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Abstract

One of the fundamental problems of epistemology is to say when the evidence in an
agent’s possession justifies the beliefs she holds. In this paper and its prequel, we defend
the Bayesian solution to this problem by appealing to the following fundamental norm:

Accuracy An epistemic agent ought to minimize the inaccuracy of her partial
beliefs.

In the prequel, we made this norm mathematically precise; in this paper, we derive its
consequences. We show that the two core tenets of Bayesianism follow from the norm,
while the characteristic claim of the Objectivist Bayesian follows from the norm along
with an extra assumption. Finally, we consider Richard Jeffrey’s proposed generalization
of conditionalization. We show not only that his rule cannot be derived from the norm,
unless the requirement of Rigidity is imposed from the start, but further that the norm
reveals it to be illegitimate. We end by deriving an alternative updating rule for those
cases in which Jeffrey’s is usually supposed to apply.

1 Introduction

It is often said that the epistemic norms governing full beliefs are justified by the more
fundamental epistemic norm, Try to believe truths. For instance, the synchronic norm that
demands that an agent have a consistent set of full beliefs at any given time follows from
this along with the fact that the propositions in an inconsistent set of beliefs cannot possibly
all be true together. Similarly, the diachronic norm that demands that an agent update her
beliefs by valid rules of inference follows from this fundamental norm along with the fact that
a valid rule of inference preserves truth from premises to conclusion.

In this paper, we attempt to justify the Bayesian’s putative norms governing partial beliefs
in a similar way. We will appeal to the more fundamental norm, Approximate the truth, which
is plausibly the analogue of the fundamental norm for full beliefs stated above. From this, we
will derive the central tenets of Bayesianism; we will show that the characteristic claim of the
Objectivist Bayesian also follows from this norm in the presence of a further, rather strong
assumption; and we will cast doubt on one of the other extensions to Bayesianism proposed
in the literature.

However, before we begin, we must present the framework of partial beliefs, the Bayesian
norms, and the precise version of the accuracy norm stated above. The derivation of this pre-
cise version was the subject of this paper’s prequel (“An Objective Justification of Bayesianism
I: Measuring Inaccuracy”), and we presuppose the conclusion of that prequel in what follows.
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In this paper, as in its prequel, we will be concerned only with agents who have an opinion
about only a finite set of possible worlds. As in the prequel, if W is such a set of possible
worlds, let P(W ) denote the power set of W , and let Bel(W ) denote the set of functions
b : P(W ) → R+

0 . The functions in Bel(W ) are (potential) belief functions on the power set
of W . It is a presupposition of any form of Bayesianism that, if W is the set of possible
worlds about which an agent holds an opinion, then that agent’s epistemic state at a given
time t may be represented quantitatively, by a belief function bt ∈ Bel(W ) that takes each
proposition A, represented as a subset of W , to a real number bt(A) that measures the degree
of credence the agent assigns to A.

The first tenet of Bayesianism is a synchronic norm. Indeed, it is the analogue of the
synchronic norm for full beliefs stated above: An agent ought to have a consistent set of
beliefs. The Bayesian demands that an agent has a coherent belief function.

Probabilism For any time, t, an agent’s belief function bt at time t ought to
be a probability measure on the power set of W : that is, (i) for all A ⊆ W ,
bt(A) ≥ 0; (ii) bt(∅) = 0 and bt(W ) = 1; and (iii) for any disjoint A,B ⊆ W ,
bt(A ∪B) = bt(A) + bt(B).1

The second tenet is diachronic and might be thought of as analogous to a diachronic norm
for full beliefs that demands that an agent updates by applying valid rules of inference.2 It is
characteristic of virtually all forms of Bayesianism (at least as long only plain factual evidence
about the world is concerned):

Conditionalization Suppose that, between t and t′, an agent learns proposition
E ⊆ W with certainty and nothing more. And suppose further that bt(E) 6= 0.3

Then her belief function bt′ at time t′ ought to be such that, for each A ⊆ W ,

bt′(A) = bt(A|E) =df.
bt(A ∩ E)

bt(E)

Together, Probabilism and Conditionalization constitute the core of Bayesianism. Various
philosophers have added various further claims, but they have not gained the unanimous
support of the faithful. Two such further proposals will be of particular interest to us here.

The first is the characteristic claim of the Objectivist Bayesian.4 In our context, in
which the agent has an opinion about only finitely many possible worlds, this amounts to the
following norm:

1Bayesians are divided on whether to demand also that belief functions satisfy countable additivity in those
cases in which W is infinite; see [25] for a general criticism of requiring countable additivity. In this paper, we
consider only the case in which W , and thus its power set, is finite. Thus, this question will not arise.

2Of course, not all philosophers agree that there is such a norm for full beliefs. See, for instance, [8] and
[12].

3Conditionalization prescribes an updated belief function only when the piece of evidence learned was not
completely ruled out by the agent’s original belief function: that is, Conditionalization says nothing of how an
agent with belief function b ought to update her belief function upon receiving evidence E where b(E) = 0.
The norms that govern such situations are interesting, and we will have a little more to say about them when
we consider Jeffrey’s proposed extension of the core Bayesian tenets. However, a full epistemic account of
these cases would require an extension of our theory to a more general class of belief functions, as e.g. Popper
functions (cf. [23]), which we leave as an open problem.

4We use the term ‘Objectivist Bayesianism’ to mean the conjunction of Probabilism, Uniform Distribution,
and Conditionalization. Often it is used to cover the conjunction of Probabilism and Conditionalization with
any principle that specifies a rational prior belief function for an agent. However, while these proposals
sometimes differ in those cases in which W is infinite, they rarely deviate from Uniform Distribution when W
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Uniform Distribution Suppose W is finite. And suppose that, at time t, E is the
strongest proposition given to the agent by her evidence. Then her belief function
bt at t ought to be such that, for all A ⊆ W ,

bt(A) =
|A ∩ E|
|E|

In particular, if the agent has not learned any evidence by t, then E = W , and
her belief function ought to be such that, for all A ⊆ W ,

bt(A) =
|A|
|W |

Bayesians who do not subscribe to Uniform Distribution are known as subjectivists: see, for
instance, Part II of [29]. Having given our argument for Probabilism and Conditionalization
in sections 6.1 and 6.2, we give an argument for Uniform Distribution in section 6.3. However,
it relies on rather a strong assumption, which may be read as begging the question. Thus,
we present it much more tentatively than the others. Our main interest in it consists in
observing which additional assumptions one might make in order to extend our justification
of Bayesianism simpliciter to one of its Objectivist variants.

The second proposed extension of Bayesianism that will concern us here was advanced by
Richard Jeffrey. So far, we have assumed on behalf of the Bayesian that an agent acquires
new evidence only when she learns the truth of a particular proposition with certainty. Jeffrey
denied this: he claimed that new evidence can take a form different from the one considered
in Conditionalization. Moreover, he argued for a rule that specified how an agent should
respond to this different sort of evidence: see chapter 11, [15]. Here is his rule:5

Jeffrey Conditionalization Suppose {E1, . . . , Em} is a partition of W , 0 ≤ q1, . . . , qm,
and q1 + · · ·+ qm = 1. Suppose that, between t and t′, the agent obtains evidence
that imposes the following side constraints on belief function bt′ : for i = 1, . . . ,m,

bt′(Ei) = qi

Then, she ought to have a belief function bt′ at t such that, for each A ⊆ W ,

bt′(A) =
m∑

i=1

qi · bt(A|Ei)

is finite. Thus, our terminology is quite standard. See, for instance, [1], [14], and [16]. See [32] for an overview
of ways in which an agent’s belief function can be objective while additionally being constrained by certain
kinds of empirical knowledge. We also want to stress that the term ‘Objective’ as used in the title of our paper
is meant to characterize the manner of justification that we after, which should not be confused with the target
of justifying Objectivist Bayesianism. Indeed, we are mainly interested in defending subjective Bayesianism in
this article.

5As Carl Wagner pointed out to us, Jeffrey did not actually propose his updating rule in the form given
here. In the form he proposed, extra side constraints are placed on the updated belief function bt′ . In
particular, Jeffrey requires Rigidity with respect to all partition sets Ei: that is, for all A ⊆ W and all Ei,
bt′(A|Ei) = bt(A|Ei). It is easy to show that Jeffrey’s rule is in fact equivalent to, or uniquely determined
by, these extra constraints on bt′ . So once these side constraints are subsumed under the overall constraints
that the target belief function at time t′ has to satisfy, then there is no room for discussion anymore on what
the right method of updating is in such a situation. In the light of this, we will concentrate on the version of
Jeffrey’s epistemic norm that is stated in Jeffrey Conditionalization, which has interested many philosophers,
e.g. [28], independently of how Jeffrey introduced the rule originally. For more on the philosophical status and
justification of Rigidity, see [3]. We will return to the topic of Rigidity in section 7.5.
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providing bt(Ei) 6= 0 for all i = 1, . . . ,m.

In section 7, we will show not only that one cannot extend the justification that we will
give of Probabilism and Conditionalization in order to justify Jeffrey Conditionalization;
we will show further that Jeffrey Conditionalization is illegitimate in certain circumstances,
since it does not always minimize inaccuracy. Fortunately, an alternative method of update
is available which respects, and is commanded by, inaccuracy minimization, and in the last
part of this paper we study its properties.

