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Confirmation is commonly identified with positive relevance, E being said to
confirm H if and only if E increases the probability of H. Today, analyses of this
general kind are usually Bayesian ones that take the relevant probabilities to be
subjective. I argue that these subjective Bayesian analyses are irremediably flawed.
In their place I propose a relevance analysis that makes confirmation objective
and which, I show, avoids the flaws of the subjective analyses. What I am pro-
posing is in some ways a return to Carnap’s conception of confirmation, though
there are also important differences between my analysis and his. My analysis
includes new accounts of what evidence is and of the indexicality of confirmation
claims. Finally, I defend my analysis against Achinstein’s criticisms of the rele-
vance concept of confirmation.

By confirmation 1 mean the relation that holds between E and H when E
is evidence for H. There is considerable prima facie plausibility to the view
that this relation holds iff E makes H more probable, i.e., iff p(H|E) >
p(H) for a suitable probability function p. I will call this view the relevance
concept of confirmation. As stated, this concept is vague, especially as the
““suitable probability function” has not been specified. In this paper I will
discuss different attempts at giving a precise formulation of the relevance
concept of confirmation; I will call such formulations relevance analyses
of confirmation.

For a couple of decades, Carnap’s Logical Foundations of Probability
(1950) provided the standard relevance analysis of confirmation; it was an
analysis that made confirmation an objective relation (Section 1). How-
ever, difficulties with Carnap’s program in confirmation theory led to the
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subsequent development of Bayesian relevance analyses that view confir-
mation as subjective. In this paper I argue that these subjective analyses
are all untenable (Section 2). I offer in their place a relevance analysis that
is like Carnap’s in making confirmation objective but which avoids what
I agree to be the untenable features of his analysis, as well as avoiding the
flaws of the subjective analyses (Section 3). Finally, I defend this analysis
against Achinstein’s criticisms of the relevance concept of confirmation
(Section 4).

1. Carnap. Carnap distinguished what he called classificatory, compara-
tive, and quantitative concepts of confirmation,; it is the first of these that
is my concern in this essay. Carnap says that this classificatory concept of
confirmation is expressed by such sentences as ‘E gives some (positive)
evidence for A’ (1950, 21), which suggests that his classificatory concept
of confirmation is the same as confirmation in my sense.

However, in one respect Carnap’s conception of confirmation deliber-
ately departs from the ordinary notion of what it is for £ to be evidence
for H. This departure is that Carnap allows E to confirm H regardless of
whether F is evidence or even known to be true. This was a deliberate
decision, motivated by Carnap’s view that his task was to identify a re-
lation, analogous to entailment, such that no factual knowledge is needed
to know whether or not E confirms H (1950, 20f.). Carnap (1950, 468)
acknowledged that he was following Hempel (1945, 24) on this point. Both
authors are aware that in this respect their usage departs from ordinary
language.

Carnap’s analysis of confirmation assumes that there is a unique prob-
ability function ¢ such that ¢(H|E) represents the probability that it is
rational to give to H when the total evidence is E.! He gives two analyses
of confirmation (1950, 463). One is for a relative notion of confirmation:
E is said to confirm H relative to ‘B iff ¢(H|'BE) > c¢(H|B). The other is for
an absolute concept: E is said to confirm H “so to speak absolutely; that
is, without reference to any prior factual evidence” iff ¢c(H|E) > c¢(H|T),
where T is a tautology.

This analysis can be correct only if there really is a unique probability
function ¢ with the properties Carnap ascribes to it. However, arguments
to establish the existence of this function have not been convincing. The
usual attempts to demonstrate its existence have been a variation on the
traditional idea that, in the absence of any evidence, a rational person
would give all possibilities the same probability. A problem with this is
that possibilities can be individuated in different ways, in which case this
principle leads to different probability functions, and no convincing

!So that the notation in this essay can be uniform I am here departing in several respects
from the notation that Carnap used in (1950).
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method of identifying the “right” way of individuating the possibilities
has yet been proposed. Carnap himself eventually withdrew the claim that
there was a uniquely correct probability function ¢ (1971a, 27). He did
not, however, provide an analysis of confirmation that did not depend on
this retracted claim.

Skepticism about the existence of ¢ led to the development of subjective
Bayesian analyses of confirmation; these have dominated post-Carnapian
confirmation theory because they do not require there to be a function
such as Carnap’s c.

2. Subjective Bayesian Analyses. Bayesians hold that a rational person has
degrees of certainty that are representable by a probability function; this
requirement is called coherence. The probability function that represents
a person’s degrees of certainty is referred to as that person’s probability
function and its values are said to be the person’s probabilities.?

In addition to coherence, Bayesians also endorse principles about how
a person’s probabilities should be changed over time. The original prin-
ciple of this kind is conditionalization, which says that if a person with
probability function p learns E and nothing else then that person’s pos-
terior probability function should be the result of conditioning p on E,
i.e., it should be p(:|E).

A person can satisfy these conditions yet still have degrees of certainty
that seem crazy to most of us. Nevertheless, subjective Bayesians do not
endorse any additional constraints on rational degrees of certainty beyond
those just mentioned. This is not to say that subjective Bayesians deny the
existence of any further conditions, but they do confirmation theory with-
out assuming the existence of any such further conditions. The rationale for
this stance is partly an attitude of tolerance and partly the view that nobody
has yet produced any very convincing additional principles of rationality.
Since subjective Bayesianism is the dominant form of Bayesianism today,
the term ‘Bayesian’ now commonly means ‘subjective Bayesian’.

Subjective Bayesians have offered analyses of what they call confirma-
tion, according to which confirmation is relative to persons and times.
However, we do not ordinarily think that what is evidence for what is
subjective in this way. If I say that F is evidence for H and you say it is
not, we normally suppose that we are contradicting one another. On the
subjective Bayesian analyses, my statement is presumably to be interpreted
as meaning that E confirms H for me now and your statement as meaning

21t is now usual to allow that a person’s degrees of certainty may be indeterminate, in
which case the person’s degrees of certainty would be represented by a set of probability
functions. This is a complexity that I will put aside; including it would not change my
conclusion and Bayesian analyses of confirmation have themselves ignored this point.
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that E does not confirm H for you now; these statements are not contra-
dictory.

Some Bayesians think that the idea of objective confirmation is an il-
lusion; Howson has dismissed it as merely “an ancient habit of thought
that dies hard” (Howson 1991, 550). In any case, the subjective Bayesian
analyses of confirmation cannot charitably be supposed to be analyses of
an objective notion of confirmation. But then, since confirmation ordi-
narily is understood in this objective way, we have to ask what concept
Bayesian analyses are meant to be an analysis of. We cannot evaluate the
adequacy of a proposed analysis unless we know the concept to which it
is meant to correspond. Unfortunately, the Bayesian confirmation litera-
ture gives us no guidance on this question.

