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BAYESIAN VERSUS
NON-BAYESIAN APPROACHES
TO CONFIRMATION*

Colin Howson and Peter Urbach

The Bayesian notion of confirmation

Information gathered in the course of observation is often considered to have a bearing
on the acceptability of a theory or hypothesis (we use the terms interchangeably), either
by confirming it or by disconfirming it. Such information may either derive from casual
observation or, more commonly, from experiments deliberately contrived in the hope of
obtaining relevant evidence. The idea that evidence may count for or against a theory,
or be neutral towards it, is a central feature of scientific inference, and the Bayesian
account will clearly need to start with a suitable interpretation of these concepts.

Fortunately, there is a suitable and very natural interpretation, for if P(h) measures
your belief in a hypothesis when you do not know the evidence e, and P(b|e) is the
corresponding measure when you do, e surely confirms b when the latter exceeds the
former. So we shall adopt the following as our definitions:

e confirms or supports b when P(ble) > P(h)
e disconfirms or undermines » when P(h|e) < P(h)

e is neutral with respect to » when P(h|e) = P(h)

One might reasonably take P(h|e) ~ P(h) as measuring the degree of ¢’s support for b,
though other measures have been suggested (e.g., Good, 1950); disagreements on this
score will not need to be settled in this book. We shall refer, in the usual way, to P(h)
as ‘the prior probability of b and to P(h|e) as b’s ‘posterior probability’ relative to, or
in the light of, e. The reasons for this terminology are obvious, but it ought to be noted
that the terms have a meaning only in relation to evidence: as Lindley (1970, p. 38) put
it, “[tJoday’s posterior distribution is tomorrow’s prior”. It should be remembered too
that all the probabilities are evaluated in relation to accepted background knowledge.

The application of Bayes’s Theorem

Bayes’s Theorem relates the posterior probability of a hypothesis, P(hle), to the terms
P(h), P(e|h), and P(e). Hence, knowing the values of these last three terms, it is possible to
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determine whether e confirms 4, and, more importantly, to calculate P(hle). In practice,
of course, the various probabilities may only be known rather imprecisely; we shall have
more to say about this practical aspect of the question later,

The dependence of the posterior probability on the three terms referred to above is
reflected in three striking phenomena of scientific inference. First, other things being
equal, the extent to which evidence e confirms a hypothesis » increases with the
likelihood of b on e, that is to say, with P(e|h). At one extreme, where e refutes
b, P(elh) = 0; hence, disconfirmation is at a maximum. The greatest confirmation is
produced, for a given P(e), when P(e|h) = 1, which will be met in practice when b log-
ically entails e. Statistical hypotheses are more substantially confirmed the higher the
value of P(e|h).

Secondly, the posterior probability of a hypothesis depends on its prior probability,
a dependence sometimes discernible in scientific attitudes to ad hoc hypotheses and
in frequently expressed preferences for the simpler of two hiypotheses. As we shall see,
scientists always discriminate, in advance of any experimentation, between theories they
regard as more-or-less credible (and, so, worthy of attention) and others.

Thirdly, the power of e to confirm /b depends on P(e), that is to say, on the prob-
ability of ¢ when it is not assumed that b is true (which, of course, is not the same
as assuming b to be false). This dependence is reflected in the scientific intuition
that the more surprising the evidence, the greater its confirming power. However,
P(e) = P(e|h)P(h)+Ple| ~ h)P(~h), so that really, the posterior probability of  depends
on the three basic quantities P(b), P{elh), and P(e| ~ h).

We shall deal in greater detail with each of these facets of inductive reasoning in the
course of this chapter.

Falsifying hypotheses

A characteristic pattern of scientific inference is the refutation of a theory, when one
of a theory’s empirical consequences has been shown to be false in an experiment.
This kind of reasoning, with its straightforward and unimpeachable logical structure,
exercised such an influence on Popper that he made it the centrepiece of his scientific
philosophy.

Although the Bayesian approach was not conceived specifically with this aspect of
scientific reasoning in view, it has a ready explanation for it. The explanation relies
on the fact that if, relative to background knowledge, a hypothesis » entails a conse-
quence e, then (relative to the same background knowledge) P(b| ~ e) = 0. Interpreted
in the Bayesian fashion, this means that b is maximally disconfirmed when it is refuted.
Moreover, as we should expect, once a theory is refuted, no further evidence can ever
confirm it, unless the refuting evidence or some portion of the background assumptions
is revoked.

Checking a consequence

A standard method of investigating a deterministic hypothesis is to draw out some of its
logical consequences, relative to a stock of background knowledge, and check whether
they are true or not. For instance, the General Theory of Relativity was confirmed by
establishing that light is deflected when it passes near the sun, as the theory predicts.
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It is easy to show, by means of Bayes’s Theorem, why and under what circamstances a
theory is confirmed by its consequences.

If b entails ¢, then, as may be simply shown, P(e}h) = 1. Hence, from Bayes’s
Theorem: P(e|h) = P(h)/P(e). Thus, if 0 < P(e) < 1, and if P(h) > 0, then P(hle) > P(h). It
follows that any evidence whose probability is neither of the extreme values must confirm
every hypothesis with a non-zero probability of which it is a logical consequence.

Succeeding confirmations must eventually diminish in 'force, for the theory has an
upper limit of probability beyond which no amount of evidence can push it. This too
follows from Bayes’s Theorem. Suppose ey, e, ..., €, ... are consequences of ». Then
Bayes’s Theorem asserts that

P(h)

hle&e,d ... &e,) =
pible;&e, & en) plhleie, & ... &e,)

Now
Pley@e, & ... &re,) = Pler)Plerd ... &eyler)
and
Pleyd ... &e,ler) = Plezler)Ples @ ... &reyleicrey).
Thus, in general,
Plei&e,& ... &e,y =Ple1)Plesler) ... Pleyey@ ... &e,_q).
Hence

P(h)
Ple1)P(esler) ... Pleyle1@ ... &e,_q)

P(hlelé"ezé" @”en) =

Provided P(h) > 0, the term P(e,le1 & ... &e,_1) must tend to 1 as # increases. If it did
not, the posterior probability of / Would at some point exceed 1, which is impossible
(Jeffreys, 1961, pp. 43—4). This explains why it is not sensible to test a hypothesis indefi-
nitely, though without more detailed information on the individual’s belief-structure, in
particular regarding the values of P(es|e; & ... e, 1), one could not know the precise
point beyond which further predictions of the hypothesis were sufficiently probable not
to be worth examining,

Specific categories of a theory’s consequences also have a restricted capacity to con-
firm (Urbach, 1981). Suppose # is the theory under discussion and that b, is a substantial
restriction of that theory. A substantial restriction of Newton’s theory might, for exam-
ple, express the idea that freely falling bodies near the earth descend with a constant
acceleration or that the period and length of a pendulum are related by the familiar
formula. Since b entails b,, P(h) < P(h,), and if b, is much less speculative than its
progenitor, it will often be significantly more probable.

Now consider a series of predictions derived from 4, but which also follow from b,.
If the predictions are verified, they may confirm both theories, whose posterior
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probabilities are given by Bayes’s Theorem, thus:

P(h)
[)(61@626’?' ax é’en)

plhlei e, & ... &e,) =

and

P(h,)
plei@e, & ... &e,)’

[)(/’),-|€1 &e ... @’e,,) =
Combining these two equations to eliminate the common denominator, one obtains

plhle&rerd ... &e,) = P(—IO)P(brlelé’eze’ﬂ" .. @ey).

P(h,)
Since the maximum value of the last probability term in this equation is 1, it follows
that however many predictions of b, have been verified, the main theory, &, can never
acquire a postetior probability in excess of P(h)/P(h,). Hence, the type of evidence
characterised by entailment from 4, may well be limited in its capacity to confirm b.

This result explains the familiar phenomenon that repetitions of a particular exper-
iment often confirm a general theory only to a limited extent, for the predictions
verified by means of a given kind of experiment (that is, an experiment designed to
a specified pattern) do normally follow from and confirm a much-restricted version
of the predicting theory. When an experiment’s capacity to generate confirming evi-
dence has been exhausted through repetition, further support for b would have to
be sought from other experiments, experiments whose outcomes were predicted by
different parts of h.

The arguments and explanations in this section rely on the possibility that evidence
already accumulated from an experiment may increase the probability of further per-
formances of the experiment producing similar results. Such a possibility is denied by
Popperians on the grounds that the probabilities involved are subjective. How then do
they explain the fact, attested by every scientist, that by repeating some experiment, one
eventually (usually quickly) exhausts its capacity to confirm a given hypothesis? Alan
Musgrave (1975) attempted an explanation designed on Popperian lines. He claimed
that after a certain, unspecified number of repetitions of an experiment, the scientist
would form a generalisation to the effect that whenever the experiment was performed,
it would yield a similar result. Musgrave then proposed that the generalisation should
be entered into ‘background knowledge’. Relative to this newly augmented background
knowledge, the experiment is certain to produce a similar result at its next performance.
Musgrave then appealed to the principle that evidence confirms a hypothesis in propor-
tion to the difference between its probability relative to the hypothesis together with
background knowledge and its probability relative to background knowledge alone.
That is, the degree to which e confirms b is proportional to P(elh¢b) — Ple|b), b being
background knowledge. Musgrave then inferred that even if the experiment did pro-
duce the expected result when next performed, the hypothesis would receive no new
confirmation. Watkins (1984, p. 297) has endorsed this account.

