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Bayesianism with a Human Face

What's a Bayesian?
Well, I'm one, for example. But not according to Clark Glymour (1980,

pp. 68-69) and some other definers of Bayesianism and personalism, such
as Ian Hacking (1967, p. 314) and Isaac Levi (1980, p. xiv). Thus it behooves
me to give an explicit account of the species of Bayesianism I espouse
(sections 1 and 2) before adding my bit (section 3, with lots ofhelp from my
friends) to Daniel Garber's treatment in this volume ofthe problem of new
explanation ofcommon knowledge: the so-called problem ofold evidence.

With Clark Glymour, I take there to be identifiable canons of good
thinking that get used on a large scale in scientific inquiry at its best; but
unlike him, I take Bayesianism (what I call "Bayesianism") to do a splendid
job of validating the valid ones and appropriately restricting the invalid
ones among the commonly cited methodological rules. With Daniel
Garber, I think that bootstrapping does well, too--when applied with a tact
of which Bayesianism can give an account. But my aim here is to elaborate
and defend Bayesianism (of a certain sort), not to attack bootstrapping.
Perhaps the main novelty is the further rounding-out in section 3 (by John
Etchemendy, David Lewis, Calvin Nonnore, and me) of Daniel Garber's
treatment of what I have always seen as the really troubling one of Clark
Glymour's strictures against Bayesianism. After that there is a coda (section
4) in which I try to display and explain how probability logic does so much
more than truth-value logic.

1. Response to New Evidence

In Clark Glymour's book, you aren't a Bayesian unless you update your
personal probabilities by conditioning (a.k.a. "conditionalization"), i.e.,
like this:

As new evidence accumulates, the probability of a proposition
changes according to Bayes' rule: the posterior probability of a
hypothesis on the new evidence is equal to the prior conditional
probability of the hypothesis on the evidence. (p. 69)
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That's one way to use the term "Bayesian," but on that usage I'm no
Bayesian. My sort of Bayesianism gets its name from another sense of the
term "Bayes's rule," equally apt, but stemming from decision theory, not
probability theory proper. Whereas Bayes's rule in Glymour's sense
prescribes conditioning as the way to update personal probabilities,
Bayes's rule in my sense prescribes what Wald (1950) called "Bayes
solutions" to decision problems, i.e., solutions that maximize expected
utility relative to some underlying probability assignment to the states of
nature. (No Bayesian himself, Wald contributed to the credentials of
decision-theoretic Bayesianism by proving that the Bayes solutions form a
complete class.) The Reverend Thomas Bayes was both kinds of Bayesian.
And ofcourse, he was a third kind of Bayesian, too: a believer in a third sort
of Bayes's rule, according to which the right probability function to start
with is m* (as Carnap (1945) was to call it).

Why am 1 not a Bayesian in Glymour's sense? This question is best
answered by way ofanother: What is the "new evidence" on which we are
to condition? (Remember: the senses are not telegraph lines on which the
exter~alworld sends observation sentences for us to condition upon.) Not
just any proposition that newly has probability one will do, for there may
well be many of these, relative to which conditioning will yield various
posterior probability distributions when applied to the prior.

All right, then: what about the conjunction ofall propositions that newly
have probability one? That will be the total new evidence, won't it? Why
not take the kinematical version of Bayes's rule to prescribe conditioning
on that total?

1answer this question in Chapter 11 ofmy book (1965, 1983), and in a few
other places (1968, 1970, 1975). In a nutshell, the answer is that much of
the time we are unable to formulate any sentence upon which we are
prepared to condition, and in particular, the conjunction of all the
sentences that newly have probability one will be found to leave too much
out for it to serve as the Archimedean point about which we can move our
probabilities in a satisfactory way. Some ofthe cases in which conditioning
won't do are characterized by Ramsey (1931, "Truth and Probability," end
of section 5) as follows:

I think I perceive or remember something but am not sure; this woul~
seem to give me some ground for believing it, contrary to Mr. Keynes
theory, by which the degree of belief in it which it would be rational
for me to have is that given by the probability relation between the

proposition in question and the things I know for certain.

Another sort of example is suggested by Diaconis and Zabell (1982): a
record of someone reading Shakespeare is about to be played. Since you
are sure that the reader is either Olivier or Gielgud, but uncertain which,
your prior probabilities for the two hypotheses are nearly equal. But now
comes fresh evidence, i.e., the sound of the reader's voice when the record
is played. As soon as your hear that, you are pretty sure it's Gielgud, and
the prior value ca..5 is replaced by a posterior value ca.. 9, say. But,
although it was definite features of what you heard that rightly made you
think it very likely to have been Gielgud, you cannot describe those
features in an observation sentence in which you now have full belief, nor
would you be able to recognize such a sentence (immensely long) if
someone else were to produce it.

Perhaps it is the fact that there surely is definite evidence that prompts
and justifies the probability shift in the OlivieriGielgud case, that makes
some people think there must be an evidence sentence (observation
sentence) that will yield the new belief function via conditionalization:
Surely it is all to the good to be able to say just whatit was about what you
heard, that made you pretty sure it was Gielgud. But few would be able to
do that; nor is such inability a mark of irrationality; nor need one be able to
do that in order to count as having had good reason to be pretty sure it was
Gielgud. The Olivier/Gielgud case is typical of our most familiar sorts of
updating, as when we recognize friends' faces or voices or handwritings
pretty surely, and when we recognize familiar foods pretty surely by their
look, smell, taste, feel, and heft.

Ofcourse conditioning is sometimes appropriate. When? I mean, ifyour
old and new belieffunctions are p and q, respectively, when is q ofform PE
for some E to which p assigns a positive value? (Definition: pdH) is the
conditional probability of H on E, i.e., p(H/E), i.e., p(HE)/p(E).)

Here is an answ~r to the question:

(C) Ifp(E) and q(E) are both positive, then the conditions (a) qE = PE
and (b) q(E) = 1 are jointly necessary and sufficient for (c) q = PE'

You can prove that assertion on the back of an envelope, via the
Kolmogorov axioms and the defition of conditional probability. Here is a
rough-and-ready verbal summary of (C):

Conditioning is the right way to update your probability judgments iff
the proposition conditioned upon is not only (b) one you now fully
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believe, but is also (a) one whose relevance to each proposition is
unchanged by the updating.

The point of view is one in which we take as given the old and new
probability functions, p and q, and then ask whether the condition (c)
q = PE is consistent with static coherence, Le., the Kolmogorov axioms
together with the definition of conditional probability applied to p and q
separately. In (C), (a) is the ghost ofthe defunct condition oftotal evidence.