A natural suggestion is that subjective Bayesian analyses of confirma-
tion are trying to say what it is for a person X at time ¢ to take E to be
evidence for H. People clearly do take things to be evidence for other
things and we can identify this psychological state without assuming (or
denying) that there is any objective relation of confirmation. However,
this suggestion cannot be right, for people do not take E to be evidence
for anything unless E is actually a piece of evidence, whereas subjective
Bayesian analyses allow that, for X at ¢, E can be evidence for H even if
X at ¢ is confident that F is false. (In this regard, as in many others,
Bayesian analyses of confirmation show their Carnapian roots.) It there-
fore appears to me that subjective Bayesian analyses of confirmation are
best understood as trying to say what it is for a person to take E to be
such that, if it were evidence, it would be evidence for H. At any rate, they
are trying to analyze a concept which is such that, if a person takes E to
be evidence, then the concept in question applies to the person iff the
person takes E to be evidence for H. I will now evaluate subjective Baye-
sian analyses of confirmation by seeing how adequate they are as analyses
of this psychological concept.

2.1. Simple Bayesianism. The simplest Bayesian analysis of confirma-
tion says that E confirms H for person X at time ¢ iff p(H|E) > p(H),
where p is X’s probability function at ¢.

It is now generally acknowledged that the simple Bayesian analysis of
confirmation is inadequate, for a reason that Glymour (1980, 85-93) drew
attention to: If I am certain of F at ¢ and p is my probability function at
tthen p(E) = 1 and so p(H|E) = p(H), for all H. Thus the simple Bayesian
analysis implies that I cannot take E to be evidence for anything. This
conclusion is wrong; there is no inconsistency between being certain of E
and taking E to be evidence for H.

3There is even a prima facie plausible argument that anything taken to be evidence must
be taken to be certain: If E is not certain, then what one has learned from experience is not
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Bayesians, as well as their critics, have generally agreed that this objec-
tion shows the simple Bayesian analysis to be inadequate. Nevertheless,
one does occasionally meet with attempts to defend the simple Bayesian
analysis against this objection, by saying that evidence never is completely
certain, or should not be taken to be completely certain. However, the
objection as I have presented it does not assume that evidence ever is or
should be completely certain; the key point is rather that there is no in-
consistency between E being certain and E being regarded as evidence for
H, and the simple Bayesian analysis implies otherwise.*

There are two ways of modifying the simple Bayesian analysis that have
been endorsed by subjective Bayesians in order to avoid Glymour’s ob-
jection to that analysis. I will discuss them in the next two subsections.

2.2. Historical Bayesianism. One popular suggestion has been that, when
X knows F at ¢, the probability function to use for judging confirmation is,
not the one X has atz, but rather the one X' had immediately prior to learning
E. 1 will call this the historical analysis. If we assume that, at the time of
learning E, X updated by conditioning on E, then another way to express
this analysis is that evidence E confirms H for X iff X’s probability for H
went up at the time that X acquired the evidence E.

One problem with the historical analysis is that H might not have been
formulated when E was learned, in which case H had no probability at
that time and, a fortiori, the probability of H did not go up when E was
learned. I will return to this problem shortly, but I will first consider the
situation in which the historical analysis is most at home: The case where
H was formulated, and given a probability, before E was learned. Horwich
(1982, 52f.), Eells (1985, 287), and Earman (1992, 122) have all supposed
that, in this case at least, the historical analysis is satisfactory. However,
I will show that it is untenable even in this most favorable case.

It will be helpful to have a concrete example of confirmation before us.
An example that suits my purposes as well as any is one that has often
been cited in the literature of confirmation theory: The confirmation of
Einstein’s General Theory of Relativity by the advance of the perihelion
of Mercury. By the end of the nineteenth century it was known that the
perihelion of Mercury was advancing at a rate of 574 arc-seconds per

adequately represented by E. Thus it has been suggested that, in cases where the content of
what is learned from experience is not representable by any proposition of which we are
certain, the evidence should be viewed as non-propositional (Jeffrey 1965, Pearl 1990). But
against this it may be urged that we often do cite as evidence propositions which, when
pressed, we should concede are not absolutely certain. In Section 3.1 I will propose a reso-
lution of this conflict that does not require evidence to be absolutely certain.

“Earman (1992, 120f.) argues that even when evidence is uncertain the simple Bayesian
analysis does not lend itself to an adequate measure of strength of confirmation. In this
paper, though, I am discussing only analyses of qualitative confirmation.
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century. Calculations using Newtonian gravitational theory implied an
advance of only 531 arc-seconds per century. In 1915 Einstein found that
his General Theory of Relativity implied the observed value of the advance
of the perihelion of Mercury. Both the Newtonian and relativistic calcu-
lations assumed certain facts about the other members of the solar system.
In particular, they assumed that the sun is roughly spherical. In the 1960s,
measurements of the sun’s shape suggested that the sun is actually suffi-
ciently oblate to reduce the advance of the perihelion of Mercury by 3 arc-
seconds per century, in which case the General Theory would no longer
agree with the observed value. Thus some advocates of alternatives to
Einstein’s theory claimed that the advance of the perihelion of Mercury
was really evidence against Einstein’s theory, not evidence for it (Will
1986).

Let G be the General Theory of Relativity, A4 the proposition that the
perihelion of Mercury advances by 574 arc-seconds per century, as S the
proposition that departures of the sun from perfect sphericity are too small
to have any observable effect on the perihelion of Mercury. In order to
ensure the straightforward applicability of the historical analysis, imagine
that before learning either 4 or S I had a probability function p that was
defined for G, 4, and S. Suppose that at this time I also knew the other
facts necessary to derive 4 from G and S. Since S and 4 do not separately
provide any reason to believe G, let us also suppose that p(G|AS) > p(G|S)
= p(GlA) = p(G). If I learned first S and then A4 the historical analysis
says that A4 is (for me now) evidence for G while S is not. On the other
hand, if I learned these facts in the reverse order then the historical analysis
says that their evidential status is also reversed; now S (for me) confirms
G while 4 does not. There are two things wrong with this. First, I can
perfectly well judge that A is evidence for G, even if I learned A before
learning S. Second, people’s judgments of what is evidence for what are
normally independent of the order in which facts were learned, contrary
to what the historical analysis implies.’

Now let me make the example more like the historical situation. Let us
suppose that S initially seemed very plausible to me, so that when I learned
A my probability for G went up, but later evidence convinced me that S
was probably false. I should then in the end judge 4 to be evidence against
G, not evidence for it (just as some physicists did in the 1960s). However,
the historical analysis is incompatible with this; it looks only at the prob-
ability function I had just prior to learning A4, and if ¢ is that probability
function, ¢(G|4) > g(A4), so at all later times I am supposed to judge that
A confirms G.

SIt is easy to generate other examples in which the historical analysis goes similarly astray.
The interested reader might like to reflect on how the analysis handles cases in which p(H|E))
= p(H\E,) > p(H) > p(H|E,E,). (Carnap 1950, 382f., gives an example in which the prob-
abilities satisfy these inequalities.)
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These examples show that the historical analysis does not correctly cap-
ture the concept it is aimed at even in the most favorable case, where the
required historical probabilities are defined. This basic problem has not
been addressed in the literature. Instead attention has been focused on
trying to deal with the case in which the required historical probabilities
are not defined. It seems to have been hoped that this case could be dealt
with in the following manner: Suppose that (like many physicists active
around 1915, including Einstein himself) I knew A4 before I had thought
of G. After I have come to consider G I find that G (together with other
plausible assumptions) entails 4, and at that time my probability for G
goes up. Thus although my probability for G did not go up when I learned
A, it did go up when I learned that G (together with the other assumptions)
entails 4; a modified historical analysis could say that the latter fact cap-
tures the content of my judgment that 4 confirms G.

