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Abstract

One of the fundamental problems of epistemology is to say when the evidence in an
agent’s possession justifies the beliefs she holds. In this paper and its sequel, we defend
the Bayesian solution to this problem by appealing to the following fundamental norm:

Accuracy An epistemic agent ought to minimize the inaccuracy of her partial
beliefs.

In this paper, we make this norm mathematically precise in various ways. We describe
three epistemic dilemmas that an agent might face if she attempts to follow Accuracy, and
we show that the only inaccuracy measures that do not give rise to such dilemmas are the
quadratic inaccuracy measures. In the sequel, we derive the main tenets of Bayesianism
from the relevant mathematical versions of Accuracy to which this characterization of the
legitimate inaccuracy measures gives rise, but we also show that unless the requirement
of Rigidity is imposed from the start, Jeffrey conditionalization has to be replaced by a
different method of update in order for Accuracy to be satisfied.

1 Introduction

One of the fundamental problems of epistemology is to say when the evidence in an agent’s
possession justifies the beliefs she holds; and, when it does, how it does this, and to what
extent. In this paper and its sequel, we defend the Bayesian solution to this problem for those
cases in which the set of possible worlds about which the agent holds an opinion is finite. If W
is such a set of possible worlds, let P(W ) be the power set of W , and let Bel(W ) be the set of
functions b : P(W ) → R+

0 . We regard each function in Bel(W ) as a (potential) belief function
on the power set of W . Indeed, one of the distinctive presuppositions of Bayesianism is that,
if W is the set of possible worlds about which an agent holds an opinion, then that agent’s
epistemic state at a given time t may be represented by a belief function bt ∈ Bel(W ) that
takes each proposition A, represented as a subset of W , to a real number bt(A) that measures
the degree of credence the agent assigns to A. Thus, to solve the fundamental problem of
epistemology, the Bayesian must say, for a given body of evidence, which belief functions it
would be rational for an agent to have at a time when she is in possession of that evidence.

At the core of Bayesianism lie two claims that go some way to solving the fundamen-
tal problem of epistemology as set out above: they are Probabilism and Conditionalization.
Probabilism is a synchronic norm: that is, it concerns the intrinsic properties of an agent’s
belief function at particular moments in her epistemic life. In particular, it demands that an
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agent’s belief function should be a probability function at any such moment. Conditionaliza-
tion, on the other hand, is a diachronic norm: that is, it concerns the relation between an
agent’s belief functions at different times. In particular, it demands that an agent who learns
the truth of a proposition E between times t and t′ (and nothing stronger) ought to update
her belief function by conditionalizing on E.1

These central claims have been extended in various ways by various philosophers. Two
such extensions will be of particular interest to us. First, the synchronic claim that charac-
terizes (a version of) Objectivist Bayesianism: if an agent has opinions only about finitely
many possible worlds, and if E is the strongest proposition given to her by her evidence so
far, then her belief function ought to be the uniform probability distribution over the worlds
in E: we will call this Uniform Distribution. And, second, Richard Jeffrey proposed a di-
achronic norm, which we will call Jeffrey Conditionalization, and which is meant to cover
those instances of updating in which the evidence learned does not come in the form of a
proposition learned with certainty, as in Conditionalization, but rather in the form of some
weaker side constraints on the agent’s belief function.

In this paper and in its sequel (“An Objective Justification of Bayesianism II: The Conse-
quences of Minimizing Inaccuracy”), we defend the two core tenets of Bayesianism (and, to a
much lesser extent, the additional Objectivist Bayesian tenet) by appealing to the following
fundamental norm:

Accuracy An epistemic agent ought to approximate the truth. In other words:
she ought to minimize her inaccuracy.2

Also, we use this norm to criticize Jeffrey’s updating rule, and we defend an alternative to
Jeffrey conditionalization that applies to the same type of situations. We consider all of this to
be an objective manner of justifying Bayesianism, which is based on theoretical considerations
on how to get to the truth rather than on practical considerations on how to make prudent
decisions. Indeed, for us an agent’s degree of belief in a proposition A is such that the agent
ought to minimize its distance from the truth value of A; for all epistemological purposes,
this feature is in fact constitutive of the notion of degree of belief. Although the chosen type
of justification is objective in this sense, it should be kept in mind that what gets justified in
this way is still mainly just standard subjective Bayesianism.

We agree with Jim Joyce ([6], [7]) that the relevant notion of accuracy here is what he calls
gradational accuracy, where gradational accuracy depends only on the truth values of propo-
sitions at worlds and on the agent’s belief function.3 We will make this feature of accuracy
more precise in the Local Normality and Dominance postulate in section 5 below, when we will
give the notion a mathematical analysis, as promised. The quantitative notion of accuracy
that interests us differs from Popper’s [13] comparative concept of verisimilitude, according

1As Jon Williamson reminded us, Conditionalization must be qualified: it holds only when plain factual
evidence about the world is involved. Cf. [17]

2Why not maximize your accuracy instead? Because we like to think of inaccuracy as being given by
a distance: the lesser the distance from the truth, the lesser the inaccuracy; the greater the distance from
the truth, the greater the inaccuracy. Since distances from the truth are bounded from below, i.e., by the
zero distance, they can be minimized, and that is what we are asking for in Accuracy. Using some means of
transformation, these properties might perhaps be captured just as well by accuracy or ‘inverse distance’, but
employing the notion of inaccuracy directly seems to give us a much more appealing way of stating our central
epistemic goal.

3Indeed, Joyce’s original paper has been a major inspiration for the project in this paper and its sequel.
We discuss Joyce’s own account in detail in the sequel of this article.
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to which some sets of statements are closer to the truth than other sets of statements. This
concept was proven inadequate by Miller’s [9] and Tichý’s [16] triviality results.4

Given this understanding of the notion of accuracy, it is the purpose of this paper to make
the Accuracy norm precise. In the sequel, we will then investigate the consequences of this
norm.

2 The basic concepts and the argument in brief

Our argument is long and it involves a number of distinctions. Thus, for the sake of clarity,
we present an overview of its underlying concepts and its structure before we give it in a fully
detailed form.5

We begin by drawing a distinction between local and global measures of inaccuracy. A
local inaccuracy measure is a mathematical function that takes a proposition A ⊆ W , a
world w ∈ W , and a non-negative real number x and gives a measure I(A,w, x) of the local
inaccuracy of having degree of credence x in proposition A at world w. So I(A,w, x) measures
the distance of x from the truth value χA(w) of A at w, where the truth values are represented
by the real numbers 0 and 1, as shown in Figure 1. Intuitively, I(A,w, x) will be greater the
more x differs from the truth value of A in w.

On the other hand, a global inaccuracy measure is a mathematical function that takes a
belief function b and a world w and gives a measure G(w, b) of the global inaccuracy of having
belief function b at world w. So G(w, b) measures the distance of b from the world w, where
both belief function and world will be represented geometrically in terms of vectors, as we
will explain in detail in section 3.2 and as shown in Figure 2. Again intuitively, G(w, b) will
be greater the more the degree of belief assignment that is determined by b differs from the

4In the meantime, refined theories of verisimilitude have been introduced which do not suffer from triviality
results; some of them do resemble our theory in important respects. In particular, Niiniluoto’s theory of
estimated truthlikeness (cf. [10]) defines a relational notion of truthlikeness in terms of an expected value of
quantitative truthlikeness which bears some similarity to the expected inaccuracy of propositions that we will
be interested in. We leave it to another paper to work out the details of this correspondence which was pointed
out to us by Theo Kuipers.

5Bas van Fraassen’s comments were instrumental in making this section clearer.
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truth value assignment that is determined by w. Obviously, not any such function I or G will
do: rather we will have to restrict ourselves to sensible or legitimate choices of such functions,
which will be achieved later by formulating postulates on what such legitimate I or G are
like.

Thus, our first attempt to make Accuracy precise results in the norm bifurcating:

Accuracy (Local) An agent ought to minimize the local inaccuracy of her degrees
of credence in all propositions A ⊆ W relative to a legitimate measure of local
inaccuracy.

Accuracy (Global) An agent ought to minimize the global inaccuracy of her belief
function relative to a legitimate measure of global inaccuracy.

Note that, while we will be interested throughout in versions of both of these norms, Joyce
is concerned solely with a version of Accuracy (Global) ([6], [7]).

Thus, we have two norms to which Accuracy gives rise. However, as formulated above,
the norms are still incomplete: both local and global inaccuracy is only defined relative to a
world, but we have not specified yet relative to which world or set of worlds the inaccuracies
in questions are to be calculated. The obvious answer at this point would seem to be: relative
to the actual world. But from an internalist point of view on justification—which we are
going to adopt, as we will explain at greater length below (section 3.3)—this will not do,
since we should not presuppose that the agent knows which world w in W is the actual world.
Instead, the agent should take into account inaccuracies with respect to all and only the
worlds that are epistemically possible for her; if this set is taken to be epistemically accessible
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to her, then we do not violate internalism about justification by demanding that she assesses
her overall inaccuracy in terms of it. Hence, we focus on the measures of expected local and
global inaccuracy to which any pair of legitimate local and global inaccuracy measures will
give rise, and we evaluate these expected inaccuracy measures over the set E of epistemically
possible worlds.

