Appendix 1: Logic

The only symbolic logic used in this book is a small part of
propositional logic, also called sentential logic or Boolean logic. In
this appendix, I review the relevant part of this simple area of
logic and clarify some notation and terminology. This appen-
dix is not an introduction to logic; various important fine
points and distinctions are not be mentioned. But [ hope this
will suffice as an introduction to the basic ideas in the elemen-
tary part of logic used in this book, and as a clarification of
the logical terminology and symbols used in this book.

The basic entities of the formal propositional calculus are
usually called the propositions and the propositional connectives
(and the language of propositional logic usually includes punc-
tuation marks, usually parentheses, that are used to avoid ambi-
guity of grouping when “propositions” are “connected” in
complex ways).

In this book, it is factors (or properties, or types) that play the
role of the so-called propositions of propositional logic. The
abstract and formal propositional calculus can be interpreted as
applying to propositions in a number of ways in which the
term “proposition” could be understood. For example, we
could think of propositions as sentences (which may be under-
stood as concrete linguistic entities such as utterances or in-
scriptions). Or we could think of them as statements (under-
stood in such a way that many sentences can all be used to
“make” the same statement, and the same sentence, if used in
different contexts, would make different statements). Or we
can think of propositions as sets of “possible worlds” (as many
philosophers and logicians have done in studies of modalities,
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such as possibility and necessity, and various kinds of logical
relations, such as counterfactual conditional connections).
And the propositions can also be understood as factors (or
properties, or types).

In interpreting the abstract and formal propositional calcu-
lus, we can think of propositions either as something like
sentences or statements, in which case they are, roughly
speaking, true or false in a given situation, or as factors (proper-
ties or types), in which case they are exemplified or not exempli-
fied in a given instance. In this appendix, which is a general
review of some formal aspects of abstract propositional logic, |
will use the term “proposition” to refer to the entities that
play this role in the calculus. And I will generally speak of
propositions as being either true or false, rather than of fac-
tors as being either exemplified or not exemplified. Formally,
the idea of the truth or falsity of a given sentence or statement
in a situation (or a possible world) is quite parallel to the idea
of the presence or absence of a given factor (or property or
type) in an instance. For example, a factor is exemplified or
not exemplified in a situation, according to whether the state-
ment asserting it is exemplified is true or false in the situation.
And the formal parallelism remains intact with the introduc-
tion of the propositional connectives.

The connectives of propositional logic, sometimes called
sentential connectives or truth-functional connectives or Boolean
connectives, can be used to form “new” propositions from
“old” ones. The “new” propositions are called truth-functional
compounds, or Boolean compounds, of the “old” propositions.
The most usual connectives (and the only propositional con-
nectives used in this book) are the ones for which I use the

following three symbols (as is most standard): “~", “&”, and
“N/”. These represent negation (“not”), conjunction (“and”),
and disjunction “or, or both”).

Let X and Y be any propositions. Then, understood as
sentences or statements, X and Y are entities that are either

true or false, in any given situation. (Alternatively, X and Y
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can be factors, which are entities that are, in any given in-
stance, either exemplified or not exemplified.) Then: (1) ~X,
the negation of X, is the proposition that is true in a situation
just in case (if and only if) X is false in the situation (or it is
the factor that is exemplified in an instance just in case X is
not exemplified in the instance); (2) X&Y, the conjunction of X
and Y, is the proposition that is true in a situation just in case
both X is true in the situation and Y is true in the situation (or
it is the factor that is exemplified in an instance just in case
both X is exemplified in the instance and Y is exemplified in
the instance); and (3) X\/Y, the disjunction of X and Y, is the
proposition that is true in a situation just in case at least one of
X and Y is true in the situation (or it is the factor that is
exemplified in an instance just in case at least one of X and Y
is exemplified in the instance).

X is sometimes called the negatum of ~X. X and Y are
called the conjuncts of X&Y. And X and Y are called the
disjuncts of X\/Y. More than two propositions can be con-
Joined: Their conjunction is true (exemplified) if all the con-
juncts are true (exemplified). And more than two proposi-
tions can be disjoined: Their disjunction is true (exemplified) if
at least one of the disjuncts is true (exemplified).