In the OlivieriGielgud example, and others of that ilk, fresh evidence
justifies a change from p to q even though q '" PE for all E in the domain of
p. What is the change, and when is it justified? Here is the answer, which
you can verify on the back of the same envelope you used for (C):

(K) If "E" ranges over some partitioning ofa proposition ofp-measure
1 into propositions of positive p-measure, then the ("rigidity")
condition
(r) qE = PE for all E in the partitioning
is necessary and sufficient for q to be related to p by the following
("kinematical") formula:
(k) q = ~E q(E)PE'

There is no more question ofjustifying (1<) in (K) than there was ofjustifying
(c) in (C): neither is always right. But just as (C) gives necessary and
sufficient conditions (a) and (b) for (c) to be right, so (K) gives (r), i.e., the
holding of (a) for each E in the partitioning, as necessary and sufficient lOr
(k) to be correct-where in each case, correctness is just a matter of static
coherence of p and q separately. We know when (k) is right:

The kinematical scheme (k) yields the correct updating iff the
relevance of each member E of the partitioning to each proposition H
is the same after the updating as it was before.

It is an important discovery (see May and Harper 1976; Williams 1980;
Diaconis. and Zabelll982) that in one or another sense of "close," (k) yields
a measure q that is closest to p among those that satisfy the rigidity
condition (r) and assign the new probabilities q(E) to the Es, and that (c)
yields a measure that is closest to p among those that satisfy the conditions
(a) and (b) in (C). But what we thereby discover is that (so far, anyway) we
have adequate concepts of closeness: we already knew that (k) was
eqUivalent to (r), and that (c) was equivalent to (a) and (b) in (C). This is not
to deny the interest of such minimum-change principles, but rather to

emphaSize that their importance lies not in their serving to justify (c) and
(k)-for they don't-but in the further kinematical principles they suggest
m c~ses ,,:here (k) holds for no interesting partitioning. To repeat: (c) and (k)
are J~~tJfled by considerations of mere coherence, where their proper
condItIOns ofapplicability are met, i.e., (a) and (b) for (c), and (r) for (k). And
where those conditions fail, the corresponding rules are unjustifiable.

Observe that in a purely formal sense, condition (r) is.very weak; e.g., it
holds whenever the Boolean algebra on which p and q are defined has'
atoms whose p-values sum to 1. (Proof: with "E" in (r) ranging over the
atoms that have positive p-measure, p(H/E) and q(H/E) will both be 1 or
both be 0, depending on whether E implies H or-H.) Then in particular,
(k) IS always applicable in a finite probability space, formally. But if(k) is to
be useful to a human probability assessor, the E partitioning must be
coarser than the atomistic one. To use the atomistic partitioning is simply to
start over from scratch.

The OlivieriGielgud example is one in which the partitioning is quite
manageable: {O, G}, say, with 0 as the proposition that the reader is Olivier
and G for Gielgud. The hypotheSiS H that the reader (whoever he may be)'
loved VlVlen LeIgh serves to illustrate the rigidity conditions. Applied to
H, (r) yields

q(H/O) = p(H/O), q(H/G) = p(H/G).

Presumably these conditions both hold: before hearing the reader's voice
yO~ attributed certain subje:tive probabilities to Olivier's having loved
LeIgh (hIgh), and to Gielgud s having done so (low). Nothing in what you
heard tended to change those judgments: your judgment about H changed
~~y mCldentally to the change in your judgment about 0 and G. Thus, by

q(H) = q(O)p(H/O) + q(G)p(H/G).

q(H) is low because it is a weighted average ofp(H/O), which was high, and
p(H/G), whIch was low, with the low value getting the lion's share of the
weight: q(G) = .9.

2. Representation of Belief

In Clark Glymour's book, Bayesianism is identical with personalism, and
reqUIres not only updating by conditioning, but also a certain superhuman
completeness:
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There is a class of sentences that express all hypotheses and all actual
or possible evidence of interest; the class is closed under Boolean
operations. For each ideally rational agent, there is a function defined
on all sentences such that, under the relation ofJogical equivalence,
the function is a probability measure on the collection of equivalence
classes. (pp. 68-69)

The thought is that Bayesian personalism must represent one's state of
belief at any time by a definite probability measure on some rather rich
language. And indeed the two most prominent personalists seem to
espouse just that doctrine: de Finetti (1937) was at pains to deny the very
meaningfulness of the notion of unknown probabilities, and Savage (1954)
presented an axiomatization of preference according to which the agent's
beliefs must be represented by a unique probability.

But de Finetti was far from saying that personal probabilities cannot fail
to exist. (It is a separate question, whether one can be unaware of one's
existent partial beliefs. I don't see why not. See Mellor (1980) and Skyrms
(1980) for extensive discussions of the matter.) And Savage was fur from
regarding his 1954 axiomatization as the last word on the matter. In
particular, he viewed as a live alternative the system of Bolker (1965) and
Jeffrey (1965), in which even a (humanly unattainable) complete prefer­
ence ranking of the propositions expressible in a rich language normally
determines no unique probability function, but rather an infinite set of
them. The various members ofthe set will assign various values throughout
intervals of positive length to propositions about which the agent is not
indifferent: see Jeffrey (1965, section 6.6) for details.

Surely the Bolker-Jeffrey system is not the last word, either. But it does
give one clear version of Bayesianism in .which belief states-even
superhumanly definite ones-are naturally identified with infinite sets of
probability functions, so that degrees of belief in particular propositions
will normally be determined only up to an appropriate quantization, i.e.,
they will be interval-valued (so to speak). Put it in terms of the thesis ofthe
primacy ofpractical reason, i. e., a certain sort ofpragmatism, according to
which belief states that correspond to identical preference rankings of
propositions are in fact one and the same. (I do not insist on that thesis, but
I suggest that it is an intelligible one, and a clearly Bayesian one; e. g., it
conforms to Frank Ramsey's (1931) dictum (in "Truth and Probability,"
section 3): "the kind of measurement of belief with which probability is
concerned ... is a measurement ofbelief qua basis ofaction.") Applied to
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the Bolker-Jeffrey theory of preference h h .
practical reason Yields the cha at. ' . t e t eSlS of the primacy of
probability functions (Jeffrey 19:5 cs:r~zatI°6n60

) f belief states as sets of
what looks to me like th ' hC lOn . . Isaac Levi (1974) adopts
Bayesian." e same c aracterization, but labels it "un-

But of course 1 do not take belief states to b .
preference rankings ofrich Boolean af e e d~termmed by full
preference ranki g" g bras ofproposltlOns, for our actual

n s are lragmentary i e th .
subsets of the full algebras Th ' 'f' " ey are rankmgs of various