2 Our justification of Bayesianism: the outline

So much for the Bayesian norms; let’s turn to our attempt to justify them. We will present
this attempt in outline here, then survey and critique other attempts, and then return to our
justification to fill in the details.

In the prequel to this paper, we argued for a particular way of making the following norm
precise:

Accuracy An agent ought to approximate the truth. In other words: she ought
to minimize her inaccuracy.

We began by introducing the notions of (potential) local and global inaccuracy measures.
A local inaccuracy measure is a mathematical function that takes a proposition A, a world
w, and a real number x ∈ R+

0 to a measure I(A,w, x) of the inaccuracy of the degree of belief
x in proposition A at world w. And a global inaccuracy measure is a function that takes a
belief function b and a possible world w to a measure G(w, b) of the inaccuracy of b at w.

With these definitions in hand, we introduced the notions of expected local and global
inaccuracy. The expected local inaccuracy of degree of belief x in proposition A by the lights of
belief function b, with respect to local inaccuracy measure I, and over the set E of epistemically
possible worlds is defined as follows:

LExpb(I, A,E, x) =
∑
w∈E

b({w})I(A,w, x)

While the expected global inaccuracy of belief function b′ by the lights of belief function b, with
respect to global inaccuracy measure G, and over the set E of epistemically possible worlds, is
defined similarly:

GExpb(G, E, b′) =
∑
w∈E

b({w})G(w, b′)

Using these notions, we argued for the following four more precise versions of Accuracy.
First, the two synchronic versions:

Accuracy (Synchronic expected local) An agent ought to minimize the expected
local inaccuracy of her degrees of credence in all propositions A ⊆ W by the lights
of her current belief function, relative to a legitimate local inaccuracy measure,
and over the set of worlds that are currently epistemically possible for her.

Accuracy (Synchronic expected global) An agent ought to minimize the expected
global inaccuracy of her current belief function by the lights of her current belief
function, relative to a legitimate global inaccuracy measure, and over the set of
worlds that are currently epistemically possible for her.
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The latter condition is close in spirit Allan Gibbard’s ‘minimal requirement’ that an agent
ought to have a belief function that is immodest relative to a measure of inaccuracy ([9]).
Like Gibbard, we appeal to the obvious norm that one ought not to have a belief function
that is worse by its own lights than it needs to be.

Second, the two diachronic versions of the Accuracy norm, where an agent has learned
evidence between t and t′ that imposes constraints C on her belief function bt′ at time t′, or
on the set E of worlds that are epistemically possible for her at t′, or both:

Accuracy (Diachronic expected local) At time t′, such an agent ought to have a
belief function that satisfies constraints C and is minimal amongst belief functions
thus constrained with respect to the expected local inaccuracy of the degrees of
credence it assigns to each proposition A ⊆ W by the lights of her belief function
at time t, relative to a legitimate local inaccuracy measure, and over the set of
worlds that are epistemically possible for her at time t′ given the constraints C.

Accuracy (Diachronic expected global) At time t′, such an agent ought to have a
belief function that satisfies constraints C and is minimal amongst belief functions
thus constrained with respect to expected global inaccuracy by the lights of her
belief function at time t, relative to a legitimate global inaccuracy measure, and
over the set of worlds that are epistemically possible for her at time t′ given the
constraints C.

To complete our specification of these mathematically precise versions of Accuracy, we
required a characterization of the legitimate inaccuracy measures, both local and global.
To obtain this, we showed that the only measures that do not lead any agent who follows
these norms into three different undesirable epistemic dilemmas are the quadratic inaccuracy
measures. That is, the legitimate local inaccuracy measures are those of the form:

I(A,w, x) = λ(χA(w)− x)2

where χA : W → {0, 1} is the characteristic function of the set A. And the legitimate global
inaccuracy measures are those of the form:

G(w, b) = λ||w − bglo||2

where w and b are represented by their corresponding vectors—that is, wi is represented by
the unit vector (δi,1, ..., δi,n) and b is represented by the vector that we call the global belief
function bglo = (b({w1}), ..., b({wn})) to which b gives rise—and ||u − v|| is the Euclidean
distance between the vectors u and v, i.e. ||u − v|| =

√
(u1 − v1)2 + ... + (un − vn)2. These

characterizations of the legitimate local and global inaccuracy measures are called Local and
Global Inaccuracy Measures, respectively.

Note that, in the presence of Local and Global Inaccuracy Measures, and on the basis of
our results on accuracy in the prequel to this paper, it is easy to show that the following
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implications hold:6

Accuracy (Synchronic expected local) ⇒ Accuracy (Synchronic expected global)

Accuracy (Diachronic expected local) ⇒ Accuracy (Diachronic expected global)

It is also easy to see that neither converse holds. After all, the global versions of the norm
impose constraints only on the global belief function bglo = (b({w1}), ..., b({wn})) to which
the belief function b gives rise. And there are many belief functions that give rise to the same
global belief function. Thus, the global versions of the norms can impose no constraints on
the values of b(A) when A is not a singleton proposition {wi} with wi ∈ W . So, even if the
global versions of the Accuracy norm can be satisfied only by one global belief function bglo =
(b({w1}), ..., b({wn})), they can nonetheless be satisfied by many different belief functions,
where those belief function agree on the singleton propositions.

However, the global versions of the norms are far from idle; indeed, as we shall see, in one
situation that we will consider, they are essential. In section 6.1, we will show that it follows
from Accuracy (Synchronic expected local) that, at any time t, an agent’s belief function bt at
t ought to be a probability function. Now, while there are many belief functions that give rise
to a particular global belief function, there is only one probability function that gives rise to
it. Thus, if the global versions of Accuracy demand a particular global belief function, then
together with Accuracy (Synchronic expected local) they demand a particular belief function,
namely, the unique probability function to which that global belief function gives rise.

It will turn out that exactly this sort of reasoning is demanded by our discussion of those
instances of Accuracy (Diachronic expected local) and Accuracy (Diachronic expected global)
that cover the cases with which Jeffrey Conditionalization is concerned—see section 7. For it
turns out that while the relevant instances of the latter norm can always be satisfied, some of
the relevant instances of the former cannot.7 Thus, in these instances of Accuracy (Diachronic
expected global), we must appeal to Accuracy (Synchronic expected local) in order to narrow
the range of belief functions that the norm permits—as we will see, in these case, it has the
effect of narrowing that range from many to one.

So much for the relations between the various versions of the Accuracy norm. Let us turn to
their consequences. In this paper, we derive Probabilism from Accuracy (Synchronic expected
local) (section 6.1) and Conditionalization from Accuracy (Diachronic expected local) (section
6.2), both on the assumption of Local Inaccuracy Measures. We derive Uniform Distribution
from Accuracy (Synchronic expected local) and Local Inaccuracy Measures along with a rather
strong extra assumption called Minimize (section 6.3). And, as we have noted above, if
we assume Local Inaccuracy Measures, we find that the instances of Accuracy (Diachronic
expected local) relevant to Jeffrey Conditionalization cannot always be satisfied; however, on
the assumption of Global Inaccuracy Measures, the relevant instances of Accuracy (Diachronic
expected global) can be satisfied. We show that Jeffrey’s updating rule does not always satisfy
it, and we describe the rule that does (section 7).

6To see this, note first that, if I(A, w, x) = λ(χA(w)−x)2 and G(w, b) = λ||w−bglo||2, the LExpb(I,¬E, E, x)
is minimal for x = 0. Then note that, if b′(¬E) = 0, then

GExpb(G, E, b′) =
X
w∈E

LExpb(I, {w}, E, b′({w}))

which follows in exact analogy to the proof of theorem 3 of the prequel to this paper.
7We prove the latter part of this statement in section 9.3 in the appendix.
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3 Other justifications of Bayesianism

Before we give this justification, let us compare our strategy to other putative justifications
of the tenets of Bayesianism. The form of our argument is this: We identify a desirable
property of belief functions—namely, minimal expected inaccuracy by the lights of the best
available belief function—and we define this property with mathematical precision in Local
and Global Inaccuracy Measures; then we show that an agent satisfies the norms that follow
from the desirability of this property if, and only if, her belief function satisfies the constraints
imposed by Bayesianism, which is the topic of this article. As Alan Hájek [11] points out, this
is the form in which the most important arguments for Probabilism must be presented if they
are to be valid: in the case of the synchronic Dutch Book argument of Ramsey [24] and de
Finetti [4], the desirable property is invulnerability to Dutch Book bets; for van Fraassen [29], it
is calibration; Ramsey’s argument from his representation theorem turns on the normativity
of a certain set of rationality constraints—see [24] again; and, for Joyce [17], Probabilism
follows from the desirability of gradational accuracy.

The same observation holds for belief change and the most important arguments in favour
of Conditionalization: Lewis’ diachronic Dutch Book argument [21] relies on the same de-
sirable feature as the synchronic version mentioned above; Lange [19] derives the Bayesian
updating rule from the desirability of calibration; Williams’ argument [31] is premised on
the assumption that an agent’s belief function ought to encode no more information than is
available to him, where informational content is measured by Shannon’s entropy measure;
van Fraassen’s symmetry argument [29] demands that an agent’s updating rule assign to
epistemically equivalent inputs epistemically equivalent outputs, deriving Conditionalization
from these symmetry conditions; and, finally, Greaves and Wallace [10] show that Condition-
alization follows from the normative claims of decision theory, if each property out of a class
of properties of belief functions is considered desirable.