A number of decisive objections may be raised against it, though. First, as we shall
show in the next section, although it seems to be a fact and is an essential constituent
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of Bayesian reasoning, there is no basis in Popperian methodology for confirmation to
depend on the probability of the evidence; Popper simply invoked the principle ad hoc.
Secondly, Musgrave’s suggestion takes no account of the fact that particular experi-
mental results may be generalised in infinitely many ways. This is a substantial objection,
since different generalisations give rise to different expectations about the outcomes of
future experiments. Musgrave’s account is incomplete without a rule to specify in each
case the appropriate generalisation that should be formulated and adopted, and it is
hard to imagine how such a rule could be justified within the confines of Popperian
philosophy. Finally, the decision to designate the generalisation background knowledge,
with the consequent effect on our evaluation of other theories and on our future conduct
regarding, for example, whether to repeat certain experiments, is comprehensible only
if we have invested some confidence in the theory. But then Musgrave’s account tacitly
calls on the same kind of inductive considerations as it was designed to circumvent, so
its aim is defeated.

The probability of the evidence

The degree to which 4 is confirmed by e depends, according to Bayesian theory, on the
extent to which P(e|h) exceeds P(e). An equivalent way of putting this is to say that
confirmation is correlated with the difference between P(e|h) and P(e| ~ b), that is, with
how much more probable the evidence is if the hypothesis is true than if it is false. This
is obvious from another form of Bayes’s Theorem:

P(ble) 1
PBY b+ __P;f(L;a)h)P(Nh)

These facts are reflected in the everyday experience that information that is particularly
unexpected or surprising, unless some hypothesis is assumed to be true, supports that
hypothesis with particular force. Thus, if a soothsayer predicts that you will meet a
dark stranger sometime and you do, your faith in his powers of precognition would
not be much enhanced: you would probably continue to think his predictions were just
the result of guesswork. However, if the prediction also gave the correct number of
hairs on the head of that stranger, your previous scepticism would no doubt be severely
shaken. :

Cox (1961, p. 92) illustrated this point with an incident in Macbeth. The three
witches, using their special brand of divination, predicted to Macbeth that he would
soon become both Thane of Cawdor and King of Scotland. Macbeth finds both these
prognostications almost impossible to believe:

By Sinel’s death, I know I am Thane of Glamis,

But how of Cawdor?

The Thane of Cawdor lives, a prosperous gentleman,
And to be King stands not within the prospect of belief.
No more than to be Cawdor.

But a short time later he learns that the Thane of Cawdor prospered no longer, was
in fact dead, and that he, Macbeth, has succeeded to the title. As a result, Macbeth’s
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attitude to the witches’ powers is entirely altered, and he comes to believe in their other
predictions and in their ability to foresee the future.

The following, more scientific, example was used by Jevons (1874, vol. 1, pp. 278-79)
to illustrate the dependence of confirmation on the improbability of the evidence. The
distinguished scientist Charles Babbage examined numerous logarithmic tables pub-
lished over two centuries in various parts of the world. He was interested in whether
they derived from the same source or had been worked out independently. Babbage
(1827) found the same six errors in all but two and drew the “irresistible” conclusion
that, apart from these two, all the tables originated in a common source.

Babbage’s reasoning was interpreted by Jevons roughly as follows. The theory ¢,
which says of some pair of logarithmic tables that they shared a common origin, is
moderately likely in view of the immense amount of labour needed to compile such
tables ab initio, and for a number of other reasons. The alternative, independence theory
might take a variety of forms, each attributing different probabilities to the occurrence
of errors in various positions in the table. The only one of these which seems at all likely
would assign each place an equal probability of exhibiting an error and would, moreover,
regard those errors as more-or-less independent. Call this theory #, and let & be the
evidence of i common errors in the tables. The posterior probability of # is inversely
proportional to P(e'), which, under the assumption of only two rival hypotheses, can be
expressed as P(e') = P(e|t1)P(t1) + P(é'|£2) P(£2) (This is the theorem of total probability.).
Since #( entails ¢/, P(¢') = P(t1) + P(&'|#2)P(t2). The quantity P(e|t;) clearly decreases
with increasing i. Hence P(¢’) diminishes and approaches P(t1), as ¢ increases; and so
¢' becomes increasingly powerful evidence for #;, a result which agrees with scientific
intuition.

In fact, scientists seem to regard a few shared mistakes in different mathematical
tables as so strongly indicative of a common source that at least one compiler of such
tables attempted to protect his copyright by deliberately incorporating three minor errors
“as a trap for would-be plagiarists” (L. ]J. Comrie, quoted by Bowden, 1953, p. 4).

The relationship between how surprising a piece of evidence is on background
assumptions and its power to confirm a hypothesis is a natural consequence of Bayesian
theory and was not deliberately built in. On the other hand, methodologies that eschew
probabilistic assessments of hypotheses seem constitutionally incapable of accounting
for the phenomenon. Such approaches would need to be able, first, to discriminate
between items of evidence on grounds other than their deductive or probabilistic rela-
tion to a hypothesis. And having established such a basis for discriminating, they must
show a connection with confirmation. The objectivist school has more-or-less dodged
this challenge. An exception is Popper. In tackling the problem, he moved partway
towards Bayesianism; however, the concessions he made were insufficient. Thus Popper
conceded that, in regard to confirmation, the significant quantities are P(e|k) and P(e),
and as we have already reported, he even measured the amount of confirmation (or
“corroboration”, to use Popper’s preferred term) which e confers on b by the difference
between these quantities (Popper, 1959, appendix *ix).

But Popper never stated explicitly what he meant by the probability of evidence.
On the one hand, he would never have allowed it to have a subjective connotation,
for that would have compromised the supposed objectivity of science; on the other
hand, he never worked out what objective significance the term could have. His writings
suggest that he had in mind some purely logical notion of probability, but there is no
adequate account of logical probability. Popper also never explained satisfactorily why
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a hypothesis benefits from improbable evidence or, to put the objection another way,
he failed to provide a foundation in non-Bayesian terms for the Bayesian confirmation
function which he appropriated. (For a discussion and decisive criticism of Popper’s
account, see Griinbaum, 1976.)

The Bayesian position has recently been misunderstood to imply that if some evidence
is known, then it cannot support any hypothesis, on the grounds that known evidence
must have unit probability.

The Ravens Paradox

That evidence supports a hypothesis more the greater the ratio P(e|h)/P(e) scotches a
famous puzzle first posed by Hempel (1945) and known as the Paradox of Confirma-
tion or sometimes as the Ravens Paradox. It was called a paradox because its premises
were regarded as extremely plausible, despite their counter-intuitive, or in some ver-
sions contradictory, implications, and the reference to ravens stems from the paradigm
hypothesis (‘All ravens are black’) which is frequently used to expound the problem.
The difficulty arises from three assumptions about confirmation. They are as follows:

1 Hypotheses of the form ‘All Rs are B’ are confirmed by the evidence of something
that is both R and B. For example, ‘All ravens are black’ is confirmed by the obser-
vation of a black raven. (Hempel called this Nicod’s condition, after the philosopher
Jean Nicod.)

2 Logically equivalent hypotheses are confirmed by the same evidence. (This is the
Equivalence condition.)

3 Evidence of some object not being R does not confirm ‘All Rs are B’

We shall describe an object that is both black and a raven with the term RB. Similarly,
a non-black, non-raven will be denoted R B. A contradiction arises for the following
reasons: an RB confirms ‘All Rs are B’, on account of the Nicod condition. According
to the Equivalence condition, it also confirms ‘All non-Bs are non-Rs’, since the two
hypotheses are logically equivalent. But contradicting this, the third condition implies
that RB does not confirm ‘All non-Bs are non-Rs’.

The contradiction may be avoided by revoking the third condition, as is sometimes
done. (We shall note later another reason for not holding on to it.) However, although
the remaining conditions are compatible, they have a consequence which many philoso-
phers have regarded as blatantly false, namely, that by observing a non-black, non-raven
(say, a red herring or a white shoe) one confirms the hypothesis that all ravens are black.
(The argument is this: ‘All non-Bs are non-R’ is equivalent to ‘All Rs are B’; according to
the Nicod condition, the first is confirmed by R B; hence, by the Equivalence condition,
so is the second.)

