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WHAT IS THE “EQUAL WEIGHT VIEW”?

A B S T R A C T

In this paper, we investigate various possible (Bayesian) precisifications of
the (somewhat vague) statements of “the equal weight view” (EWV) that
have appeared in the recent literature on disagreement. We will show that
the renditions of (EWV) that immediately suggest themselves are untenable
from a Bayesian point of view. In the end, we will propose some tenable
(but not necessarily desirable) interpretations of (EWV). Our aim here will
not be to defend any particular Bayesian precisification of (EWV), but rather
to raise awareness about some of the difficulties inherent in formulating such
precisifications.

1. I N T R O D U C T I O N

Suppose two agents, S 1 and S 2, are epistemic peers regarding a proposition p: that
is, suppose S 1 and S 2 are equally competent, equally impartial, and equally able to
evaluate and assess the relevant evidence regarding p (we will call such propositions
p peer-propositions for S 1 and S 2). After carefully reflecting on the salient evidence for
p, suppose S 1 and S 2 discover that they disagree about p. For instance, S 1 might
believe the defendant is guilty, while S 2 believes the defendant is innocent. Or S 1
might believe that free will and determinism are incompatible, while S 2 believes
that the two views are compatible. More generally, S 1 and S 2 might assign different

credences to p. Examples of peer disagreement (in each of these senses) are common
in everyday life, in philosophy, and in many other disciplines.
Question: How should we, if at all, revise our beliefs (regarding p) upon

discovering that we disagree with someone we take to be our epistemic peer
(regarding p)? Recently several authors have taken this question up and proposed
a number of different views. One currently popular and prominent view is the
so-called equal weight view (EWV) of peer disagreement.1

In this paper, we will investigate various possible precisifications of the
(somewhat vague) notions of “equal weight” that are floating around this literature.
We will show that various proposals that immediately suggest themselves are
untenable. In the end, we will propose some tenable (but not necessarily desirable)
interpretations of “equal weight”. Throughout our discussion, we will assume
a (broadly) Bayesian framework. Our aim here is not to defend any particular
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Bayesian precisification of EWV, but rather to raise awareness about some of the
difficulties inherent in formulating such precisifications.

2. S O M E I N T U I T I O N S B E H I N D “ E Q U A L W E I G H T ”

Before we get into our investigation of EWV, it will be useful to see what motivates
the view in the first place. Consider the following case of peer disagreement from
Christensen (2007, 193).

Suppose that five of us go out to dinner. It’s time to pay the check, so the question
we’re interested in is how much we each owe. We can all see the bill total clearly, we all
agree to give a 20 percent tip, and we further agree to split the whole cost evenly, not
worrying over who asked for imported water, or skipped desert, or drank more of the
wine. I do the math in my head and become highly confident that our shares are $43
each. Meanwhile, my friend does the math in her head and becomes highly confident
that our shares are $45 each. How should I react, upon learning of her belief?

According to Christensen, the answer is as follows:

If we set up the case in this way, it seems quite clear that I should lower my confidence
that my share is $43, and raise my confidence that its $45. In fact, I think (though this
is perhaps less obvious) that I should now accord these two hypotheses roughly equal
credence.

This passage contains a rather clear statement of the EWV, according to which S 1
and S 2 should assign “roughly equal credence” to p upon learning that they assign
different credences to p. We’ll consider various precisifications of this (and other)
ideas about EWV below.
Despite the intuitive appeal of the view, proponents of the view have so far

failed to give a precise diachronic rule for “peer updating”, a rule that would state
explicitly what S 1 is to do if she discovers her credal value in p is different from her
peer’s credal value in p.
To make things more precise, let Pr0i (p) be the credence Si assigns to p at t0, and

let Pr1i (p) be the credence Si assigns to p at t1, where t1> t0, and between t0 and
t1, S 1 and S 2 learn that Pr01(p) �= Pr02(p).2 What we seek is a rule for (or at least a
more precise characterization of ) what Pr11(p) and Pr

1
2(p) should be in light of S 1

and S 2 learning about their disagreement regarding p at t0.
Below, we will consider a few different precisifications of an “equal weight rule”

EWR for peer updating. Before we discuss the various precisifications, we will lay
down some intuitive constraints on EWR that have been discussed in the literature
on probability aggregation.