The single argument in favour of Uniform Distribution also fits the pattern that Hájek
identifies: Jaynes’ argument [14] for this tenet of Objectivist Bayesianism appeals to the de-
sirability of a belief function with maximal Shannon entropy relative to the available evidence.

In the presence of these powerful arguments for Bayesianism, we must justify making
our own attempt. We share with Joyce the conviction that the ultimate desideratum for a
belief function is that it be close to the truth, i.e., that it have what one may call gradational
accuracy. Now suppose an agent were presented with the option of gaining greater expected
gradational accuracy at the cost of Dutch Book vulnerability, calibration, diachronic coherence
in van Fraassen’s sense, or Shannon entropy relative to her accumulated evidence. We submit
that she should take that option. Though it is obvious that these other features are desirable,
it is equally obvious that they are trumped by minimal expected inaccuracy as far as purely
epistemic considerations are concerned. Despite the obvious joys and dangers of betting,
and despite the practical consequences of disastrous betting outcomes, an agent would be
irrational qua epistemic being if she were to value her invincibility to Dutch Books so greatly
that she would not sacrifice it in favour of a belief function that she expects to be more
accurate. And the same is true of the other features upon which the arguments enumerated
above turn. For instance, we value Shannon entropy because it seems to measure the extent
to which we have come to our opinion purely on the basis of the evidence; however, it would
be irrational not to go beyond the evidence if in doing so one was aware of being guaranteed
to decrease one’s expected inaccuracy. And so on.

Thus, following Hájek’s line of reasoning, we raise the following objection against all but
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the arguments of Joyce, and Greaves and Wallace. In each argument given, the tenets of
Bayesianism are derived from some desideratum. However, in all cases except that of Joyce
and Greaves and Wallace, the desideratum is not ultimate epistemologically: that is, there
are epistemic desiderata that trump the desideratum to which the argument appeals. Thus,
it simply does not follow from the corresponding argument that an agent ought to satisfy the
constraints of Bayesianism, for nothing in the argument precludes a situation in which the
desideratum to which the argument appeals is trumped by a more compelling desideratum
and where satisfying this latter desideratum requires the agent to violate Bayesianism. Thus,
the arguments given above are invalid, and can be made valid only by the introduction of
an implausible premise, i.e., asserting that the desideratum in question is ultimate. Only
when we derive Bayesianism from the ultimate epistemic desideratum of minimal expected
inaccuracy—of closeness to the truth formalized in the context of partial beliefs—can we
claim to have established it.

Before we turn to our own justification of the Bayesian tenets, we will consider briefly
Joyce’s argument for Probabilism and the argument of Greaves and Wallace in favour of
Conditionalization.

4 Joyce’s argument for Probabilism

In [17] and [18], Joyce puts forward what he calls a ‘non-pragmatic’ justification of Probabil-
ism. This, he hopes, will replace the pragmatic justifications that are based on Dutch Book
arguments and against which he raises powerful objections. In those papers, he employs a
strategy very similar to the one that we shall employ here to establish all of the tenets of
Bayesianism; indeed, [17] was a significant source of inspiration for the present paper. For
instance, we share with Joyce the focus on accuracy as the central epistemic virtue. However,
as will become apparent below, the detailed execution of this shared strategy differs in our
case and in Joyce’s. In particular, the notion of expected inaccuracy will be central to our
argument, while it plays no part in Joyce’s theory in [17] nor in the central theorem (Theorem
2) of [18]. Moreover, as we will see, we impose other conditions on inaccuracy than Joyce,
and we use them to defend not just Probabilism but in fact we will deal with all of the tenets
of Bayesianism.

In [17], Joyce presented six properties that a global inaccuracy measure must possess,
and showed that, by the lights of any global inaccuracy measure with these properties, for
every belief function b that violates Probabilism, there is a belief function b′ that satisfies
it, such that b′ is more accurate than b at every possible world. Of course, this does not
establish Probabilism unless it is also the case that there is no belief function b′′ that violates
Probabilism and which is at least as accurate than b′ at all possible worlds. The six properties
to which Joyce appeals in [17] do not guarantee this, but, in [18], he states four different
properties that do guarantee both claims. If G is a global inaccuracy measure and b is a belief
function, we say that b is admissible relative to G just in case there is no belief function b′

such that G(b′, w) ≤ G(b, w) for all w ∈ W with strict inequality in at least one case. Then
we can state Joyce’s theorem as follows (Theorem 2 of [18]):

Theorem 1 (Joyce) Suppose G(w, b) is a global inaccuracy measure that satisfies the fol-
lowing four conditions:

(1) Truth-Directedness Suppose b = (α1, ..., αn) and b′ = (α′
1, ..., α

′
n) are belief functions
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and w = (δ1, ..., δn) ∈ W . Then, if |αi − δi| ≤ |α′
i − δi| for all i = 1, ..., n, with strict

inequality for at least one i, then G(w, b) < G(w, b′).

(2) Coherent Admissibility Each probability function is admissible relative to G.

(3) Finitude G(w, b) ∈ R for all b and w.

(4) Continuity For any world w, G(w, ) is a continuous function.

Then,

(i) Each non-probability function b is not admissible relative to G. Furthermore, there is a
probability function b′ such that G(w, b′) ≤ G(w, b) for all w ∈ W with strict inequality
for at least one w ∈ W .

(ii) Each probability function b is admissible relative to G.

Clearly, the controversial claim is Coherent Admissibility since it accords a privileged status to
probability functions. We are inclined to ask: Why is it that we are justified in demanding
that every probability function is admissible? Why are we not justified in demanding the
same of a belief function that lies outside that class? And, of course, we must not make this
demand of any non-probability function; if we do, (i) will not follow.

Joyce defends Coherent Admissibility as follows (p. 279, [18]). Prior to an argument
for Probabilism, we are not justified in saying that the probability functions are the only
rational belief functions, but we are justified in saying that they lie amongst the rational
belief functions. After all, for any probability function b, it is at least possible that an agent
obtain evidence that the objective chance of each A ⊆ W is b(A). Thus, if Lewis’ Principal
Principle is correct, we would not want a scoring rule that precludes this belief function as
rational.

The problem with this argument is that it restricts the scope of Joyce’s result. If this
is the justification of Coherent Admissibility, then Joyce’s argument for Probabilism will only
apply to an agent with a belief function that can be realized as a possible representation of
objective chances. And there are many agents with belief functions that cannot be realized in
this way. Alan Hájek gives a nice example (p. 246-249, [11]). Suppose one of the propositions
about which the agent has an opinion is The chance of the next coin toss landing heads up is
1
2 . Maybe this proposition either does not have an objective chance, or its objective chance is
0 or 1. But it is quite possible that the agent’s evidence leads her, quite rationally, to assign
degree of credence 1

2 to that proposition. Since her resulting belief function is not guaranteed
to be rational by appealing to objective chances and the Principal Principle, it does not fall
within the scope of Coherent Admissibility and thus Joyce’s argument does not establish that
it should satisfy Probabilism. Furthermore: wouldn’t it be problematic if a supposedly purely
epistemological justification of Bayesianism relied on properties of chance and on probabilistic
reflection principles relating credence and chance?

5 Greaves and Wallace’s argument for Conditionalization

A global epistemic utility function U takes a belief function and a world to the epistemic
utility of having that belief function at that world. In [10], Greaves and Wallace offer a
justification for Conditionalization that turns on the following property of global epistemic
utility functions (p. 625, [10]):
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Weak Propriety Suppose U is a legitimate global epistemic utility function and
that b1 and b2 are probability functions. Then, if E ⊆ W ,∑

w∈W

b1({w}|E)U(b2, w) ≤
∑

w∈W

b1({w}|E)U(b1( · |E), w)

Put informally, this says that, relative to a legitimate global epistemic utility function, up-
dating in accordance with Conditionalization yields a belief function that does not expect
that any other way of updating would have produced greater epistemic utility.

The putative justification for Weak Propriety seems to be analogous to Joyce’s argument
for Coherent Admissibility, though without the additional appeal to objective chances and the
Principal Principle. Greaves and Wallace note that, prior to an argument for Conditional-
ization, we are not justified in believing that it is the only rational way to incorporate new
evidence; but, they claim, we are justified in believing that it is one rational way. (Un-
like Joyce, they do not give any argument for this claim.) Thus, we should rule out global
epistemic utility functions on which Conditionalization yields a belief function that expects
another updating rule to have produced greater epistemic utility.

Our objection to Weak Propriety is slightly different from our objection to Coherent Ad-
missibility. As we saw in section 3, there are many epistemic virtues: e.g., accuracy, Dutch
Book invulnerability, potential calibration, and so on. While we consider the updating rule
Conditionalization to be rational, this may be because we judge that it preserves just one
of these virtues; perhaps the virtue of potential calibration (cf. [19]). If this is the case,
there is no reason to think that an epistemic utility function that aligns utility with accuracy
will satisfy Weak Propriety even though such a utility function is clearly legitimate. Thus,
the effect of Weak Propriety is to limit the class of legitimate utility functions to those that
measure whatever epistemic virtues Conditionalization preserves. This might be regarded as
begging the question.