The expected local inaccuracy of a degree of credence is defined, as one would expect,
as the sum of its inaccuracies at various worlds weighted by the degree of belief assigned to
each of those worlds (or rather to their singleton sets). Thus, to determine the expected local
inaccuracy of a degree of credence x in a proposition A, we must specify three parameters:

(i) The belief function that gives the degree of belief assigned to each of the worlds over
which the sum is taken. That is, the belief function we use to weight the inaccuracies
that we sum to give the expected local inaccuracy.

(ii) The set of worlds over which the sum is taken. This is the set of worlds that are
epistemically possible for the agent.

(iii) The local inaccuracy measure that gives the inaccuracies of the degree of credence at
the various worlds over which the sum is taken.

Thus, we have the following definition:

Definition 1 (Expected local inaccuracy) Given a local inaccuracy measure I, a belief
function b, a degree of credence x, and propositions A,E ⊆ W , we define the expected local
inaccuracy of x in proposition A by the lights of b, with respect to I, and over the set E of
epistemically possible worlds as follows:

LExpb(I,A,E, x) =
∑
w∈E

b({w})I(A,w, x)

Expected global inaccuracy requires us to fix the same parameters. It is defined as follows:

Definition 2 (Expected global inaccuracy) Given a global inaccuracy measure G, belief
functions b and b′, and a proposition E ⊆ W , we define the expected global inaccuracy of b′

by the lights of b, with respect to G, and over the set E of epistemically possible worlds as
follows:

GExpb(G, E, b′) =
∑
w∈E

b({w})G(w, b′)

Thus, our second attempt to make Accuracy precise gives:

Accuracy (Expected local) An agent ought to minimize the expected local inaccu-
racy of her degrees of credence in all propositions A ⊆ W relative to a legitimate
measure of local inaccuracy.

Accuracy (Expected global) An agent ought to minimize the expected global inac-
curacy of her belief function relative to a legitimate measure of global inaccuracy.

However, neither of these proposals is fully specified in its current form either, for we have
not said by the lights of which belief function an agent ought to assess her expected local or
global inaccuracy, nor over which set of epistemically possible worlds. Specifying the belief
function by the lights of which we assess expected local or global inaccuracy leads us to
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a further distinction: the distinction between synchronic and diachronic versions of both
Accuracy (Expected local) and Accuracy (Expected global). Here are the synchronic versions of
Accuracy (Expected local) and Accuracy (Expected global):

Accuracy (Synchronic expected local) An agent ought to minimize the expected
local inaccuracy of her degrees of credence in all propositions A ⊆ W by the lights
of her current belief function, relative to a legitimate local inaccuracy measure,
and over the set of worlds that are currently epistemically possible for her.

Accuracy (Synchronic expected global) An agent ought to minimize the expected
global inaccuracy of her current belief function by the lights of her current belief
function, relative to a legitimate global inaccuracy measure, and over the set of
worlds that are currently epistemically possible for her.

And here are the diachronic versions of Accuracy (Expected local) and Accuracy (Expected
global), where an agent has learned evidence between time t and time t′ that imposes con-
straints C on her belief function bt′ at time t′, or on the set E of worlds that are epistemically
possible for her at t′, or both.

Accuracy (Diachronic expected local) At time t′, such an agent ought to have a
belief function that satisfies constraints C and is minimal amongst belief functions
thus constrained with respect to the expected local inaccuracy of the degrees of
credence it assigns to each proposition A ⊆ W by the lights of her belief function
at time t, relative to a legitimate local inaccuracy measure, and over the set of
worlds that are epistemically possible for her at time t′ given the constraints C.

Accuracy (Diachronic expected global) At time t′, such an agent ought to have a
belief function that satisfies constraints C and is minimal amongst belief functions
thus constrained with respect to expected global inaccuracy by the lights of her
belief function at time t, relative to a legitimate global inaccuracy measure, and
over the set of worlds that are epistemically possible for her at time t′ given the
constraints C.

These are very nearly our final versions of Accuracy. All that remains is to specify the
legitimate local and global inaccuracy measures. This is the work of section 5, where we argue
for the main thesis of this paper: the only legitimate local and global inaccuracy measures are
quadratic inaccuracy measures, which are known as Brier scores in the literature on scoring
rules ([2]). We call these characterizations Local Inaccuracy Measures and Global Inaccuracy
Measures respectively. By substituting them into the appropriate norms above, we obtain the
four mathematically precise versions of Accuracy that are the aim of this paper. In the sequel,
we investigate the consequences of these norms.

Of course, as with any set of norms, it may turn out that some or all of these norms are
simply unsatisfiable. Prior to investigation, there is no reason to think that there are such
minimally inaccurate belief functions in the senses required by these norms. However, as we
will show in the sequel to this paper, such a situation arises only for certain instances of Ac-
curacy (Diachronic expected local); for each of the other norms and indeed for many instances
of this norm, there are belief functions that satisfy them and, moreover, they are the belief
functions that the Bayesian demands. Furthermore, in the situations in which Accuracy (Di-
achronic expected local) cannot be satisfied, its global analogue Accuracy (Diachronic expected
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global) can be. Thus, our approach does make a demand in these situations. We will discuss
this further in the second paper.

Note that LExpb(I, A,E, x) and GExpb(G, E, b′) will always be zero if the global belief
function b is identical to the constant zero function on singletons of members of E. So if an
agent has ruled out all worlds in E by means of b, any degree of belief whatsoever may be
assigned to A in order to minimize expected local and global inaccuracy. In order to do better,
we would have to generalize our framework and aim at a justification of Popper functions (see
[12], for one reference among many) rather than standard absolute probability measures. We
leave this topic to a different paper.

In section 3, we discuss in greater detail the transition from Accuracy to the four norms
just listed, making explicit all the formal and philosophical presuppositions of our theory.
We are not going to justify these presuppositions in any substantial manner, but at least
we will make sure we put all of our cards on the table, and we will formulate explicitly the
main questions that will remain open. In section 4, we give a brief sketch of the argument in
favour of quadratic inaccuracy measures, both local and global, and in section 5, we give this
argument in full detail.

3 The presuppositions of our argument

3.1 The Ought-Can principle

We wish to make the following norm precise:

Accuracy An epistemic agent ought to approximate the truth. In other words:
she ought to minimize her inaccuracy.

In doing so, we will be guided at a number of points by the following version of a well-known
normative or metanormative principle, the function of which is to constrain our choice of
normative systems:

Ought-Can A norm should not demand anything of an agent that is beyond her
epistemic reach.

This is just a variant of the classical Ought-Can principle applied in the present context.
We leave open the exact character of the possibility modality that is implicit in ‘Can’ and
‘reach(ability)’. However, as will become clear from our applications of Ought-Can, it is
certainly stronger than mere logical possibility, and not too far from a notion of realistic
achievability in the epistemic domain.

One important consequence of Ought-Can is that one should not demand of an agent that
she draw distinctions that she is conceptually unable to draw. Here is one way in which
this is relevant to our argument: In the following sections, we presuppose that our agents
hold opinions about a finite and non-empty set W of possible worlds of which they assume
the actual world to be one. There is nothing particularly philosophical about our decision
to stick to the case of finitely many worlds in this paper; we simply assume this to be so
and postpone the discussion of the infinite case to another time. However, already this
seemingly harmless supposition may appear to have drastic—and even drastically wrong—
consequences: Since there are, presumably, infinitely many possible worlds, every choice of
a finite set of ‘possible worlds’ must consist in carving the actual set of worlds into finitely
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many chunks, which are then presupposed to figure as the chosen ‘(pseudo-)possible worlds’
of the framework. Worse, if a uniform probability measure has been defined over the resulting
finite set W , as demanded by Objectivist Bayesianism (Uniform Distribution), it is unclear
whether this measure is also uniform over the actual set of worlds, and if so, in what sense.
So are we buying into a presupposition that makes our approach appear highly questionable
from the start? Not necessarily, in light of the Ought-Can principle. Assume that we are
solely concerned with agents whose conceptual resources cut the space of logical possibilities
into finitely many pieces—the members of W . Indeed, we may assume these agents to be
epistemically unable to distinguish between any two of the possible worlds that belong to one
and the same partition set, and to be incapable also of altering their conceptual framework
on any rational grounds for the time of our investigation. From the viewpoint of any of these
agents, at the time of our investigation, there is thus no way of having any sort of epistemic
access to the ‘actual’ infinite set of possible worlds. Demanding of such agents that they
transcend their conceptual boundaries would mean demanding that they go beyond their
epistemic reach, in conflict with Ought-Can. Therefore, whenever we refer to agents in this
article, let them be as just described, and Ought-Can will allow us to proceed without any
further worries. For many practical purposes, maybe even we can be taken to be such finitely
constrained agents. In all other contexts, i.e., whenever we are dealing with fully-fledged
human agents and their (maybe) infinitary conceptual capacities, the arguments of this paper
do not apply. But hopefully, even in the latter case, our arguments will be interesting in
themselves.