Probabilism (P): Pr11(·) and Pr12(·) should be probability functions.
Conditionalization (C): Pr11(·) and Pr12(·) should respect conditionalization as a
constraint on the relationship between Pr11(·) and Pr01(·), and Pr12(·) and Pr02(·).
(This will be clarified below.)
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Unanimity (U): Pr11(·) and Pr12(·) should not force new point-wise
disagreements about credence values concerning peer-propositions on which
S 1 and S 2 already agree (at t0).

Agreement (A): Pr11(p)=Pr12(p) for all peer propositions p, i.e., S1 and S2
should be in agreement on all peer propositions p (at t1).

Irrelevance of Alternatives (IA): Pr11(p) and Pr
1
2(p) should each be functions

of Pr01(p) and Pr
0
2(p) for each peer-proposition p. That is, for each peer-

proposition p, Pr11(p) = f1[Pr01(p), Pr
0
2(p)], and Pr

1
2(p) = f2[Pr01(p), Pr

0
2(p)] or

some functions f 1 and f 2.

Preservation of Conditional Independencies/Dependencies (PCI): Pr11(·)
and Pr12(·) should neither reverse initially agreed-upon assessments of
conditional independence/dependence (according to Pr01(·) and Pr02(·)),
nor force new disagreements about relations of conditional probabilistic
independence/dependence (already agreed upon at t0) among the set of peer-
propositions for S 1 and S 2.

As mentioned, these conditions aren’t new with us. Analogues of these
conditions have been discussed extensively in the literature on Bayesian judgement
aggregation, and a number of “impossibility results” on various combinations of
these conditions have been known since the 60’s.3 While the aggregation problem
is different than the peer-updating problem, we will see below that they share some
common features. First, let’s take a closer look at the above conditions.
(P) and (C) are fundamental Bayesian principles. We won’t argue for these here,

since they are basic theoretical presuppositions of the very framework we are
adopting.4

We think (U) should be uncontroversial from the point of view of defenders
of EWV. The whole idea behind EWV is that we should “minimize” or “reduce”
disagreements with peers (on peer-propositions). If we do so by adopting an EWR
which is (sometimes) forced to generate new disagreements (on peer-propositions)
that weren’t there before, then this would undermine the very spirit of EWV.
So, we’ll think of these first three conditions ((P), (C), and (U)) as basic desiderata

for any adequate Bayesian EWV-rule. The next three conditions, on the other hand,
will prove to be more controversial (and less sacrosanct) from a Bayesian point of
view.
Constraint (A), which is strictly logically stronger than constraint (U), also seems quite

sensible from an EWV point of view. Ideally, an EWV-er wants to both preserve

existing agreements and eliminate existing disagreements on all peer-propositions.
However, as we will see toward the end of the paper, it is not clear (on reflection)
whether this stronger constraint (A) should be imposed on a Bayesian EWV-er.
Constraint (IA) is a standard assumption made in the context of Bayesian

strategies for probability aggregation (i.e., deciding on a consensus probability
assignment for a group of Bayesian agents). Whether it should be imposed as a
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constraint on EWV-update rules is far less clear. While (IA) may sound plausible, it
conflicts with EWV in the presence of another constraint that has been discussed
in the literature on probability aggregation, namely, the preservation of conditional
independencies/dependencies (PCI) (Wagner 1984).
Constraint (PCI) has been more controversial than the other constraints in

the literature on Bayesian aggregation.5 Here are some considerations in support
of (PCI) from a peer-updating perspective. First, from an epistemic point of
view, assessments of (in)dependence can reflect evidential relationships induced
by an agent’s credence function (viz., Bayesian confirmation theory; see also
Jeffrey (1987)). In such contexts, we think it would be undesirable for EWR
to undermine agreed-upon assessments of these important relations. Second,
dismissing (PCI) can have undesirable consequences for Bayesian decision theory.
Standard Bayesian decision-theoretic resolutions to Newcomb’s problem involve
some appeal to the fact that, while the presence or absence of the $1M in the
opaque box is unconditionally probabilistically dependent on what the agent decides
to do, it is probabilistically independent of what the agent does, conditional on the
appropriate casual hypothesis. As a result, in the absence of (PCI), it would be
possible for an agent to start out as a two-boxer but end up a one-boxer simply
because she disagreed with an epistemic peer on some of the initial probability
assignments in a salient representation of Newcomb’s problem – even if there was
no disagreement about causal structure either before or after learning about the
credal disagreement. This also strikes us an unacceptable consequence of denying
(PCI).
In the aggregation context, (PCI) and (IA) jointly entail that one of the “peers”