This modification does not apply to cases in which a person knows the
relevance of a piece of evidence to a theory from the moment of first
thinking of the theory; for example, students might know that G success-
fully explained 4 before they even know what G is (Earman 1992, 130).
A more fundamental problem is that, even if my probability for G did go
up when I realized that it explained 4, it does not follow that I must
forever afterwards judge that 4 confirms G, if I subsequently find that S

is false, and that G together with S is inconsistent with 4, then I will judge
that A4 disconfirms G, contrary to what the historical analysis implies. Thus
the attempt to make the historical analysis generally applicable merely
enlarges the class of counterexamples to it.

2.3 Counterfactual Bayesianism. An alternative to the historical analysis
has been to invoke counterfactual conditionals. In its simplest form, this
approach says that, when X knows F at z, the probability function to use
for judging confirmation is the one X would have if X did not know E.
This counterfactual analysis was given a qualified endorsement by Garber
(1983, 103). Howson (1984, 1985, 1991) has defended a version of the
analysis that is more difficult to understand but which seems to amount
to essentially the same thing.¢

The counterfactual analysis has often been criticized in the literature.

SHowson says that probabilities are relative to background information and that, in judg-
ing whether or not E confirms H, we should use as background information the current
background information minus E. But to understand this we need to understand what dis-
tinguishes “background” from other information, what it means to subtract a proposition
from a given body of background information (Chihara 1987), and what it means for p to
be a person’s probability function relative to some background information other than the
person’s actual background information. Howson’s thought with respect to the last point is
apparently that p represents my probability function with respect to background information
K iff p is the probability function I would have if K were my background information (1991,
548). This last point is what makes Howson’s analysis a counterfactual one.
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One criticism is that it is not always clear precisely what probability func-
tion one would have if one did not know something one does know (Gly-
mour 1980, 87ff.; Garber 1983, 103; Eells 1985, 286; etc.) However, for
the purposes of an analysis of qualitative confirmation we do not need to
identify a precise probability function; even if it is not clear what precise
probability function one would have if one did not know E, it might still
be clear whether any such probability function would satisfy the condition
Pp(HIE) > p(H). Furthermore, it is not necessary to insist that even this
always be clear, since one might say (with Howson 1991, 449f.) that con-
firmation is sometimes indeterminate.

A slightly more formidable objection is that there are cases in which we
judge that £ does confirm H but in which it is arguably the case that, were
we not to know E, we would not have considered H, so that we would
not have a probability for H, and so would not have a probability function
for which p(H|E) > p(H) (Eells 1985, 286; Earman 1992, 123). This sort
of objection can be met by a small modification to the counterfactual
analysis. A counterfactual analyst can say that E confirms H for X at ¢
iff, were X not to know FE but to have probabilities for H and E then, if p
is the probability function X would have, p(H|E) > p(H). (The emphasized
clause is new.)

However, this revised counterfactual analysis is still open to criticism.
There are contexts in which, were we not to know E, then even if we had
probabilities for H and E still we might not properly appreciate the rela-
tionship between E and H. Thus it can be the case that we judge E to
confirm H but, were we not to know E, we would have a probability
function p such that p(H\E) = p(H). The following is an example of this
kind.

Suppose Mr. Schreiber is the author of novels that are popular (P)
though it is important to him that he is making important contributions
to literature (7). Schreiber basks in his success, taking his popularity to be
evidence of the importance of his work; that is, he takes P to confirm I.
However, he is well aware that the many aspiring serious novelists whose
work is unpopular tend to rationalize their failure by supposing that the
public taste is so depraved that nothing of true value can be popular.
Schreiber thinks this reaction to unpopularity is unjustified and due merely
to an inability to admit that one’s work lacks merit. However, we can
suppose that if Schreiber did not know of his own work’s popularity, he
too would share this opinion. We can even suppose that Schreiber, aware
of his own foibles, is aware of this fact. Then it is true, and Schreiber
knows it is true, that were he not to know P, he would have a probability
function p such that p(1P) = p(I). However, Schreiber now thinks that
his judgment in this counterfactual situation would be irrational. Thus he
now judges that P confirms I though the counterfactual analysis implies
the contrary.
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Van Fraassen (1988, 155) argues that counterfactual analysis may go
similarly astray in the Mercury perihelion example.

How could the counterfactual analysis be modified to avoid such coun-
terexamples? We would have to say that the probability function to use
for the purpose of evaluating whether E confirms H for X at ¢ is one X
would have if X did not know E, X gave probabilities to H and E, and X
had probabilities that X judges to be rational in that situation. This emen-
dation, however, will achieve the desired result only if, in cases in which
X takes E to confirm H, X judges that rationality requires him in the
relevant counterfactual situation to have a probability function such that
p(H|E) > p(H).

What norms of rationality must X endorse to make such a judgment?
For any propositions H and E there are coherent probability functions p
such that p(E) < 1 and p(H|E) =< p(H).” Thus if one did not know E one
could still always have p(H|E) =< p(H) without violating coherence. Hence
to judge that rationality requires p(H|E) > p(H) when E is not known, X
must endorse norms of rationality stronger than coherence.

Adding that other norm endorsed by subjectivists, namely condition-
alization, does not change the situation. Schreiber, for example, need not
have violated conditionalization in the counterfactual situation in which
he does not know P. More fundamentally, even if a probability distribu-
tion has been reached via a violation of conditionalization, the condition-
alization principle does not imply that it is now irrational to have that
probability distribution; on the contrary, any correction of past violations
of conditionalization will themselves constitute further violations of con-
ditionalization.

Let me now review the argument to this point. We saw that subjectivist
Bayesian analyses of confirmation are motivated by the desire to avoid
commitment to any norms for probability judgment beyond coherence
and conditionalization. I suggested that these analyses are most charitably
understood as trying to analyze what it is for a person to take E to be
such that, if it were evidence, it would be evidence for H. We found that
the non-counterfactual subjective Bayesian analyses of this concept are
irremediably flawed. We also found that the counterfactual analysis can
be turned into an adequate analysis of subjective confirmation only if
people endorse norms of rationality that go far beyond the norms of co-
herence and conditionalization endorsed by subjective Bayesianism. I con-
clude that subjective Bayesianism can provide a tenable analysis of the
psychological concept it is trying to analyze only on the assumption that
people endorse norms of rationality much stronger than those endorsed
by subjective Bayesianism. In particular, since subjective Bayesians them-

A trivial proof is to take a probability function in which p(H) = 1. The inequality can
also be satisfied if p(H) < 1 provided that H neither entails nor is entailed by E.
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selves make substantive first-person judgments of confirmation, they must
allow that they themselves accept such norms. '

Now the reason why subjective Bayesians made confirmation relative
to persons and times was that the norms of rationality they endorsed were
too weak to provide any analysis of objective confirmation such as Carnap
offered. However, now that we see that stronger norms must be conceded
anyway, this motivation for the subjective approach has been undermined.
If we are going to permit ourselves to assume stronger norms of ration-
ality, we may be able to offer a satisfactory analysis of confirmation in
the objective sense, i.e., an analysis of what it is for E to be evidence for
H, rather than of what it is for someone to take it to be so. We could then
say that X judges E to be evidence for H iff X judges that this objective
relation holds. This would have the advantage of freeing the analysis of
confirmation from reliance on counterfactual conditionals.