Ought-Can will prove even more relevant in section 3.3 where we derive from it an inter-
nalist view of justification that forces us to move from Accuracy (Local) and Accuracy (Global)
to Accuracy (Expected local) and Accuracy (Expected global), as we mentioned above.

And finally the principle will play a crucial role in section 5 as well, where we argue for
Local and Global Inaccuracy Measures, which specify the legitimate local and global measures
of inaccuracy: It follows from Ought-Can that a normative system should not be such that it
may lead an agent who obeys the norms of this system into an epistemic dilemma, i.e., into a
situation in which she ought to change her epistemic state in two or more ways that are jointly
impossible. We show that an agent who employs an inaccuracy measure that is not permitted
by Local and Global Inaccuracy Measures may face an epistemic dilemma akin to the so-called
discursive dilemma in the theory of judgement aggregation. From this conclusion and Ought-
Can, our characterizations of the legitimate inaccuracy measures as being the quadratic ones
will follow.

3.2 The geometrical framework

So much for Ought-Can; we will return to it below. In the meantime, we turn to the other
background assumptions of our approach. Broadly speaking, we are taking a geometrical
approach; to coin a slogan, we are interested in the ‘geometry of reason’. Of course, it is
common procedure to go back and forth between probability measures as characterized by
the Kolmogorov axioms and probability measures viewed as points in geometrical space, so
it might seem that putting forward a geometrical account of belief dynamics is completely
unproblematic. However, our task is not so much to presuppose probability theory and to
exploit its mathematical features in applications of probabilistic reasoning but rather to justify
probabilistic reasoning in a context in which probability theory is not yet in place. So we will
have to take things more slowly.
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Since W is finite, there is an n such that n = |W |. We start by positioning the mem-
bers of W in the n-dimensional Euclidean space Rn by ‘identifying’ each world wi ∈ W =
{w1, . . . , wn} with the i-th unit vector in Rn, i.e., with the vector (δi,1, . . . , δi,n) where δi,j = 1
if j = i and δi,j = 0 if j 6= i. If the real number 1 is taken to represent truth and the real num-
ber 0 is taken to stand for falsity, then each such vector (δi,1, . . . , δi,n) can be considered as an
assignment of the geometrical counterparts of truth and falsity to the singleton propositions
{w1}, . . . , {wn}, such that the jth coordinate of the vector (δi,1, . . . , δi,n) is identical to the
real number 1 if, and only if, the proposition {wj} is true in the world that is represented by
this vector. Given this mapping from worlds to geometrical points or vectors, we can measure
distances or ‘closeness’ between worlds with respect to each other in terms of the Euclidean
distance between their geometric counterparts. Accordingly, regarding truth values 1, 0 as
points 1, 0, respectively, in the one-dimensional Euclidean space, i.e., R, allows us to measure
distances between truth values geometrically. Now, there is certainly not just one geometri-
cally ‘natural’ notion of distance in Euclidean space. In fact, there are lots of geometrically
plausible metrics on R and Rn that are distinct from the Euclidean metric, and indeed we are
going to argue later that inaccuracy has to be measured in terms of one of them. However,
we will demand that every such notion of the geometrical distance between two points su-
pervenes on—is functionally dependent on—the Euclidean distance between these points. In
this sense, measuring closeness will always amount to a geometrical, and indeed Euclidean,
procedure in the context of this paper.

The next step is to locate degrees of belief within R and to place belief functions into Rn.
As pointed out at the beginning of this paper, we consider belief functions to be mappings
of the form b : P(W ) → R+

0 , so degrees of belief are assumed to be quantitative objects
from the start.6 Following Accuracy from above, we regard rational agents to be aiming at
distributing their degrees of belief in such a way that every such degree b(A) approximates
the truth value of the proposition A (though it’s not yet clear exactly in what sense). Hence,
a rational agent’s degree of belief for a proposition is nothing but the agent’s best possible
estimate or ‘simulation’ of the truth value of that proposition, given her present epistemic
situation. Since truth and falsity have been represented by real numbers, too, degrees of belief
and truth values are comparable—they occupy the same quantitative or geometrical scale.
So, e.g., assigning a degree of belief 1 to a proposition A would mean that the agent believes
that A is true rather than false, since the degree of belief 1 is closer—in fact, identical—to
the real number 1 that represents truth than it is to the real number 0 representing falsity.
In this way, closeness of a degree of belief to the truth can be measured again according to a
metric on the one-dimensional Euclidean space.

In order to see how belief functions determine points in the n-dimensional Euclidean
space, by which it then becomes possible to measure their distances from the point vectors
that represent possible worlds, it is useful to introduce the following terminology: call any
function bglo : W → R+

0 a global belief function and let Belglo(W ) be the set of all global
belief functions. Obviously, every such global belief function may be regarded as a vector
(a1, . . . , an) ∈ Rn with aj = bglo(wj) for j = 1, . . . , n. Since every belief function b induces a
global belief function bglo by means of bglo(wj) = b({wj}), we can position b in Rn through its
corresponding global belief function. Apart from supplying belief functions with a geometrical

6We could have regarded belief functions as mappings into R rather than R+
0 ; some parts of our argumen-

tation are in fact not going to hang on this. Our reason for not doing so from the start is quite simply that
some readers might find negative degrees of belief odd.
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interpretation, the latter equation also yields a way of interpreting global belief functions: we
call them global belief functions as they may be taken to summarize an agent’s attitude
towards all the worlds w in W , i.e., towards all of the singleton propositions {w} for w ∈ W .
E.g., a global belief function with the vector (1, 0, . . . , 0) represents an agent who is—in the
degrees of belief being best possible estimates or ‘simulations’ of truth values sense mentioned
above—certain of the truth of the proposition {w1} and certain that every other singleton
proposition is false. Geometrically, the distance between the vector that belongs to this global
belief function and the vector that corresponds to the world w1 is 0, which is exactly what we
want to be the case in such a situation. So, (global) belief functions and worlds have become
comparable as well, again by means of their geometrical representations.7

We have seen how belief functions determine corresponding global belief functions. Is
there also a way of inverting this procedure? That is: Given a global belief function bglo, is
there a similarly salient way of determining a belief function b that assigns degrees of belief not
just to singleton propositions (or worlds) but to all propositions whatsoever? If Bayesianism
were taken for granted, the answer would of course be ‘Yes’, by iterated application of finite
additivity. But Bayesianism is exactly what is at issue here, so without further argument
there does not seem to be any obvious way of determining a unique belief function from a
given global belief function justifiedly, nor, for that matter, of determining justifiedly any
belief function from a given global belief function at all. For this reason, presupposing that
an agent’s epistemic state at a time involves the acceptance of a global belief function is at
least prima facie a weaker presupposition than assuming that the agent’s epistemic state at
that time involves the acceptance of a belief function.

3.3 Internalism, expected inaccuracy, and Ought-Can again

In this section, we return to Ought-Can. Above, we noted that this principle forces the
shift from Accuracy (Local) and Accuracy (Global) to Accuracy (Expected local) and Accuracy
(Expected global). Here we explain how.

In section 5, we will argue that the only legitimate inaccuracy measures are quadratic
inaccuracy measures. However, while this conclusion gives us an important auxiliary notion
of inaccuracy, it does not yet by itself yield a notion of inaccuracy that an agent can actually
make use of in order to determine the local inaccuracy of her degree of credence in a proposition
or the global inaccuracy of her belief function. The reason, as we observed above, is simply
that the agent cannot be assumed to know at which world she is evaluating inaccuracies.
So, by Ought-Can, we require a conception of the minimization of inaccuracy towards which
the agent is epistemically capable of aiming. On such a conception, an agent’s assessment
of the local inaccuracy of a degree of belief in a proposition will be bound to take into

7We are not suggesting that this is the only ‘natural’ way of identifying belief functions with vectors nor that
this type of identification is free of presuppositions. In particular, representing belief functions geometrically
in such a manner corresponds in some sense to a ‘bias’ towards worlds. It might well be that if a different form
of representation were chosen, then we would not end up justifying Bayesianism but some different account of
belief dynamics (say, the Dempster-Shafer approach or something else). At the same time, it is not as if this
‘bias’ towards worlds gives us anything like the Bayesian tenets in any obvious and immediate manner: it will
need elaborate arguments, substantial postulates, and mathematical proofs until we will have finally derived
these tenets (as we will in the sequel to this paper). As we will point out later, there are various parameters
in our theory which we set in a particular way and for which we investigate the consequences of setting them
as such. But we would be equally interested in studying alternative ways of setting these parameters and in
determining the consequences of these alternative settings.