Thus, although Greaves and Wallace’s justification of Conditionalization is in several
respects quite close to ours—as is Joyce’s justification of Probabilism—we do not actually
endorse it. Furthermore, even if we did, it would not be clear how it could be generalized to
an argument for Probabilism and Uniform Distribution. It will be important to show that
the technique by which we establish the synchronic tenet(s) of Bayesianism can also establish
its diachronic tenet. We hope that our argument will have this advantage over the arguments
of Joyce and Greaves and Wallace.

6 Our justification of Bayesianism: the argument in detail

Finally, we turn to a detailed presentation of our justification of Bayesianism. As promised,
it depends on the synchronic and diachronic versions of the local and global versions of the
Accuracy norm. In particular:

(1) Probabilism follows from Accuracy (Synchronic expected local) (section 6.1).

(2) Conditionalization follows from Accuracy (Diachronic expected local) (section 6.2).

(3) Uniform Distribution follows from a related, but stronger norm (section 6.3).

(4) We show that, in the situations usually supposed to be covered by Jeffrey condition-
alization, there is no updating rule that satisfies Accuracy (Diachronic expected local)
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(section 9.3). However, there is such a rule that satisfies (the strictly weaker norm)
Accuracy (Diachronic expected global). We describe the rule that does this, and note
that it is not Jeffrey’s rule and that Jeffrey’s rule in fact violates the norm in certain
circumstances (section 7).

6.1 Probabilism and Accuracy (Synchronic expected local)

Suppose E is the set of worlds that are epistemically possible for an agent and suppose that
I is a quadratic local inaccuracy measure. Then, by Accuracy (Synchronic expected local), her
belief function must be such that, for every proposition A, the expected local inaccuracy of
the degree of credence b(A) in A by the lights of b, relative to I, and over the epistemically
possible worlds in E is minimal. This entails Probabilism by the following theorem:

Theorem 2 Suppose b is a belief function, E ⊆ W ,
∑

w∈E b({w}) 6= 0,8 and I is a quadratic
local inaccuracy measure. Then the following two propositions are equivalent:

(i) For all A ⊆ W and any x ∈ R+
0 ,

LExpb(I, A,E, b(A)) ≤ LExpb(I,A, E, x)

(ii) b is a probability function with b(E) = 1.

The proof is given in the appendix (section 9.1.1).

6.2 Conditionalization and Accuracy (Diachronic expected local)

Suppose an agent has a belief function bt at time t and suppose that I is a quadratic local
inaccuracy measure. Suppose further that, between t and a later time t′, she obtains evidence
that restricts the set of worlds that are epistemically possible for her to the set E ⊆ W ,
where W is the set of epistemically possible worlds at t. Then, by Accuracy (Diachronic
expected local), her new belief function bt′ at t′ must be such that, for every proposition A,
the expected local inaccuracy of the degree of credence b(A) in A by the lights of bt, relative
to I, and over the ‘new’ set E of epistemically possible worlds must be minimal. This entails
Conditionalization by the following theorem:

Theorem 3 Suppose bt and bt′ are probability functions, E ⊆ W ,∑
w∈E bt({w}) 6= 0, and I is a quadratic local inaccuracy measure. Then the following two

propositions are equivalent:

(i) For all A ⊆ W and any x ∈ R+
0 ,

LExpbt
(I,A, E, bt′(A)) ≤ LExpbt

(I, A,E, x)

(ii) For all A ⊆ W ,

bt′(A) =
bt(A ∩ E)

bt(E)
=df. bt(A|E)

As above, the proof is given in the appendix (section 9.1.2).

Note that, in this theorem, we presuppose that the belief functions in question are probability
functions. This is permitted by the result of section 6.1 that an agent’s belief function must
be a probability function, on pain of epistemic irrationality.

8If
P

w∈E b({w}) = 0, then LExpb(I, A, E, x) = 0 for all x. So any choice of x would minimize
LExpb(I, A, E, x), though in a completely trivial way, which is why we exclude this case from the start.
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6.3 Uniform Distribution and Minimize

Next, we consider Uniform Distribution, the distinctive claim of Objectivist Bayesianism in
cases in which the agent has an opinion only about a finite set of possible worlds. We do
not derive Uniform Distribution from one of the four precise versions of the Accuracy norm
stated above, but from a stronger norm called Minimize, which we state below.

Minimize does not exactly employ the notion of expected local inaccuracy measure but
something like an epistemic forerunner of it. This is one reason why we do not regard Minimize
to be on equal terms with Accuracy (Synchronic expected local) and Accuracy (Diachronic
expected local), which are used to derive the core tenets of Bayesianism. The other reason is
that Uniform Distribution follows from Minimize a bit too easily, which is in contrast with
the other proofs we present. So we do not insist on Uniform Distribution, since we do not see
how we could—e.g., if you want to use a non-uniform prior belief function, maybe in order
to make sure you can learn inductively, then so be it.9 In any case, the normative claim in
question is as follows:

Minimize Suppose I is a legitimate local inaccuracy measure and suppose that E
is the set of worlds that are epistemically possible for the agent. Then the agent
ought to have a belief function b such that, for all A ⊆ W and every x ∈ R+

0 ,∑
w∈E

I(A,w, b(A)) ≤
∑
w∈E

I(A,w, x)

The sum in Minimize might appear to be given by an expected inaccuracy measure for a
uniform belief function b, such that b(w) = 1 for all w ∈ W . Thus, it might seem that
Uniform Distribution is presupposed by Minimize, rather than implied by it, as we claim.
But this would be the wrong interpretation: instead, Minimize should be taken to express the
epistemic goal of being as accurate as possible in a situation where the agent does not have a
belief function at her disposal that she can use to assess her own expected inaccuracy; thus,
a fortiori, she does not have a uniform belief function by which to do this.

Note that the nature of the belief function b that minimizes∑
w∈W I(A,w, b(A)) depends on the local inaccuracy measure I; and the choice and justi-

fication of this in turn partially depends on the geometric framework we have determined in
the prequel. So the prior belief function that a rational agent is bound to choose will reflect
formal properties of the geometrical representation that we simply took for granted in the
last section. Fair enough—that’s how it goes with presuppositions.

Granted Minimize, Uniform Distribution follows by the following theorem:

Theorem 4 Suppose b is a belief function, E ⊆ W , and I a quadratic local inaccuracy
measure. Then the following two propositions are equivalent:

(i) For all A ⊆ W and all x ∈ R+
0 ,∑

w∈E

I(A,w, b(A)) ≤
∑
w∈E

I(A,w, x)

(ii) For all A ⊆ W ,

b(A) =
|A ∩ E|
|E|

Again, the proof is given in the appendix (section 9.1.3).
9We thank Dorothy Edgington for this Carnapian point.
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6.4 Hence, Bayesianism

This concludes our justification of the main tenets of Bayesianism in the case of agents who
hold opinions concerning only a finite set of possible worlds. On the assumption of Local
Inaccuracy Measures, we derived the normative claims of Probabilism and Conditionalization
from the normative claims of the synchronic and diachronic local versions of the Accuracy
norm, respectively. Moreover, if Minimize is accepted as well, then Uniform Distribution
follows, too.

In the prequel, we derived Local Inaccuracy Measures by three separate arguments, each
of which turned on excluding a certain sort of dilemma. As we promised in section 3, our
argument for all of the Bayesian tenets turns ultimately on the epistemic virtue of a single goal,
namely, the goal of having accurate belief functions, i.e., the Accuracy principle, in conjunction
with the (internalistically) valid Ought-Can principle and the geometric framework that we
presupposed in the present paper and which we explained in the prequel.

7 Jeffrey’s updating rule

Before we turn to the general prospects of this theory and to the proofs of our central theorems,
we investigate the status of Jeffrey Conditionalization in the context of the Accuracy norm.
We show that it sometimes violates one of the instances of this norm, and we describe the
updating rule that satisfies that instance.

As we noted above, Jeffrey’s aim was to give an updating rule that covers those scenarios in
which an agent obtains evidence corresponding to a format of side constraints other than those
considered by Conditionalization.10 In the cases covered by Conditionalization, the agent
obtains evidence between times t and t′ that restricts the set of worlds that are epistemically
possible for her. On the other hand, in the cases covered by Jeffrey Conditionalization,
her evidence does not rule out any possible worlds, but it does impose constraints on the
belief function that the agent adopts at t′. These constraints are given in the following form:
Suppose {E1, ..., Em} is a partition of W and suppose that q1, ..., qm ∈ R+

0 are such that
q1 + . . . + qm = 1; then, for each i = 1, ...,m, bt′(Ei) = qi.11

However, as we will see below, Jeffrey’s rule violates the version of the Accuracy norm
that governs updating in the situations he considers. What is this norm? One might think at
first that it is Accuracy (Diachronic expected local), the norm from which Conditionalization
was derived above (section 6.2). After all, this norm governs exactly the sort of situation
that interested Jeffrey. However, this norm cannot be satisfied in all the situations in which
Jeffrey Conditionalization applies.12 Thus, we retreat to the strictly weaker norm Accuracy
(Diachronic expected global). This demands the following: when an agent’s evidence imposes
the constraints described above, the agent’s belief function bt′ at t′ must satisfy those con-
straints and it must be minimal amongst the belief functions that satisfy those constraints
with respect to its expected global inaccuracy by the lights of bt, relative to a quadratic global
inaccuracy measure G, and over the set of possible worlds that are epistemically possible at
t.

10See p. 3 for the formal details.
11This is not the most general form of constraints of this sort. More generally, the Eis may not be pairwise

disjoint, in which case the value of q1 + ... + qm need not be 1. However, Jeffrey did not consider this case,
and we postpone its consideration for another time.