If non-black, non-ravens support the raven hypothesis, this seems to imply the para-
doxical result that one could investigate that and other generalisations of a similar form
just as well by observing white paper and red ink from the comfort of one’s writing desk
as by studying ravens on the wing. However, this would be a non sequitur. For the fact
that RB and R B both confirm a hypothesis does not imply that they do so with equal
force. Once it is recognised that confirmation is a matter of degree, the conclusion is no
longer so counter-intuitive, because it is compatible with R B confirming ‘All Rs are B’,
but to a minuscule and negligible degree.
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Indeed, most people do have a strong intuition that an RB confirms the ravens hypoth-
esis (b) more than an R B. We can appreciate why that might be by consulting Bayes’s
Theorem as it applies to the two types of datum:

P(h|RB) _ P(RBh) & p(hIRB) _ P(RBIh)
P(h) P(RB) P(h) ~ P[RB)

5

These expressions can be simplified. First, P(RB|h) = P(B|h&*R)P(R|b) = P(R|h) = P(R).
We arrived at the last equality by assuming that whether some arbitrary object is a
raven is independent of the truth of 4, which seems plausible to us, at any rate as a good
approximation, though Horwich (1982, p. 59) thinks it has no plausibility. By sim-
ilar reasoning, P(R B |h) = P(B|b) = P(B). Also P(RB) = P(B|R)P(R), and P(BIR) =
ZP(B|RG0)P(O|R) = (assuming independence between 0 and R) TP(B|R&0)P(0),
where 6 represents possible values of the percentage of ravens in the universe that are
black (according to b, of course, § = 1). Finally, P(B|R¢9) = 6, for if the percentage
of black ravens in the universe is , the probability of an arbitrary raven being black is
also 0. (This is intuitively correct and is formalised in the so-called Principal Principle.)
Combining all these considerations with the above forms of Bayes’s Theorem yields

P(h|RB) 1 P(h|RB) 1

P(h) ~ T6P®)  P(h)  PRB)

Consider first the term P(R|B). Presumably there are vastly more non-black things in
the universe than ravens. So even if no ravens are black, the probability of some object
about which we know nothing, except that it is not black, being a non-raven must be
very high, indeed, practically 1. Hence, P(h|R B) ~ P(h), and, so, the observation that
some object is neither a raven nor black provides very little confirmation for A.
According to the equation above, the degree to which RB confirms b is inversely pro-

ﬁtmatlon could be substantial. Intermediate levels of uncertainty about the proportlon of
ravens that are black would bring their own levels of confirmation. By contrast, because
the class of non-black objects is so much larger than the class of ravens, R B confirms
‘All ravens are black’ to only a tiny extent, irrespective of P(8). Mackie’s well-known
Bayesian solution to the ravens paradox, is similar and also depends on an assumed
large disparity in the number of non-black objects and ravens.

Our Bayesian working of the raven example appears to support the Nicod condition,
with the minor limitation that no confirmation is possible, even with positive instances,
when the hypothesis has a prior probability of 1. But a Bayesian approach anticipates
the violation of Nicod’s condition in other circumstances too. And numerous examples
have been suggested as plausible instances of such violations. The first of these seems to
be due to Good (1961). We shall use an example that is taken, with some modification,
from Swinburne (1971). The hypothesis under examination is ‘All grasshoppers are
located outside the County-of Yorkshire’. The observation of a grasshopper just beyond
the county border is an instance of this generalisation and, according to Nicod, confirms
it. But it might be more reasonably argued that since there are no border controls or
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other obstacles restricting the movement of grasshoppers in that area, the observation
of one on the edge of the county increases the probability that others have actually
entered and hence undermines the hypothesis. In Bayesian terms, this is a case where,
relative to background information, the probability of some datum is reduced by a
hypothesis—that is, P(e|h) < P(e)—which is therefore disconfirmed—in other words,
P(ble) < P(h).

A much more striking example where Nicod’s conditions break down was invented
by Rosenkrantz (1977, p. 35). Three people leave a party, each with a hat. The hypoth-
esis that none of the three has his own hat is confirmed, according to Nicod, by the
observation that person 1 has person 2’s hat and by the observation that person 2 has
person 1’s hat. But since there are only three people, the second observation must refute
the hypothesis, not confirm it. _

Our grasshopper example provides an instance where a datum of the type R B confirms
a generalisation of the form ‘All Rs are B’. Imagine that an object which looked for all
the world like a grasshopper had been found hopping about just outside Yorkshire and
that it turned out to be some other sort of insect. The discovery that the object was
not a grasshopper would be relatively unlikely unless the grasshopper hypothesis was
true (hence, P(e) < P(elh)); thus it would confirm that hypothesis. If the deceptively
grasshopper-like object were within the county boundary, the same conclusion would
follow, though the degree of confirmation would be greater. This shows that ‘All Rs
are B’ may also be confirmed by a datum of the R B type. Hence, the impression that
non-Rs never confirm such hypotheses may be dispelled.

Horwich (1982) has argued that the raven hypothesis may be differently confirmed,
depending on how the black raven was chosen, either by randomly selecting an object
from the population of ravens or by making the selection from the population of black
objects. (Horwich denotes the evidence that some object is a black raven as either R*B
or RB*, depending on whether it was discovered by the first selection process or the
second.) Prompted by a paper by Kevin Korb (1994), we agree with Horwich that
this is so.

But Horwich offers another explanation, which fits poorly with his Bayesian one. For
he claims that the datum R*B is always more powerfully confirming than RB*, because,
he says, only it subjects the raven hypothesis to the risk of falsification. But this surely
conflates the process of collecting evidence, which may indeed subject the hypothesis to
different risks of refutation, with the evidence itself, which either refutes the hypothesis
or does not refute it, and in the case of R*B and RB*, it does not.

Our conclusions are, first, that the supposedly paradoxical consequences of Nicod’s
condition and the Equivalence condition are not problematic, and, secondly, that there
are separate reasons for rejecting Nicod’s condition, which, moreover, conform to
Bayesian principles.

The Duhem problem

The problem

The so-called Duhem (or Duhem-Quine) problem is a problem for theories of science
of the type associated with Popper, which emphasise the power of certain evidence to
refute a hypothesis. According to Popper’s influential views, the characteristic of a the-
ory which makes it ‘scientific’ is its falsifiability: “Statements or systems of statements,
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in order to be ranked as scientific, must be capable of conflicting with possible, or con-
ceivable, observations” (Popper, 1963, p. 39). And, claiming to apply this criterion,
Popper (1963, Ch. 1) judged Finstein’s gravitational theory to be scientific and Freud’s
psychology, unscientific. There is a strong flavour of commendation about the term sci-
entific which has proved extremely misleading. For a theory that is scientific in Popper’s
sense is not necessarily true, or even probably true or so much as close to the truth, nor
can it be said definitely that it is likely to lead to the truth. In fact, there seems to be no
conceptual connection between a theory’s capacity to pass Popper’s test of scientificness
and its having any epistemic or inductive value. There is little alternative, then, so far
as we can see, to regarding Popper’s demarcation between scientific and unscientific

_statements as part of a theory about the content and character of what is usually termed

science, not as having any normative significance.

Yet as an attempt at understanding the methods of science, Poppet’s ideas bear little
fruit, His central claim was that scientific theories are falsifiable by “possible, or con-
ceivable, observations”. This poses a difficulty, for an observation can only falsify a
theory (that is, conclusively demonstrate its falsity) if it is itself conclusively certain. But
observations cannot be conclusively certain. Popper himself recognised this but seems
not to have appreciated its incongruity with his falsificationist thesis. He held every

observation report to be fallible; but, reluctant to admit degrees of fallibility or any--

thing of the kind, he concluded that observation reports that are admitted as evidence
“are accepted as the result of a decision or agreement; and to that extent they are con-
ventions” (Popper, 1959, p. 106; our italics). It is unclear to us to what psychological
attitude this sort of acceptance corresponds, but whatever it is, Popper’s view of evi-
dence statements seems to pull the rug from under falsificationism: it implies that no
theory can really be falsified by evidence. The nearest thing to a refutation would occur
when ‘conventionally accepted’ evidence was inconsistent with a theory, which could
then, at best, be described as ‘conventionally’ rejected. Indeed, Popper conceded this
much: “From a logical point of view, the testing of a theory depends upon basic state-
ments whose acceptance or rejection, in its turn, depends upon our decisions. Thus it is
decisions which settle the fate of theories” (Popper, 1959, p. 108).

Watkins is one of those who saw that falsificationism presupposes the existence of
some infallibly true observation statements, and he attempted to restore the Popperian
position by advancing the claim that such statements do in fact exist. He would agree
that statements like “The hand on this dial is pointing to the numeral 6’ are fallible—it is
unlikely, but possible, that the person reporting it missaw the position of the hand. But
he claimed that introspective perceptual reports, such as ‘In my visual field there is now
a silvery crescent against a dark blue background’, “may rightly be regarded by their
authors when they make them as infallibly true” (Watkins, 1984, pp. 79 and 248). But in
our view Watkins is wrong, and the statements he regards as infallible are open to exactly
the same sceptical doubts as any other observation report. We can illustrate this through
Watkins’s example: clearly, it is possible, though admittedly not very probable, that
the introspector has misremembered and mistaken the shape he usually describes as a
crescent or the sensation he usually receives on reporting blue and silvery images. These
and other sources of error ensure that introspective reports are not exempt from the rule
that non-analytic statements are fallible.

Of course, the kinds of observation statements we have mentioned, if asserted under
appropriate circumstances, would never be seriously doubted. That is, although they
could be false, they have a force and immediacy that carries conviction; they are
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‘morally certain’, to use the traditional phrase. But if observation statements are merely
indubitable, then whether a theory is regarded as refuted by observational djdtg or not
must rest ultimately on a subjective feeling of certainty. The fact that such convictions are
so strong and uncontroversial may disguise their fallibi.lity, but cannot undo it. Henc‘e,
no theory is strictly falsifiable, for none could be conclusively showln to be false by empir-
ical observations. In practice the closest one could get to a refutation would be arriving
at the conclusion that a theory that clashes with almost certainly true observations is
almost certainly false. .