10



account the local inaccuracies of that degree of belief at all possible worlds that are not
excluded by the evidence available to her, i.e., all worlds that are epistemically possible for
her. Similarly, on this conception, an agent’s assessment of the global inaccuracy of a belief
function will be bound to take into account the global inaccuracies of that belief function
at all epistemically possible worlds. Thus, the Ought-Can principle gives rise to a form of
internalism about justification; and this internalism leads in turn to the notions of expected
local and global inaccuracy defined above (Definitions 1 and 2) and to versions of the Accuracy
norm that demand that an agent should minimize not her actual local or global inaccuracy,
but her expected local or global inaccuracy instead. And, as we described above, this move
results in a further bifurcation of the norms: Accuracy (Expected local) splits to give Accuracy
(Synchronic expected local) and Accuracy (Diachronic expected local), while Accuracy (Expected
global) splits to give Accuracy (Synchronic expected global) and Accuracy (Diachronic expected
global). The synchronic norms constrain the intrinsic nature of an agent’s belief function at
particular times in her epistemic life: at any such time t, the agent’s belief function bt must
have minimal expected local (respectively, global) inaccuracy by the lights of bt itself. And
the diachronic norms constrain the relation between an agent’s belief function at times t and
t′ between which the agent obtains evidence that places constraints C on the legitimate belief
functions at t′ or on the epistemically possible worlds at t′, or on both: bt′ must satisfy C
and must be minimal, amongst those belief functions that satisfy C, with respect to expected
local (respectively, global) inaccuracy by the lights of bt and over the possible worlds that are
epistemically possible at t′ and which satisfy the constraint C.

We should say a little more about the mathematical notion of expectation in this context.
Usually, expectations are defined only for probability measures. However, in the absence
of Probabilism—a claim that we wish to establish, not presuppose—there is no reason for
thinking that belief functions are probability measures. On the other hand, while probability
theory is the usual context in which expectations are defined, there is no objection in principle
to extending the definition to cover the case of belief functions that may not be probability
measures. Of course, if the belief function is not additive, we will not be able to prove the
equivalence of the definitions we have given (see Definitions 1 and 2 from before) with two
alternative definitions that are standard in probability theory: namely,

LExpb(I,A, E, x) =
∑

r∈Ran(I)

r · b({w ∈ W : I(A,w, x) = r})

GExpb(G, E, b′) =
∑

r∈Ran(G)

r · b({w ∈ W : G(w, b) = r})

But we will never use the alternative definitions, and we take the definitions that we have
given before to be the conceptually basic ones, so we do not regard this as a problem. It
would be great to support this view by having to hand a general and abstract theory of the
concept of expected value for which one could actually prove that given the presuppositions
of our approach the resulting notion of expected value must be the one that is employed in
definitions 1 and 2.8 We will have to leave any investigations into that topic for a different
occasion.

By using what we take to be the basic definitions of expectation, we avoid the objection
that Joyce (p. 589, [6]) raises against Rosenkrantz’s appeal to expected inaccuracy in [14].

8We thank Franz Dietrich for highlighting this in personal communication.
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Like us, Rosenkrantz favours quadratic global inaccuracy measures. He lists constraints on
global inaccuracy measures, and conjectures that they are satisfied uniquely by the quadratic
functions. However, he gives no proof of this claim, and, as Joyce notes, he gives no non-
circular arguments in favour of his constraints. In particular, Rosenkrantz demands of an
agent that she minimize her expected inaccuracy calculated over every possible partition of
the space simultaneously. As Joyce points out, unless her belief function is already assumed
to be a probability function, this will not be possible. Our precise versions of the Accuracy
norms are not vulnerable to this objection since we only ever appeal to the most fine-grained
partition of W that is conceptually available to the agent, i.e., the set of singletons of worlds
in W .

3.4 The status of our presuppositions

Now that the underlying formal framework of our theory has been made more explicit, how
are we going to argue for it? Short answer: we don’t. Not that there is nothing at all to say in
favour of it: Amongst other things, one could point out that some aspects of our geometrical
framework are purely conventional and thus do not need any further justification at all. E.g.,
we could have represented truth by, say, the real number 2, and accordingly worlds by vectors
that are like unit vectors but where the coordinate 1 is replaced by 2, and so forth.9 In other
words, the absolute position of truth values, worlds, and belief functions in the Euclidean
plane is arbitrary. However, fortunately, none of our results depends on it.

Furthermore, if that Kantian move helped at all, the choice of Euclidean geometry rather
than a non-Euclidean one could perhaps be grounded in our intuitions about space and
distance in general—although the ‘geometry of reason’ we are after can hardly be called
Kantian, and in a context in which information is represented geometrically, often metrics
other than the Euclidean one are used. In fact, one would be completely justified in wondering
why degrees of belief should “live” in a Euclidean space at all—after all, physical space turned
out to be non-Euclidean, and even from our internalist perspective it is perfectly reasonable
to assume that there might be agents whose “cognitive spaces” are non-Euclidean.10

Other aspects of the framework do not even have a conventional or intuitive character at
all: E.g., why is the notion of expected local inaccuracy given by taking the sum of weighted
local inaccuracies rather than their product or their maximum or whatever other function
comes to mind? Again, one could surely do better than just leaving the discussion at that
point: indeed, one should be able to defend some necessary conditions on expected inaccuracy
on the basis of assuming Ought-Can and the rest of the geometrical framework; it might also
be possible to prove representation theorems by which our expected local inaccuracy functions
would turn out to have an equivalent, and intrinsically plausible, qualitative or comparative
formulation; and so forth. But it is hard to see how any such justification would be ultimate.
Similarly: Why does each world have the same distance from each other world according to
their geometric representations? Is this because we have renormalized the scales of our given
coordinate system in a way that leads to this result trivially, or do we commit ourselves to a
substantial assumption that is at least implicitly pointing towards Objectivist Bayesianism?
We will have to say just slightly more about this last point in the sequel to this paper, but
otherwise we simply leave the status of the framework untouched, i.e., we take this geometrical

9Franz Huber cites a corresponding worry raised by Colin Howson in an unpublished manuscript (p. 2, [5]).
10We are grateful to Alan Hájek and Kenny Easwaran for highlighting this as an important open problem.
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framework as a presupposition of our justification of (Objectivist) Bayesianism without giving
it any further defence.

One final remark, though: we do regard the question of just how much work in our
argumentation is done by its geometrical Euclidean background framework as a very impor-
tant one; eventually, this paper ought to be complemented by one that abstracts from the
epistemic-geometrical models that we presuppose all and only the essential axioms that are
needed in order for our arguments to go through, and only then will it be possible to see
how much weight is carried by our Euclidean presuppositions. We will return to this as an
open question to be formulated in the final section of this paper. When we determine the
quadratic inaccuracy measures as the legitimate ones in section 5, this ought to be understood
in the way that they are the legitimate ones relative to the chosen Euclidean framework ; other
inaccuracy measures might be legitimate if given a different framework.11

4 The argument for Local and Global Inaccuracy Measures: An
overview

Section 5 is devoted to justifying two claims: Local Inaccuracy Measures and Global Inaccuracy
Measures. The former says that the legitimate local inaccuracy measures are the quadratic
scoring rules. The latter says that the legitimate global inaccuracy measures are the quadratic
functions of the Euclidean metric on Rn. In this section, we give an overview of the argument.

In fact, we will state three arguments for identifying these characterizations of the legit-
imate local and global inaccuracy measures. Each begins in the same way by imposing four
conditions that restrict the class of legitimate inaccuracy measures (both local and global) on
the basis of the principles highlighted in section 3. And each continues by noting that these
restrictions fail to exclude inaccuracy measures that give rise to a dilemma for the agent:
i.e., a situation in which the epistemic norms of the previous section, combined with these
inaccuracy measures, entail two mutually exclusive prescriptions for the agent. In each case,
when we restrict the class of legitimate inaccuracy measures to exclude those that lead to the
dilemma in question, we are left only with the quadratic inaccuracy measures and Local and
Global Inaccuracy Measures follow immediately.
Thus, in section 5, we give three separate arguments, each of which shares its first four

11We thank Branden Fitelson for making this point in discussion of our paper.
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premises with the others. We set them out here for ease of reference:

First argument Second argument Third argument
Shared premises (§5.1): Shared premises (§5.1): Shared premises (§5.1):
Local Norm & Dom Local Norm & Dom Local Norm & Dom
Global Norm & Dom Global Norm & Dom Global Norm & Dom
Local & Global Comp. Local & Global Comp. Local & Global Comp.
Local & Global Min. Inacc. Local & Global Min. Inacc. Local & Global Min. Inacc.
Dilemma 1 premise (§5.2.1): Dilemma 2 premise (§5.2.2): Dilemma 3 premises (§5.2.3):
Agreement on Inaccuracy Separability Cont. Differentiability

Agreement on Urgency

Conclusions Conclusions Conclusions
Local Inaccuracy Measures Local Inaccuracy Measures Local Inaccuracy Measures
Global Inaccuracy Measures Global Inaccuracy Measures Global Inaccuracy Measures

Each of the premises will be supported by our presuppositions—some strictly, some de-
feasibly. Furthermore, each of the arguments mentioned in this section will be seen to be
strictly valid, i.e., deductively valid given mathematics, as shown by the proofs given in the
appendix.