12We prove this fact in section 9.3 of the appendix.
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To introduce the norm that follows from Accuracy (Diachronic expected global) in the
Jeffrey cases, let us consider two very natural ways in which one might try to satisfy the
constraints imposed by the evidence in those cases:13

(i) On the first, we specify, for each member Ei of the partition, a constant ci. And we
obtain the degree of credence in each world w ∈ Ei at t′ by taking the degree of credence
in w at t and multiplying it by ci. That is, for w ∈ Ei,

bt′({w}) = ci · bt({w})

It is straightforward to see that, if bt′ is to satisfy the constraints, there is only one way to
define the constant ci, namely, ci = qi

bt(Ei)
. Doing this gives Jeffrey Conditionalization.

(ii) On the second, we specify, for each Ei, a constant di. And we obtain the degree of
credence in each world w ∈ Ei at t′ by taking the degree of credence in w at t and
adding di to it. That is, for w ∈ Ei,

bt′({w}) = bt({w}) + di

It is straightforward to see that, if bt′ is to satisfy the constraints, there is only one
way to define the constant di, namely, di = qi−bt(Ei)

|Ei| . However, there is no guarantee
that, on this definition, bt({w}) + di is non-negative. Indeed, in some cases, it will be
negative. We avoid this consequence as follows: in such cases, we let bt′({w}) = 0, for
some worlds in Ei; and we seek a different value of di so that, for the remaining worlds
in Ei, bt′({w}) = bt({w}) + di. Thus, we want our new value for di to be such that

(a) If bt({w}) + di > 0, then bt′({w}) = bt({w}) + di

(b) If bt({w}) + di ≤ 0, then bt′({w}) = 0

(c)
∑

w∈Ei
bt′({w}) = qi.

It is straightforward to show that there is such a constant di and that this constant is
unique. Defining di to be this constant, we obtain an alternative to Jeffrey Condition-
alization:

bt′({w}) =
{

bt({w}) + di if bt({w}) + di > 0
0 if bt({w}) + di ≤ 0

We state this as a norm below and justify it by proving that it is the updating rule to
which Accuracy (Diachronic expected global) gives rise in Jeffrey cases.

Here is the norm:

Alternative Jeffrey Conditionalization Suppose that, between t and t′, an agent
obtains evidence that leads her to impose the following constraints on her belief
function bt′ at t′: for each i = 1, ...,m, bt′(Ei) = qi.

Then, for each i = 1, ...,m, define di as above: that is, let di be the unique real
number such that ∑

{w∈Ei:b({w})+di>0}

b({w}) + di = qi

13We greatly appreciate the help provided by Alan Hájek and Kenny Easwaran in making our formulation
and presentation of our alternative updating rule as intuitive as possible.
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Then the agent ought to have belief function bt′ at t′ such that, for w ∈ Ei

bt′({w}) =
{

bt({w}) + di if bt({w}) + di > 0
0 if bt({w}) + di ≤ 0

And here is the justification:

Theorem 5 Suppose G is a quadratic inaccuracy measure. If b is also a probability function,
then we say that b is feasible if, for i = 1, . . . ,m, b(Ei) = qi. Then the following two
propositions are equivalent:

(i) bt′ is feasible and, for any feasible probability function b,

GExpbt
(G, W, bt′) ≤ GExpbt

(G, W, b)

(ii) bt′ is defined as in Alternative Jeffrey Conditionalization.

As in the other cases, we postpone the proof until the appendix (section 9).

Admittedly, the statement of this norm is not so transparent as Jeffrey’s, but it follows
from the proof of Theorem 5 that there is a natural geometric interpretation of the update rule
that it describes. This is illustrated in Figure 1. Consider the element Ei of the partition.
And suppose that with respect to Ei, the agent’s belief function at t is represented by a
point that lies within the larger grey triangle (as (α1, α2, α3) and (β1, β2, β3) do). Then our
evidence imposes the constraint that her belief function at t′ assigns qi to Ei and hence must
be represented by a point that lies within the smaller grey triangle. As it turns out, the point
that minimizes global expected inaccuracy relative to this constraint is the point within the
smaller grey triangle that lies closest to the point representing the original belief function,
when that distance is measured by the Euclidean metric. Our statement of the updating
rule above provides an analytic description of this point. Indeed, there are two cases: If
the projection of the original belief function lies within the smaller grey triangle, then this
projection already represents the belief function demanded by the updating rule (as is the
case for (α1, α2, α3) and its projection (x1, x2, x3) in Figure 1). If it does not, the updated
belief function is represented by the point on the smaller grey triangle that lies closest to that
projection (as is the case for (β1, β2, β3) and (y1, y2, y3) in Figure 1).

Having seen the updating rule sanctioned by the relevant version of Accuracy in Jeffrey
cases, a number of its features deserve our attention. In section 7.1, we give an example to
show that Jeffrey’s rule results in belief functions with greater expected global inaccuracy
than those given by our alternative rule. In section 7.2, we note that, as with Jeffrey’s rule,
the order in which compatible side constraints are imposed affects the posterior probability
given by our rule: that is, our rule is non-commutative. We appeal to an insight of Marc
Lange to show that this raises no objection. In section 7.3, we observe that Conditionalization
is not a particular case of our rule, and we explain why this is as it should be. In section
7.4, we note that, unlike Jeffrey’s rule, our rule can be used to raise probabilities from zero.
And, in section 7.5, we reconsider the way in which the objective or ‘quasi-logical’ content of
the diachronic versions of our Accuracy norm combine with the subjective or ‘extra-logical’
constraints C that are fed into it, and we thereby address a possible objection concerning the
rigidity of conditional probabilities.
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7.1 The expected global inaccuracy of Jeffrey’s rule

Suppose I see a person in the distance, and I know that it is one of three people: in w1, it
is Paul, who is male and has blond hair; in w2, it is Jeff, who is male and has black hair; in
w3, it is Taj, who is female and has black hair. Suppose further that I know that the actual
world is a member of W = {w1, w2, w3}. At time t, I have the following belief function:

bt({w1}) =
1
3
, bt({w2}) =

1
2
, bt({w3}) =

1
6
.

And between t and t′, I have an experience that does not rule out any possible worlds, but
which imposes the following side constraints on my beliefs:

bt′(the person is male) = bt′({w1, w2}) =
1
2
.

Then Jeffrey’s rule leads to the following values for bt′ :

bJ
t′({w1}) =

1
5
, bJ

t′({w2}) =
3
10

, bJ
t′({w3}) =

1
2

If we let G({w, b}) = ||w − bglo||2, then:

GExpbt
(G, W, bJ

t′) =

bt({w1})
[(

1− 1
5

)2 +
(

3
10

)2 +
(

1
2

)2] +

bt({w2})
[(

1
5

)2 +
(
1− 3

10

)2 +
(

1
2

)2] +

bt({w3})
[(

1
5

)2 +
(

3
10

)2 +
(
1− 1

2

)2] = 39
50

On the other hand, our rule leads to the following values for bt′ :14

bA
t′ ({w1}) =

1
6
, bA

t′ ({w2}) =
1
3
, bA

t′ ({w3}) =
1
2

So:

GExpbt
({G, W, bA

t′}) =

bt({w1})
[(

1− 1
6

)2 +
(

1
3

)2 +
(

1
2

)2] +

bt({w2})
[(

1
6

)2 +
(
1− 1

3

)2 +
(

1
2

)2] +

bt({w3})
[(

1
6

)2 +
(

1
3

)2 +
(
1− 1

2

)2] = 35
54

Thus, the expected global inaccuracy of the feasible belief function that results from Alter-
native Jeffrey Conditionalization is lower than the expected global inaccuracy of the feasible
belief function that results from Jeffrey Conditionalization.15

14To see this, notice that this is a case in which bt′({w}) = bt({w}) + di with di = qi−bt(Ei)
|Ei|

does not result

in negative values for bt′({w}); then calculate.
15Those readers aware of an important paper of Diaconis and Zabell [5] might be concerned that our result
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7.2 Non-commutativity and the sameness of experience

We can extend the example of the previous section to show that, like Jeffrey Conditionaliza-
tion, our rule is fundamentally non-commutative: that is, given a series of side constraints,
and given successive applications of the rule that respect each of these side constraints in
turn, the order in which the side constraints are imposed affects the final result; what’s more,
this remains true even when the side constraints are compatible in the sense that there are
probability functions that satisfy them all at once.

One immediate—and, as we think, valid—reply to this is: so what? If we have to balance
some of our pre-theoretical intuitions against a (hopefully) carefully crafted argument based
on mathematical proof and established normative principles, it should be obvious which way
to go. But let us examine the issue more closely and independently of such considerations.

In the previous section, we began with a belief function bt and some side constraints
on bt′ . Then we compared the effect of updating to a belief function that satisfies these side
constraints using our rule and using Jeffrey’s. We begin the following consideration by stating
a new set of side constraints:

bt′(the person has black hair) = bt′({w2, w3}) =
3
4
.