is actually a dictator, in the sense that their credence function is the only acceptable
“consensus probability function” (Wagner 1984). An analogous problem will
plague EWV in some cases (one of which will be discussed below). Of course,
this is clearly in conflict with the spirit of EWV. As a result, an EWV-theorist
cannot (in general) accept both (IA) and (PCI).6 Ultimately, we will present an
EWV-update rule that can always satisfy (PCI), but which does not satisfy (IA).
From a probabilistic point of view, we think this makes sense, since (IA) assumes a
kind of “locality” that probabilists shouldn’t accept. As we’ll soon see, probability
distributions have a kind of “non-local” or “holistic” character that makes (IA)
untenable for a Bayesian EWV-theorist.
We now turn to various Bayesian proposals for precisifying the intuitive

characterizations of “equal weight”.

3. P R E C I S I F I C A T I O N S O F “ E Q U A L W E I G H T ”

3.1. Straight Averaging (a.k.a. “Splitting the Difference”)

One natural way to render equal weight’s peer updating rule would be to apply what
we call two-person straight averaging. On this approach, when S 1 and S 2 discover they
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Table 1. A simple two-atomic-proposition (SA)-example.

p q Pr01(·) Pr02(·) Pr1SA(·)
T T 0.1 0.55 0.325

T F 0.2 0.25 0.225
F T 0.3 0.15 ??
F F 0.4 0.05 ??

disagree regarding a peer-proposition p, they should both adopt a new credence for
p that is the straight average of their initial credences for p.7 More precisely:

Straight Averaging (SA): If S 1 and S 2 find themselves in disagreement
regarding a peer-proposition p at t0, then:

Pr11(p) = Pr12(p) =
Pr01(p)+ Pr02(p)

2

From the perspective of equal weight, (SA) has some intuitively desirable
properties. Intuitively, (SA) coheres nicely with some informal remarks in recent
literature. For instance, Kelly (forthcoming, 12) has us suppose that

at time t0, immediately before encountering one another, my credence for H stands
at .8 while your credence stands at .2. At time t1, you and I meet and compare notes.
How, if at all, should we revise our respective opinions? According to The Equal Weight
View, you and I should split the difference between our original opinions and each give
credence .5 toH.

As stated, however, (SA) is at best incomplete; and at worst synchronically incoherent.
This is because (SA) doesn’t say what we should do in cases where changes to
non-peer propositions are forced (on pain of synchronic incoherence) by averaging
the agents’ credences on the peer propositions in the space. To see the problem
vividly, consider the following simple toy case (Table 1) involving agents S 1 and S2
who entertain just two “atomic” propositions: p and q.8

Let’s assume that there are exactly two peer-propositions in this case: p&q

and p& ∼ q .9 If S 1 and S 2 both follow (SA), then all we know for sure about
distributions resulting from (SA) is what we’ve written under the heading Pr1SA(·)
in Table 1. Because neither ∼p& q nor ∼p&∼q are peer-propositions for S 1 and
S 2, (SA) – as stated – implies nothing about what should happen to their credence
values at t1. Moreover, we cannot just leave the credences of ∼p& q or ∼p&∼q

unchanged from t0 to t1. If we were to do that, then both S 1 and S 2 would end up
with credence functions that violate (P). This is because a probability assignment
must assign probabilities to the four state descriptions in such a way that they
sum to exactly 1, and here neither agent’s credence function will satisfy this
constraint – unless changes are made to the credences of the non-peer ∼p& q and
∼p&∼q. So, in order to satisfy both (SA) and (P), both S 1 and S 2 must make
changes to the credences they assign to non-peer-propositions. But precisely what
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changes should they make? Perhaps this question need not be answered by an EWV-
rule per se. But this example shows that a conservative rendition of (SA) –which
instructs us to change only peer-proposition credences – is synchronically incoherent.
For this reason, we will include within our EWV-rules some (quasi-conservative)
advice for changing non-peer credences when such changes are mandated on pain
of synchronic incoherence. Specifically, we propose adding a “minimal change”
clause to (SA) as follows.10