A second objection to Popper’s falsifiability criterion, and the one upon which we sh?.ll
focus for its more general interest, is that it describes as unscientific most (?f those theories
which are usually deemed science’s greatest achievements. This is the chief aspect of the
well-known criticisms advanced by Polanyi {1962), Kuhn (1970), and Lakatos (1970),
amongst others, They have pointed out that, as had alr?ady been established by Dubem
(1905), many notable theories of science are not falsifiable by what Wguld generally
be regarded as observation statements, even if those statements were infallibly true.
Predictions drawn from Newton’s laws or from the Kinetic Theory of Gases turn out
to depend not only on those theories but also on certain auxiliary hypqtheses. H'ence, if
such predictions fail, one is not compelled by logic to infer that the main theory is false,
for the fault may lie with one or more of the auxiliary assumptions. The history of science
has many occasions when an important theory led to a false prediction and where that
theory, nevertheless, was not blamed for the failure. In such cases we find that one or
more of the auxiliary assumptions used to derive the prediction was taken to be the
culprit. The problem that arose from Duhem’s investigations was which of the several
distinct theories involved in deriving a false prediction should be regarded as the false
element or elements in the assumptions.

The Dubem problem solved by Bayesian means

This problem may be resolved with the help of Bayes’s Theorem, as Dorli'ng (1979) has
shown, by considering how the individual probabilities of several theories are altered
when, as a group, they have been refuted. , -

Suppose a theory, ¢, and an auxiliary hypothesis, @, together imply an empirical conse-
quence which is shown to be false by the observation of the outcome e. Let us assume that
while the combination of & a is refuted by e, the two components taken individually
are not refuted. We wish to consider the separate effects wrought on the probabilities of
t and a by the adverse evidence e. The comparisons of interest here are between P(tle)
and P(#), and between P(ale) and P(a). The conditional probabilities can be expressed
using Bayes’s Theorem, as follows:

Ple|t)P(2) _ Plela)P(a)

P(tle) = ~T(e)— P(ﬂle) _——_P(e) .

In order to evaluate the posterior probabilities of ¢ and of @, one must first determine Fhe
values of the various terms on the right-hand sides of these equations. Before attempting
this, it is worth noting that the equations convey no expectation that the refutation
of t & a jointly considered will in general have a symmetrical effect on the separate
probabilities of ¢ and of 4, nor any reason why the degree of asymmetry may not b.e
considerable in some cases. It is evident that the probability of ¢ changes very little if
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P(e|t) = P(e), while that of a is reduced substantially just in case P{¢|a) is substantially
less than P(e). The equations also allow us to discern the factors that determine which
hypothesis suffers most in the refutation.

A historical example might best illustrate how a theory that produces a false
prediction may still remain very probable; we shall, in fact, use an example that Lakatos
(1970, pp. 138-40, and 1968, pp. 174-75) drew heavily on. In 1815, William Prout, a
medical practitioner and chemist, advanced the hypothesis that the atomic weights of all
the elements are whole number multiples of the atomic weight of hydrogen, the underly-
ing assumption being that all matter is built out of different combinations of some basic
element. Prout believed hydrogen to be that fundamental building-block, though the
idea was entertained by others that a more primitive element might exist out of which
hydrogen itself was composed. Now the atomic weights recorded at the time, though
approximately integral when expressed as multiples of the atomic weight of hydrogen,
did not match Prout’s hypothesis exactly. Those deviations from a perfect fit failed to
convince Prout that his hypothesis was wrong however; he instead took the view that
there were faults in the methods that had been used to measure the relative weights of
atoms. The noted chemist Thomas Thomson drew a similar conclusion. Indeed, both
he and Prout went so far as to adjust several reported atomic weights in order to bring
them into line with Prout’s hypothesis. For instance, instead of accepting 0.829 as the
atomic weight (expressed as a proportion of the weight of an atom of oxygen) of the
element boron, which was the experimentally reported value, Thomson (1818, p. 340)
preferred 0.875 “because it is a multiple of 0.125, which all the atoms seem to be”.
(Thomson erroneously took 0.125 as the atomic weight of hydrogen, relative to that of
oxygen.) Similarly, Prout adjusted the measured atomic weight of chlorine (relative to
hydrogen) from 35.83 to 36, the nearest whole number.

Thomson’s and Prout’s reasoning can be explained as follows: Prout’s hypothesis
t, together with an appropriate assumption @ asserting the accuracy (within speci-
fied limits) of the measuring technique, the purity of the chemicals employed, and so
forth, implies that the measured atomic weight of chlorine (relative to hydrogen) is
a whole number. Suppose, as was the case in 1815, that chlorine’s measured atomic
weight was 35.83, and call this the evidence e. It seems that chemists of the early
nineteenth century, such as Prout and Thomson, were fairly certain about the truth
of t, but less so of a, though more sure that 4 is true than that it is false. Contempo-
rary near-certainty about the truth of Prout’s hypothesis is witnessed by the chemist
J. S. Stas. He reported (1860, p. 42) that “In England the hypothesis of Dr Prout was
almost universally accepted as absolute truth”, and he confessed that when he started
researching into the matter, he himself had “had an almost absolute confidence in the
exactness of Prout’s principle” (1860, p. 44). (Stas’s confidence eventually faded after
many years’ experimental study, and by 1860 he had “reached the complete convic-
tion, the entire certainty, as far as certainty can be attained on such a subject, that
Prout’s law ... is nothing but an illusion”, 1860, p. 45.) It is less easy to ascertain
how confident Prout and his contemporaries were in the methods by which atomic
weights were measured, but it is unlikely that this confidence was very great, in view
of the many clear sources of error and the failure of independent measurements gen-
erally to produce identical results. On the other hand, chemists of the time must have
felt that their methods for determining atomic weights were more likely to be accurate
than not, otherwise they would not have used them. For these reasons, we conjec-
ture that P(a) was of the order of 0.6 and that P(z) was around 0.9, and these are
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the figures we shall work with. It should be stressed that these numbers and those
we shall assign to other probabilities are intended chiefly to illustrate how Bayes’s
Theorem resolves Duhem’s problem; nevertheless, we believe them to be sufficiently
accurate to throw light on the progress of Prout’s hypothesis. As will become appar-
ent, the results we obtain are not very sensitive to variations in the assumed prior
probabilities.

In order to evaluate the posterior probabilities of # and of 4, one must fix the values
of the terms P(e|t), P(e|a), and P(e). These can be expressed, using the theorem on total
probability, as follows:

P(e) = P(e|t)P(t) + Ple| ~ t)P(~t)
P(e|t) = P(ecralt) + Pled ~ alt)
= Ple|t & a)Plalt) + Plelt & ~ a)P(~ alt)
= Ple|t & a)P(a) + Ple|t & ~ a)P(~a)

Since ¢ ¢ a, in combination, is refuted by e, the term P(e|t & a) is zero. Hence:
Ple|t) = Ple|t & ~ a)P(~ a).

It should be noted that in deriving the last equation but one, we have followed
Dorling in assuming that # and a are independent, that is, that P(a|t) = P(a) and, hence,
P(~ a|t) = P(~ a). This seems to accord with many historical cases and is clearly right
in the present case. By parallel reasoning to that employed above, we may derive the
results:

Plela) = Ple| ~ t &a)P(~ 1)
Ple| ~ t) = Ple| ~ t &a)P(a) + Ple| ~ t & ~ a)P(~ a)

Provided the following terms are fixed, which we have done in a tentative way, to be
justified presently, the posterior probabilities of ¢ and of a can be determined:

Ple| ~t&ra) =0.01
Ple| ~t& ~a)=0.01
Ple|t & ~a)=0.02

The first of these gives the probability of the evidence if Prout’s hypothesis is not true
but if the method of atomic weight measurement is accurate. Such probabilities were
explicitly considered by some nineteenth-century chemists, and they typically took a
theory of random assignment of atomic weights as the alternative to Prout’s hypothesis
(e.g., Mallet, 1880); we shall follow this. Suppose it had been established for certain
that the atomic weight of chlorine lay between 35 and 36. (The final results we obtain
respecting the posterior probabilities of ¢ and a are, incidentally, not affected by the
width of this interval.) The random-allocation theory would assign equal probabilities to
the atomic weight of an element lying in any 0.01-wide band. Hence, on the assumption
that a is true, but # false, the probability that the atomic weight of chlorine lies in the
interval 35.825 to 35.835 is 0.01. We have assigned the same value to Ple| ~ & ~a)
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on the grounds that if g were false because, say, some of the chemicals were impure or
the measuring techniques faulty, then, still assuming ¢ to be false, one would not expect
atomic weights to be biased towards any particular part of the interval between adjacent
integers.

We have set the probability P(e|t & ~ a) rather higher, at 0.02. The reason for this
is that although some impurities in the chemicals and some degree of inaccuracy in
the method of measurement were moderately likely in the early nineteenth century,
chemists would not have considered their techniques entirely haphazard. Thus if Prout’s
hypothesis were true, but the measuring technique imperfect, the measured atomic
weights would have been likely to deviate somewhat from integral values; but the greater
the deviation, the less likely, on these assumptions, so the probability of an atomic
weight lying in any part of the 35-36 interval would not be distributed uniformly over
the interval, but would be more concentrated around the whole numbers.

Let us proceed with the figures we have assumed for the crucial probabilities, not-
ing however that the particular values of the three probability terms are unimportant,
only their relative values need be taken into account in the calculation. Thus we would
arrive at the same posterior probabilities for 2 and # with the weaker assumptions that
Ple| ~t&a)=Ple| ~t& ~a)=1/2P(e|t & ~ a). We thus obtain

Ple] ~1)=0.01x 0.6 +0.01 x 0.4 =0.01
Ple]t) = 0.02 x 0.4 = 0.008
Plefa) = 0.01 x 0.1 = 0.001

P(e) =0.008 x 0.9 +0.01 x 0.1 =0.0082

Finally, Bayes’s Theorem enables us to derive the posterior probabilities in which we
were interested:

P(t]e) = 0.878 (Recall that P(z) =0.9.)
P(ale) = 0.073 (Recall that P(a) = 0.6.)