It is clear that this is compatible with the side constraints in the previous section, for there
is at least one probability function that satisfies both.16 However, as the calculations below
show, if one begins with bt, and then imposes the side constraint from the previous section,
and then the side constraint from this section, our rule demands a belief function that differs
from the belief function it demands if the order is reversed:17

(1) First, impose bt′({w1, w2}) = 1
2 :

bt′({w1}) =
1
6
, bt′({w2}) =

1
3
, bt′({w3}) =

1
2

Second, impose bt′′({w2, w3}) = 3
4 :

bt′′({w1}) =
1
4
, bt′′({w2}) =

7
24

, bt′′({w3}) =
11
24

(2) First, impose bt′({w2, w3}) = 3
4 :

bt′({w1}) =
1
4
, bt′({w2}) =

13
24

, bt′({w3}) =
5
24

is in tension with theirs. They prove that the updated belief function given by Jeffrey Conditionalization
is the feasible belief function that is ‘closest’ to the original belief function on various plausible measures of
closeness. However, there are differences between our approach and theirs. They seek the ‘closest’ function to
the original function, whereas we seek the function whose expected inaccuracy is minimal by the lights of the
original function. This said, it is a byproduct of our proof of Theorem 5 that the updated belief function given
by our rule is also the feasible belief function that is closest to the original belief function on the Euclidean
distance measure. But this is a measure of closeness that Diaconis and Zabell do not consider; if they had
done so, they would have noticed that the updated belief function given by Jeffrey’s updating rule is not the
closest to the original belief function on this measure of closeness. We thank Brian Skyrms for pointing us to
this literature.

16In fact, there is exactly one such probability function: b({w1}) = 1
4
, b({w2}) = 1

4
, b({w3}) = 1

2
.

17Again, this is a case in which bt′({w}) = bt({w})+di with di = qi−bt(Ei)
|Ei|

does not result in negative values

for bt′({w}).
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Second, impose bt′′({w1, w2}) = 1
2 :

bt′′({w1}) =
5
48

, bt′′({w2}) =
19
48

, bt′′({w3}) =
1
2

Some have taken the analogous result in the case of Jeffrey Conditionalization to be a flaw
that is fatal for that rule ([26], [29], [6]). The objection, which is a reductio, is based on the
following premise, which is made plausible in some toy story: in the situations described in
(1) and (2) above, the first side constraint in (1) and the second side constraint in (2) have
to be consequences of the same sensory experience; likewise, the second side constraint in (1)
and the first side constraint in (2) have to be consequences of the same sensory experience.
From this it follows that, on our rule or on Jeffrey’s, one could obtain different belief functions
simply by having the same sensory experiences, but in a different order. This, the objector
claims, is counterintuitive and the reductio is complete.

The correct reply to this objection is already present in [7] and [26] (p. 197), but it is only
stated explicitly by Marc Lange [20] (see also Wagner [30], pp. 274f for a similar point). It is
simply that reversing the order of side constraints does not necessarily correspond to reversing
sensory experiences. Being subject to the same side constraints due to what has been going on
qualitatively in one’s sensory organs is not sufficient for having the same sensory experiences;
in order to individuate sensory experiences one also has to take into account the effect that
the side constraints have on one’s prior belief function and indeed the prior belief function on
which they have that effect.

Thus, rather than being a flaw in our rule and in Jeffrey’s, we should expect commutativity
to fail for updating rules that apply to the cases Jeffrey considers. After all, on the view just
explained, a particular side constraint corresponds to different sensory experiences if it is
imposed on different prior belief functions. And we should not be surprised to find different
sequences of sensory experience to give rise to different posterior belief functions.

7.3 Why Conditionalization is not a special case

Conditionalization is the special case of Jeffrey Conditionalization obtained by taking the
partition {E1 = E,E2 = ¬E} and letting q1 = 1 and q2 = 0. One might expect the same to
hold of our rule, but this is not the case.

The reason is simple. There are two different sorts of constraint that new evidence can
impose upon an agent’s epistemic state: it can impose side constraints on the belief function
that the agent should adopt in the light of the evidence; and it can restrict the set of worlds
that are epistemically possible for the agent in the light of the evidence. Jeffrey Condition-
alization is usually supposed to cover the former sort of situations; Conditionalization covers
situations in which the latter sort of constraint is imposed. In the context of our theory, one
deals in the former case with minimizing sums of the form∑

w∈W

b({w})G(w, b′)

where b is the (given) current belief function and where b′ is unspecified except for the demand
to satisfy the side constraints. In the latter case, however, one intends to minimize sums of
the form ∑

w∈E

b({w})G(w, b′)
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in which b is again the (given) current belief function, b′ is left completely unspecified, and
where the sum is taken only over the worlds in E. If one tried to emulate conditionalization
by the Jeffrey-type requirement that b′(E) = 1, then any permissible choice of b′ would indeed
assign 0 to ¬E, but this would still not necessarily be so for b; hence, in the emulation of
conditionalization, inaccuracies with respect to worlds outside of E might still play a role, in
contrast with the proper conditionalization case.

Thus, it is entirely appropriate that Conditionalization is not a special case of our rule.
Learning a proposition with certainty is not the limiting case as the side constraints q1 and
q2 on the partition {E1 = E,E2 = ¬E} tend to 1 and 0, respectively, for as these values
tend to zero, the set of epistemically possible worlds remains constantly W . Thus, the correct
updating rule in the situations normally assumed to be covered by Jeffrey Conditionalization
should not necessarily tend to Conditionalization in the limit.

7.4 Raising credences from zero

It is a well-known feature of Jeffrey Conditionalization that it cannot raise the probability of
a proposition from zero. Thus, if this is the correct updating rule, we must forever assign zero
to each proposition to which we currently assign zero. This, it has sometimes been argued,
is too strong. It rules out the possibility of rationally coming to believe something that one
once considered certainly false; yet this is surely possible.

It is a virtue of our rule that it does not have this consequence. Indeed, given a proposition
A and a belief function bt such that bt(A) = 0, our rule applies even if the evidence an agent
obtains results in the following side constraint on her belief function at t′: bt′(A) = p > 0 and
bt′(¬A) = 1− p. Jeffrey Conditionalization is not even defined in this case.

7.5 The logic vs. the art of judgement

In the light of the previous findings, let us reconsider one more time the norm on which the
justification of our new rule of update is based18:

Accuracy (Diachronic expected global) At time t′, an agent ought to have a belief
function that satisfies constraints C and is minimal amongst belief functions thus
constrained with respect to expected global inaccuracy by the lights of your belief
function at time t, relative to a legitimate global inaccuracy measure, and over the
set of worlds that are epistemically possible for her at time t′ given the constraints
C.

The norm combines two kinds of constraints: (i) one ought to minimize one’s expected
global inaccuracy given certain parameters; (ii) the latter parameters are characterized in the
way that they ought to satisfy C. What is the philosophical status of these constraints?

We regard (ii) as being given subjectively or ‘extra-logically’. Within our theory, there is
no room for justifying why C is such and such in a concrete application of Accuracy (Diachronic
expected global) by a real-world agent. On the other hand, within the range of possibilities
left open by C, it is a matter of epistemic rationality—a matter of getting as close to the truth
as possible—to obey (i). In this sense, (i) is an objective or ‘quasi-logical’ constraint, but one
that is conditional on the antecedently specified C condition. If C is e.g. such that one and

18This section benefited a lot from discussions with Carl Wagner, Richard Bradley, and Franz Dietrich.

20



only belief function bt′ can satisfy it, then minimizing one’s expected global inaccuracy in the
range of possibilities as determined by C will be a trivial affair, and so be it according to our
proposal.

As explained in the previous sections, conditionalization results from an application of
Accuracy (Diachronic expected global) with an antecedent constraint C of the form ‘restrict
your set of epistemically possible worlds at t′ to the set E’. In contrast, the new update
rule that we have focused on this last part of our paper is due to an application of Accuracy
(Diachronic expected global) with an antecedent constraint C of the form ‘change your degrees
of belief in a way such that for all i, Ei is believed at t′ with degree qi’. While these applications
of Accuracy (Diachronic expected global) are clearly of broad interest, nothing prevents us from
demanding other extra-logical constraints C to be satisfied at t′, and consequently to search
for rules of update which would minimize expected global inaccuracy in such circumstances.

For instance, one might be interested in a constraint C of the form ‘change your degrees
of belief in a way such that for all i, Ei is believed at t′ with degree qi, and furthermore
Rigidity is satisfied, that is, bt′(A|Ei) = bt(A|Ei) for all propositions A ⊆ W ’. As noted
before, Jeffrey’s rule is the unique updating rule that leads to belief functions which satisfy
this type of constraint. The fact that our rule of update differs from Jeffrey’s should not be
taken to imply that ours is ‘logically valid’ and Jeffrey’s is not (or vice versa), but rather that
the two rules are the objectively justified outcomes of solving one and the same epistemic
problem—to get as close to the truth as possible—but in two different problem spaces.

This general line of reasoning could only be undermined by an argument which would show
that some constraints C are ‘more objective’ or ‘more logical’ or ‘more rational’ than others.
While we do not think that this can be ruled out completely, our theory does not offer any
resources to put forward any plausible argument of that sort, and at least with respect to the
question of whether to demand Rigidity or not, it is very hard to see that any such argument
could be given at all. Indeed, we agree with Bradley [3] that sometimes Rigidity ought not
to be demanded, in particular, when changes in belief give inferential grounds for changes
in conditional belief. In principle, very much the same applies to the constraint that leads
to simple conditionalization, however with one difference: in our theory, conditionalization
is the objective consequence of the extra-logical constraint ‘restrict your set of epistemically
possible worlds at t′ to the set E’ in which Rigidity with respect to the partition {E,¬E}
is not contained. It is only once the minimization problem is solved that Rigidity is seen to
hold for the resulting solution strategy, that is, conditionalization. In this sense, the rigidity
of plain conditionalization is ‘more objective’ than the rigidity of Jeffrey conditionalization.
But of course even standard conditionalization might have to go if some other extra-logical
constraint C is chosen, for whatever reason.