. en even 1 my theo I'k '
that full rankings of whole alg b I ry were 1 e Savage s in

eras a ways deter" .
;nctions, the actual, partial rankings that charac:~7:e~:~re pr~babili~

etermme behefstates that are infinite sets ofprob b'l't f peop e wou
full algebras. Here is the sort of thing I have' . d

a
"hY unctIons On the

better: In mIn , were hIgher means

C
D
W
-C
-D

(1) (2)

This is a miniature model of the situation in wh'
is infinite, Here the "ull alg b b lch the full Boolean algebra

" e ra may e tho ght f . ,
propositions ABC D d h ' u 0 as conslstmg of the

, , , an t elr truth-funcl' I
necessary Proposition I' e W _ A lOna compounds. W is the

, ." - v-A = Cv C .
which the agent is indi"'ere t b t - ,etc. Here IS a case in

11< n eweenAandB h'hh
which in turn he prefers to -A d ' w lC e prefers to W,
indifferent. But he has 'd han to -B, between which he is

. . no 1 ea were AB Av _ B '.
rankmg: his preferences about them rem . '. '. etc. come In thiS
ranking (1) tells us, And rankin (2) . am mdetermmate. That is what
aboui C D and thel' d 'I gh gIVes slmllar sorts of information

" r emas·te t' f'
Cv - D et I' d ' agen s preIerences regarding CD

, c. are a so In eterminate Bu h . '
only by their common member, W: Tht t e two rankmgs are related
-A and -B, but there is no informati us C and D are preferred to
(say) A and C. on pven about preference between

That is the sort of thing that can happen. According to (1) h
p(A) = p(B) f. b b'l' , we must aveor any pro a 1 lty function p in the bel' f t t d '
preferences (1) and (2): see Example 3 in chapter ;e : a; etermmed by
according to (2), we must have p(C) < (D) f. 0 Je rey (1965), And

p or any such p: see problem 1 in
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( p(B). , (B)
F' . 1 ( ( P )

Igure . p AB) is the length of overlap between the two segments.

fore~Oing example, i. e., out of an underlying determinate assignment
;'0 t e separate components of the conjunction. See Williams (1976)
or. an extensIOn of de Finetti's lemma to the case where the initial

;::~~Ir:nt of ,:,al numbers p(S;) ~ r; is replaced by a set of conditions of
: p(S,) -:- s,. And note that mdetennmacies need not be defined b

such mequahtIes as these. They might equally well be defined bY
condItIOns (perhaps mequalities) on the mathematical expectations E(X;):r
rando~ ~anables-conditionsthat impose conditions on the underlying
probablhty measures p via the relation E(X) = f X· d ,.,. I . " " 1 W I p. LV ore complex
specla cases anse when X; is replaced by "(X _ EX )2"
b l' f d r '; ,etc., so that

e ~eb states are elined by conditions on the variances etc. of random
vana les.

. Suc~ definitions might be thought of as generalizing the old identifica­
tIon 0 . an all-or-none belief state with the proposition believed. For
proposItIons can be identified with sets of two-valued probability mea­
sures: Each such measure, in which the two values must be 0 and 1, can be
l~entIfied.wlththe possible world in which the true statements are the ones

: p;~~ab'hty 1. Then a set of such measures works like a set of possible
or 5.. a proposItIon. Now Levi and I take belief states to be sets of

probablhty measures, omitting the requirement that they be two-v I d
Call su h t" b " a ue .

~. se s pro asitions. The necessary probasition is the set P of all
probablhty measures on the big Boolean algebra in question. P is the
logIcal space of probability logic. My current belief state is to be repre­
sented .b: a probaSltIon: a region R in this space. IfI now condition upon a
proposItIon E, my belief state changes from R to

R/E = Of {PE : p f Rand p(E) "" OJ.
:er~aps R/E is a proper subset of R, and perhaps it is disjoint from R but
or t e most part one would expect the change from R to R/E t 'b I' f 0 represent a

new e Ie state that partly overlaps the old one Ad'. n III some cases one

section 7.7. Then the belief state that corresponds to this mini-ranking (or
this pair ofconnecting mini-rankings) would correspond to the set {p:p(A) =
p(B) and p(C) < p(D)}.

The role of definite probability measures in probability logic as 1see it is
the same as the role of maximal consistent sets of sentences in deductive
logic. Where deductive logic is applied to belief states conceived unproba­
bilistically as holdings true of sets of sentences, maximal consistent sets of
sentences play the role of unattainable completions of consistent human

belief states. The relevant fact in deductive logic is

Lindenbaum's Lemma: a truth value assignment to a set of sentences is
consistent iff consistently extendible to the full set of sentences of the

language.
(There is a one-ta-one correspondence between consistent truth-value
assignments to the full set of sentences of the language and maximal
consistent sets of sentences ofthe language: the truth value assigned is t or f
depending on whether the sentence is or is not a member of the maximal
consistent set.) The corresponding fact about probability logic is what one

might call

De Finetti's Lemma: an assignment of real numbers to a set of
sentences is coherent (= immune to Dutch books) iff extendible to a
probability function on the full set of sentences of the language.

(See de Finetti 1972, section 5.9; 1974, section 3.10.)
It is a mistake to suppose that someone who assigns definite probabilities

to A and to B (say, .3 and. 8 respectively) is thereby committed in Bayesian
eyes to some definite probability assignment to the conjunction AB, if de
Finetti (1975, (2) on p. 343, and pp. 368-370) is to be counted as a Bayesian.
On the other hand, probability logic in the form ofthe Kolmogorov axioms,
say, requires that any assignment to that conjunction lie in the interval
from .1 to .3 if the assignments p(A) = .3 and p(B) = .8 are to be
maintained: see Boole (1854, Chapter 19), Hailperin (1965), or Figure 1
here. Thus probability logic requires that one or both of the latter
assignments be abandoned in case it is discovered that A and B are logically

incompatible, since then p(AB) = 0 < .1.
Clearly indeterminacies need not arise as that of p(AB) did in the

(a) Minimum: p(A) - (1 - p(B»)

<-p(A)-->

(b) Maximum: min(p(A), p(B»)

<-p(A)-->
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would expect the operation'of conditioning to shrink probasitions, e, g"
perhaps in the sense that the diameter of R/E is less than that of R when

diameter is defined

diam(R) = SUPM ' R II p - q II
and the norm II p - q II is defined

II p - q II = SUPA I p(A) - q(A) I

where "A" ranges over all propositions in the Boolean algebra,
That is how I would ride that hobby-horse, But I would also concede L J­