The conclusions of these three arguments will be our promised two characterizations of
legitimate inaccuracy measures which we want to establish in section 5:

Local Inaccuracy Measures If I : P(W ) ×W × R+
0 → R+

0 is a legitimate measure
of the local inaccuracy of a degree of credence x in a proposition A at a possible
world w, then there is λ ∈ R>0 such that

I(A,w, x) = λ(χA(w)− x)2

where χA : W → {0, 1} is the characteristic function of the proposition A.

Global Inaccuracy Measures If G : W × Bel(W ) → R+
0 is a legitimate measure of

the global inaccuracy of a belief function b at a possible world w, then there is
λ ∈ R>0 such that

G(w, b) = λ||w − bglo||2

where w and bglo are represented by vectors as in section 3.2 and ||u−v|| is the Eu-
clidean distance between vectors u and v: i.e. ||u−v|| =

√
(u1 − v1)2 + ... + (un − vn)2.

The claim that quadratic inaccuracy measures yield the only legitimate scoring rules is
similar to Selten’s central claim in [15]. Thus, it might seem that we could easily adapt Selten’s
ingenious argument to establish Local Inaccuracy Measures. However, at a number of points
in his proof, Selten relies on the assumption that belief functions are probability functions.
For his avowed purpose, this is perfectly legitimate. On the other hand, for the purposes of
this paper, we could not avail ourselves of a result premised upon this assumption to establish
Local Inaccuracy Measures, which we then in turn wish to use to derive Probabilism, amongst
other things (and, to the best of our knowledge, similar points can be made about much of
the excellent and highly evolved literature on scoring rules and decision theory). Thus, we
must beat our own path to our conclusion.
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As pointed out, we beat three paths, which begin together and diverge only at the final
premises of the arguments. Thus, we begin with the shared premises in section 5.1; then, in
section 5.2, we consider the three dilemmas that motivate the three different final premises.
All three arguments turn on mathematical theorems; their proofs are annexed in the appendix
at the end of the paper (section 7). Amongst the three arguments, we consider the final one
(section 5.2.3) to be the strongest and most convincing; but the first two arguments (sections
5.2.1 and 5.2.2) are easier to state, which is why we will turn to them before we give the third,
and philosophically central, argument.

5 Measuring inaccuracy

5.1 The shared premises

The first premise of each of our arguments combines local analogues of Joyce’s Normality
and Dominance conditions:12 the local version of Joyce’s Normality condition says that the
inaccuracy of degree of credence x in proposition A at world w ought to depend only on
the difference between x and the value of the characteristic function of A at w (that is, the
truth value of A at w); the local analogue of Dominance merely states that local inaccuracy
increases as this difference increases.

Local Normality and Dominance If I is a legitimate inaccuracy measure, then there
is a strictly increasing function f : R+

0 → R+
0 such that, for any A ⊆ W , w ∈ W ,

and x ∈ R+
0 ,

I(A,w, x) = f(|χA(w)− x|)

Note that this also implies that distances from the truth—χA(w) = 1—and distances from
falsity—χA(w) = 0—are measured in the same way, which is entailed by our geometrical take
on truth and falsity as points in a space. It is clear that once a Euclidean framework such
as ours is in place, a condition analogous to Local Normality and Dominance ought to hold
for global inaccuracy measures as well. Local Normality and Dominance asserts that the local
inaccuracy of a degree of credence x in proposition A at world w ought to be a strictly
increasing function only of the difference (i.e., the Euclidean distance) between x and χA(w).
Its analogue, Global Normality and Dominance asserts that the global inaccuracy of a global
belief function b at a world w ought to be a strictly increasing function only of the Euclidean
distance between the vector representation of b and the vector representation of w. That is,

Global Normality and Dominance If G is a legitimate global inaccuracy measure,
there is a strictly increasing function g : R+

0 → R+
0 such that, for all worlds w and

belief functions b ∈ Bel(W ),

G(w, b) = g(||w − bglo||)

Global Normality and Dominance is a consequence of taking seriously the talk of inaccuracy as
‘distance’ from the truth and it endorses the geometrical picture provided by Euclidean n-
space as the correct clarification of this notion. As explained in section 3.2, the assumption of
this geometrical picture is one of the presuppositions of our account, and we do not have much

12Respectively, p. 596 and p. 593 in [6].
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to offer in its defence, except for stressing that we would be equally interested in studying the
consequences of minimizing expected inaccuracy in a non-Euclidean framework. But without
doubt starting with the Euclidean case is a natural thing to do.

The third premise that is shared by each of our arguments for Local and Global Inaccuracy
Measures says that any function of the reals that gives rise to a legitimate local inaccuracy
measure, also gives rise to a legitimate global inaccuracy measure and vice versa:

Local and Global Comparability

(i) If I(A,w, x) = f(|χA(w)− x|) is a legitimate local inaccuracy measure, then
G(w, b) = f(||w − bglo||) is a legitimate global inaccuracy measure.

(ii) If G(w, b) = g(||w − bglo||) is a legitimate global inaccuracy measure, then
I(A,w, x) = g(|χA(w)− x|) is a legitimate local inaccuracy measure.

Again, this is a consequence of our geometrical interpretation of accuracy: we interpret in-
accuracy as distance from the truth, and we interpret distance as being given by a strictly
increasing function of the Euclidean metric. Since distances are independent of dimension, it
should always be possible to use legitimate local inaccuracy measures in order to determine
their global counterparts, and also the other way round; it is simply not relevant on which
dimensions Euclidean distances are measured.

The final premise shared by each of our three arguments for Local and Global Inaccuracy
Measures does nothing more than to lay down a convention: we will permit only inaccuracy
functions that take value zero when the distance between truth value and degree of belief or
between world and global belief function is zero.

Minimum Inaccuracy

(i) If I(A,w, x) = f(|χA(w)− x|) is a legitimate local inaccuracy measure, then
f(0) = 0.

(ii) If G(w, b) = g(||w − bglo||) is a legitimate global inaccuracy measure, then
g(0) = 0.

In the presence of Local and Global Comparability, we can derive (i) from (ii) and (ii) from (i).
Thus, we need only impose one of these conditions. However, we state both lest the reader
be given the mistaken impression that one or the other is more fundamental.

Together, Local Normality and Dominance, Global Normality and Dominance, Local and
Global Comparability, and Minimum Inaccuracy restrict the class of legitimate inaccuracy mea-
sures. However, as we shall see in the next section, they do not restrict them enough. There
are functions that satisfy these restrictions but which have undesirable properties. In the next
section, we call attention to one particular sort of undesirable property: that is, the property
of giving rise to a dilemma for an epistemic agent. In each case, the dilemmas in question con-
cern possible discrepancies between measuring inaccuracy in a local and in a global fashion.
We show that, when we exclude the inaccuracy measures that give rise to these dilemmas,
we are left with only the quadratic inaccuracy measures. This will complete our argument
for Local and Global Inaccuracy Measures. Quadratic inaccuracy measures will be the ones
that allow the local and the global perspective on belief functions to be compatible with each
other.
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5.2 Excluding dilemmas: Completing the three arguments

An inaccuracy measure gives rise to a dilemma for an agent if the prescription to be as
accurate as possible with respect to that inaccuracy measure entails two prescriptions for
the agent such that she cannot satisfy both together. In sections 5.2.1, 5.2.2, and 5.2.3, we
consider three dilemmas to which an inaccuracy measure may give rise. In each case, we
introduce a principle to exclude such inaccuracy measures and show that Local and Global
Inaccuracy Measures follow from this stipulation along with the four conditions enumerated in
section 5.1. The respective dilemmas are serious in the following sense: (i) They are about
minimizing inaccuracy, the central goal of our epistemic agents; (ii) they involve an agent’s
having to choose to follow either of two options or norms; (iii) there does not seem to be any
principled way of ranking the two options or norms, such that one would become epistemically
prior or superior to the other. Since the dilemmas below are serious in this sense, they have
to be avoided, and the only manner in which this can be done is by making sure that the two
options or norms never lead to different epistemic recommendations to the agent.

This—defeasible—argumentation in favour of principles by which the dilemmas may be
avoided can only be defeated in either of two ways: First of all, by attacking (iii), i.e., by
showing that for each of the three dilemmas there is in fact a way of ranking one option or
norm over the other. E.g., if someone were to put forward a sufficiently strong argument in
favour of a form of epistemic holism according to which considerations of global inaccuracy
always overrule considerations of local inaccuracy, then this would defeat the seriousness of
each of our three dilemmas. Secondly, by presenting yet another serious dilemma in the sense
of (i)–(iii) into which an agent is led by opting for our quadratic inaccuracy measures. In that
case, no inaccuracy measure whatsoever could protect an agent from being confronted with
some serious dilemma, and the best one could hope for would be a multitude of mutually
exclusive and partially defective choices of inaccuracy measures, such that each one of them
would avoid some epistemic dilemmas, but none of them would avoid all. We hope that at
least as things stand, our arguments are undefeated as yet.

