable than H2? And does O
make H1 more probable than it was before?

To answer these questions, | need to provide more details. To use Bayes Theorem, we need
to make sense of the prior probabilities of H1 and H2. That is, we need to be able to say how
probableit is that the urn had one compaosition rather than another, before the sampling from the urn
was performed. Let'simagine that the urn was composed by the following process. There werea
hundred buckets, each containing balls. A bucket was chosen a random and then dumped into the urn.
In bucket #1, dl the balls are green; in buckets 2 through 100, half the bals are green. Given the
process just described, we can assign prior probabilities asfollows:

Pr(H1) = /100 Pr(H2) = 99/100

The next step isto consider how probable the observation O would have been, if H1 had been true.
Clearly, if dl the balsin the urn are green, then the probability that the three sampled bdls should have
been green is unity. On the other hand, if H2 were true, then the probability of obtaining three green
balsin three drawsis (¥2)(¥2)(¥2 = 1/8. Thus, the probability of the observation, conditiona on each
of the two hypotheses, is.

Pr(O*H1) =1 Pr(O * H2)= 1/8.
The last probability we need to figure out is the "unconditioned probability of the observations'
-- the quantity Pr(O). But how can we figure out how probableit was that three green bdls should
have been drawn without knowing which bucket wasthe one that filled the urn? Well, we know
that there was a 1/100 chance that the urn wasfilled from bucket #1; in thet case the probability that
the three sampled balls should have been green would be 1. On the other hand, thereis a99/100
chance that the urn wasfilled from one of the other ninety-nine buckets, in which case the

probability that the three balls should have been green would have been 1/8. The probability of O
takesboth these possihilities into account, asfollows:

Pr(O) = Pr(O * H1)Pr(H1) + Pr(O * H2)Pr(H2)
= (1)(2/100) + (1/8)(99/100) - 0.12.
Thisis an gpproximate vaue for Pr(O).
We now can use Pr(H1), Pr(O * H1), and Pr(O) to compute Pr(H1 * O), by Bayes's theorem:

Pr(H1* O) = Pr(O * H1)Pr(H1)/Pr(O)



= (1)(1/100) / (0.12)
So Pr(H1 * O) is about 8/100.

Notice that the observation makes H1 far more probable than it wasinitidly. H1 enjoyed an
eight-fold increase in itsprobability. Yet, thisfact of confirmation does not mean that H1 became
very probable. Indeed, it did not do so: Pr(H1 * O) isfar lessthan Pr(H2 * O); 8/100 < 92/100.

According to propostion (2), there are two factorsthat affect whether one hypothesiswill be
more probable in the light of the evidence than another. Fird, there is the question of how good a job
the hypotheses do in predicting the evidence a hand. Thisissue is represented by the quantities Pr(O
*H1) and Pr(O *H2). Second, thereisthe question of how plausible the hypotheses were before the
present evidence was obtained; thisis represented by the quantities Pr(H1) and Pr(H2). Inour
example, H1 gets a high mark on the first consideration, but alow one on the second.

4. Likelihood

Some terminology: “Pr(O *H)” is sometimes cdled the “likelihood” of H. Thisisatechnica
usage. Don't confuse the likelihood of a hypothesis with its probability. Pr(O*H) and Pr(H*O) can
have very different vaues, asthe urn exampleillustrates.

| so far have defined two ideas about evidence in probabiligtic terms. Firdt, there was the
before-and-after notion that | called confirmation, described in proposition (1). Second, there was
a comparison of the probabilities of two hypothesesin the light of the same evidence, described in
proposition (2) . Now it's timefor athird. We may ask whether an observation supports one
hypothesis better than another.  Here were not interested in whether the one hypothesis has a higher
prior probability than the other; we want to isolate what the impact of the observation is. | suggest that
thisideacan be understood as follows: one hypothesisis better supported by an observation than
another isif and only if the first hypothess makes the observation more probable than the other
hypothes's does:

3 H1 is better supported than H2 by O iff Pr(O*H1) > Pr(O*H2).
Here we have the idea that differentid support is measured by likelihood. 1f one hypothess says that

what | observed was to be expected, whereas the other hypothes's says that what | observed was very
improbable, it isthefirst that is better supported by the observation.

5. An Exercise



Hereisaproblem that you should be able to solve by reasoning in away pardld to the urn
problem:

Suppose that adiseaseis found in 1/100 people in the US. We sdlect aUS individud at random and
then givethe individud adiagnodic test, which is 90% rdiable, by which | mean thefdllowing: if
an individuad hasthe disease, the probability that the test will come out postiveis 0.9, and if an
individua does not have the disease, the probability is 0.9 that the test will come out negative. Suppose
the test comes out positive. What is the probability that the individua has the disease, given this positive
test result? How does this probability compare with the probability that the individua does not have
the disease? Cdculate the rlevant quantities and then plug them into Bayes' theorem.

Psychologists have found that people often do better at problems like this when they formulate
them as problems about frequencies in a population of known size. So suppose that the population
contains 1,000 people, and that 10 of them have the disease, while 990 do not. What would happen
if you gave the test to dl 1,000 people? Fill in the following 2-by-2 table with the gpproximate
numbers you' d expect to find in each cell, given that the test is 90% rdligble:

HHHHHHBHBHBHBHBHAHE | 10 have the disecase 990 do not have the disease
HHHHHHBHBHS

number of positive outcomes

number of negative outcomes

Now suppose someone in the population has a postive test result. What is the probability that they
have the disease?