Straight Averaging +Minimal Change (SAMC): If S 1 and S 2 find themselves
disagreeing about a peer-proposition p at t0, then

Pr11(p) = Pr12(p) =
Pr01(p)+ Pr02(p)

2

And if other changes must be made to Pr01(·) and/or Pr02(·) in order to ensure
satisfaction of (P), then the other changes should be made so as to minimize the
distance11 of Pr11(·) and Pr12(·) from the initial distributions Pr01(·) and Pr02(·).
In Table 2 we compute the (SAMC) distributions for our example:

Table 2. A simple two-atomic-proposition (SAMC)-example.

p q Pr01(·) Pr02(·) Pr11(·) Pr12(·)
T T 0.1 0.55 0.325 0.325

T F 0.2 0.25 0.225 0.225
F T 0.3 0.15 0.175 0.275
F F 0.4 0.05 0.275 0.175

With this additional caveat, of course, (SAMC) is guaranteed to satisfy (P), and in
a “quasi-conservative” fashion. However, (SAMC) is not guaranteed to satisfy (C).
To see this, we need to clarify the meaning of (C) in the current context. We will use
the notation Pr0

+r

i (·) to denote the credence function Si would have were they to
learn (exactly) proposition r at (or just after) time t0. And we will use the notation
Prti(p) to denote the credence Si assigns to p as a result of the application of an
equal weight updating rule EWR (to their credence in p at time t). For instance,
in this context, Prti(p) will denote the credence Si assigns to p as a result of the
application of the SAMC updating rule (to their credence in p at time t). Now,
we’re ready to clarify (C):

Conditionalization (C): Suppose p, q, and p & q are peer-propositions for S 1
and S 2 (at t0 and t1), and also that q remains a peer-proposition for S 1 and S 2 (at t0)
on the supposition that p is true. Then, conditionalization imposes the following
two constraints:

Pr0
+p

i (q) = Pr0i (q|p) = Pr
0
i (p& q)

Pr0i (p)
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Table 3. The (SAMC)-example with p and q also peer-propositions.

P q Pr01(·) Pr02(·) Pr1i (·)
T T 0.1 0.55 0.325

T F 0.2 0.25 0.225
F T 0.3 0.15 0.225
F F 0.4 0.05 0.225

and

Pr0
+p

i (q) = Pr0i (q|p) = Pr
1
i (q &p)

Pr1i (p)

The first constraint in (C) is just the definition of (classical) Bayesian condition-
alization itself. The second constraint in (C) is a commutativity requirement. What
the second constraint says is that it shouldn’t matter whether we (a) learn p

first, and then do a peer-update or (b) do a peer-update first, and then learn p.
That is, the second constraint in (C) requires that the peer-update commutes with

conditionalization.12 Given this clarification of (C) in this setting, we can now see that
the example depicted in Table 1 will already yield a counterexample to (C). We only
need to add the assumption that p and q are also peer-propositions for S 1 and S 2
(and that q remains a peer-proposition for S 1 and S 2 at t0, on the supposition that p
is true). Once we add this assumption, (SAMC) forces S 1 and S 2 to share the same
distribution Pr1i (·) at t1, which is depicted in the final column of Table 3:
As a result, by the first (C)-constraint, we have:

Pr0
+p

1 (q) = Pr01(q|p) = Pr
0
1(p& q)
Pr01(p)

= 0.1
0.3

= 0.3333

Pr0
+p

2 (q) = Pr02(q|p) = Pr
0
2(p& q)
Pr02(p)

= 0.55
0.8

= 0.6875

And applying (SAMC) to these (disagreed-upon, peer) Pr0
+p

i (q)’s yields:

Pr0+p

1 (q) = Pr0+p

2 (q) = Pr0+p

i (q) =
0.3333+ 0.6875

2
= 0.5105

But this does not match what we get when we compute Pr0i (q|p) directly, by
applying the second (C)-constraint, as follows:

Pr0i (q|p) = Pr
0
i (q &p)

Pr0i (p)
= Pr

1
i (q &p)

Pr1i (p)
= 0.325
0.55

= 0.5909 �= 0.5105
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Therefore, the example depicted in Table 3 is a counterexample to (C) for the
(SAMC) updating rule. Moreover, the (PCI) constraint is also violated in this
example, since:

Pr01(q) = 0.4 > Pr01(q|p) = 0.3333, and
Pr02(q) = 0.7 > Pr02(q|p) = 0.5909, but
Pr1i (q) = 0.55 < Pr1i (q|p) = 0.5909.

Thus, (SAMC) also forces a reversal on the initially agreed-upon assessment of S 1
and S 2 that p and q are negatively dependent. After the (SAMC) peer-update, they
both change their mind about this and come to agree that p and q are positively

dependent. Since p and q are both peer-propositions in the present example, this is
also a counterexample to (PCI) for the (SAMC) updating rule.13

Two final notes on (SAMC). First, (SAMC) satisfies (U). Indeed, since S 1 and
S 2 will always end up having the same credences on all peer-propositions, (SAMC)
satisfies the stronger constraint (A). Second, (SAMC) satisfies (IA), since for each
peer-proposition p, the value of the new credence for p is a function (namely, the
straight averaging function) of the values of the old credences for p assigned by S 1
and S 2.
To sum up: because neither of the Straight Averaging rules can always satisfy both

(P) and (C), neither yields a satisfactory updating rule from a Bayesian perspective.
Nonetheless, perhaps there is some way to get “close” to straight averaging, while
still respecting these fundamental constraints (and perhaps other constraints as
well). We will consider several “approximate” versions of (SA) in the next section.

3.2. “Approximate” Straight Averaging

In the last section, we saw that (SAMC) can lead to unsatisfactory updates. Perhaps
straight averaging is not the best way to understand “equal weight” after all.
Interestingly, Christensen says that when faced with a disagreeing peer, “I should
come close to ‘splitting the difference’ between my friend’s initial belief and my own”
(2007, 203, emphasis ours). Inspired by this “approximate splitting” intuition, we
will now consider three “approximate” renditions of (SAMC), in increasing order
of logical strength. Here is the weakest of the three.

Approximate Straight Averaging +Minimal Change1 (ASAMC1): If S 1 and
S 2 find themselves disagreeing about a peer-proposition p at t0, then they should
each update on p so that:

Pr1i (p) ≈
Pr01(p)+ Pr02(p)

2

where Pr1i (p) is strictly between Pr01(p) and Pr
0
2(p)

14 and where the update is done in
a way that satisfies (P) and (C). If additional changes must be made (on non-peer
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propositions) to Pr01(·) and/or Pr02(·) in order to ensure satisfaction of (P) and (C),
then the other changes should be made so as to minimize the distance of Pr11(·)
and Pr12(·) from the initial distribution(s) Pr01(·) and Pr02(·), while maintaining
satisfaction of (P) and (C).
Rule (ASAMC1) is the weakest of the three “approximate” (SAMC) rules we

will consider, because it only requires that each peer end up “close to the average”
on each peer-proposition. This does not require that the peers end up close to each

other, since approximate equality is not a Euclidean relation (that is, the fact that two
numbers a and b are both close to the third number c does not imply that a and b

are close to each other, or, more formally, a ≈ c & b ≈ c� a ≈ b). We will consider
two strengthenings of (ASAMC1) below. For now, let’s see how (ASAMC1) fares
on the examples we’ve been discussing.
As it turns out, non-trivial constraints on possible values of ε will be forced by

(ASAMC1). Consider the example depicted in Table 3. It turns out that the only
way to satisfy (ASAMC1) in this case is if ε >1/16. So, for instance, if we had a
threshold of ε =0.05, we would not be able to satisfy (ASAMC1) in the example
depicted in Table 3.15

In this example, we can also satisfy (PCI), so long as ε >1/16. So, adding (PCI)
as an additional constraint to the problem does not make things any worse here. In
general (i.e., in all 2-atomic-proposition models16), this will be the case. That is, we
can always add (PCI) as an additional constraint to (ASAMC1) without imposing
additional constraints on possible values of ε.17