These striking results show that evidence of the kind we have-described may exert a
sharply asymmetric effect on the probabilities of ¢ and of 4. The initial probabilities we
assumed seem appropriate for chemists such as Prout and Thomsomn, and if they are
correct, the results deduced from Bayes’s Theorem explain why those chemists regarded
Prout’s hypothesis as being more-or-less undisturbed when certain atomic-weight mea-
surements, diverged from integral values, and why they felt entitled to adjust those
measurements to the nearest whole number. Fortunately, these results are relatively
insensitive to changes in our assumptions, so the accuracy of those assumptions is not
a vital matter as far as our explanation is concerned. For example, if one took the ini-
tial probability of Prout’s hypothesis (¢) to be 0.7, instead of 0.9, keeping the other
assignments, we find that P(e|t) = 0.65, while P(ale) = 0.21. Hence, as before, after the
refutation, Prout’s hypothesis is still more likely to be true than false, and the auxiliary
assumptions are still much more likely to be false than true. Other substantial variations
in the initial probabilities produce similar results, though with so many factors at work,
it is difficult to state concisely the conditions upon which these results depend without
just pointing to the equations above.

Thus Bayes’s Theorem provides a model to account for the kind of scientific reasoning
that gave rise to the Duhem problem. And the example of Prout’s hypothesis, as well as
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others that Dorling (1979 and 1982) has described, show, in our view, that the Bayesian
model is essentially correct. By contrast, non-probabilistic theories seem to lack entirely
the resources that could deal with Duhem’s problem.

A fact that emerges when slightly different values are assumed for the various prob-
abilities in the Prout’s hypothesis example is that one or other of the theories may

actually become more probable after the conjunction ¢ & a has been refuted. For instance,

when P(e|t & ~ a) equals 0.05, the other probabilities being assigned the same values as
before, the posterior probability of # is 0.91, which exceeds its prior probability. This
may seem bizarre, but, as Dorling (1982) has argued, it is not so odd when one bears in
mind that the refuting evidence normally contains a good deal more information than is
required merely to disprove ¢ & a and that this extra information may be confirmatory.
In general, such confirmation occurs when P(e) < P(elt), which is easily shown to be
equivalent to the condition P(ej¢) > P(e] ~ t). In other words, when evidence is easier
to explain (in the sense that it receives a higher probability) if a given hypothesis is true
than if it is not, then that theory is confirmed by the evidence.

Bad data, and data too good to be true

Bad data. An interesting fact that emerges from the Bayesian analysis is that a successful
prediction derived from a combination of two theories, say # and 4, does not always
redound to the credit of #, even if the prior probability of the evidence is small; indeed,
it can even undermine it. We may illustrate this by referring again to the example of
Prout’s hypothesis. ,

Suppose the atomic weight of chlorine were ‘measured’, not in the old-fashioned
chemical way, but by concentrating hard on the element in question and picking a num-
ber in some random fashion from a given range of numbers. And let us assume that
this method assigns a whole-number value to the atomic weight of chlorine. This is just
what one would predict on the basis of Prout’s hypothesis, if the outlandish measuring
technique were reliable. But reliability is obviously most unlikely, and it is equally obvi-
ous that, as a result, the measured atomic weight of chlorine adds practically nothing
to the probability of Prout’s hypothesis, notwithstanding its integral value. This intu-
ition is upheld by Bayes’s Theorem, as a simple calculation based on the above formulas
shows. (As before, let # be Prout’s hypothesis and a the assumption that the measuring
technique is accurate. Then set Pe|t & ~ a) = Ple| ~t & ~ a) = P(e| ~ t & a) = 0.01,
for reasons similar to those stated earlier, and let P(a) be very small, say 0.0001,
for obvious reasons. It then follows that P(¢) and P(t|e) are equal to two decimal
places.)

This example shows that Leibniz was wrong to declare as a general principle that “It
is the greatest commendation of an hypothesis (next to truth) if by its help predictions
can be made even about phenomena or experiments not tried”. Leibniz and Lakatos,
who quoted these words with approval (1970, p. 123), seem to have overlooked the
fact that if a prediction can be deduced from a hypothesis only with the assistance of
highly questionable auxiliary claims, then that hypothesis may accrue very little credit.
This explains why the various sensational predictions which Velikovsky drew from his
theory of planetary collisions failed to impress most serious astronomers, even when
some of those predictions were to their amazement fulfilled. For instance, Velikovsky’s
prediction of the existence of large quantities of petroleum on the planet Venus relied
not only on his pet theory that various natural disasters in the past had been caused by
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collisions between the earth and a comet, but also on a string of unsupported and not very
plausible assumptions, such as that the comet in question originally carried hydrogen and
carbon, that these had been converted to petroleum by electrical discharges supposedly
created in the violent impact with the earth, that the comet had later evolved into the
planet Venus, and some others (Velikovsky, 1950, p. 351). (More details of Velikovsky’s
theory are given in the next section.)

+ Data too good to be true. Data are sometimes said to be ‘too good to be true’ when
they fit a favoured hypothesis more perfectly than seems reasonable to expect. For
instance, suppose all the atomic weights listed in Prout’s paper had been whole numbers,
exactly. Such a result almost looks as if it was designed to impress, and it is just for this
reason that it fails to.

We may analyse this response as follows. Let e be the evidence of, say, 20 atomic
-weight measurements, each a perfect whole number. No one could have regarded precise
atomic weights measured at the time as absolutely reliable. The most natural view would
have been that such measurements are subject to experimental error and, hence, that
they would give a certain spread of results about the true value. On this assumption,
which we shall label &, it is extremely unlikely that numerous independent atomic-weight
measurements would all produce whole numbers, even if Prout’s hypothesis were true.
So Ple|t &d') is extremely small and, clearly, P(e| ~ £ & a’) would be no larger. Now o'
has many possible alternatives, one of the more plausible (though initially it might not
be very plausible) being that the experiments were consciously or unconsciously rigged
in favour of Prout’s hypothesis. If this were the only significant alternative (and so, in
effect, equivalent to ~ '), P(e|t & ~ ') would be very high, as would P(e| ~t & ~ a').
It follows from the equations on page 234 above that

Ple|t)~ Plelt & ~a')P(~d') and
Ple|~t)~Ple| ~t & ~d)P(~4a),

and, hence,
Ple)~ Plelt & ~ d')P(~d')P(t)+Ple| ~t & ~a\P(~q)P(~t).

Now, presumably the rigging of the results to produce whole numbers, if it took place,
would produce whole numbers equally effectively whether ¢ was true or not; in other
words,

Pleltd ~da')=Ple| ~t& ~d');
hence
Ple) ~ Ple|t & ~d)P(~d).
Thetrefore,

_ Plelt)P(t) _ Pleft& ~a)P(~a)P(t)
P = = ™ Pend ~api~a) — W
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Thus e does not confitm ¢ significantly, even though, in a misleading sense, it fits the
theory perfectly. This is why it is said to be too good to be true. A similar calculation
shows that the probability of &’ is diminished and, on the assumptions that we made,
this implies that the probability of the experiments having been fabricated is enhanced.
(The above analysis is essentially the same as given in Dorling, 1982).

A famous case of data that were allegedly too good to be true is that of Mendel’s
plant-breeding results. Mendel’s genetic theory of inheritance allows one to calculate
the probabilities with which certain plants would produce specific kinds of offspring. For
instance, under certain circumstances, pea plants of a particular strain may be calculated
to yield round and wrinkled seeds with probabilities 0.75 and 0.25, respectively. Mendel
obtained seed-frequencies that matched the corresponding probabilities in this and in
similar cases remarkably well, suggesting (misleadingly, Fisher contended) substantial
support for the genetic theory. Fisher did not believe that Mendel had deliberately falsi-
fied his results to appear in better accord with his theory than they really were. To do so,
Fisher claimed, would “contravene the weight of the evidence supplied in detail by ...
[Mendel’s] paper as a whole”. But Fisher thought it a “possibility among others that
Mendel was deceived by some assistant who knew too well what was expected” (1936,
p. 132), an explanation he backed up with some (rather meagre) evidence. Dobzhansky
(1967, p. 1589), on the other hand, thought it “at least as plausible” that Mendel had
himself discarded results that deviated much from his ideal, in the sincere belief that they
were contaminated or that some other accident had befallen them. (For a comprehensive
review see Edwards, 1986.)