3. Proposal. In this section I will offer an analysis of confirmation in the
objective sense. I will argue that this analysis avoids the weaknesses of the
preceding analyses—not only the weaknesses that I have already identified
in those analyses but also others that I will point out below.

3.1. Evidence. Unlike Carnap and the subjectivist Bayesians, my anal-
ysis will require E to be a piece of evidence in order for E to confirm
anything. One reason for this is that I want ‘E confirms A’ to correspond
to our ordinary notion of E being evidence for H and this requires E to
be evidence. I have another reason too, which I will explain in Section 3.4;
I will also note there that Carnap’s motivation for not requiring E to be
evidence is undermined by my analysis.

I propose that E is evidence iff E is known directly by experience. Before
I elucidate this proposal, let me note some immediate applications of it.

A proposition that is not known to be true is not evidence and hence is
not evidence for anything. So, for example, the proposition that the Moon
is made of cheese is not evidence that Io is made of cheese, because we do
not know that the moon is made of cheese (in fact, we know this is false).

Even if a proposition is known to be true, if this knowledge is not
directly based on experience then E is not evidence and hence is not evi-
dence for anything. For example, let E denote that a substance taken from
a certain jar dissolved when placed in water, and suppose we know E
directly from experience. Let H be the proposition that the substance that
was in the jar is soluble and suppose we know H by inferring it from E.
Then we know both H and E from experience, but E is evidence for H
and not vice versa, since only E is known directly by experience.?

8This example is mishandled by Achinstein’s (1983) definition of confirmation. For Achin-
stein says that H is (potential and veridical) evidence that E if (i) E and H are true, (ii) H
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On my account, the notion of evidence depends on that of knowledge
and it may be asked what knowledge is. I intend this concept to be un-
derstood in its usual sense. Exactly what that sense is is a question on
which epistemologists have spilled much ink. The question usually dis-
cussed in this literature is what it means for a person X to know a prop-
osition P. It is relatively uncontroversial that X knows P only if P is true
and X believes P. It is also relatively uncontroversial that these conditions
are not sufficient; the main point of controversy is the exact nature of the
condition or conditions that must be added in order to have a sufficient
condition for knowledge. Some say that X must have a justification of a
suitable kind, though what a justification is and what would be a suitable
kind of justification are also controversial. Others say that X’s belief in P
must have been caused in a suitable way, without necessarily supposing
that such causation constitutes a justification. Fortunately I do not need
to settle these disputed points here; nothing that I have to say about evi-
dence depends on what exactly needs to be added to truth and belief to
have a correct analysis of knowledge.

A question that is more important for my purposes is what it means to
say that X believes P. Traditionally it was supposed that X can know P
only if X is certain of P. Epistemologists today, having recognized that
few of the things we say we know are things of which we can be absolutely
certain, have generally jettisoned this requirement. However, if X is not
certain of P then X would be rational to bet that P is false if the odds
against P are high enough, and it is quite paradoxical to say that betting
on a proposition that one knows is false can be rational.

I suggest that we reconcile these conflicting considerations by taking
certainty to be a relative notion. What is really required for knowledge is
not absolute certainty (a probability of 1) but rather a probability that is
high enough that it can be treated as certainty for all purposes that are
under consideration. To give certainty in this sense a name I will call it
practical certainty.

It might seem that, in order to know whether P can be treated as cer-
tainly true for all purposes under consideration, we must determine the
probability of P and thereby determine the rationality of acting as if P is
true for all purposes under consideration. However, if such a calculation
is required then P is not practically certain in the sense I intend. A prac-
tically certain proposition is one in which it is clear, without doing any

does not entail E, (iii) there is an explanatory connection between the truth of H and E, and
(iv) this explanatory connection is probable given that A and E are true. All these clauses
can be supposed to be satisfied in my example. In particular, (ii) is satisfied because H does
not entail that the substance will be placed in water, which is part of what E asserts. Thus
Achinstein deems H to be (potential and veridical) evidence that E, though in fact it is neither
because it is not evidence.
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calculations, that no such calculation is necessary. Indeed, it will normally
be irrational to perform any such calculations for a practically certain
proposition (cf. Maher 1993, Sec. 1.2). Practical certainties are thus treated
just like absolute certainties for the purposes at hand.

Example: If our purpose is to evaluate the probability of the General
Theory of Relativity (G) in the light of the available evidence, the calcu-
lation would be considerably simplified by supposing that we are certain
of the advance of the perihelion of Mercury (4), along with other similar
evidence. Furthermore, I suppose that someone familiar with the field does
not need to do a calculation to see that treating A as certain will not
introduce any significant error. If this supposition is correct, then in such
a context 4 counts as practically certain. On the other hand, if for some
reason we are considering the question of whether it would be rational to
accept a million-to-one bet against A, then we should not proceed by
assuming that A is true but should instead evaluate the probability of A;
it is then no longer true that we are practically certain of 4 and, for that
reason, we would not say that we know A (not even if our evaluation
shows that we should not bet against 4).

There are situations in which, although we have learned something from
experience, there is no proposition of which we are practically certain that
expresses what we have learned. In requiring E to be practically certain in
order to count as evidence I am not denying the existence of such situa-
tions. Such situations are ones in which the evidence is not propositional
(Jeffrey 1965, Ch. 11). What I am saying is that if proposition £ is truly
evidence then E must be practically certain.

Not all propositions that are known to be true are evidence. On the
account I am proposing, evidence is known directly by experience. But
what does it mean for a proposition to be known directly by experience,
rather than indirectly? The traditional conception was that a proposition
is known directly by experience if knowledge of it is not based on inference
from any other proposition. However, we say that 4 is evidence and our
knowledge of it plainly depends on inference from other propositions.
Originally A was inferred from the results of various particular observa-
tions by astronomers; now, for most of us, it is inferred from assertions
of authorities.

The considerations just cited might suggest that evidence can be known
on the basis of an inference from other propositions. However, the par-
ticular observations from which 4 was inferred are surely also evidence,
and it seems at best peculiar to say, in the same breath, that both the
particular observations and the phenomenal law inferred from them are
evidence.

These superficially conflicting tendencies all find a natural place if we
understand claims about directness as relative to a set S of propositions
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that are taken as relevant. A proposition E will then be said to be known
directly by experience iff it is known by experience and that knowledge is
not based on an inference from any proposition in S. Usually, in discus-
sions of G, the particular observations from which 4 was inferred are not
being considered, hence 4 counts as known directly by experience and so
can count as evidence. Conversely, if the particular observations were be-
ing considered, we would call them the evidence and regard 4 as an in-
ferred proposition, not as evidence.