Good's (1952, 1962) point, that probasitions are only rough characteriza­
tions of belief states, in which boundaries are drawn with artificial
sharpness, and variations in the acceptability of different members of
probasitions and in the unacceptability of various nonmembers go un­
marked, In place of probasitions, one might represent belief states by
probability measures", on suitable Boolean algebras of subsets ofthe space
p, Good himself rejects that move because he thinks that", would then be
equivalent to some point ",* in P, Le" the point that assigns to each

proposition A the definite probability

'"*(A) = Jp,p p(A) d",(p),

In our current terminology, the thought is that a definite probability
measure '" on P must correspond to a sharp belief state, viz" the
probasition {",*}, To avoid this reduction, Good proposes that", be replaced
by a nondegenerate probasition of type 2, Le" a nonunit set of probability
measures on P; that in principle, anyway, that probasition of type 2 be
replaced by a nondegenerate probasition of type 3; and so on, "It may be
objected that the higher the type the woolier the probabilities, It will be
found, however, that the higher the type the less wooliness matters,
provided the calculations do ,not become too complicated," (Good 1952,

p, 114)
But 1 do not see the need for all that- It strikes me that here, Good is

being misled by a false analogy with de Finetti's way of avoiding talk of
unknown probabilities (L e" the easy converse of his representation
theorem for symmetric probability functions), De Finetti's point was that
where objectivists would speak of (say) coin-tossing as a binominal process
with unknown probability of success on each toss, and might allow that
their subjective probability distribution for the unknown objective proba­
bility x ofsuccess is uniform throughout the unit interval, an uncompromis-

ing subjectivist can simply have as his belief function the subjectively
weIghted average of the various putatively objective possibilities, so that
e, g" his subjective probability for heads on the first n tosses would b~

p(H, H2 , , , H n) = JI; xndx = _1_,
n + 1

In the analogy that Good is drawing, the probasition R is the set all binomial
probability functions p, where p,(H,) = x, and '" is the probability
measure on P that assigns measure 1 to R and assigns measure b - a to any
nonempty subset {p,:a :0; x < b} of R But whereas for de Finetti the
members of R play the role of (to him, unintelligible) hypotheses about
what the objective probability function might be, for Good the members of
R play, the role of hypotheses about what might be satisfactory as a
subjectIve probability function, But if only the members of R are candi­
dates for the role ofsatisfactory belieffunction, their subjectively weighted
average, Le" p as above, is not a candidate, (That p is not binomial:
p(H 11H2) = 2/3 i= p(H,) = 112, whereas for each p, in R, pJH11H2) =
p(H,) = x,)

The point is that the normalized measure j.L over P is not being used as a
subjective probability distribution that indicates one's degrees of belief in
such propositions as that the true value ofx lies between, 1 and ,3, On the
contrary, the uniformity of the", distribution within R is meant to indicate
that one would be indifferent between having to behave in accordance with
p, and having to behave in accordance with p for any x and y in the unit
interval (where such behavior is determined a:well by his utility function);
and the fact that ",(R) = 1 is meant to indicate that one would prefer having
to behave in accordance with any member of R to having to behave in
accordance with any member of P - R (These are rough characterizations
because", assigns measure 0 to each unit subset ofp, A precise formulation
would have to talk about having to behave in accordance with randomly
selected members of intervals, {p,:a :0; x :0; b},)

Then I think Good's apprehension unfounded: I think one can replace
probasitional belief states R by probability distributions '" over P that
assign most of their mass to R, without thereby committing oneself to a
beliefstate that is in effect a singleton probasition, {",*}, But this is not to say
that o,ne must always have a sharp probability distribution over P: perhaps
Good s probaSitIons of types 2 and higher are needed in order to do justice
to the complexities of our belief states,
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h h h d I think that in practice even the relatively simple
Onteoteran, 'h h

t silion from probasitional belief states to belief states t .at are s arp
ran . 'dl 1 'ty' the probasltlOnal repre-bability measures on P 1$ an 1 e camp eXl . .

;:~tation suffices, anyway, for the applications of probability logIC that are

considered in the remainder of this paper. . .
An important class of such examples is treated in Chapter 2 ofde Fmetll

(1937), i.e., applications of what I shall call

de Finetti's Law of Small Numbers: the estimated number of truths
A t qual the sum of theIramong the propositions AI, .. , n mus e

probabilities.

That follows from the additivity ofthe expectation operator andthe fact/~::
the robability you attribute to A is always equal to your esllmate 0

nu:ber of truths in the set {A}: as de Finetti insists, the thmg IS as tnvlal as

Bayes's theorem. (He scrupulously avoids applymg any such grand t;rm ~~
"law" to it.) Dividing both sides of the equation by n, the law 0 sma

numbers takes this form:

The estimated relative frequency of truths among the propositions is

( (A ) + + p(A ))/n of their probabIlllles.
the average Pl' . . n

Su ose then that you regard the A's as equiprobable but have no view
ab~~twhat the;r common probability is (i.e., you have no definite degree:f
belief in the A's), and suppose that tomorrow you expect to learn t e
relative frequency of truths among them, without learmnga~ythmgtha:

will disturb your sense of their equiprob~bility.Thus y~u mIg ~ re~~)}e:r
our belief state tomorrow by the probasltlOn {p.p(AI) . .... p( h"
~ a measure on P that assigns a value near 1 to that probaslho~. BU~ w at s

t~e point? Ifyou don't need to do anything onwhich tomorrow s~ehe;state
bears until tomorrow, you may as well wait until you learn: e re atlve
fre uency oftruths among theA's, say, r. Althat point, your esllmate of the
rel~tive frequency of truths will be r (With variance 0), and by :ere
coherence your degree of beliefin each of theA' s will also be r. You nOW

all that today. , db' d dent
Note that in the law ofsmall numbers, theA s nee not em epen ,

or exchangeable, or even distinct! The "law" is quite general: as general

and as trivial as Bayes's theorem, and as useful. . .
A mistake that is easy to make about subjectIVIsm IS that anythmg g~es,

according to that doctrine: any weird belief functlOn WIll do, as long as It IS

coherent.
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The corresponding mistake about .dress would go like this: any weird
getup will do, if there are no sumptuary laws, or other laws prohibiting
i~appropriate dress. That's wrong, because in the absence of legislation
aboulthe matter, people will generally dress as they seefit, i.e., largely in a
manner that they think appropriate to the occasion and comfortable for
them on that occasion. The fact that it is legal to wear chain mail in city
buses has not filled them with clanking multitudes.