Two observations: (1) Notice that | described the rdigbility of the test procedure by describing
conditiona probabilities of the form Pr(xtest * +disease). These numbers do not settle
the vaues of probabilities of the form Pr(xdisease * ttest). Thisillustrates how likelihood and
posterior probabilities are different. (2) Although it is useful in this problem to think of probabilitiesin
termsof actud frequencies, it isn't true that the probability if an event and its actua frequency must be
the same. A fair coin can be tossed an odd number of times and then destroyed.  Still, it sometimes
makes problems easier to solve if you think of probakilities in terms of the (approximate) actud
frequencies you’ d expect to find.

6. The Dispute About Bayesianism

Philosophers and gtatisticians who criticize Bayesianism do so mainly because they bdlieve that
it often makes no sense to talk about the prior probability of hypotheses. In our urn example, it did
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make sense to talk about the prior probabilities of the hypotheses. The reason was that we viewed the
two hypotheses H1 and H2 as possible outcomes of a chance process. | said that the urn wasfilled by
choosing a random from among a hundred buckets. 1t was on the basis of this Story that we assgned
priorsin the way we did.

Congder the fact that many of the hypotheses that scientists wish to test do not describe
possible outcomes of a chance process. For example, take Newton's law of gravitation (G). 1t makes
sense to talk about what G predicts about observations. Perhaps G says that some observations are
probable while others are improbable. Thiswill dlow us to make sense of the likelihood of G.
Pr(O*G) will make sense. However, what isthe probability that Newton's law istrue? In particular,
we need to make sense of the ideaithat G has aprior probability. Before we do any observationa
tests of the theory, what probability should we assign to it?

Suppose God had chosen the laws that govern our universe by sampling bals from an urn. On
each ball iswritten aset of laws. If Newton's law was written on just one bal and there were 1000 in
the urn, then the prior probability of the law would be 1/1,000. However, no one bdievesthis story
about the process that gave our universe the laws it possesses. In the absence of any dternative and
plausible process model, critics of Bayesianism decline to assign probabilities to Newton's law.

Bayesans have repliesto this criticism. Oneisto go the subjective route. Theideaisto think
of probahilities as describing an agent's degree of belief. |f an agent has some degree of belief in
Newton's law before the evidence is assembled, thiswill determine what his or her prior probability is.
The trouble with this reply is that different agents may have different degrees of confidencein the
hypothesisin question. If probabilities merely describe subjective degrees of confidence, one won't be
able to say which assgnment of probabilitiesis correct and which isincorrect.

To this, Bayesans often reply with the "swamping of priors' argument. They point out that it
often doesn't matter what prior probabilities one assigns. Once a reasonable amount of evidence
becomes available, people will end up assgning nearly the same pogterior probakilities, even if they
darted out with very different priors. Critics sometimes reply that the sivamping of priors argument
does not show that theideaof prior probabilities makes sense.

Another Bayesian drategy isto try to show how objectively correct prior probabilities can be
assigned even though one has no information about what processes (if any) influence which hypothes's
istrue. Bayesanswho go thisroutetry to formulate aplausble verson of the Principle of
Indifference (P1). The Pl says, roughly, that if you have no reason to assgn H1 and H2 different
probabilities, then you should assgn them the same probability. Stated with a bit more generdity, the
Pl saysthat if you have no information that would alow you to say which of n exdusve and exhaudive
options will come true, you should assign each a probability of 1/n. This principle, if correct, would
alow one to obtain knowledge of probabilities from the fact that oneisignorant.



The problem with the Pl isthat posshilities can be diced up in different ways, and these
different ways of dividing the pie generate probakility assgnments that are incompetible with each other.
If you don't know anything about the color of my favorite sweeter, should you assign equa probabilities
to the four options [Green, Blue, Red, Black] or equa probabilities to the five options [Light Green,
Dark Green, Blue, Red, Black]?

A gquantitative example exhibits the same problem. Suppose you know that some particular
object has alength (L) somewhere between 2 and 4 meters. Applying the P, you might reason that

(A)  Pr(L isbetween 2 and 3) = Pr(L is between 3 and 4).

But now consider the value of the quantity L2 L? is somewhere between 4 and 16. If you gpply the Pi
to the range of vauesthat L2 might take, you might end up saying that

Pr(L2 is between 4 and 10) = Pr(L2 is between 10 and 16).

But this assignment of probabilities to L2 entails something about the probabilities of L'svaues. It
entails that

(B)  Pr(L isbetween 2 and S10) = Pr(L isbetween S10 and 4).

Note that (A) and (B) are incompatible. Why should one apply the PI to L rather than to L??
In fairness, | should point out that there are Bayesians who try to refine the Pl so that it doesn't generate
contradictions.

In terms of the concepts we defined before, critics of Bayesianism will not accept the
Bayesan definition of confirmation and disconfirmation, though they may be quite happy to
talk about the likelihoods of hypotheses as measures of how well supported they are.