Suppose, though, that S includes both 4 and G. Our confidence in A4
depends largely on observation, but it should also be increased by the fact
that 4 follows from G and there is other evidence for G (such as the
bending of light in a gravitational field). Does this mean that knowledge
of A is based on an inference from a proposition in S, in which case 4
does not count as known directly by experience? No, it does not mean
that. While our other reasons for believing G make A somewhat more
probable than it would otherwise be, I take it that 4 would still be prac-
tically certain in the absence of any reason to believe G. History bears out
this supposition, since 4 was in fact practically certain before the formu-
lation of G, at which time it was an anomaly for the then-accepted theory
of gravitation.

A final point: If evidence is knowledge obtained directly by experience,
and if knowledge is a relation between a person and a proposition (as the
analyses of epistemologists usually assume), then what counts as evidence
will be different for different people. While we sometimes talk this way,
there is also a notion of evidence in which it is regarded as a property of
a community rather than of individual persons. For example, we can say
that 4 was part of the evidence possessed by the physics community in
the late 19th century. This does not mean that every physicist in that
community knew A, much less that they all knew A4 directly by experience.
It does not even mean that most physicists did so. What it means is that
someone had learned A directly by experience and this knowledge had
been made available to the community along with an appropriate justifi-
cation. This communal notion of evidence is the usual one in science; when
scientists claim that “the evidence” supports hypothesis H they are making
a claim about the evidence available to the community at that time, not
merely about the evidence that they know.

Although E may be evidence for a community without being evidence
for every individual in the community, it is normally the case that if E is
evidence for the community then it is evidence for every individual in the
community who knows E. For suppose Y has learned of E from the report
of some other individual X, who in turn justifies £ from experience; then
although Y has inferred E from X’s report, Y will still count as knowing
E directly by experience provided propositions about other people’s re-
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ports are not under consideration, as is commonly the case; thus E will
count as evidence for Y as well as for X.

To sum up: A necessary condition for E to confirm anything is that E
be evidence. The notion of evidence is relative to an individual or a com-
munity; I have not specified this explicitly but have left it to be determined
by the context. For an individual X, E is evidence iff X knows FE directly
by experience. The knowledge in question requires practical certainty of
E, which is relative to the ends in view. Such knowledge counts as direct
from experience if it is not inferred from any of the propositions under
consideration. For a community C, E is evidence iff E has been evidence
for some individual who made this information available to C along with
an appropriate justification.

3.2. Probability. I now turn to the question of what it is for some evi-
dence E to confirm, or be evidence for, H. The basic idea I want to artic-
ulate and defend is that evidence E is evidence for H iff E makes it rational
to be more confident that H is true. This was Carnap’s basic idea, although
my way of articulating it will differ from his.

As Carnap recognized, whether or not E makes it rational to be more
confident of H depends on what other evidence is assumed to be available.
For example, we saw earlier that (assuming certain other facts about the
solar system) A makes it rational to be more confident of G if S is assumed
to be a piece of available evidence, while 4 makes it rational to be /less

confident of G if S is assumed to be part of the available evidence. 1 will
call this other evidence background evidence.

I will view the background evidence as a set of pieces of evidence. Ele-
ments of the background evidence will sometimes be representable by a
proposition that satisfies the conditions for evidence given in the preceding
section. However, as noted there, what we learn from experience is not
necessarily representable by a proposition we can formulate, so some items
of background evidence may not be able to be expressed as a proposition.
Nevertheless, we can represent non-propositional evidence by a variable
that is treated for most purposes the same as a proposition (Pearl 1990)
and that is the procedure I will follow here. The basic idea can then be
stated more precisely as follows: E is evidence for H given background
evidence ‘B iff it is rational to be more confident of H if one’s total evidence
is B U {E} than if it is ‘B alone.

In common with both Carnap and subjective Bayesians, I subscribe to
the view that rational degrees of confidence are representable by a nu-
merical measure that satisfies the axioms of probability. (For a defense of
this, see Maher 1993.) Therefore, instead of talking about degrees of con-
fidence that it is rational to have, I will talk about rationally permissible
probability functions. Now, what probability functions it is rational to
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have in a given situation clearly depends on what evidence is available in
that situation. I will therefore use the notation R(‘B) to denote the set of
probability functions that are rationally permissible when the total evi-
dence is ‘B. By this I mean that p € R(‘B) iff there is a possible situation
in which some person’s total evidence is ‘B, that person has probability
function p, and that person does not violate any norm of rationality.

I do not assume that ‘R(‘B) contains only one probability function; per-
haps different people can have different probabilities given the same evi-
dence without either being irrational. Nor do I assume that what proba-
bility functions a person can rationally have is determined solely by the
person’s evidence; it might, for example, depend also on what prior prob-
abilities the person had. Thus I am not assuming that if p € R(‘B) then
any person with total evidence ‘B could rationally have probability func-
tion p. I am merely saying that for every p € R(B) there is a possible
situation in which a person with total evidence ‘B rationally has probability
function p.

Also in common with both Carnap and subjective Bayesians, I endorse
the principle of conditionalization under conditions that we can here as-
sume to be satisfied (Maher 1993, Ch. 5). Thus for a person with proba-
bility function p, learning F makes it rational to be more confident of H
iff p(HIE) > p(H).

Putting these points together leads to the following analysis of confir-
mation:

E confirms H relative to ‘B iff (i) E is evidence and (ii) for all p €
R(B), p(H|E) > p(H).

I think this analysis is correct as far as it goes, but it does have a serious
limitation. We often want to say that several pieces of evidence jointly
confirm H, without implying that any of the individual pieces of evidence
separately does so. For example, we might want to say that 4 and S
confirm G jointly but not separately. The analysis just given, however,
only covers the case where a single piece of evidence is said to confirm
something. We might try saying that E,, . . . ,E, jointly confirm H iff their
conjunction does so. However, if E,, . . . ,E, are evidence their conjunction
would normally be inferred from them, in which case the conjunction has
not been made certain directly by experience and so does not count as
evidence. (Nor can we avoid this by saying that E,, . . . ,E, are not being
considered here, since the statement we are trying to analyze mentions
them.) In any case, the interpretation of joint confirmation as confirmation
by a conjunction strikes me as unnatural. What I propose instead is that
we think of confirmation in the general case as a relation between a set of
pieces of evidence and a hypothesis. This suggests the following analysis:
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{E,, ..., E,} confirms Hrelativeto Biff i) E,, . . . , E, are all evidence
and (ii) for all p € R(B), p(H\E, . .. E,) > p(H).

This last analysis is the one I want to defend in the general case. However,
I will follow ordinary usage in not distinguishing between E and {E}, so
that when a single piece of evidence is under consideration the earlier
analysis can be used.

3.3. Constraints. According to my analysis, judgements about what
confirms what, given ‘B, depend in significant part on what probability
functions are in ‘R(‘B). So I will say what I can about the contents of R(‘B).

First, the axioms of probability limit what counts as a probability func-
tion, and thus all elements of R(‘B) must satisfy those axioms. As noted
earlier, this constraint is often called coherence.