8 Some open questions

Obviously, our defence of Bayesianism in terms of minimizing expected inaccuracy leaves a
lot of problems untouched. It is only fair to summarize the main open questions in the final
section of this paper, posed as a challenge to future expansions of the theory:

• We asked this in the final section of this paper’s prequel, but it is relevant again: How
can the approach be extended to the case of an infinite set of worlds; in particular, to the
case of non-denumerably many possible worlds? What role does countable additivity
play in such extensions?
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• Is it possible to develop a similar theory for primitive conditional belief functions, such
as Popper measures, which allow for conditionalization on zero sets? Alternatively:
What does a corresponding approach to non-standard probability measures look like?

• Is it possible to adapt this style of argument—by changing one of our presuppositions
in some way—in order to justify other accounts of belief and belief update as well (such
as, e.g., the Dempster-Shafer approach)?

• Given a different sort of constraint imposed by a piece of evidence, which updating rule
does Accuracy (Diachronic expected global) prescribe? For instance:

– Suppose an agent’s evidence leads her to impose the following side constraints on
bt′ : bt′(A) = p and bt′(B) = q, where A ∩ B 6= ∅. What is the prescribed rule of
update?

– Or suppose that {E1, E2, E3} is a partition on W , and the agent’s evidence leads
her to impose the following side constraints on bt′ : bt′(E1) = kbt′(E2), where
k ∈ R+

0 . What is the prescribed rule of update in this case? (This is closely related
to van Fraassen’s well-known Judy Benjamin problem [27].)19

• It is easy to show that Accuracy (Diachronic expected local) is not always satisfiable given
constraints C on the future belief function as used in Jeffrey Conditionalization (see
section 9.3). Which belief functions at time t and which choices of epistemically possible
worlds yield satisfiable instances of Accuracy (Diachronic expected local) for such C? In
cases in which Accuracy (Diachronic expected local) cannot be satisfied, what do the
belief functions look like which approximate Accuracy (Diachronic expected local) in the
‘best possible’ way, and how do these belief functions formally relate to the updating
rule that we derived from Accuracy (Diachronic expected global)?

Answering these questions satisfactorily should lead not only to interesting extensions of
our theory, but it should also help minimizing the inaccuracies of the theory as it stands.

9 Appendix: Proofs of Theorems 2, 3, 4, 5, and Accuracy
(Diachronic expected local) again

9.1 Proofs of Theorems 2, 3, and 4

The proof of each of our theorems depends on the following lemma.

Lemma 6 Suppose I(A,w, x) = λ(χA(w)−x)2. Suppose W is finite, b and b′ are belief func-
tions, A,E ⊆ W , and

∑
w∈E b(w) 6= 0. Then the following two propositions are equivalent:

(i) For all A ⊆ W and all x ∈ R+
0 ,∑

w∈E

b({w})I(A,w, b′(A)) ≤
∑
w∈E

b({w})I(A,w, x)

19We thank Alan Hájek and Kenny Easwaran for rightly urging us to include this into our list of open
problems.
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(ii) For all A ⊆ W ,

b′(A) =
∑

w∈A∩E b({w})∑
w∈E b({w})

Proof. By definition,∑
w∈E

b({w})I(A,w, x) =
∑
w∈E

b({w})λ(χA(w)− x)2

So,
d

dx

∑
w∈E

b({w})I(A,w, x) = 2λ

(
x
∑
w∈E

b({w})−
∑
w∈E

b({w})χA(w)

)
Therefore,

d

dx

∑
w∈E

b({w})I(A,w, x) = 0

if, and only if,

x =
∑

w∈E b({w})χA(w)∑
w∈E b({w})

=
∑

w∈A∩E b({w})∑
w∈E b({w})

Since
∑

w∈E b({w})I(A,w, x) is a positive quadratic in the variable x, this extremum is a
minimum, as required. �

9.1.1 Proof of Theorem 2

Suppose b is a belief function and E ⊆ W , with
∑

w∈E b({w}) 6= 0. Then, by Lemma 6, it
suffices to show that

b(A) =
∑

w∈A∩E b({w})∑
w∈E b({w})

,

if, and only if, b is a probability function on the power set of W and b({w}) = 0 for w 6∈ E.
First, we prove the ‘if’ direction. We begin by showing that, if b is a probability measure

and b({w}) = 0 for w 6∈ E, then for all A ⊆ W ,

b(A) =
∑

w∈A∩E b({w})∑
w∈E b({w})

.

If b is a probability measure and b({w}) = 0 for w 6∈ E, then

1 = b(W ) =
∑

w∈W

b({w}) =
∑
w∈E

b({w}) +
∑
w 6∈E

b({w}) =
∑
w∈E

b({w})

So,

b(A) =
∑
w∈A

b({w}) =
∑

w∈A∩E

b({w}) =
∑

w∈A∩E b({w})∑
w∈E b({w})

as required.
Second, the ‘only if’ direction. That is, we show that, if b is a belief function and, for all

A ⊆ W ,

b(A) =
∑

w∈A∩E b({w})∑
w∈E b({w})

,

then it follows that b satisfies (1), (2), and (3) below, the Kolmogorov axioms:
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(1) If A ⊆ W , then b(A) ≥ 0.

This is obvious, since b : P(W ) → R+
0 .

(2) b(∅) = 0 and b(W ) = 1.

b(∅) =
∑

w∈∅∩E b({w})∑
w∈E b({w})

= 0

and

b(W ) =
∑

w∈W∩E b({w})∑
w∈E b({w})

=
∑

w∈E b({w})∑
w∈E b({w})

= 1

(3) If A,B ⊆ W are disjoint, then b(A ∪B) = b(A) + b(B).

If A,B ⊆ W , then

b(A ∪B) =

∑
w∈(A∪B)∩E b({w})∑

w∈E b({w})

=
∑

w∈A∩E b({w})∑
w∈E b({w})

+
∑

w∈B∩E b({w})∑
w∈E b({w})

= b(A) + b(B)

since (A ∪B) ∩ E = (A ∩ E) ∪ (B ∩ E).

as required. Furthermore, if w 6∈ E, then obviously b({w}) = 0. �

9.1.2 Proof of Theorem 3

Suppose bt is a probability function, I(A,w, x) = λ(χA(w)−x)2, and E ⊆ W with bt(E) 6= 0.
Then it follows immediately from Lemma 6 that, for all A ⊆ W ,∑

w∈E

b({w})I(A,w, x)

is minimal if, and only if,

x =
b(A ∩ E)

b(E)
= b(A|E)

as required. �

9.1.3 Proof of Theorem 4

Suppose I(A,w, x) = λ(χA(w)−x)2. Then, in Lemma 6, let b({w}) = 1 for all w ∈ W . Then∑
w∈E

I(A,w, x)

is minimal if, and only if,

x =
∑

w∈A∩E 1∑
w∈E 1

=
|A ∩ E|
|E|

as required. �
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9.2 Proof of Theorem 5

Suppose {E1, . . . , Em} is a partition of W . Suppose 0 ≤ q1, . . . , qm and q1 + · · · + qm = 1.
Suppose G(w, b) = ||w − bglo||2 and suppose that bt is a probability function: let αj =
bt({wj}) for j = 1, ..., n. We wish to find the probability function bt′ represented by the
vector (x∗1, . . . , x

∗
n) such that the function

GExpbt
(G, W, bt′) =∑

w∈W bt({w}) · ||w − bt′ ||2 =∑n
j=1 αj

[
x2

1 + · · ·+ x2
j−1 + (xj − 1)2 + x2

j+1 + · · ·+ x2
n

]
is minimal at (x∗1, ..., x

∗
n) relative to the following side constraints:

xj ≥ 0 for j = 1, . . . , n

bt′(Ei) = qi for i = 1, . . . ,m

We say that a vector (x1, ..., xn) is feasible if it satisfies these constraints.
Now, we begin by reformulating the function we wish to minimize as follows:

GExpbt
(G, W, bt′) =

n∑
j=1

αj

(
x2

1 + ... + x2
j−1 + (xj − 1)2 + x2

j+1 + ... + x2
n

)
=

n∑
j=1

(
x2

j (α1 + ... + αn)− 2αjxj + αj

)
=

n∑
j=1

(
x2

j − 2αjxj + αj

)
since α1 + ... + αn = 1

=
n∑

j=1

(
(xj − αj)2 − (α2

j − αj)
)

=
n∑

j=1

(xj − αj)2 −
n∑

j=1

(α2
j − αj)

Now, it is clear that

GExpbt
(G, W, (x∗1, ..., x

∗
n)) =

n∑
j=1

(x∗j − αj)2 −
n∑

j=1

(α2
j − αj)

is minimal amongst the feasible vectors iff

n∑
j=1

(x∗j − αj)2

is minimal amongst the feasible vectors. Thus, bt′ is minimal just in case it is represented
by the closest feasible vector (x∗1, ..., x

∗
n) to (α1, ..., αn) as measured by the Euclidean metric.