Then have no fear: the fact that subjectivism does not prohibit people
from having two-valued belief functions cannot be expected to produce
excessive opinionation in people who are not so inclined, any more than the
fact that belief functions of high entropy are equally allowable need be
expected to have just the opposite effect. For the most part we make the
judgments we make because it would be unthinkable not to. Example: the
foregoing application of de Finetti's law of small numbers, which explains
to the Bayesian why knowledge of frequencies can have such powerful
effects on our belief states.

The other side of the coin is that we generally suspend judgment when it
is eminently thinkable to do so. For example, if I expect to learn the
frequency tomorrow, and I have no need for probabilistic belief about the
A's today, then I am not likely to spend my time on the pointless project of
eliciting my current degrees of belief in the A's. The thought is that we
humans are not capable ofadopting opinions gratuitously, even ifwe cared
to do so: we are generally at pains to come to opinions that strike us as right,
or reasonable for us to have under the circumstances. The laws of
probability logic are not designed to prevent people from yielding to
luscious doxastic temptations-running riot through the truth values. They
are designed to help us explore the ramifications of various actual and
potential states of belief-our own or other people's, now or in the past or
the future. And they are meant to prOVide a Bayesian basis for methodol­
ogy. Let us now turn to that-focussing especially on the problem ("of old
eVidence") that Clark Glymour (1980, Chapter 3) identifies as a great
Bayesian sore point.

3. The Problem of New Explanation

Probability logic is typically used to reason in terms of partially specified
probability measures meant to represent states ofopinion that it would be
fairly reasonable for people to be in, who have the sort of information we
take ourselves to have, i. e., we who are trying to decide how to proceed in



p(H/E) - p(H),

and in somewhat more complicated cases, where pi comes from p by
kinematics relative to the partitioning {E

"
... ,En}, it amounts to

k,p(H/E,) (p'(E,) - p(E,)).

But what if the evidence is the fresh demonstration that H implies some

k wn fact E? In his contribution to this volume, Damel Garber shows
no h h ·t· t out of thethat-contrary to what one might have t oug t-1 IS no .

t· to represent the effect of such evidence in the SImplest way, I.e;,
ques lOn h H· I· E so that H sby conditioning on the proposition H f- E t at Imp 1es ,
implying E supports H if and only if

(1) p(HIH f- E) > p(H).

And as he points out in his footnote 28, this inequality is equivalent to

either of the following two (by Bayes' theorem, etc.):

(2) p(H f- E/H) > p(H f- E)

(3) p(H f- EIH) > p(H f- EI -H)
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some practical or (as here) theoretical inquiry. Reasonableness. is assessed
by us, the inquirers, so that what none of us is inclined to beheve can be

'I uled out but wherever there is a real issue between two of us,
summh an y r f'. ftwo minds both sides are ruled reasonable.. Ofor w enever one 0 us IS0, h
course, if our opinions are too richly varied, we shall get ~owh~re;but SU~
radical incommensurability is less common in real .mqUIry, even III

revolutionary times, than romantics would have us thmk. .
It is natural to speak of "the unknown" probability measure p that It

Id be reasonable for us to have. This is just a substitute for more
:~~lligible speech in terms of a variable "p.' that ranges .over the

probasition (dimly specified, no doubt) comprising the probab1h~y:ea~
sures that we count as reasonable. Suppose now that m the 19 t 0

evidence that has come to our attention, we agree that p shoUld, be
d·fied in a certain way: replaced by another probability measure: p . If

;~~) exceeds p(H) for each allowable value of"p," we regard the eVIdence
as supporting or confirming H, or as positive for H. The degree of support

or confirmation is

p'(H) - p(H)

In the simplest cases, where pi PE, this amounts to
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This equivalence can be put in words as follows:

(I) A hypothesis is supported by its ability to explain facts in its
explanatory domain, i.e., facts that it was antecedently thought
likelier to be able to explain if true than if false.

(This idea was suggested by Garber some years ago, and got more play in an
early version ofhis paper than in the one in this volume.) This makes sense
intuitively. Example: Newton saw the tidal phenomena as the sorts of
things that ought to be explicable in terms ofthe hypothesis H ofuniversal
gravitation (with his laws of motion and suitable background data) if H was
true, but quite probably not ifH was false. That is why explanation ofthose
phenomena by H was counted as support for H. On the other hand, a
purported theory of acupuncture that implies the true value of the
gravitational red shift would be undermined thereby: its implying that is
likely testimony to its implying everything, i. e., to its inconsistency.

But something is missing here, namely the supportive effect of belief in
E. Nothing in the equivalence of (1) with (2) and (3) depends on the
supposition that E is a "known fact," or on the supposition that p(E) is I, or
close to 1. It is such suppositions that make it appropriate to speak of
"explanation" of E by H instead of mere implication of E by H. And it is
exactly here that the peculiar problem arises, of old knowledge newly
explained. As E is common knowledge, its probability for all of us is 1, or
close to it, and therefore the probability of H cannot be increased much by
conditioning on E before conditioning on H f- E (see 4a)--or after (see 4b),
unless somehow the information that H f- E robs E of its status as
"knowledge. "

(4a) p(H/E) = p(H) if p(E) = 1

(4b) PHedH/E) = PHeE(H) if PHeE(E) = 1

As (4b) is what (4a) becomes when "p" is replaced by "PHeE" throughout,
we shall have proved (4b) as soon as we have proved (4a) for arbitrary
probability functions p. Observe that (4b) comes to the same thing as this:

p(H/E & H f- E) = p(H/H f- E) if p(E/H f- E) = 1.

There and in (4), statements of form x = yare to be interpreted as saying
that x and y differ by less than a ("small") unspecified positive quantity, say
E.

Proof of (4a). The claim is that for all positive E,

if p(-E) < E then -E < p(H/E) - p(H) < E.
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To prove the "< i' part of the consequent, observe that

p(H/E) _ p(H) :=; p(H/E) - p(HE) since p(HE) :=; p(H)

p(HE) p(HE)p( - E)
= p(E) - p(HE) = p(E)

:=; p( _ E) since p(HE) :=; pte).

Then p(H/E) _ p(H) < e. To prove the "-e <" part, note that it is true iff

p(HE) . .
p(H) - -- < e, I.e., Iff

p(E)

p(HE) p(HE)
p(H - E) + (-1- - p(E») < e, i.e., iff

p(HE) (p(E) _ 1) < e - p(H - E)
pte)

where the left-hand side is 0 or negative since p(E):=; 1, an~,wher,~ the right­
hand side is positive since p(H - E):=; p( - E) < e. Then the -8 < part of the

consequent is also proved.
Yet, in spite of(4), where E reports the facts about the tides that Newton

explained, it seems correct to say that his explanation gave them the status
of evidence supporting his explanatory hypotheses, H-a status they are
not deprived of by the very fact of being antecedently known. .