Second, every p € R(‘B) needs to be consistent with B. Since evidence
must be practically certain, what this condition amounts to is that p(E) is
practically 1 for all £ € B and p € R(B).

What about norms governing how probabilities should be revised as
new evidence is acquired? Since evidence must be practically certain, the
only such norm that need concern us is conditionalization. Now any co-
herent probability function that gives every element of ‘B probability 1 is
the result of conditioning some probability function on every element of
‘B; consequently, the principle of conditionalization does not exclude from
R(‘B) any probability function that is not excluded by the preceding two
conditions.

The constraints I have mentioned so far are relatively uncontroversial,
being endorsed by subjective Bayesians and logical probability theorists
alike. However, subjective Bayesians do not endorse any stronger con-
straints than those mentioned so far, and here my analysis requires me to
part company with them. For if R(B) contained all the probability func-
tions that satisfy the constraints mentioned so far, it would be so large
and diverse that few judgments of confirmation would be deemed true by
my analysis. But we have seen that subjective Bayesians do not succeed in
analyzing even their subjective notion of confirmation without endorsing
stronger norms, so my need to appeal to such stronger norms is not a
disadvantage of my analysis as compared with a subjective Bayesian one.

However, I don’t wish to rest my case merely on a tu quoque argument,
so I will say what I can in support of the reality of these additional norms
of rationality.

There are probability functions that satisfy the rationality conditions
mentioned so far but which most of us are inclined to call absurd, unsup-
ported, paranoid, or the like. These epithets are not mere descriptions but
embody a normative evaluation of the negative kind. Following Gibbard
(1990), I take it that to call something irrational is, roughly, to express
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one’s acceptance of norms that do not permit it. I conclude that there are
opinions, which violate none of the norms mentioned earlier, but which
are irrational.

To illustrate: It is compatible with both coherence and conditionaliza-
tion to regard all possible worlds consistent with our evidence as having
the same probability. However, as Carnap (1950, 565) pointed out, this
way of assigning probabilities implies that no evidence is relevant to what
we have not yet experienced. For example, someone who assigned prob-
abilities in this way and who knew that millions of ravens had been ob-
served to date, all of them black, would still think that the next raven was
no more likely to be black than any other color. Such a person would be
irrational, despite satisfying both coherence and conditionalization.

Carnap (1950, 1952, 1971b), Rosenkrantz (1977), Salmon (1988), and
others, have tried to articulate general norms of rationality governing
probability functions that go beyond coherence and conditionalization.
This is not the place to review the adequacy of such proposals, but I will
say that I am inclined to concede to the subjectivist that no such proposal
provides a general and substantive norm of rationality that is as precise
and compelling as coherence and conditionalization. However, this con-
cession is not a good reason to deny that we endorse any norms beyond
coherence and conditionalization. Even in the absence of a general, pre-
cise, and compelling codification of such norms, we clearly do have a
patchwork of piecemeal normative judgments about particular situations,
judgments which do not follow from the norms endorsed by subjective
Bayesianism.

Since we lack a complete theory of rationally permissible probability
functions, it will in some cases be controversial whether or not all p €
R(‘B) are such that p(H|E) > p(H). I think that in such cases it will also
be controversial whether or not E confirms H, and hence I think this
consequence of my analysis is just what it should be. There are certainly
many cases in the history of science in which it was disputed whether or
not a particular piece of evidence supported a particular theory. My anal-
ysis does not aim to resolve all such disputes but rather to identify what
claim is being disputed.

3.4. Context. The analysis of confirmation that I have given makes it
relative to background evidence ‘B. In this respect, my analysis as I have
presented it so far is similar to Carnap’s. However, when we make judg-
ments of confirmation we do not usually specify any background evidence.
For example, when the advance of the perihelion of Mercury (4) is said
to confirm the General Theory of Relativity (G), background evidence is
normally not mentioned. Such assertions of confirmation have the surface
grammar of what Carnap called “absolute confirmation,” but so inter-
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preted they would come out false; 4 does not confirm G relative to no
background evidence. It is a defect of Carnap’s analysis that it does not
provide any more satisfactory way to interpret such claims.

I propose that the background evidence is usually fixed sufficiently well
by the context and that is why it is normally not explicitly stated. This is
not an unusual situation; there are many sentences whose meaning is fixed
in part by the context in which they are uttered. For example, if I walk
into a meeting of my department and say “Steve is coming,” my hearers
will understand that I am saying my colleague Steve is on his way to the
meeting. On the other hand, if we have been discussing the dinner orga-
nized for a visiting speaker that evening and I say “Steve is coming,” my
hearers will understand that I am saying that Steve will go to the dinner.
So we see that what the sentence “Steve is coming’ expresses is that Steve
is going towards some reference point p, though p is not explicitly specified
but rather is taken to be fixed by the context. Of course, we can explicitly
indicate a reference point if we wish, and will do so if the reference point
would otherwise be unclear or inappropriate; thus if tonight’s dinner has
not been the subject of the immediately preceding conversation, I will say
“Steve is coming to dinner tonight,” thereby specifying the reference point.

I am proposing that ‘E confirms A’ is similar to this; what it states is
that E confirms H relative to background evidence ‘B, but ‘B is usually
taken to be fixed to sufficient accuracy by the context and so is normally
not explicitly indicated. We can if we want explicitly indicate what the
background evidence is, and in some contexts we will need to specify it in
order to say what we want to say; but usually no such specification is
needed or provided.

How is the background evidence determined by context? A natural sug-
gestion, and one that parallels Howson’s formulation of the counterfactual
analysis, is to say that, if we are considering whether E confirms H, the
background evidence is all the evidence available in the context other than
E. However, this suggestion leads to erroneous judgments of confirmation,
as the following examples show.’

Suppose detectives at the scene of a crime have found two fingerprints
that correspond to those of Jones. Let F| denote the finding of the first
fingerprint and F, the finding of the second set, and let ‘B denote the total
available evidence other than F, and F,. We can suppose that, given ‘B,
one fingerprint is just as good evidence as two that Jones was at the scene
of the crime. That is, we can suppose that, for all p € R(B), p(J|F,) =
p(JIF,) = p(JIF\F,) > p(J). Then the total evidence other than F, is B U

9Hence the following examples are also counterexamples to the version of the counterfac-
tual analysis defended by Howson. I did not press this point earlier because the counter-
factual analysis could be modified to use the alternative rule for determining background
evidence that 1 will propose.
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{F,} and, for all p € R(B U {F,}), p(J|F\) = p(J), so that F, does not
confirm J according to the present proposal. An exactly parallel analysis
shows that F, also does not confirm J. Thus neither fingerprint counts as
confirming J because it adds nothing to the case based on the other one.
This is wrong.

In the fingerprint example the two pieces of evidence support the hy-
pothesis independently. Another kind of counterexample to the proposed
way of fixing background evidence arises when we have pieces of evidence
that only support the hypothesis together, not separately. The evidence 4
and S for G (the General Theory of Relativity), discussed earlier, is a case
of this kind. If both A4 and S are part of our evidence, then the proposed
way of fixing background evidence has the result that 4 and S both count
as evidence for G. However, to say that each of these propositions is evi-
dence for G is to imply that we have here two separate supports for G
when in fact there is only one support; that support is more fully described
as the set {4, S}.