But how do we find this closest feasible vector?
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It is clear that

f((x∗1, ..., x
∗
n)) =

n∑
j=1

(x∗j − αj)2

is minimal amongst the feasible vectors iff, for each i = 1, ...,m, if Ei = {wl1 , ..., wlk}, then

fi((x∗l1 , ..., x
∗
lk

)) =
k∑

j=1

(x∗lj − αlj )
2

is minimal amongst those vectors (xl1 , ..., xlk) for which xl1 + ... + xlk = qi and xlj ≥ 0 for all
j = 1, ..., k. Thus, it suffices to solve the minimization problem separately for each element
Ei of the partition.

We now give two different ways of showing that the vector given by Alternative Jeffrey
Conditionalization solves each of these separate minimization problems. The first is our
original proof and proceeds via the theory of convex quadratic programming and the Karush-
Kuhn-Tucker (KKT) conditions that are central to that theory. The second is a purely
geometric argument that we owe to Kenny Easwaran. We include both here since they exhibit
quite different virtues. On the one hand, Easwaran’s argument is simpler and requires less
mathematical apparatus, but it is not clear how to generalize his approach so that it applies
in updating situations that arise when different sorts of constraints are imposed on bt′ . On the
other hand, our original argument from KKT conditions requires more powerful machinery,
but it has the advantage of being fully general.

In what follows, we assume, without loss of generality, that Ei = {w1, ..., wk}. This will
avoid unnecessarily complicated subscripts.

First, the argument from KKT conditions. The mathematical theorem we require is the
following:20

Theorem 7 (KKT conditions) Suppose f, g1, ..., gm, h1, ..., hn : Rk → R are smooth func-
tions. Consider the following minimization problem:

Minimize
f(x1, ..., xk)

relative to the following constraints:

gi(x1, ..., xk) ≤ 0 for i = 1, ...,m

hj(x1, ..., xk) = 0 for j = 1, ..., n

If ~x∗ = (x∗1, ..., x
∗
k) is a (nonsingular) solution to this minimization problem, then there exist

µ1, ..., µm, λ1, ..., λn ∈ R such that

∇f( ~x∗) +
m∑

i=1

µi∇gi( ~x∗) +
n∑

j=1

λj∇hj( ~x∗) = 0

µigi( ~x∗) = 0 for i = 1, ...,m

µi ≥ 0 for i = 1, ...,m

gi( ~x∗) ≤ 0 for i = 1, ...,m

hi( ~x∗) = 0
20For a proof of this theorem together with a discussion of its uses, see §3.3 and §3.4 of [22].
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If, furthermore, f and g are convex functions, then the existence of µ1, ..., µm, λ1, ..., λn ∈ R
is sufficient for a solution to the minimization problem. If f is strictly convex, then their
existence is sufficient for a unique solution.

Stated in the form used in the theorem, here is the problem we must solve:

Minimize

fi(x1, ..., xk) =
k∑

j=1

(xj − αj)2

relative to the following constraints:

gj(x1, ..., xk) = −xj ≤ 0 for j = 1, ..., k

h(x1, ..., xk) = x1 + ... + xk − qi = 0

Thus, since fi, g1, ..., gk, h are smooth functions and since fi is strictly convex, it is sufficient
for (x∗1, ..., x

∗
k) to be a unique solution to this minimization problem that (x∗1, ..., x

∗
k) satisfies

the constraints and there exist µ1, ..., µk, λ ∈ R such that, for all j = 1, ..., k

(i) µj ≥ 0

(ii) µjx
∗
j = 0

(iii) 2x∗j − 2αj − µj + λ = 0

Now, define di as in Alternative Jeffrey Conditionalization and let

x∗j =
{

αj + di if αj + di > 0
0 if αj + di ≤ 0

In order to prove Theorem 5, it suffices to show that (x∗1, ..., x
∗
k) thus defined satisfies the

constraints, and that there are µ1, ..., µk, λ ∈ R that satisfy (i)–(iii). It is straightforward to
see that (x∗1, ..., x

∗
k) satisfies the constraints. Now define

λ = −2di

and

µj =
{

0 if αj + di > 0
−2(αj + di) if αj + di ≤ 0

It is straightforward to see that (i)–(iii) then hold. This completes our first proof of Theorem
5.

We turn now to Kenny Easwaran’s geometric proof. First, we note that, since the set
of feasible vectors is closed and bounded, and since the Euclidean distance from (α1, ..., αk)
to (x1, ..., xk) is a continuous function of (x1, ..., xk), there is at least one feasible vector
(x∗1, ..., x

∗
k) such that the Euclidean distance from (α1, ..., αk) to that vector is minimal. Next,

we use the following lemma to identify the unique such feasible vector.

Lemma 8 Suppose (x1, ..., xk) is feasible. Then, if xb > 0 and xa − αa < xb − αb, then the
distance from (α1, ..., αk) to (x1, ..., xk) is not minimal amongst the feasible vectors.
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Proof. Suppose (x1, ..., xa, ..., xb, ..., xk) is feasible and suppose that xb > 0 and xa − αa <
xb − αb. Then let ε be a positive real number such that

ε < xb and ε < (xb − αb)− (xa − αa)

Then (x1, ..., xa + ε, ..., xb − ε, ..., xk) is also feasible. Moreover, a quick calculation shows
that it is closer to (α1, ..., αk) than is (x1, ..., xa, ..., xb, ..., xk). This completes the proof of the
lemma. �

With this in hand, we can identify the unique vector whose distance from (α1, ..., αk) is
minimal. We require two corollaries to the lemma. First corollary: Suppose (x∗1, ..., x

∗
k)

is minimal; then there is a real number di such that, if x∗a > 0, then x∗a = αa + di. Proof :
Suppose x∗a, x

∗
b > 0. Then, by the lemma, it must be that xa − αa = xb − αb. Thus, there is

di = xa−αa = xb−αb, as required. Second corollary: Suppose (x∗1, ..., x
∗
k) is minimal; and

suppose that, whenever x∗a > 0, we have x∗a = αa + di; then, whenever αa + di > 0, we have
x∗a = αa + di. Proof : Suppose not. That is, suppose αa + di > 0 and x∗a 6= αa + di. Then, by
previous corollary, x∗a = 0. Now suppose xb > 0. Then

x∗a − αa = −αa = −(αa + di) + di < di = x∗b − αb

Thus, by the lemma, (x∗1, ..., x
∗
k) is not minimal. This contradicts the assumption, as required.

From these two corollaries to the lemma, we have that, if (x∗1, ..., x
∗
k) is minimal, there is

di such that, for all j = 1, ..., k

(a) If αj + di > 0, then x∗j = αj + di

(b) If αj + di ≤ 0, then x∗j = 0

(c)
∑k

j=1 x∗j = qi.

That is, the vector to which Alternative Jeffrey Conditionalization gives rise is the closest
vector to (α1, ..., αk), as required. This completes the second proof of Theorem 5, due to
Kenny Easwaran. �

9.3 Accuracy (Diachronic expected local) cannot always be satisfied in Jeffrey
situations

In sections 9.1.1 and 9.1.2, we derived Probabilism and Conditionalization from the local
synchronic and diachronic versions of Accuracy, respectively. But we derived our alternative
to Jeffrey’s rule from the global diachronic version of Accuracy (along with Probabilism, which
is guaranteed by Accuracy (Synchronic expected local)). Above, we mentioned why this is: the
local version cannot always be satisfied in the situations to which Jeffrey Conditionalization
claims to apply. In this section, we prove this.

First, recall that Accuracy (Diachronic expected local) entails Accuracy (Diachronic expected
global). That is, any belief function that satisfies the former satisfies the latter. Also, we
know which belief function satisfies the latter, in virtue of Theorem 5, proved above. Thus, it
will suffice to describe a Jeffrey situation in which the belief function that satisfies Accuracy
(Diachronic expected global) does not satisfy Accuracy (Diachronic expected local).

Consider again the example of section 7.1. That is: W = {w1, w2, w3} and

bt({w1}) =
1
3
, bt({w2}) =

1
2
, bt({w3}) =

1
6
.
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We then impose the following constraints: bt({w1, w2}) = 1
2 . Then our updating rule gives:

bA
t′ ({w1}) =

1
6
, bA

t′ ({w2}) =
1
3
, bA

t′ ({w3}) =
1
2
.

Let I(A,w, x) = (χA(w) − x)2, and consider the expected local inaccuracy of the degree of
credence bA

t′ ({w1}) in the singleton proposition {w1} by the lights of bt, relative to I, and over
all possible worlds in W :

LExpbt
(I, {w1},W, bA

t′ ({w1})) =
1
3

(
1− 1

6

)2

+
1
2

(
−1

6

)2

+
1
6

(
−1

6

)2

=
2
8

Now consider the following belief function:

bC
t′ ({w1}) =

1
3
, bC

t′ ({w2}) =
1
6
, bC

t′ ({w3}) =
1
2

Then:

LExpbt
(I, {w1},W, bC

t′ ({w1})) =
1
3

(
1− 1

3

)2

+
1
2

(
−1

3

)2

+
1
6

(
−1

3

)2

=
2
9

Thus,
LExpbt

(I, {w1},W, bC
t′ ({w1})) < LExpbt

(I, {w1},W, bA
t′ ({w1})).

As noted above, this suffices to show that Accuracy (Diachronic expected local) cannot be
satisfied in all Jeffrey situations. �
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