The argument put forward eatlier to show that too-exactly whole-number atomic-
weight measurements would not have supported Prout’s hypothesis depends on the
existence of some sufficiently plausible alternative hypothesis that would explain the
data better. We believe that, in general, data are too good to be true relative to one
hypothesis only if there are such alternatives. This principle accords with intuition; for
if the technique for eliciting atomic weights had long been established as precise and accu-
rate, and if careful precautions had been taken against experimenter bias and deception,
all the natural alternatives to Prout’s hypothesis could be discounted and the data would
no longer seem suspiciously good; they would be straightforwardly good. Fisher, how-
ever, did not subscribe to the principle, at least, not explicitly; he believed that Mendel’s
results told against the genetic theory whatever alternative explanations might suggest
themselves. Nevertheless, as just indicated, the consideration of such alternatives played
a part in his argument,

Ad hoc hypotheses

As we have seen, an important scientific theory which, in combination with other
hypotheses, has made a false prediction may nevertheless emerge relatively unscathed,
while one or more of the auxiliary hypotheses are largely discredited. (We are using
such expressions in the normal way to describe how hypotheses are received, regarding
them as harmless metaphors for obvious and more-or-less precise probabilistic notions.
Thus, a hypothesis that is unscathed by negative evidence is one whose posterior and
prior probabilities are similar. On the other hand, it is difficult to see what oppo-
nents of the Bayesian approach could have in mind when they talk of theories being
‘accepted’ or ‘retained’, or ‘put forward’ or ‘saved’ or ‘vindicated’.) When a set of auxil-
iary assumptions is discredited in a test, scientists frequently think up new assumptions
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which assist the main theory to explain the previously anomalous data. Sometimes these
new assumptions give the impression that their role is simply to ‘patch up’ the theory,
and in such cases Francis Bacon called them “frivolous distinctions” (1620, Book I,
aphorism xxv). More recently they have been tagged ‘ad hoc hypotheses’, presumably
because they would not have been introduced if the need to bring theory and evidence
into line had not arisen.

But although particular ad hoc theories are fairly easy to evaluate intuitively, there is
controversy over what general criteria apply. We shall see that the Bayesian approach
clarifies the question. First let us consider a few examples of ad hoc theories.

Some examples of ad hoc hypotheses

Velikovsky’s theory of collective amnesia. Inmanuel Velikovsky, in a daring book called
Worlds in Collision that attracted a great deal of attention some years ago, put forward
the theory that the earth has been subject, at various stages in its history, to cosmic
disasters produced by near collisions with massive comets. One of these comets, which
went on to make a distinguished career as the planet Venus, is supposed to have passed
close by the earth during the Israelites’ captivity in Egypt and to have caused many of
the various remarkable events of the time, such as the ten plagues and the parting of the
Red Sea, related in the Bible. One of the theory’s predictions, apparently, is that since
no group of people could have missed these tremendous goings-on, if they kept records
at all, they would have recorded them. However, many communities failed to note in
their writings anything out of the ordinary at that time. But Velikovsky, still convinced
by his main theory, put this exceptional behaviour down to what he called a “collective
amnesia”. He argued that the cataclysms were so terrifying that whole peoples behaved
“as if [they had] obliterated impressions that should be unforgettable”. There was a
need, Velikovsky said, to “uncover the vestiges” of these events, “a task not unlike that
of overcoming amnesia in a single person” (1950, p. 288).
Individual amnesia is the issue in the next example.

Dianetics. Dianetics is a theory that purports to analyse the causes of insanity and
mental stress, which it sees as the ‘misfiling’ of information in unsuitable locations
in the brain. By refiling these ‘engrams’, it claims, sanity may be restored, composure
enhanced, and, incidentally, the memory vastly improved. Not surprisingly, the therapy
is long and expensive, and few people have been through it and borne out the the-
ory’s claims. However, one triumphant success, a young student, was announced by
the inventor of Dianetics, L. Ron Hubbard, and in 1950 he exhibited this person to a
large audience, claiming that she had a “full and perfect recall of every moment of her
life”. But questions from the floor (“What did you have for breakfast on October 3,
1942?”; “What colour is Mr. Hubbard’s tie?”, and the like) soon demonstrated that
the hapless young woman had a most imperfect memory. Hubbard accounted for this
to what remained of the assembly by saying that when the woman first appeared on
the stage and was asked to come forward “now”, the word “now” had frozen her in
“present time” and paralysed her ability to recall the past. (An account of the incident
and of the history of Dianetics is given by Miller, 1987.)

An example from psychology. Investigations into the 1Qs of different groups of
people show that average levels of measured intelligence vary. Some environmentalists,
so-called, attribute low scores primarily to poor social and educational conditions, an

239



COLIN HOWSON AND PETER URBACH

explanation that ran into trouble when it was discovered that a large group of Eskimos,
leading a feckless, poor, and drunken existence, scored very highly on IQ tests. The
distinguished biologist Peter Medawar (1974), in an effort to deflect the difficulty away
from the environmentalist thesis, tried to explain this unexpected observation by say-
ing that an “upbringing in an igloo gives just the right degree of coziness, security and
mutual contact to conduce to a good performance in intelligence tests.”

In each of these examples, the theory which was proposed in place of the refuted
one seems rather unsatisfactory. It is not likely that they would have been put forward
except in response to particular empirical anomalies, hence the label “ad hoc”, which
suggests that the theory was advanced for the specific purpose of evading a difficulty.
However, some theories of this kind cannot be condemned so readily. For instance, an
ad hoc alteration which rescued Newtonian theory from a difficulty led directly to the
discovery of a new planet and was generally deemed a shining success.

The discovery of the planet Neptune. The planet Uranus was discovered by Sir William
Herschel in 1781. Astronomers quickly sought to describe the orbit of the new planet,
using Newtonian theory and taking account of the perturbing influence of other known
planets, so that predictions could be made concerning its future positions. But discrep-
ancies between predicted and observed positions of Uranus substantially exceeded the
admitted limits of experimental error and grew year by year. The possibility that the
fault lay with’ Newton’s laws was mooted by a few astronomers, but the prevailing
opinion was that there must be some unknown planet providing an extra source of gravi-
tational attraction on Uranus, which ought to be included in the Newtonian calculations.
Two astronomers in particular, John Couch Adams and U. J. . Le Verrier, working inde-
pendently, were convinced of this, and using all the known sightings of Uranus, they
“estimated where the hypothetical planet should be. This was a remarkable mathemat-
ical achievement, but more importantly, careful telescopic observations and studies of
old astronomical charts revealed in 1846 the presence of a planet with the anticipated
characteristics. The planet was later called Neptune. Newton’s theory was saved, for
the time being. (The fascinating story of this episode is told by W. M. Smart, 1947.)

A standard account of adhocness

The common features of the examples we are considering are that a theory ¢, which we
can call the main theory, was combined with an auxiliary hypothesis a, to predict e,
when in fact ¢’ occurred, ¢/ being incompatible with e. And in order to retain the main
theory in its desired explanatory role, a new auxiliary, &, was proposed which, with t
implies ¢’. The new theories are ad hoc in the sense that they were advanced “for the
sole purpose of saving a hypothesis seriously threatened by adverse evidénce” (Hempel,
1966, p. 29). However, many philosophers have distinguished two kinds of ad hoc
theory. Theory ¢ & d' is of the first kind if it possesses no independent test implications—
independent, that is, from the evidence that refuted its predecessor ¢ & a. It is ad hoc
in the second sense if it does have such test implications but none has been verified.
Lakatos (1970, p. 175) called the first kind of theory ad hocy, the second kind ad hoc;.
Often, the designation ad hoc is applied just to the new theory, &, rather than to its
conjunction with ¢, :

The term ad hoc for hypotheses that do not meet one or other of these conditions
seems not to be an old one; its earliest occurrence in English that we know of was
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in 1936, in a critical review of a book of psychology. The reviewer, W. J. H. Sprott,
commented on some explanations offered in the book of certain aspects of childish
behaviour:

There is a suspicion of ‘ad-hoc-ness’ about the ‘explanations’. The whole point

is that such an account cannot be satisfactory until we can predict the child’s

, movements from a knowledge of the tensions, vectors and valences which are

operative, independent of our knowledge of how the child actually bebaved.

So far we seem reduced to inventing valences, vectors and tensions from a
knowledge of the child’s behaviour.

(Sprott, 1936, p. 249; our emphasis)

Sprott clearly regarded ad hoc theories as unsatisfactory, a view which many philoso-
phers nowadays share. For example, Popper states it as one of his ‘requirements’ that a
theory should not be ad hocy: ~

We require that the new theory should be independently testable. That is to say,
apart from explaining all the explicanda which the new theory was designed to
explain, it must have new and testable consequences (preferably consequences
of a new kind).

(Popper, 1963, p. 241)

A further requirement laid down by Popper is that the new theory “should pass the
independent tests in question”, that is, they should not be ad hoc;,. Lakatos (1970) agreed
with Popper that a theory is unacceptable if it is ad hoc in either sense; others such as
Hempel (1966, p. 29) emphasise only the first sense. Disapproval of ad hoc theories is
not new; in the early seventeenth century, Bacon criticized as a “frivolous distinction”
the type of hypothesis that is “framed to the measure of those particulars only from
which it is derived” (i.c., ad hoc; hypotheses). Bacon argued that a hypothesis ought
to be “larger and wider” than the observations that gave rise to it and, moreover, that
“that largeness and wideness” should be confirmed “by leading us to new particulars”
(i.e., the theory should not be ad hoc,).

The theories advocated by Velikovsky, Medawar, and Hubbard in response to
anomalous data are probably ad hocy, since they seem to make no independent pre-
dictions, though, of course, a closer study of those theories might reverse that judgment.
According to the criteria we have discussed, the theories appear therefore to represent
unsatisfactory scientific developments, which is intuitively right. The Adams-Le Ver-
rier hypothesis, on the other hand, is not ad hoc in either sense, because it did make
new predictions, some of which were verified by telescopic sightings of Neptune. Again,
philosophical and intuitive judgment coincides.