Interestingly, (IA) will not be satisfied by (ASAMC1), or any “approximate
splitting” rule, for that matter. This is because “approximate splittings” can be
achieved in multiple ways for the same pair of initial credence values. As such,there
can be no function(s) of said credence values that yields the (ASAMC1)-updated
values.18

Finally, (ASAMC1) is perhaps too weak in any event, since it allows peers to end
up with credences that are not close to each other on peer-propositions. And the spirit
of EWV seems to require that peers end up with credences (on peer-propositions)
that are close to each other, in addition to being close to the straight average of
(i.e., the midpoint between) the initial credence values. That suggests strengthening
(ASAMC1) to require that peers also end up close to each other.
This leads to (ASAMC2), which adds to (ASAMC1) the requirement that

Pr11(p)≈ Pr12(p). Because of the nature of “≈”, however, there remains an
important ambiguity in the statement of (ASAMC2). Here are two salient ways in
which peers might satisfy (ASAMC2).

1. Pr11(p)=Pr12(p)=Pr1c(p). On this reading, which we will label (ASAMC2.1),
agreement (A) is ensured on each peer-proposition. But because we cannot
(always) exactly “split the difference” betweenthe two initial credences (on
pain of incoherence – as was shown in the sections above), the consensus
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value Pr1c(p) will (sometimes) have to be closer to one of the initial credences than

it is to the other. As a result, one of the peers will have to make a larger change (or a

larger �) to their initial credence than the other peer does. So, while this reading has
agents reaching exact consensus on all peer-propositions, it does so in a way that
may seem untrue to the “equal weight” slogan, since the two peers will have
unequal “credence-�s”. This entails a violation of what we will call “equal
credence-�s”, or (EC�) for short.

2. Pr11(p)≈ Pr12(p), but Pr11(p) and Pr12(p) may remain unequal. On this reading,
which we will label (ASAMC2.2), exact consensus need not be reached on all
peer-propositions. That is, (A) is not ensured. But we will further precisify
(ASAMC2.2) so as to ensure that each updated credence Pr1i (p) is equally far

from the midpoint between the initial credences Pr0i (p). In this way, (ASAMC2.2)
will always satisfy “equal credence-�s” (EC�).

We will not take a stand here on which precisification of (ASAMC2) is a “better”
EWV-update rule. We think this will depend on the relative importance of (A) vs.
(EC�). If one insists on (A) being enforced, then one must give up (EC�). On
the other hand, if one is willing to live without (A), then one can enforce (EC�).
The important point for our purposes is that an EWV-er cannot have both (A) and

(EC�). So, defenders of EWVmust choose which of these two constraints is more
important, from an EWV point of view.
Be that as it may, (ASAMC1) and both precisifications of (ASAMC2) have formal

properties that are very similar. The same constraints on ε are forced on all three
(ASAMC)’s by (P) and (C). That is, (in the 2-atomic-p case) we don’t get stronger
constraints on ε imposed by the (ASAMC2)’s, even though they are (logically)
stronger than (ASAMC1). Also, (PCI) can always be satisfied by any of the three
(ASAMC) rules, and its satisfaction won’t (generally) require a larger ε than that
already required by the satisfaction of the synchronic and diachronic Bayesian
coherence constraints (P) and (C).
The bottom line here is that – so long as ε is sufficiently large – all three

(ASAMC)’s can always be successfully applied (and with very similar formal
constraints on ε). The only question will be whether (ASAMC) solutions can
be found that are within some ε-tolerance. As we saw above, even the fundamental
Bayesian coherence requirements (P) and (C) will sometimes force ε to be non-
trivially large in (ASAMC) updates. And by adding additional constraints (above
and beyond (PCI)) to an (ASAMC) update, one can force ε to be even larger
(see fn. 17). We leave it to the defenders of EWV to decide which additional
constraints might make sense, and how large ε should be allowed to get, in various
contexts. The purpose of this paper is merely to raise awareness about some of the
difficulties in formulating a precise EWV-update rule that is compatible with basic
Bayesian tenets. We conclude with a table summarizing some of the results we have
discussed.
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Table 4. Summary of properties of our EWV-update rules.