5.2.1 Agreement on Inaccuracy

By Local and Global Comparability from section 5.1, if the function f gives rise to a legiti-
mate local inaccuracy measure, then it gives rise to a legitimate global inaccuracy measure
as well, and vice versa. However, the four conditions enumerated in section 5.1 can be shown
not to exclude functions f such that: (1) the global inaccuracy measure f(||w − bglo||) de-
termines the inaccuracy of a belief function at a world; (2) its counterpart local inaccuracy
measure f(|χA(w)− b(A)|) yields an indirect way of also determining the inaccuracy of a be-
lief function at a world by summing up the local inaccuracies of degrees of belief assigned to
world-propositions in the expected manner; and yet the outcomes of the two determination
procedures differ. Such a disagreement would give rise to a dilemma: the agent who uses
both the global inaccuracy measure and its local counterpart will come to two conflicting
conclusions concerning the inaccuracy of her beliefs. Of course, it might be the case that
despite of the numerical disagreement some formal properties are still shared by the globally
and by the indirectly locally determined inaccuracies of belief functions at a world—for in-
stance the ordering of belief functions according to their inaccuracies. And searching for the
belief function that minimizes expected inaccuracy first in a globally and then in a locally
induced way might still yield one and the same output even when the globally and the locally
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determined inaccuracies diverge in value for some or even all arguments. But the only way
for the agent to have a guarantee that the global and the local procedure will never lead to
any conflict whatsoever—and thus that the global and the local procedure always lead to the
same epistemic recommendations, independently of how sensitive the agent is to the exact
numerical inaccuracy values—is to postulate a convergence between the global and local way
of determining the inaccuracy of any belief function at any world.

Otherwise the agent’s situation would be analogous to that of a group of individuals
faced with making a collective judgement that is vulnerable to the paradoxes of judgement
aggregation. For instance, consider the stock example of the so-called discursive dilemma,
the most vivid of these paradoxes.13

Discursive Dilemma Three judges must decide whether or not to convict a defen-
dant. By law, the defendant may be convicted if, and only if, propositions P and
Q hold. The judges’ judgements on P and Q and the consequence for conviction
are recorded in the following table, along with the majority judgement in each
case.

P Q Conviction
Judge 1 True True Yes
Judge 2 True False No
Judge 3 False True No
Majority True True Yes/No

Thus, while the majority of the individual judgements concerning P and Q leads to
a conviction, the majority of the consequences of those judgements for conviction
leads to acquittal. Which conviction consequence reflects the aggregate of the
judges’ judgements? This is the discursive dilemma.

In the discursive dilemma, there is a tension between two algorithms by which to aggregate
individual judgements on two propositions by three individuals into a single judgement. The
first algorithm begins by deriving the conviction consequences from the individual judgements
on P and Q and then takes the majority verdict; the other begins by taking the majority
verdict on each of P and Q and then derives the conviction consequence. They lead to
conflicting results and it is not clear at all how to tell between them.

The agent who uses global and local inaccuracy measures that give rise to different values
for the inaccuracy of her belief function faces a similar problem. She faces the problem of
aggregating her various degrees of belief in various propositions into a value for the inaccuracy
of this belief function as a whole. She has at her disposal two obvious measures by which to
obtain this value: one is just given by applying the global inaccuracy function itself, the other
by summing up the relevant local inaccuracies. If they disagree, the agent faces an irresolvable
dilemma, analogous to that faced by the judges in the discursive dilemma.14

We exclude the possibility that gives rise to this dilemma by imposing the following
condition on legitimate inaccuracy measures which yields a principled way of relating global
and local inaccuracy judgements:

13See, for instance, [11].
14It would be great if we had some results which would show that even if the agent did not aggregagate

local inaccuracies by summing them up but rather by applying some other numerical operation to them that
would satisfy certain natural constraints, then a theorem similar to the one stated below could be derived.
Unfortunately, we do not have to offer anything like that at this point; so we have to leave this for future work.

18



Agreement on Inaccuracy Suppose I is a legitimate local inaccuracy measure.
Then, by Local Normality and Dominance, there is a strictly increasing function,
f : R+

0 → R+
0 such that I(A,w, x) = f(|χA(w)− x|). Further, by Local and Global

Comparability, G(w, b) = f(||w − bglo||) is a legitimate global inaccuracy measure.
Then, the following must hold: If b is a belief function and wi is a world,

G(wi, b) =
n∑

j=1

I({wj}, wi, b({wj}))

That is,

f(||wi − bglo||) =
n∑

j=1

f(|χ{wj}(wi)− b({wj})|)

From this, along with the four conditions stated in section 5.1, Local and Global Inaccuracy
Measures follow by the following theorem:

Theorem 3 The following two propositions are equivalent:

(i) f is strictly increasing and, for all belief functions, b, and worlds wi,

f(||wi − bglo||) =
n∑

j=1

f(|χ{wj}(wi)− b({wj})|)

(ii) There is λ ∈ R>0 such that, for all x ∈ R+
0 :

f(x) = λx2

This theorem is proved in section 7.

5.2.2 Separability of Global Inaccuracy

In the previous section, we drew attention to a possible dilemma that results from using
the legitimate local and global inaccuracy measures given by the same function f . And we
ruled out the possibility by introducing Agreement on Inaccuracy. In this section, we describe
another way in which an inaccuracy measure could give rise to conflicting values for the
inaccuracy of a belief function at a world.

To state the problem, we introduce the following terminology: if 1 ≤ j ≤ n and (a1, . . . , an) ∈
Rn

0 , then projj((a1, . . . , an)) is the projection of (a1, . . . , an) onto the linear subspace that is
spanned by the unit vectors that represent the worlds in W \ {wj}: that is,

projj((a1, . . . , an)) = (a1, . . . , aj−1, 0, aj+1, . . . an).

Hence, for i 6= j, projj(wi) = wi, whereas projj(wj) = (0, . . . , 0).
Now, as in the previous section, suppose that f is a function that gives rise to a local

inaccuracy measure I and a global inaccuracy measure G. And suppose further that our
epistemic agent’s global belief function is represented by the vector (a1, . . . , an). Then, given
a world wi, there seem to be two ways to measure the inaccuracy of the agent’s belief function
at wi that arise from combining I and G:
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(1) One might simply use G: that is, the inaccuracy of (a1, . . . , an) at wi is

G(wi, (a1, . . . , an))

(2) Or, for any world wj with i 6= j, one might take the inaccuracy of (a1, . . . , an) at wi to
be

I({wj}, wi, aj) + G(projj(wi),projj((a1, . . . , an)))

That is, one might take the local inaccuracy of the degree of credence in proposition
{wj} at world wi, and add it to the global inaccuracy at wi of the ‘remainder’ of
(a1, . . . , an) when world wj is not considered: that is, geometrically speaking, one adds
the global inaccuracy at world wi of the belief function represented by the projection of
(a1, . . . , an) onto the subspace spanned by W\{wj}.

As in the previous section, the conditions listed in section 5.1 do not rule out the possibility
that these two ways of measuring the inaccuracy of the agent’s belief function at wi disagree;
and, if they do, a dilemma might arise for the agent. As before, we rule out the functions f
that give rise to this dilemma by laying down a further principle:

Separability of Global Inaccuracy Suppose I is a legitimate local inaccuracy mea-
sure. Then, by Local Normality and Dominance, there is a strictly increasing func-
tion, f : R+

0 → R+
0 such that I(A,w, x) = f(|χA(w) − x|). Further, by Local and

Global Comparability, G(w, b) = f(||w − bglo||) is a legitimate global inaccuracy
measure. Then, the following must hold: for all wi, wj ∈ W with i 6= j,

G(wi, (a1, . . . , an)) = f(||wi − (a1, . . . , an)||) =
f(|χ{wj}(wi)− aj |) + f(||projj(wi)− projj((a1, . . . , an))||)

As in the case of Agreement on Inaccuracy, this condition may be justified by noting that, if
it were to fail, two legitimate ways by which an agent may determine her inaccuracy would
lead to different results in at least one situation; such disagreement would lead to a situation
analogous to that described in the discursive dilemma.

From Separability of Global Inaccuracy along with the four conditions stated in section 5.1,
Local and Global Inaccuracy Measures follow by the following theorem:

Theorem 4 Separability of Global Inaccuracy and Minimum Inaccuracy entail Agreement on
Inaccuracy (which, in combination with the assumptions of section 5.1, yields Local and Global
Inaccuracy Measures, by Theorem 3).

The theorem is proved in the appendix again (section 7).

5.2.3 Agreement on Directed Urgency

Before we can state our final dilemma—saving the best for last—we must restrict the class of
legitimate accuracy measures a little more than is done by the four conditions of section 5.1.
In particular, we demand:

Continuous Differentiability
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(i) If I(A,w, x) = f(|χA(w)− x|) is a legitimate local inaccuracy measure, then
f is continuously differentiable on R+

0 .