Despite this seeming success, we believe the adhocness criterion to be misconceived
and unfounded. In setting out our position, we shall show why the criterion must be
wrong, and then we shall present the Bayesian view on ad hoc theories.

Why the standard account must be wrong

According to the standard account, all ad hoc hypotheses are unsatisfactory, though
ad hocy, not surprisingly, is often regarded as worse than ad hoc,. As we explained,
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we do not think any of the attempts to justify the adhocness criterion a priori have
been successful. And we shall argue that this is to be expected, since there are positive
reasons to reject the criterion, which we shall now set out. Our argument will appeal
to counter-examples and to some more general considerations. An attraction of the
adhocness criterion, no doubt, is its apparent objectivity and its avoidance of subjective
probability, but, as we shall show, the non-Bayesian account has its own subjective
aspect, one which, in our view, is very inappropriate,

Consider first some counter-examples to the standard account. Suppose one were
examining the hypothesis that a particular urn contains only white counters. Next,
imagine that a counter is withdrawn from the urn at random, that after its colour has
been noted, it is replaced, and that this operation is repeated 10,000 times. If 4950,
say, of the selected counters were red and the rest white, the initial hypothesis and
the various necessary auxiliary assumptions, taken together, would be refuted; and it
is then natural to conclude that, contrary to the original assumption, the urn contains
both red and white counters in approximately equal numbers. This seems a perfectly
reasonable inference, the revised hypothesis appears well justified by the evidence, yet
there is no independent evidence for it. And if we complicate the example by letting the
urn vapourise just after the last counter has been inspected, there will be no possibility of
such independent evidence. So the hypothesis about the (late) urn’s contents is ad hocyga;
but for all that, it seems plausible and satisfactory (Howson, 1984; Urbach, 1991).

Speculating on the contents of an urn is but a humble form of enquiry, which we
cite for the simple way it illustrates that a theory can be acceptable even when we
have no evidence independent of the observations which caused the theory to be pro-
posed, nor any possibility of such evidence. Hence, the two adhocness criteria are
misguided. Examples from the higher sciences confirm this. Take the following case
from the science of genetics: suppose it was initially assumed or believed that two
characteristics of a certain plant are inherited in accordance with Mendel’s principles
through the agency of a pair of independently acting genes located on different chro-
mosomes. Imagine now that plant-breeding experiments throw up a surprising number
of plants carrying both characteristics, so that the original assumption that the genes
act independently is revised in favour of a theory that they are linked on the same
chromosome. Again, the revised theory would be strongly confirmed and established
as acceptable merely on the evidence that stimulated its formulation and without the
necessity of further, independent evidence. (An example of this sort is worked out by
Fisher, 1970, Ch. IX.)

The discovery of the planet Neptune illustrates the same point. Adams arrived at
what he regarded as the most likely mass and elements of the orbit of the hypothetical
planet by the mathematical technique of least squares applied to all the observations
that had hitherto been collected on the positions of Uranus. Adams’s hypothesis fitted
these observations so well that even before Neptune had been seen through the telescope
or detected on astronomical charts, its existence was contemplated with the greatest con-
fidence by the leading astronomers of the day. For instance, in his retirement address as
president of the British Association, Sir John Herschel, after remarking that the previ-
ous year had seen the discovery of a new minor planet, went on: “It has done more. It
has given us the probable prospect of the discovery of another. We see it as Columbus
saw America from the shores of Spain. Its movements have been felt, trembling along
the far-reaching line of our analysis, with a certainty hardly inferior to that of ocular
demonstration” (quoted in Smart, 1947, p. 61; our italics). And the Astronomer Royal,
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Sir George Airy, who was initially inclined to believe that the problem with Uranus
would be resolved by introducing a slight adjustment to the inverse-square law spoke
of “the extreme probability of now discovering a new planet in a very short? time”
(also quoted in Smart, 1947, p. 61; our italics). Neptune was discovered a very short
time later.

We turn now to a more general objection to the idea that hypotheses are acceptable
wnly if corroborated by independent evidence. Imagine a scientist who is interested in the
conjunction of hypotheses ¢ &a, whose implication ¢ can be checked in an experiment,
The experiment is performed with the result ¢, incompatible with ¢, and the scientist
advances a new theory, ¢ & a’, which is consistent with the observations but is ad hoc
in one or other of the two senses, that is, there is either no fresh evidence for &’ or no
possibility of such evidence. The new theory therefore is unacceptable according to the
view we are considering.

Suppose, next, that another scientist, working without knowledge of his colleague
also wished to test # & a but that he chose a different experiment for this purpose one:
with only two possible outcomes: either e or ~ e. Of course, he would obtain the le,ttter
and having done so, he would be obliged to revise the refuted theory, to t&ra/, say?
This scientist now notices that ¢ follows from the new theory, and he performs the
orthodox experiment to verify ¢’. The new theory can then count a successful prediction
to its credit, and so is not ad hoc. Hence, according to the standard view, it is perfectly
acceptable.

This is strange, to say the least, because we have arrived at opposite evaluations of the
very same theory, breaching at the same time what we previously called the Equivalence
condition and showing that the standard adhocness criterion is inconsistent. Whatever
measures might be taken to resolve the inconsistency, it seems to us that one element
of the criterion ought to be removed, namely, the significance it attaches to whether the
theory concerned was thought up before or after the evidence was known., This intro-
duces into the principles of theory-evaluation considerations concerning the state of the
experimenters’ minds, which are intuitively irrelevant and incongruous in a method-

ology with pretentions to objectivity. No such considerations enter the corresponding
Bayesian evaluations.

The Bayesian view of ad hoc theories

We have argued, contrary to the standard view, that a theory could be scientific and
plausible even if it is ad hoc. An acceptable ad hoc theory is a possibility allowed for by
the Bayesian principle that theories should be evaluated according to their probabilities.
To illustrate, consider the ad hoc theoty ', which we have supposed was put forward in
response to some refuting evidence ¢’. The probability of this theory must be reckoned
relative to ¢’ and any other available relevant information, b. The probability calculus
places no restrictions on the value of P(«/|¢/ &b); it might, for example, be below 0.5,
so that &’ would be more likely false than true, or greater than 0.5, when the reverse
would be the case. Hence &’ does not need the support of new independent predictions
in order to be quite plausible and acceptable (Horwich, 1982, pp. 105-8).

Scientists are also interested in whether ¢ in the presence of the newly thought-up &'
provides a competent explanation of the previously anomalous ¢, It would only do so if
t & a' was sufficiently credible; since P(t & a'|e’ &b) < P(d'|e' &b), this would be the case
only if &' was itself acceptable, in the sense indicated.
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The Bayesian approach, incidentally, explains why people often respond immediately
with incredulity, even derision, on first hearing certain ad hoc hypotheses. It is hardly
likely that their amusement stems from perceiving, or even thinking that they perceive,
that the hypothesis leads to no new predictions. Surely it is more likely that they are
reacting to what they see as the utter implausibility of the hypothesis.

The notion of independent evidence

As we have explained, a standard non-Bayesian account of adhocness asserts that a
theory consisting of the combination ¢ &4 is only replaced with &4’ in an accept-
able, scientific fashion when &' is successfully tested by evidence independent of that
which refuted the first theory. This thesis is often associated with another, rather similar
view, namely, that no theory is acceptable unless it is supported by evidence indepen-
dent of that which prompted its initial proposal, whether that evidence also refuted a
predecessor or not. We have shown that these views are neither reasonable nor com-
patible with scientific practice and, moreover, that they fail to live up to the standards
of objectivity to which they aspire, (Howson, 1984, addresses a number of other objec-
tions.) One problem with the non-Bayesian criterion of adhocness, which we have not
needed to exploit in our criticisms, is that the notion of ‘independence” with regard to
evidence is left vague and intuitive. Moreover, it seems difficult to give it a satisfactory
meaning, except in the context of Bayesian induction.

There is an established notion of probabilistic independence, which, however, is
unable to supply a suitable interpretation. For suppose theory b was advanced in
response to a refutation by ¢’ and that b both explains the old ¢’ and makes the novel
prediction ¢”. It is the general opinion, certainly shared by Popperians, and a conse-
quence of Bayes’s Theorem, that ¢’ confirms b, provided it is sufficiently improbable
relative to background information. As discussed earlierin this chapter (pp. 226-7), such
confirmation is available, in particular, when P(e”|hére’) > P(e”|¢’). But this inequality
is quite compatible with ¢’ and ¢’ not being independent in the probabilistic sense.

Another possible way to interpret the independence notion is in terms of logical inde-
pendence, so that ¢’ and ¢” would be said to be independent just in case neither entails
the other. This would mean that if the two bits of evidence were trivially distinct in, say,
relating to different times or slightly different places, then they would be independent
in the sense employed in the adhocness criterion. But then practically no theory would
be ad hoc. Take Medawar’s peculiar theory about the Eskimo’s cozy style of life, which
was propounded in response to some surprising IQ measurements. Presumably, one
could infer from the theory that tests applied during the following week to the same
group of Eskimos would produce similarly high IQs. But although this prediction is
logically independent of the earlier results, its success would not significantly improve
the standing of Medawar’s theory. Mere logical independence from the old results is
clearly insufficient to ensure evidential support.