But what does it mean to say that Newton regarded H as thesor~ of
hypothesis that, if true, ought to imply the truth about the tIdes. 1
conjecture that Newton thought his theory ought to explam the truth about
the tides, whatever that might be. 1 mean that 1 doubt whether Newton
knew such facts as these (explained in The System ofthe World) at the tIme

he formulated his theory:

[39.] The tide is greatest in the syzygies of the luminaries and least in
their quadratures, and at the third hour after the moon reaches the
meridian' outside of the syzygies and quadratures the tIde deVIates
somewhat from that third hour towards the third hour after the solar

culmination.

Rather, 1 suppose he hoped to be able to show that

(T) H implies the true member of %

where H was his theory (together with auxiliary data) and % was a set of
mutually exclusive propositions, the members of which make vanouS

claims about the tides, and one of which is true. I don't mean that he was
able to specify ~ by writing out sentences that express its various members.
Still less dol mean that he was able to identifY the true member of% by
way of such a sentence, to begin with. But he knew where to go to find
people who could do that to his satisfaction: people who could assure him of
such facts as [39.] above, and the others that he explains at the end of his
Principia and in The System ofthe World. Thus you can believe T (or doubt
T, or hope that T, etc.) without having any views about which member of
%is the true one, and, indeed, without being able to give an account ofthe
makeup of% of the sort you would need in order to start trying to deduce
members of% from H. (Nor do I suppose it was clear, to begin with, what
auxiliary hypotheses would be needed as conjuncts of H to make that
possible, until the true member of % was identified.)

David Lewis points out that in these terms, Garber's equivalence
between (1) and (2) gives way to this:

(5) p(H/T) > p(H) iff p(T/H) > p(T).

Lewis's thought is that someone in the position I take Newton to have been
in, i. e., setting out to see whether T is true, is in a position of being pretty
sure that

(S) H implies some member of %

without knOWing which, and without being sure or pretty sure that (T) the
member of % that H implies is the true one. But in exactly these
circumstances, one will take truth ofT to support H. Here I put it weakly
(with "sure" instead of "pretty sure," to make it easy to prove):

(II) Ifyou are sure that H implies some member of%, then you take H
to be supported by implying the true member of % unless you
were already sure it did.

Proof. The claim is that

if p(S) = 1 "" p(T) then p(H/T) > p(H).

Now ifp(S) = lthen p(S/H) = 1 and therefore p(T/H) = 1 since ifH is true
it cannot imply any falsehoods. Thus, if 1 "" p(T), Le., if 1 > p(T), then
p(T/H) > p(T), and the claim follows via (5).

Notice one way in which you could be sure that H implies the true
member of%: you could have known which member that was, and cooked
H up to imply it, e. g., by setting H = EG where E is the true member of'&
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and G is some hypothesis you hope to make look good by association with a

known truth.
Now (II) is fine as far as it goes, but (John Etchemendy points out) it fails

to bear on the case in which it comes as a surprise that H implies anything
about (say) the tides. The requirement in (II) that p(S) be 1 is not then
satisfied, but H may still be supported by implying the true member of%.
It needn't be, as the acupuncture example shows, but it may be. For
example, if Newton had not realized that H ought to imply the truth about
the tides, but had stumbled on the fact that H I- E where E was in % and
known to be true, then H would have been supported by its ability to

explain E.
Etchemendy's idea involves the propositions S, T, and

(F) H implies some false member of %.

EVidently F = S - T, so that -F is the material conditional, -F = -SvT ("If
H implies any member of % then it implies the true one"), and so the
condition p(F) = 0 indicates full belief in that conditional. Etchemendy
points out that Lewis's conditions in (II) can be weakened to p(F) ,;, 0 and
p(HS) = p(H)p(S); i.e., you are not antecedently sure that H implies
nothing false about X (about the tides, say), and you take truth of H to be
independent of implying anything about X. Now Calvin Normore points
out that Etchemendy's second condition can be weakened by replacing
"=" by ":<:", so that it becomes: your confidence in H would not be
weakened by discovering that it implies something about X. Then the
explanation theorem takes the following form:

(III) Unless you are antecedently sure that H implies nothing false
about X, you will regard H as supported by implying the truth
about X iflearning that H implies something about X would not
make you more doubtful of H.

. The proof uses Garber's principle

(K*) p(A & A I- B) = p(A & B & A I- B).

This principle will hold if ''I-'' represents (say) truth-functional entailment
and if the person whose belief function is p is alive to the validity ofmodus
ponens; but it will also hold under other readings of "1-," as Garber points
out. Thus it will also hold ifA I- B means that p(A - B) = 0, on any adequate
interpretation of probabilities of probabilities. The proof also uses the
following clarifications of the definitions of T and S:

(T) For some E, E e % and H I- E and E is true
(S) For some E, E e % and H I- E.

Proof of (III). The claim is this:

If p(S - T) ,;, 0 and p(HS) :<: p(H)p(S) then p(HT) > p(H)p(T).

By (K*), p(HS) = p(HT), so that the second conjunct becomes p(HT) :<:

p(H)p(S). With the first conjunct, that implies p(HT) > p(H)p(T) because
(since T implies S) p(S - T) ,;, 0 implies pIS) > p(T).

Note that (III) implies (II), for they have the same conclusion, and the
hypotheses of (II) imply those of (III):

(6) If pIS) = 1 ,;, p(T) then p(S -T) ,;, 0 and p(HS) :<: p(H)p(S)

Proof pes - T) ,;, 0 follows from peS) = 1 ,;, p(T) since T implies S, and p(S)
= 1 implies that p(HS) = p(H) = p(H)p(S).

The explanation theorem (III) goes part way toward addressing the
original question, "How are we to explain the supportive effect of beliefin
E, over and above beliefin H I- E, where H is a hypothesis initially thought
especially likely to imply E if true?" Here is a way of getting a bit closer:

(IV) Unless you are antecedently sure that H implies nothing false
about X, you take H to be supported more strongly by implying
the truth about X than by simply implying something about X.

Proof the claim is that

if p(S - T) ,;, 0 then p(H/T) > p(H/S),

i.e., since T implies S, that

if p(S) > p(T) then p(HT)p(S) > p(HS)p(T),

i.e., by (K*), that

if p(S) > p(T) then p(HT)p(S) > p(HT)p(T).

But the original question was addressed to beliefin a particular member
E of%: a particular truth about X, identified (say) by writing out a sentence
that expresses it. The remaining gap is easy to close (as David Lewis points
out), e.g., as follows.

(7) For any E, if you are sure that E is about X, implied by H, and
true, then you are sure that T is true.