(ii) If G(w, b) = g(||w − bglo||) is a legitimate global inaccuracy measure, then g
is continuously differentiable on R+

0 .

Again, in the presence of Local and Global Comparability, we can derive (i) from (ii) and (ii)
from (i). However, again, we state both conditions to avoid the mistaken impression that
one is more fundamental than the other. Having said this, we will give our argument for
Continuous Differentiability only in terms of (i). This is not because we derive (ii) by inferring
it from (i), rather, it is because the argument for (ii) is exactly analogous and may be easily
reconstructed from the argument for (i).

Suppose that f is a function that gives rise to a local inaccuracy measure. By Local
Normality and Dominance, f is an increasing function. But it is clear that f(|χA(w) − x|)
should be also a continuous function of x, and thus f should be a continuous function. After
all, if f(|χA(w) − x|) were discontinuous as a function of x at some particular x0 ∈ R+

0 , an
agent’s accuracy could improve or deteriorate dramatically by an arbitrarily small change to
her degree of credence in the neighbourhood of x0. Thus, f must be continuous.

However, Continuous Differentiability demands something further. It demands that f be
continuously differentiable on R+

0 . To justify this claim, consider again the notion of expected
local inaccuracy, which we introduced in section 2. Given a belief function b, propositions
A,E ⊆ W , a degree of credence x in A, and a local inaccuracy measure I, we have interpreted
LExpb(I,A, E, x) as the expected value of the inaccuracy of x by the lights of b, with respect
to I, and over the epistemically possible worlds w ∈ E.

Now, if I were a legitimate local inaccuracy function, the function
LExpb(I,A, E, x) would provide not only a measure of the expected inaccuracy of x in A
by the lights of b, with respect to I, and over E. It would provide also a means by which to
measure the urgency and direction—in short, the directed urgency—with which an agent for
whom E is the set of epistemically possible worlds ought to change her degree of credence
in A by the lights of some belief function b. Clearly, this measure would be provided by the
derivative of LExpb(I,A, E, x) with respect to x, were this derivative to exist. Wherever it
is defined, the absolute value of the function d

dxLExpb(I, A,E, x) measures the rate at which
the expected inaccuracy of x by the lights of b is changing (the slope of the tangent): thus,
by the lights of b, it would be more urgent to change degree of credence r in proposition A
than to change degree of credence s in the same proposition just in case the absolute value
of d

dxLExpb(I,A, E, x) evaluated at r were greater than that the absolute value of the same
derivative evaluated at s.15 Furthermore, if the sign of d

dxLExpb(I,A,E, x) evaluated at r
differed from the sign of the same derivative evaluated at s, then the degree of credence r in
proposition A ought to be increased when the degree of credence s in the same proposition
ought to be decreased, or vice versa. Indeed, only the derivative of LExpb(I, A,E, x) could
supply the agent with this sort of information. Thus, if I is to be a legitimate local inac-
curacy measure, then d

dxLExpb(I,A,E, x) should be defined on R+
0 , since there ought to be

a measure of directed urgency that an agent can use to determine a local recommendation
of where to go epistemically and, as it were, how quickly she should move. If Ought-Can by
itself does not support this claim sufficiently, then hopefully it does so in conjunction with the

15Gibbard, too, interprets the derivative of the inaccuracy measure as a measure of the urgency of updating
([3]).
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geometrical framework that we presuppose. In any case, it is straightforward to show that, if
d
dxLExpb(I, A,E, x) is defined on R+

0 , for every belief function b, propositions A,E ⊆ W , and
degree of credence x, then I(A,w, x) must be differentiable on this domain as well. Thus, if
I(A,w, x) = f(|χA(w) − x|), then f must be differentiable on R+

0 . Of course, this argument
requires some amount of idealization, since for all “real world” cases in which an agent ought
to determine the directed urgency of a belief change, computing small real-valued differences
rather than infinitesimal ones should be sufficient.16 But if the agent wants to be certain
about this, whatever the level of precision required, then f ought to be differentiable.

What’s more, just as we wish our local inaccuracy measure to be a continuous function of
the degree of credence whose inaccuracy it is measuring, we would like our directed urgency
measure to be a continuous function of the degree of credence the directed urgency of the
change to which it is measuring: we would not wish the urgency and direction by which an
agent should change her degree of credence to change drastically after an arbitrarily small shift
in her degree of credence. From which the local part of Continuous Differentiability—namely,
(i) from above—follows.17

As we mentioned above, our argument in favour of the global part of Continuous Dif-
ferentiability—namely, (ii)—is analogous to the argument just given in favour of the local
part. Focusing just on propositions A which are singleton propositions of the form {wj} for
j = 1, ..., n, we say that if G(w, b) = g(||w − bglo||) is a legitimate global inaccuracy measure,
then it also ought to give rise to a measure of the urgency with which an agent must change
her degree of belief such a singleton proposition. Given a belief function b, then the urgency
to change the degree of belief x in proposition {wj} for an agent with belief function b′ by
the lights of b would be given by

d

dx
GExpb(G, E, (b′({w1}), . . . , b′({wj−1}), x, b′({wj+1}), . . . , b′({wn}))

if this derivative were to exist (and which, given Continuous Differentiability, indeed exists).
And, as in the local case, its sign would indicate the direction in which the change must
occur. Thus, we interpret the derivatives both of expected global inaccuracy and expected
local inaccuracy as measures of directed urgency. Granted this, we claim that these two
measures ought to agree on singleton propositions whenever the global and local inaccuracy
measures from which they arise are based on the same strictly increasing and continuously
differentiable function, f . This is the content of Agreement on Directed Urgency.

Agreement on Directed Urgency If I(A,w, x) = f(|χA(w) − x|) and G(w, b) =
f(||w − bglo||) are legitimate local and global inaccuracy measures respectively,
and if f is differentiable, then, for all belief functions b and b′ and all worlds
wj ∈ W ,

d
dxLExpb(I, {wj}, E, x) =
d
dxGExpb(G, E, (b′({w1}), . . . , b′({wj−1}), x, b′({wj+1}), . . . , b′({wn}))

Suppose this condition were not to hold. Then the agent who employed these measures of
inaccuracy, and the measures of directed urgency to which they give rise, would be left with

16Alan Hájek and Kenny Easwaran pointed this out to us.
17If this little transcendental argument is not convincing enough, here is a much more mundane thought:

let us restrict ourselves just to ‘geometrically nice’ local and global inaccuracy measures. But in order to be
‘geometrically nice’, these measures will have to be given by continuously differentiable functions.
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a dilemma. Where (1) the local measure of directed urgency for {wj} differed from (2) the
global measure of directed urgency for the coordinate wj , she would be unable to determine the
urgency with which she must update her belief in order to minimize her expected inaccuracy,
and perhaps even the direction in which her update should proceed; the two measures would
give conflicting values between which she could not choose in a principled way.

Together with Continuous Differentiability and the four conditions stated in section 5.1,
Agreement on Directed Urgency entails Local and Global Inaccuracy Measures by means of the
following theorem:

Theorem 5 The following two propositions are equivalent:

(i) f : R+
0 → R+

0 is strictly increasing and continuously differentiable, f(0) = 0, and, for
all belief functions b ∈ Bel(W ), all wj ∈ W , and all a1, . . . , aj−1, aj+1, . . . , an ∈ R+

0 :

d

dx

∑
wi∈W

b({wi})f(|χ{wj}(wi)− x|)

=
d

dx

∑
wi∈W

b({wi})f(||wi − (a1, . . . , aj−1, x, aj+1, . . . , an)||)

(ii) There is λ ∈ R>0, such that, for all x ∈ R+
0 :

f(x) = λx2

The proof is given in section 7.

6 A look ahead to the sequel and to future work

This concludes our argument for Local and Global Inaccuracy Measures and, with it, our defence
of the four mathematically precise versions of the Accuracy norm introduced in section 2, that
is, the synchronic local and global versions and the diachronic local and global versions, now
supplied with the right inaccuracy measures.

In the sequel to this paper, we investigate the consequences of these norms. Before con-
sidering some open questions about our approach, we report the results of that investigation:

(1) From the synchronic local version of Accuracy, we derive Probabilism.

(2) From the diachronic local version of Accuracy, we derive Conditionalization.

(3) From a related, but much stronger norm, we derive Uniform Distribution.

(4) We show that, in the situations normally assumed to be covered by Jeffrey’s updating
rule, there is no updating rule that satisfies the diachronic local version of Accuracy.
However, the diachronic global version can be satisfied. We show that Jeffrey’s updating
rule sometimes violates this diachronic version of the norm, unless the so-called postulate
of rigidity is not required by fiat, and we describe the alternative updating rule that
satisfies it.

We finish with five open questions that point towards future research:
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• How can the approach taken in this paper be extended to the case of an infinite set of
worlds; in particular, how can it be extended to the case of a non-denumerable set of
worlds? What role does countable additivity play in such extensions?