Can Rule (Always) Satisfy Condition?

Rule (P) (C) (U) (A) (EC�) (IA) (PCI)

(SA) NO19 NO YES YES YES YES NO
(SAMC) YES NO YES YES YES YES NO
(ASAMC2.1) YES YES YES YES NO NO YES
(ASAMC2.2) YES YES YES NO YES NO YES
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NOTES

∗ We thank the participants of the Sixth Annual Episteme Conference (especially Tomas
Bogardus, Fabrizio Cariani, David Christensen, Stew Cohen, and Rich Feldman) for
useful feedback on an earlier version of this paper.

1 Proponents of EWV (in various informal flavors) include Feldman (2006, 2007), Elga
(2007), and Christensen (2007).

2 In general, peers will learn more about “the circumstances of their disagreement” (Elga
2007) than merely Pr01(p)�=Pr02(p). We will assume that they also learn the numerical

values of Pr01(p) and Pr
0
2(p). That information will also be required for the sorts of

update-rules we’ll be considering. We’ll remain neutral on what else they might learn
about their disagreement. But we do think that the EWV idea makes the most sense
when the information they learn is restricted to the nature of their credal disagreement
qua credal disagreement. For instance, they may also learn things about intrinsic properties of
the credences they assign to 0 at t0 (e.g., that they are both “high”), which should (intu-
itively) not be taken into account by an update rule for responding to disagreement per se.
This is a subtle philosophical issue, which we won’t be able to delve into further here.

3 For an excellent survey of these results, see Genest and Zidek (1986).
4 See Greaves and Wallace (2006), Joyce (1998), and Jeffrey (2004). Note: we will only
need to assume here that the agents are synchronically and diachronically coherent over
very simple languages containing just two atomic sentences. As such, the variety of “ideal
Bayesian rationality” we will need here is quite minimal.

5 See Loewer and Laddaga (1985) and Wagner (1985) for the debate about (PCI).
6 A closely related “dictatorship” impossibility result follows from (IA) alone if it is
required to hold not only for the unconditional probabilities Pr11(p) and Pr

1
2(p), but

also for (all) conditional probabilities Pr11(p|·) and Pr12(p|·) (Dalkey 1972).
7 Lehrer & Wagner (1981, 1983) and Shogenji (2007) discuss averaging proposals for
aggregation. Kelly (forthcoming) calls this proposal “splitting the difference”.

8 For the purposes of this paper, we will only discuss very simple toy models in which
there are just two “atomic” (logically independent) propositions in the agents’ doxastic
spaces. Some of our results can be lifted to larger spaces, but the technical details
(constraint satisfaction, etc.) are exponentially complex. Our purpose here is just to give
some sense of the difficulties inherent in clarifying EWV. For this purpose, it is best to
give the simplest possible problematic examples. We leave it up to (Bayesian) EWV-ers to
think about more complex/realistic models.

9 This immediately raises questions about “the logic of peer-proposition-hood”. For
instance, does it follow from the fact that �p & q� is a peer-proposition that p and
q are also peer-propositions? For the present example to make sense, the answer to
this question must be “no”. We think this is the right answer. Here’s an intuitive
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counter-example to “conjunction-elimination for peer-proposition-hood”, which we
owe to David Christensen. You and I could be peers with respect to identifying flying
mammals, and also with respect to identifying flying animals in general. But the only
mammals I’m really interested in are bats. I don’t really know if people or whales or
platypuses are mammals, while you really know your mammals. So ifA is “that’s a flying
animal” and B is “that’s a mammal” we could be peers on the conjunctionA&B, but not
on B. Indeed, this looks like a case in which we’re peers on the conjunction A&B and

on A, but not on B (which, plausibly, is also what the structure of our first example here
is like). As far as we know, none of the defenders of EWV have discussed this “logic
of peer-proposition-hood” issue. Perhaps when they do, some interesting “logic” will
be discovered (and this may render some of our present examples otiose). Again, we
leave this for the (Bayesian) defenders of EWV to work out. We will assume no general
“logical laws” for peer-proposition-hood. We suspect that there are very few general
“logical laws” of this kind. Perhaps a Bayesian should say that the “peer-proposition-
hood” of one proposition (q) is determined by the “peer-proposition-hood” of another
(p) if the probability of q is a function of the probability of p. That “law” (which sounds good to
us, but which we won’t defend here) is consistent with all of our examples.