Proof. The claim has the form
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and G is some hypothesis you hope to make look good by association with a

known truth.
Now (II) is fine as far as it goes, but (John Etchemendy points out) it fails

to bear on the case in which it comes as a surprise that H implies anything
about (say) the tides. The requirement in (II) that p(S) be 1 is not then
satisfied, but H may still be supported by implying the true member of%.
It needn't be, as the acupuncture example shows, but it may be. For
example, if Newton had not realized that H ought to imply the truth about
the tides, but had stumbled on the fact that H f- E where E was in % and
known to be true, then H would have been supported by its ability to

explain E.
'Etchemendy's idea involves the propositions S, T, and

(F) H implies some false member of %.

Evidently F = S - T, so that -F is the material conditional, -F = -SvT ("If
H implies any member of % then it implies the true one"), and so the
condition p(F) = 0 indicates full belief in that conditional. Etchemendy
points out that Lewis's conditions in (II) can be weak~ned to p(F) *' 0 and
p(HS) = p(H)p(S); i.e., you are not antecedently sure that H implies
nothing false about X (about the tides, say), and you take truth of H to be
independent of implying anything about X. Now Calvin Normore points
out that Etchemendy's second condition can be weakened by replacing
"=" by "2", so that it becomes: your confidence in H would not be
weakened by discovering that it implies something about X. Then the

explanation theorem takes the following form:

(Ill) Unless you are antecedently sure that H implies nothing false
about X, you will regard H as supported by implying the truth
about X if learning that H implies something about X would not

make you more doubtful of H.

The proof uses Garber's principle

(K*) p(A & A f- B) = p(A & B & A f- B).

This principle will hold if"f-" represents (say) truth-functional entailment
and if the person whose belief function is p is alive to the validity ofmodus
ponens; but it will also hold under other readings of"f-," as Garber points
out. Thus it will also hold ifA f- B means that p(A - B) = 0, on any adequate
interpretation of probabilities of probabilities. The proof also uses the

following clarifications of the definitions of T and S:

(T) For some E, E B % and H f- E and E is true
(S) For some E, E 8 % and H f- E.

Proof of (III). The claim is this:

If p(S - T) *' 0 and p(HS) 2 p(H)p(S) then p(HT) > p(H)p(T).

By (K*), p(HS) = p(HT), so that the second conjunct becomes p(HT) 2

p(H)p(S) .. WIth the first conjunct, that implies p(HT) > p(H)p(T) because
(smce T Imphes S) p(S - T) *' 0 implies p(S) > p(T).

Note that (Ill) implies (II), for they have the same conclusion and the
hypotheses of (Il) imply those of (III): '

(6) If p(S) = 1 *' p(T) then p(S -T) *' 0 and p(HS) 2 p(H)p(S)

Proof p(S- T) *' 0 follows from p(S) = 1 *' p(T) since T implies S, and (S)
= 1 Imphes that p(HS) = p(H) = p(H)p(S). P

o The explan.atio~, theorem (Ill) goes part way toward addressing the
rrgmal questron, How are we to explain the supportive effect of belief .

E, over and above beliefin H f- E, where H is a hypothesis initially thoug~~
especIally hkely to Imply E if true?" Here is a way of getting a bit closer:

(IV) Unless you are antecedently sure that H implies nothing false
about X, you take H to be supported more strongly by implying
the truth about X than by simply implying something about X.

Proof the claim is that

if p(S - T) *' 0 then p(H/T) > p(H/S),

i.e., since T implies S, that

if p(S) > p(T) then p(HT)p(S) > p(HS)p(T),

i. e., by (K*), that

if p(S) > p(T) then p(HT)p(S) > p(HT)p(T).

But the original question was addressed to belief in a particular member
~ of%: a partrcular truth about X, identified (say) by writing out a sentence
hat expresses It. The remaInmg gap is easy to close (as David Lewis oints

out), e. g., as follows. p

(7) For any E, if you are sure that E is about X, implied by H, and
true, then you are sure that T is true.

Proof. The claim has the form
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I where <1> is this:For any E, if p(<1» ~ I then p(for some E, <1»

E e '& and H f- E and E is true.

Now the claim follows from this law of the probability calculus

p(X) s p(Y) if X implies Y

in view of the fact that <1> implies its existential generalization.

Here is an application of (III):

Since Newton was not antecedently sure that H implied no falsehoods
about the tides, and since its implying anything about the tldes woul~
not have made it more doubtful in his eyes, he took It to be supporte

by implying the truth about the tides.

And here is a corresponding application of (7):

Newton came to believe that H implied the truth about the tides when
he came to believe that H implied E, for he already regarded E as a

truth about the tides.

I th ' 'th (Ill) we need not suppose that Newton was anteced-
To coup e IS WI , ( ) I

tl that H implied something or other about the tides, as in II. n
en y sure h h' . I t
(III), the condition p(S) = I is weakened to p(S) > p(T), w ic IS eqUlva en

to p(S - T) *' 0, i.e., to p(F) *' O. 'f'
Observe that in coming to believe T, one also comes to believe S. But I It

is appropriate to conditionalize on T in such circumstances, It IS not there~y
appropriate to conditionalize on S, unless p(S) = p(T), contrary to t e

hypotheses of (III). " .. "H' ).
Observe also that although we have been reading H f- E" as Imp I~,S

E "we could equally well have read it as"p(EIH) = f' or as p(H-E) = 0 .

(~*) would still hold, and so (III) would still be provable.

4. Probability Logic

Let uS focus on the probabilistic counterpart of truth-functional logic.

(S G
'f 1964 and Gaifman and Snir 1982 for the first-order case.)

eeaIman hb' f
With de Finetti (1970, 1974) I take expectation to be t e aslC no IOnrand I identify propositions with their indicator functIOns, ,,1. e., mS~,ead 0

taking propositions to be subsets ofthe set W of all possible worlds, I ta~e
them to be functions that assign the value I to worlds where t e

propositions are true, and 0 where they are false.

Axioms; the expectation operator is
linear: E(af + bg) = aEf + bEg

positive: Ef "" 0 if f "" 0
normalized; EI = I

("f > 0" means that f(w) > 0 for all w in W, and lis the constant function that
assigns the value I to all w in W.)

Definition: the probability ofa proposition A is its expectation, EA, which
is also written more familiarly as ptA). De Finetti (1974, section 3.10)
proves what he calls "The Fundamental Theorem of Probability":

Given a coherent assignment of probabilities to a finite number of
propositions, the probability of any proposition is either determined
or can coherently be assigned any value in some closed interval.