So when we are considering whether E confirms H, the background
evidence should not in general be identified with the total available evi-
dence other than E. What I propose instead is this: If propositions
E, ... E, are all the propositions whagse relevance to H is under discus-
sion or otherwise salient in the context then, celeris paribus, ‘B is the total
evidence available in that context other than E,, . . . ,E,. Putting aside the
ceteris paribus clause, this rule agrees with the one I have just rejected iff
there is only one proposition whose relevance to H is under discussion or
otherwise salient in the context.

The reason for the ceteris paribus clause is that other considerations
sometimes influence the content of the background evidence. For example,
within certain limits the background evidence may be fixed by the principle
that it is whatever it needs to be to make the assertions in that context
true. We see analogs of this in other context-dependent statements. For
example, if I say ‘“Steve is coming because he wants to talk with the
speaker” the reference point is fixed as the dinner, even though I have not
stated so explicitly and even if the dinner had not been the topic of dis-
cussion. Similarly, if someone says “E is (not) evidence for H’’ then, ceteris
paribus, that limits the background evidence to something relative to
which E is (not) evidence for H. Lewis (1979) has called principles of this
kind rules of accommodation.

How do we identify “the total evidence available other than E, . . .,
E,’? The total evidence available can be regarded as a set of pieces of
evidence, each of which is known directly by experience (in the sense ex-
plained in Section 3.1). As mentioned earlier, I am not assuming that these
items are all propositions, but I am assuming that they can be treated as
if they were. So if T represents the total evidence available then the total
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evidence available other than E,, . . . ,E, is simply the set consisting of all
elements of T other than E,, . . . ,E,, i.e., theset T — {E,, ..., E}.

Some readers will be familiar with the similar-sounding problem of iden-
tifying the corpus of beliefs that results from removing a belief from the
corpus. The latter problem is made difficult by the fact that belief B in
corpus K may be entailed by others beliefs in X, so removing ‘B leaves X
not deductively closed, whence the question arises as to what else should
be removed—a question to which there seems to be no natural answer
(Girdenfors 1988, Section 3.4). This difficulty does not arise for me be-
cause I am discussing sets of pieces of evidence, not corpora of beliefs.!

Earlier I gave one reason for requiring E to be evidence in order for E
to confirm anything: This is necessary for the notion of E confirming H
to correspond to the ordinary concept of E being evidence for H. I can
now state another reason: If I did not require E to be evidence, my analysis
of confirmation would need to be complicated in a way that would serve
no good purpose. This is because, so long as E was assumed to be evidence,
I only needed to say how B is fixed by context for contexts in which E is
part of the available evidence. If confirmation did not require E to be
evidence, my account of confirmation would require me to extend my
account of how ‘B is fixed by context to cover contexts in which FE is not
part of the available evidence, including cases where the available evidence
is inconsistent with E. I don’t see any obviously right way of doing this.
Indeed, I don’t even see any natural criterion for deciding whether a par-
ticular way of fixing ‘B in such cases is right or not.

In discussing Carnap I explained his motivation for excluding from the
analysis of confirmation the requirement that E be evidence; it was that
whether E confirms H should not depend on such factual questions as
whether FE is true or known to be true. However, if what I have said is at
all on the right track, determination of the truth value of ‘E confirms A’
normally requires knowledge of the context in which this sentence was
uttered and the evidence available in that context. Thus, even if I were to
drop from my analysis of confirmation the requirement that E be evidence,
one would still need factual knowledge, and in particular knowledge of

1The problem of subtracting a belief from a corpus was argued by Chihara (1987) to be
a problem for Howson’s version of the counterfactual analysis. This is because Howson said
that, when judging whether or not E confirms H, we should use as background information
the current background information minus E; Chihara’s question was how E is to be sub-
tracted from the background information. Howson’s response (1991) involved the claim that
people have axiomatized their background information and, in cases where E is one of the
axioms, we simply remove it. It isn’t clear to me what Howson’s ““background information”
is, but whatever it is, it seems implausible that people have any unique axiomatization of it.
Howson’s proposal also does not tell us what to do when E is not one of the axioms, as he
concedes. Howson could avoid these unsatisfactory consequences if he replaced ‘background
information’ by ‘evidence’ and limited claims of confirmation to propositions that are evi-
dence.
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the available evidence, in order to determine what confirms what. This
negates Carnap’s motivation for not requiring E to be evidence.

3.5 Examples. 1 will now illustrate the application of my analysis by
applying it to two examples that I discussed earlier.

Suppose we are considering whether or not 4 (the observed advance of
the perihelion of Mercury) confirms G (the General Theory of Relativity).
I am supposing that the status of other pieces of evidence is not also under
discussion or otherwise salient. Then if T is the total available evidence,
the background evidence will, ceteris paribus, be T — {A}. If T is what
we now take it to be (including S) then it is relatively uncontroversial that,
for all p € R(T — {A4}), p(G|4) > p(G). Hence A does confirm G.

Similarly, if we are considering whether S (the sphericity of the sun)
confirms G, and all other evidence (including 4) is being taken for granted,
then S will count as confirming G.

Now suppose that both 4 and S are being considered with regard to
their evidential relevance to G, or are otherwise salient in the context, and
these are the only pieces of evidence whose relevance to G is under dis-
cussion or otherwise salient. Then, ceteris paribus, the background evi-
dence will be T — {4, S}. Assuming as before that T'is what we now take
it to be, it is relatively uncontroversial that, for all p € R(T — {4, S}),
p(GlAS) > p(G). Hence {4, S} confirms G. However, it is arguably the
case that, for at least some p € R(T — {4, S}), p(G|4) = p(G) and p(G|S)
= p(G). Hence neither 4 nor S by itself confirms G.

The results of the last three paragraphs will seem contradictory if one
forgets that an assertion of confirmation makes a claim that is relative to
context. Different contexts fix the background evidence in different ways
and so what might seem to be the same assertion (e.g., ‘A confirms G’)
can have different truth values in different contexts. This is perfectly nor-
mal for statements whose meaning is determined in part by context. The
statement “Steve is coming” is likewise true in some contexts and false in
others.

Note that, on my analysis, while it can be correct to say A4 is evidence
for G, and it can be correct to say that S is evidence for G, it cannot be
correct to say both these things. The reason is that the background evi-
dence needs to be different for each statement to be true and, in one state-
ment, the background evidence cannot be two different things. This also
corresponds to what happens with other indexical statements. It can be
true to say that Steve is coming and it can be true to deny it, but it cannot
be true that Steve is both coming and not coming, for there is no reference
point that can make both statements true.

I turn now to the fingerprint example of Section 3.4. In this context the
evidential status of both F, and F, is likely to be under discussion, or at
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least both propositions are apt to be salient since they are so similar.
Assuming that no other evidence is also under discussion or otherwise
salient, the background evidence is, ceteris paribus, T — {F,, F,}. For the
sake of the example I suppose that, for all p € R(T — {F,, F>}), p(J|F))
= p(JIF,) = p(JIF\F,) > p(J). Thus F, confirms J and so does F,, as does
the combination {F,, F,}. What is true is merely that {F,, F,} is not
stronger evidence for J than F, and F, are separately.