10 None of the impossibility (or possibility) theorems in this paper depend essentially on
what we say about such (P)-forced changes to non-peer credences. That is, nothing we
say here trades essentially on the specific choice of a “minimal change” forced-non-
peer-changes addendum to (SA). We choose this merely for simplicity and concreteness
(i.e., so that we have an SA-type rule that gives precise numerical advice in all examples,
etc.). Other rules/heuristics could be adopted for the forced non-peer changes, and
similar results would obtain. As with the “logic of peer-proposition-hood” (see fn. 9),
we leave these “forced-non-peer-change heuristics/rules” (which have also not been
discussed in the literature, as far as we know) to be worked-out with more generality
(and care) by the defendersof EWV-rules.

11 We will assume a Euclidean distance metric, i.e.,
√
(p1 − q1)2 + (p2 − q2)2. Other

metrics could be used (and similar results would obtain). But since we’re adding this
“minimal change” addendum to (SA) merely for simplicity and concreteness in our
presentation (see fn. 10 above), we won’t fuss too much over this choice. See Diaconis
& Zabell (1982) for a fascinating discussion of the connection between “minimal
change” (in the present sense) and Bayesian updating.

12 Some Bayesian defenders of EWV require that (ideally) the result of an EWV-
update should be equivalent to a (classical) conditionalization, which conditionalizes
“on whatever you [i.e., both of the agents in a symmetric peer case] have learned
about the circumstances of the disagreement” (Elga 2007, 490). If that’s right,
then both constraints of (C) will follow from the definition of (classical) Bayesian
conditionalization, since pairs of (classical) conditionalizations must commute. But even
if we don’t think of EWV-rules as equivalent to some conditionalization, we think (C)
should remain a desideratum for EWV-updates. We don’t have the space to defend this
claim here. But in general, we are sympathetic to commutativity as a requirement for
Bayesian updating. See Wagner (2002) for discussion.

13 Examples like this have also been discussed in the literature on Bayesian aggregation.
See Shogenji (2007) for an in-depth discussion of (C) – and its interactions with
conditions (P), (IA), and (PCI) – in the context of Bayesian aggregation.
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14 We impose this strict between-ness requirement so as to rule out dictatorial updates,
which revert to one of the two initial assignments. We will assume that a ≈ b iff
|a−b| < ε, for some “small” ε > 0. For simplicity, we’ll assume that the same ε is adopted

for each peer-proposition, and we won’t take a stand on what “small” means (or whether
any of these things are context-sensitive, etc.). As with our “minimal change” caveat
(fn. 10), these assumptions about “≈” and “ε” could be relaxed/changed. Again, we
leave such generalizations to the defenders of EWV.

15 Moreover, there exist similar examples in which ε is forced to be even greater. We have
been able to find examples like these in which ε is forced to be larger than 0.1. We
omit all technical details here, but a companion Mathematica notebook for this paper is
available for download at http://fitelson.org/ew.nb (a PDF version of the notebook
is at http://fitelson.org/ew.nb.pdf), which verifies all the mathematical claims made in
this paper. There, we present a decision procedure for the class of 2-atomic-proposition
models discussed here. That decision procedure is derived from a general decision
procedure for the probability calculus (called PrSAT), which is described in (Fitelson
2008).

16 These sorts of claims become very difficult to verify when more complex spaces
are involved (especially the constraints imposed by (PCI)). Again, we leave such
generalizations of the present models and results to the defenders of EWV.

17 We could further generalize our (ASAMC)-rules, by allowing additional constraints
C to be added into the updating and minimal-change steps. Our Mathematica code
(se fn. 15) could easily be changed to allow for arbitrary sets of constraints C (as long as
the C’s are jointly consistent with (P), (C), and (PCI), of course).

18 This is significant, because (IA) is implicated in most (if not all) of the “impossibility
theorems” in the aggregation literature (see Genest and Zidek (1986)). By relaxing (IA),
“approximate-splitting” EWV-approaches can avoid these impossibility results. As we
explain below, they yield some interesting possibility results.
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