(Cf. de Finetti's Lemma, in section 2 above.)
A remarkably tight connection between probability and frequency has

already been remarked upon. It is provided by the law of small numbers,
i.e., in the present notation,

E(AI + . . . + An) = ptA,) + . . . + p(An)·

That is an immediate consequence of the linearity ofE and the definition of
"p(A,)" as another name for EA,. But what has not yet been remarked is the
connection between observed and expected frequencies that the law of
small numbers provides.

Example: "Singular Predictive Inference," so to speak. You know that
there have been s successes in n past trials that you regard as like each other
and the upcoming trial in all relevant respects, but you have no information
about which particular trials produced the successes. In this textbook case,
you are likely to be of a mind to set ptA,) =. . = p(An) = p(An+ ,) = x,
say. As E(AI + .. + An) = s because you know there were s successes,
the law of small numbers yields s = nx. Thus your degree of belief in
success on the next trial will equal the observed relative frequency of
successes on the past n trials: p(An+ ,) = sin.

In the foregoing example, no particular prior probability function was
posited. Rather, what was posited was a condition p(A,) = xfor i = I, ... ,
n + I, on the posterior probability function p: what was posited was a
certain probasition, i. e., the domain of the variable "p." The law of small
numbers then showed us that for all p in that domain, p(A,) = sin for all i =
I, ... ,n + 1. But ofcourse, p is otherwise undetermined by the condition
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Le., the observed relative frequency of success in the first n trials.
What if you happen to have noticed which particular s of the first n trials

yielded success? Then the first part of (8) will not hold: p(A;) will be°or 1
for each i = 1, . . . ,no Still, your judgment might be that

ofthe problem, e.g., there is no telling whether the A; are independent, or
exchangeable, etc., relative to p, if all we know is that p belongs to the

probasition {p:p(A1) = ... = p(An) = p(An+I))'
A further example: your expectation ofthe relative frequency ofsuccess

on the next m trials will equal the observed relative frequency sin ofsuccess

on the past n trials in case

(8) p(A1) = = p(An) = x = p(An + I) = . . . = p(An + m)'

Proof: as we have just seen, the first part of (8) assures us that x = sin, and
by the second part of (8), the law of small numbers yields an expected

number of successes on the next m trials of E(An+ 1 + . + An + m) =
mx. Then by linearity of E, the expected relative frequency of success on

the next m trials is

An+l + ... + A n + m ) ms/n _ s
E( m = ---;;:;- - n'

in which case the expected relative frequency of success on the next m trials
will again be sin, the observed relative frequency on the first n. But maybe
the pattern of successes on the first n trials rules (9) out, e. g., perhaps your
observations have been that p(AI) = .. = p(A,) = 1 but p(A, + I) =
... = p(A

n
) = 0, so that you guess there will be no more successes, or

that successes will be rarer now, etc. The cases in which (9) will seem
reasonable are likely to be ones in which the pattern ofsuccesses on the first

n trials exhibits no obvious order.
These applications of the law of small numbers are strikingly un­

Bayesian in Clark Glymour's sense of "Bayesian": the results p(An+1 ) =

sin = E{An+1 + ... +An+m)/m are not arrived at via conditioning (via
"Bayes's theorem"), but by other theorems of the calculus of probabilities

and expectations, no less Bayesian in my sense of the term.
The emergence of probability in the mid-seventeenth century was part

of a general emergence ofconcepts and theories that made essential use of

(9) ~ = p(An+ l ) = ... = p(An +m ),
n

(what came to be recognized as)'real variables. These theories and concepts
were quite alien to ancient thought, in a way in which two-valued logic was
not: witness Stoic logic. And today that sort of mathematical probabilistic
thinking remains less homely and natural than realistic reasoning from
definite hypotheses ("about the outside world") to conclusions that must
hold if the hypotheses do. Perhaps "Bayesian" is a misnomer-perhaps one
should simply speak of probability logic instead. (Certainly "Bayesian
inference" is a misnomer from my point of view, no less than from de
Finetti's and from Carnap's.) But whatever you can it, it is a matter of
thinking in terms of estimates (means, expectations) as well as, or often
instead of, the items estimated. Thus one reasons about estimates of truth
values, i. e" probabilities, in many situations in which the obvious
reasoning, in terms of truth values themselves, is unproductive. The steps
from two-valued functions (= °or 1) to probability functions, and thence to
estimates offunctions that need not be two-valued brings with it an absurd
increase in range and subtlety. To take fun advantage ofthat scope, 1 think,
one must resist the temptation to suppose that a probasition that is not a
unit set must be a blurry representation ofa sharp state ofbelief, i.e., one of
the probability measures that make up the probasition: an imprecise
measurement (specified only within a certain interval) of some precise
psychological state. On the contrary, I take the examples of"prevision" via
the law of sman numbers to illustrate clearly the benefits of the probasi­
tional point of view, in which we reason in terms of a variable "p" that
ranges over 'a probasition R without imagining that there is an unknown
true answer to the question, "Which member of R is p?"
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Three Ways to Give a
Probability Assignment a Memory

Consider a model of learning in which we update our probability
assignments by conditionalization; i. e., upon learning S, the probability of
not-S is set at zero and the probabilities of statements entailing S are
increased by a factor ofone over the initial probability ofS. In such a model,
there is a certain peculiar sense in which we lose information every time we
learn something. That is, we lose information concerning the initial relative
probabilities of statements not entailing S.

The loss makes itselffelt in various ways. Suppose that learning is meant
to be corrigible. After conditionalizing on S, one might wish to be able to
decide that this was an error and "deconditionalize." This is impossible if
the requisite information has been lost. The missing information may also
have other theoretical uses; e.g., in giving an account of the warranted
assertability of subjunctive conditionals (Adams 1975, 1976; Skyrms 1980,
1981) or in giving an explication of"evidence E supports hypothesis H" (see
the "paradox of old evidence" in Clymour 1980).

It is therefore of some interest to consider the ways in which probability
assignments can be given a memory. Here are three of them.

I. Make Like an Ordinal (Tait's Suggestion)'; A probability assignment will
now assign each proposition (measurable set) an ordered pair instead of a
single number. The second member of the ordered pair will be the
probability; the first member will be the memory. To make the memory
work properly, we augment the rule of conditionalization. Upon learning
P, we put the cwrent assignment into memory, and put the result of
conditionalizing on P as the second component of the ordered pairs in the
new distribution. That is, if the pair assigned to a proposition by the initial
distribution is (x, y), then the pair assigned by the final distribution is ((x, y),
z), where z is the final probability of that proposition gotten by conditional­
izing on P. (If P has initial probability zero, we go to the closest state in
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