4. Achinstein. All the analyses of confirmation considered in this essay are
attempts to explicate the relevance concept of confirmation, according to
which E is evidence for H iff E makes H more probable. Achinstein (1983)
maintains that this relevance concept of confirmation is not the one that
is ordinarily used in science and everyday life. He has defended this po-
sition with examples in which, he claims, our ordinary judgments about
what is evidence for what diverge from the relevance concept. He has also
offered his own analysis of confirmation according to which E can be
evidence for H without E making H more probable (cf. note 8). Bar-Hillel
and Margalit (1979) and Kronz (1992) have disputed Achinstein’s exam-
ples and his conclusion but Achinstein (1981, 1992) has rejected these
criticisms. To deal fully with the issues raised by Achinstein is beyond the
scope of this paper, but I will comment on some of Achinstein’s putative
counterexamples to the relevance concept.

Achinstein says: “When Mark Spitz [an Olympic swimmer] goes swim-
ming he increases the probability that he will drown; but the fact that he
is swimming is not evidence that he will drown” (1983, 152).!! Now if Spitz
might be going swimming in unsafe circumstances, such as a flooded river,
even Achinstein would agree that this is evidence that he will drown. So
let us assume that the evidential proposition is that Spitz is going for a
training swim in the usual way in a normal pool at some particular time;
let this proposition be M. Let D denote that Spitz will drown on this
occasion. In assessing whether or not M is evidence for D we should use
background evidence ‘B that does not include M but does include our other
evidence, such as that Spitz is an outstandingly competent swimmer, that
drowning is in general more likely when a person is in water than other-
wise, but also that there are no known cases of a swimmer of Spitz’s
competence drowning on a training swim. I allow that, for all p € R(‘B),
p(D|M) is greater than p(D), even though it is only infinitesimally so. Since
it is greater, on my account M does count as evidence for D. Achinstein
thinks this is obviously wrong. I agree that it would normally be inappro-

As we see from this example, Achinstein talks of evidence that a hypothesis is true,
whereas I talk of evidence for a hypothesis. For Achinstein’s objections to be relevant to the
account of confirmation defended here, this difference needs to be regarded as merely stylistic
and I will so regard it.
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priate to say that M is evidence for D, but it does not follow that this
statement is false.

It is essential to Achinstein’s example that p(D|M) and p(D) are known
to be very small. That being the case, the question of whether or not D is
true, or even what its probability is, will not normally arise. But the state-
ment that M is evidence for D would normally only be a relevant contri-
bution to a conversation if there were some question about whether or not
D was true. Since a statement needs to be relevant to be appropriate (Grice
1989), it follows that it will normally be inappropriate to say that M is
evidence for D.

If this account is right then, if we can find a context in which it is relevant
to say that M is evidence for D, it ought to be appropriate to make this
statement in that context. Here is such a context: A group of philosophers
marooned on a desert island are passing the time with idle intellectual
games. One day one of them proposes the game in which the players have
to give examples of confirming evidence, the winner being the one whose
example involves the weakest confirmation. If one of the players defines
M and D as we have done here and says that M is evidence for D, then I
think he has made an appropriate statement; what he has said is true and
he should win the game unless another player can come up with an even
weaker example of confirmation.!?

Achinstein follows the Spitz example with this one: “When I walk across
the street I increase the probability that I will be hit by a 1970 Cadillac;
but the fact that I am walking across the street is not evidence that I will
be hit by a 1970 Cadillac” (1983, 152). The chance of being hit by a 1970
Cadillac while crossing the street is normally about as small as that of
Mark Spitz drowning while swimming, so the statement “My walking
across the street is evidence that I will be hit by a 1970 Cadillac” will
normally be inappropriate for the same reason as in the Spitz example.
But there is an additional source of inappropriateness in the present ex-
ample: For the statement to be fully relevant, there normally must be
something salient about 1970 Cadillacs, such as that I am more likely to
be hit by one of them than by other cars. This salience of 1970 Cadillacs
is what Grice (1989) calls a conversational implicature; its falsity is an
additional reason why it would normally be inappropriate to say that my
walking across the street is evidence that I will be hit by a 1970 Cadillac.
However, this statement would be a perfectly appropriate one in the game
of our desert island philosophers.

2] expect that Achinstein would allow that M is slight evidence that D may be true but
deny that it is even slight evidence that D. I don’t think this distinction has much intuitive
support, so I will not here attempt to show that it is mistaken. My present purpose is merely
to show that intuitive judgments that might seem to conflict with my analysis can actually
be done justice in a way that is consistent with that analysis.
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The third and last example I will discuss raises different issues. Achin-
stein writes:

Let ‘B be the background information that there is a lottery consisting
of 1001 tickets, one of which will be drawn at random, and by Tuesday
1000 tickets have been sold, of which Alice owns 999. Let E be the
information that by Wednesday 1001 lottery tickets have been sold,
of which Alice owns 999, and no more tickets will be sold. Let H be
the hypothesis that Alice will win. Now, I suggest, E is evidence that
H in this case. The information that Alice owns 999 of the 1001 tickets
sold and that no more tickets will be sold is evidence that Alice will
win. (1983, 152, notation changed)

I agree that Achinstein’s last sentence expresses a natural judgment, but
that is because I think that in judging whether E confirms H in this case
it is natural to exclude from the background evidence the proposition

E,: By Tuesday 1000 tickets had been sold, of which Alice owned 999.

The reason for excluding E; is that it is highly salient, mainly because it
is so similar to E. Furthermore, by the principle of accommodation (Sec-
tion 3.4), the judgment that E is evidence for H fixes the background
evidence as excluding E,. Thus my own analysis can explain the plausi-
bility of Achinstein’s judgment that £ confirms H.

This interpretation of the case does not respect Achinstein’s statement
that the background information includes E;. However, when Achinstein
states the judgment that he wants us to agree with, he does not include
reference to this background information, and my point is that the plau-
sibility of his judgment depends on that. We can see this by adding to
Achinstein’s judgment an explicit specification of the background evi-
dence. The judgment becomes:

Now, I suggest, E is evidence that H, given ‘B, in this case. The infor-
mation that Alice owns 999 of the 1001 tickets sold and that no more
tickets will be sold is evidence that Alice will win, given that on Tues-
day Alice owned 999 tickets and only 1000 had then been sold.

This judgment does not seem to me to have any intuitive plausibility.'?
Thus I regard this lottery example as not a difficulty for my analysis of
confirmation but rather a good example of how my analysis can consis-
tently resolve what otherwise might seem conflicting intuitions about par-
ticular cases.

3Kronz (1992, 156) also argues that Achinstein’s interpretation of this example is unnat-
ural if we keep in mind what the background evidence is supposed to be. What I have added
to his remarks is an explanation of why we tend to take the background information as
excluding E;.
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I will end my consideration of Achinstein’s examples at this point. There
are other examples that I have not discussed, but I hope I have said enough
to at least make plausible that Achinstein’s examples do not show that my
analysis of confirmation diverges from the concept of confirmation ordi-
narily used in science and everyday life.
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