Intuitively, new evidence supports a theory only when it is substantially different
from known results, not just trivially different in the logical sense described, and it is
this intuition which, it seems to us, underlies the standard adhocness criterion. The
idea that ‘different’ or ‘varied’ evidence gives more support to a hypothesis than a sim-
ilar volume of homogeneous evidence is an old and widely held one. As Hempel put
it, “the confirmation of a hypothesis depends not only on the quantity of the favor-
able evidence available, but also on its variety: the greater the variety, the stronger the

244

BAYESIAN VS NON-BAYESIAN APPROACHES

resulting support” (1966, p. 34). So, for example, the report of the rate at which a stone
falls to the ground from a given height on a Tuesday is similar to that relating to the
stone’s fall on a Thursday; it is very different, however, from a report of the trajectory
of a planet or of how a given fluid rises in a particular capillary tube. But although the
notions of similarity and diversity amongst evidence seem intuitively clear, it is not easy
to give them a precise analysis, except, in our view, in probabilistic terms, in the context
of Bayesian induction.

The similar instances in the above list have the characteristic that when one of them
is known, any other would thereby be anticipated with relatively high probability. This
recalls Bacon’s characterisation of similarity in the context of inductive evidence. He

. spoke of observations “with a promiscuous resemblance one to another, insomuch that

if you know one you know all” and was probably the first to point out that it would
be superfluous to cite more than a small representative sample of such observations in
evidence (see Urbach, 1987, pp. 160~64). This idea of similarity between items of evi-
dence is expressed naturally in probabilistic terms by saying that e, and e, are similar
provided P(e;eq) is higher than P(e;); and one might add that the more the first prob-
ability exceeds the second, the greater the similarity. This means that e, would provide
less support if e1 had already been cited as evidence than if it was cited by itself.

On the other hand, knowing that one of a pair of dissimilar instances has occurred
gives little or no guidance as to whether the other will occur. For example, unless
Newton’s, or some comparable, theory had already been firmly established, a knowl-
edge of the rate of fall of a given object on some specific occasion would not significantly
affect one’s confidence that the planet Venus, say, would appear in a particular position
in the sky on a designated day. Different pieces of evidence may also have a mutually
discrediting effect. An example of this might be the observations of the same constant
acceleration of heavy bodies dropped at sea level and the unequal rates of fall of objects
released on different mountain tops. Both sets of observations would confirm Newton’s
laws, but in circumstances where those laws are not already well established, the first
set might suggest that all objects falling fréely (whether on top of a mountain or not)
do so with the same acceleration. In other words, with different instances, say e3 and
e1, Plesler) is either close to or less than P(es). Of course, e; merely differing from ey in
this sense does not imply that it supports any hypothesis significantly; whether it does
ot not depends on its probability. The notion of similarity, as we have characterised it,
is reflexive, as it should be; that is, if e, is (dis)similar to ey, then ey is (dis)similar to e,
(this follows directly from Bayes’s Theorem).

To summarize, the non-Bayesian appraisal of hypotheses based on the notion of
adhocness is ungrounded in epistemology, has highly counterintuitive consequences, and
relies on a concept of independence among items of evidence which seems unanalysable
except in Bayesian terms. In brief, it is not a success.

Infinitely many theories compatible with the data

The problem

Galileo carried out numerous experiments on freely falling bodies and on bodies rolling
down inclined planes in which he examined how long they took to descend various
distances. These experiments led him to formulate the well-known law to the effect that
s = ut+1/2g1*, where s is the distance fallen by a freely falling body in time £, # is its
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initial downward velocity, and g is a constant. Jeffreys (1961, p. 3) pointed out that
Galileo might also have advanced the following as his law:

s=ut++ g4 f(T)T =TT =To) ... (T =T,

where T represents the date of the experiment, which could for example be recorded
as the number of minutes that have elapsed since the start of the year ap 1600; T4,
Ty, ..., T, are the specific dates on which Galileo performed his experiments; and f
can represent any function of T. Thus Jeffreys’s modification stands for an infinite
number of alternatives to Galileo’s theory. Although all these theoretical alternatives
contradict one another and make different predictions about future experiments, the
interesting feature of Jeffrey’s unorthodox laws of free fall is that they all imply Galileo’s
experimental data.

This is a particular problem for those non-probabilistic theories of scientific method
which hold that the scientific value of a theory is determined just by P(elh) and, in some
versions, by P(e). These philosophical approaches, of which Popper’s is one example
and maximum-likelihood estimation another, would have to regard the standard law of
free fall and those peculiar alternatives described by Jeffreys as equally good scientific
theories relative to the evidence available to Galileo, although this is a judgment with
which no scientist would agree.

The same point emerges from a well-known example due to Nelson Goodman (1954
for an amusing and illuminating discussion, see Jeffrey, 1983, pp. 187-90). Goodman
noted that the evidence of very many and varied green emeralds would normally suggest
that all emeralds are green. But he pointed out that that evidence bears the same relation
to ‘All emeralds are green’ as it does to a type of hypothesis he formulated as ‘All emeralds
are grue’. According to Goodman’s definition, something is grue if it was either observed
before time ¢ and was green, or was not observed before ¢ and is blue. If # denotes some
time after the emeralds described in the evidence were observed, then both the green- and
the grue-hypotheses imply that the emeralds observed so far should be green. However,
on the assumption that there are unobserved emeralds, the hypotheses are incompatible,
differing in their predictions about the colours of emeralds looked at after the critical
time. As with Jeffreys’s variants of Galileo’s theory, the grue-hypothesis represents an
infinite number of alternatives to the more natural hypothesis, for ¢ can assume any
value, provided it is later than now.

Our examples illustrate a general problem for methodology: that a theory which
explains (in the sense of implying or associating a certain probability with) some data is
merely one out of an infinite set of rival theories, each of which does exactly the same.
The existence of this infinite set of possible explanations, it will be remembered, spelled
ruin for any attempt at a positive solution to the problem of induction. The problem
with which we are concerned here arises because, in practice, scientists discriminate
between possible explanations and typically pick out just one, or at any rate relatively
few, as meriting serious attention. An account of scientific method ought to explain how
and why they do this.

The Bayesian approach to the problem

This has not proved casy. For the Bayesian, the nature of the problem, at least, is straight-
forward. Moreover, Bayesian theory does not imply that every hypothesis similarly
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related to the data is of equal merit. Suppose one were comparing two theories in the
light of the same evidence. Their relative posterior probabilities are given by

P(hile) _ Plelb1)P(hy)

P(hale) ~ Plelhs)P(h2)

If both theories imply the evidence, then P(e|h;) = P(elh;) = 1. And if, in addition,
P(hy|e) exceeds P(he), then it follows that P(h) is larger than P(h,). More generally,
if two theories which explain the data equally well nevertheless have different posterior
probabilities, then they must have had different priors too. So theories such as the

_contrived alternatives to Galileo’s law and Goodman’s grue-variants must, for some

reason, have lower prior probabilities. Indeed, this is clearly reflected in most people
finding such hypotheses quite unbelievable. The problem then is to discover the criteria
and rationales by which theories assume particular prior probabilities.

Sometimes there is a clear reason why a theory is judged improbable. For instance,
suppose the theory concerned a succession of events in the development of a human
society; it might, for example, assert that the elasticity of demand for herring remains
constant or that the surnames of all future British prime ministers and American pres-

idents will start with the letter Z. These theories, which of course could be true, are’

however, monstrously improbable. And the reason for this is that the events they
describe are influenced by numerous independent processes whose separate outcomes
are improbable. The probability that all these processes will turn out to favour the
hypotheses in question is therefore the product of many small probabilities, and so
itself is very small indeed (Urbach, 1987b). The question of how the probabilities of
the causal factors are estimated, of course, remains. This could be answered by refer-
ence to other probabilities, in which case the question is just pushed one stage back,
or else by some different process that does not depend on probabilistic reasoning. For
instance, the simplicity of a hypothesis has been thought to have an influence on its
initial probability.

It is worth mentioning here that the equation given above, relating the posterior
probabilities of two theories to their prior probabilities, explains an important feature
of inductive reasoning. The scientist often prefers a theory which explains the data
imperfectly, in that P(e{h;) < 1, to an alternative, b,, which predicts them with complete
accuracy. Thus, even Galileo’s data were not in precise conformity with his theory;
nevertheless, he did not consider any more-complicated function of u and ¢ to be a
better theory of free fall than his own, even though it could have embraced the evidence
he possessed more perfectly. According to the above equation, this is because the better

explanatory power of the rival hypotheses was offset by their inferior prior probabilities
(Jeffreys, 1961, p. 4).

Conclusion

Charles Darwin (1868, vol. 1, p. 8) said that “In scientific investigations it is permitted
to invent any hypothesis, and if it explains various large and independent classes of facts
it rises to the rank of a well-grounded theory”. This is, perhaps, an exaggeration, for not
any hypothesis would do; the hypothesis must not be refuted or substantially discon-
firmed, nor should it be intrinsically too implausible. With these provisos, Bayesianism,
we suggest, is just such a well-grounded hypothesis as Darwin referred to, it arises from
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natural and intuitively reasonable attitudes to risk and uncertainty. It is neither refuted
nor undermined by any of the phenomena of scientific reasoning. On the contrary, as
we have seen, it explains a wide variety of them.

Note

Originally published as ‘Bayesian versus non-Bayesian approaches’, Chapter 7 of Scientific
Reasoning: The Bayesian Approach, 2nd ed., Open Court: Chicago, 1993, pp. 117-64 (omitting
sections g, h.2, part of i, j.3, and the exercises). Copyright © 1989, 1993 Open Court Publishing
Company. Reprinted with permission.
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