• Which of our conclusions depend essentially on our geometrical background machinery
being Euclidean? Which conclusions can be drawn in a non-Euclidean setting?

• How can the theory be translated into a more abstract system of axiomatic constraints
on both belief update and the geometrical background system (along the lines of Joyce,
but also Greaves & Wallace [4])? How robust are our results if, at the relevant places,
summing up of inaccuracies gets replaced by any numerical operation that satisfies some
set of plausible constraints?

• How does the theory relate to theories of verisimilitude in which relational truthlikeness
is analysed in terms of the expected degree of truthlikeness (as in Niiniluoto’s [10] theory
of estimated truthlikeness)?

• How does our theory of expected inaccuracy work in a framework that permits partial
beliefs in self-locating propositions? Such an application would cover the well-known
Sleeping Beauty problem. See [8] for a related attempt, where it is assumed that
quadratic inaccuracy measures provide the only legitimate scoring rule.

• Could a variant of our theory of expected inaccuracy justify probabilistic methods of
judgement aggregation or amalgamation?

(To be continued by the sequel, ‘An Objective Justification of Bayesianism II: The Conse-
quences of Minimizing Inaccuracy’.)

7 Appendix: Proofs of Theorems 3, 4, and 5

In this section, we prove the three theorems used to argue for Local and Global Inaccuracy
Measures in section 5.

7.1 Proof of Theorem 3

It will suffice to show that the following two propositions are equivalent:

(i’) g is strictly increasing and, for all belief functions, b, and worlds wi ∈ W ,

g(||wi − bglo||2) =
n∑

j=1

g(|χ{wj}(wi)− b({wj})|2)

(ii’) There is λ ∈ R>0, such that, for all x ∈ R+
0 :

g(x) = λx

Suppose (i’) and (ii’) are equivalent. Then, if (i), then g(x) = f(
√

x) satisfies (i’) and thus
(ii’), so f(

√
x) = λx, which gives (ii). Similarly, if (ii), then g(x) = f(

√
x) satisfies (ii’) and

thus (i’), so f satisfies (i). Thus, we will prove the equivalence of (i’) and (ii’).
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First, we show that (ii’) implies (i’). Thus, suppose g(x) = λx. Clearly, g is strictly
increasing. Now suppose that b is a belief function and wi a world; then

λ||wi − bglo||2 = λ
[
b({w1})2 + · · ·+ (1− b({wi}))2 + · · ·+ b({wn})

]
= λ

n∑
j=1

|χ{wj}(wi)− b({wj})|2

Thus, (ii’) implies (i’).
Now, we show that (i’) implies (ii’). Our strategy is to show that, from (i’), it follows

that, for any x, y ∈ R+
0 , g(x + y) = g(x) + g(y). Since, by (i’), g is also strictly increasing,

(ii’) follows by Cauchy’s classical result that all monotone additive functions on R are linear
on R.18

Thus, suppose x, y ∈ R+
0 . Then let b({w1}) = · · · = b({wn−2}) = 0, b({wn−1}) =

√
x, and

b({wn}) = 1−√
y. Then, by (i’),

g(||wn − (0, . . . , 0,
√

x, 1−√
y)||2) = g(|0−

√
x|2) + g(|1− (1−√

y)|2)

From this, we have g(x + y) = g(x) + g(y), as required. �

7.2 Proof of Theorem 4

Consider the following statements:

(i) f is strictly increasing, f(0) = 0, and, for all belief functions b and all worlds wi and wj

such that i 6= j,

f(||wi − bglo||) =

f(|χ{wj}(wi)− b({wj})|) + f(||projj(wi)− projj((a1, . . . , an))||)

(ii) f is strictly increasing and, for all belief functions, b, and worlds wi,

f(||wi − bglo||) =
n∑

j=1

f(|χ{wj}(wi)− b({wj})|)

We must show that (i) entails (ii). Suppose (i) holds. Then, by repeatedly separating the
local inaccuracy measure from the global one, we obtain:

f(||wi − bglo||) =
∑n

j=1 f(|χ{wj}(wi)− b({wj})|) +

f(||proji(wi)− projn(projn−1( . . . proj2(proj1((a1, . . . , an))) . . . ))||)
But

f(||proji(wi)− projn(projn−1( . . . proj2(proj1((a1, . . . , an))) . . . ))||) = f(0) = 0

by Minimum Inaccuracy. Thus, (ii), as required. �

18In fact, we need a slightly different version, which states that all monotone additive functions on R+
0 are

linear on R+
0 . Suppose g : R+

0 → R+
0 is additive on R+

0 . Then define g′ : R→ R as follows:

g′(x) =


g(x) if 0 ≤ x
−g(−x) if x < 0

Then it is easy to show that g′ is additive and monotone on R if g is additive and monotone on R+
0 . Thus, g′

satisfies the hypotheses of Cauchy’s result. For the proof of Cauchy’s result, see [1].
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7.3 Proof of Theorem 5

For reasons analogous to those given in the proof of Theorem 3, it will suffice to show that
the following two statements are equivalent:

(i’) g : R+
0 → R+

0 is strictly increasing and differentiable, g(0) = 0, and, for all belief
functions b ∈ Bel(W ) and wj ∈ W :

d

dx

∑
wi∈W

b({wi})g(|χ{wj}(wi)− x|2)

=
d

dx

∑
wi∈W

b({wi})g(||wi − (a1, . . . , aj−1, x, aj+1, . . . , an)||2)

(ii’) There is λ ∈ R>0, such that, for all x ∈ R+
0 :

g(x) = λx

First, we prove that (ii’) implies (i’). If λ ∈ R>0 and g(x) = λx, then g is certainly strictly
increasing and differentiable: indeed, g′(x) = λ. Thus, by straightforward differentiation and
direct calculation, if a1, . . . , aj−1, aj+1, . . . , an ∈ R+

0 , then

d

dx

∑
wi∈W

b({wi})g(|χ{wj}(wi)− x|2)

=
∑

wi∈W

b({wi})[−2λχ{wj}(wi) + 2λx]

=
d

dx

∑
wi∈W

b({wi})g(||wi − (a1, . . . , aj−1, x, aj+1, . . . , an)||2)

as required.
Next, we prove that (i’) implies (ii’). Our strategy will be to show that (i’) implies that

g′ is constant. This will suffice, since, by (i’), g is increasing, so λ > 0. We do this in two
stages. First, we prove that, on the assumption of (i’), g′(1 + x) = g′(1) on R+

0 and then we
prove that, on the assumption of (i’), g′(x) = g′(x + 1) on R+

0 .
Thus, suppose (i’) holds. We wish to show that g′(x + 1) = g′(1) on R+

0 . So, suppose
a ∈ R+

0 . Then let j = 1, a2 =
√

a, and a3 = . . . = an = 0. Then, by (i’),

d

dx

∑
wi∈W

b({wi})g(|χ{w1}(wi)− x|2)

=
d

dx

∑
wi∈W

b({wi})g(||wi − (x,
√

a, 0, . . . , 0)||2)

But

d

dx

∑
wi∈W

b({wi})g(|χ{w1}(wi)− x|2)

=
d

dx

[
b({w1})g((1− x)2) + b({w2})g(x2) + . . . + b({wn})g(x2)

]
= −2(1− x)b({w1})g′((1− x)2) + 2xb({w2})g′(x2) + . . . + 2xb({wn})g′(x2)
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and

d

dx

∑
wi∈W

b({wi})g(||wi − (x,
√

a, 0, . . . , 0)||2)

=
d

dx
[b({w1})g((1− x)2 + a) + b({w2})g(x2 + (1−

√
a)2) +

b({w3})g(x2 + a + 1) + . . . + b({wn})g(x2 + a + 1)]
= −2(1− x)b({w1})g′((1− x)2 + a) + 2xb({w2})g′(x2 + (1−

√
a)2) +

2xb({w3})g′(x2 + a + 1) + . . . + 2xb({wn})g′(x2 + a + 1)

Thus, taking x = 0, we have

−2b({w1})g′(1) = −2b({w1})g′(1 + a)

which gives g′(1) = g′(1 + a), as required.
Now we wish to show that g′(x) = g′(x+1) on R+

0 . Thus, suppose a ∈ R+
0 . Then let b be a

belief function in Bel(W ) such that b({w2}) = 1 and b({w1}) = b({w3}) = . . . = b({wn}) = 0;
and let a2 = . . . = an = 0. Then, by (i’),

d

dx
g(|χ{w1}(w2)− x|2) =

d

dx
g(||w2 − (x, 0, 0, . . . , 0)||2),

which gives g′(x2) = g′(x2 + 1) for x ∈ R+
0 such that x 6= 0 and thus g′(x) = g′(x + 1) for

x ∈ R+
0 such that x 6= 0, since x2 is bijective between R+

0 and R+
0 . Thus, since g′ is continuous

on R+
0 , g′(x) = g′(x + 1) for x ∈ R+

0 . Thus, for all x ∈ R+
0 , g′(x) = g′(x + 1) = g′(1), so g′ is

constant on R+
0 . This completes our proof. �
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