Three important kinds of propositions are the tautologies,
the contradictions, and the contingent propositions. A proposi-
tion is a tautology (or logically true) if it cannot be false (it cannot
not be exemplified). A proposition is a contradiction (or logically
false) if it cannot be true (it cannot be exemplified). And a
proposition is contingent (or logically indeterminate) if it is both
possible for it to be true (exemplified) and possible for it to be
false (be not exemplified). If X is any proposition, then exam-
ples of tautologies are X\/~X and ~(X&~ X), and examples
of contradictions are X&~X and ~(X\/~ X). (Hereafter, I will
not add the parenthetical “factor exemplified in an instance”
after “proposition true in a situation”, or “factor not exemplified
in an instance” after “proposition false in a situation” - the
parallel is always the same.)
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Three important relations that can obtain between two
propositions are those of implication, equivalence, and inde-
pendence. A proposition X implies (or logically implies) a
proposition Y if it is not possible for X to be true while Y is
false (in the same situation). Propositions X and Y are equiva-
lent (or logically equivalent) if they must be either both true or
both false (they cannot differ from each other with respect to
truth and falsity in a given situation). Another way of putting
this is to say that X and Y are equivalent if each implies the
other. Finally, two propositions are independent (logically inde-
pendent) if all four combinations of the truth and falsity of X
and the truth and falsity of Y are possible. Another way of
putting this is to say that X and Y are independent if neither
of X and ~X implies either of Y or ~Y (and vice versa, to be
redundant).

A set of propositions is said to be closed under the proposi-
tional connectives (~, &, \/) if it contains all Boolean com-
pounds (—X, X&Y, X\/Y) of propositions (X and Y) that it
contains. And the closure of a set of propositions is the small-
est set that contains the given set and is closed under the
propositional connectives.

Propositions in a set of propositions are mutually exclusive if
at most one of them could be true: The conjunction of any two
or more of them is a contradiction (or logically false). Propositions
in a set of propositions are collectively exhaustive if they cannot
all be false: The disjunction of all of them is a tautology (or logi-
cally true). A partition is a set of mutually exclusive and collec-
tively exhaustive propositions. For any partition, exactly one
proposition in it is true (in a given situation).

Relative to a set S of propositions that is closed under the usual
connectives, a proposition X is maximally specific if X is a mem-
ber of S and there is no proposition Y in S such that both (1)
Y implies X and (2) Y is not equivalent to X — that is, any
proposition Y in S that implies X is equivalent to X. If we
assume an interpretation of propositions under which logi-
cally equivalent propositions are identical propositions (which
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is plausible for propositions understood as statements, as scts
of possible worlds, or as factors, or properties or types, but
not for propositions understood as sentences), then we could
say that X is maximally specific relative to a closed set S if no
proposition in S, other than X, implies X. Relative to any set T
of propositions, X is maximally specific if X is maximally specific
relative to the closure of T under the usual connectives.

Any element of a set of propositions is equivalent to a
disjunction whose disjuncts are propositions that are maxi-
mally specific relative to the set. And a maximally specific
proposition relative to a set is always equivalent to a conjunc-
tion whose conjuncts are all either members of the set or nega-
tions of members of the set. The set of propositions maximally
specific relative to a set is always (modulo equivalence — that is,
treating equivalent propositions as identical) a partition. If
Sy« - ., S, are all partitions, then a proposition is maximally
specific relative to the union of the §;s if and only if it is
equivalent to a conjunction X,& . . . &X,, where each X;is a
member of S..

Not every set of propositions is such that, relative to it,
there exist maximally specific propositions; there are the
“atomless Boolean algebras.” A set of propositions that is
closed under the usual connectives, together with the relation
of implication, is one kind of Boolean algebra. A Boolean
algebra, B, is simply any structure, B = <§,~,&,\/,=>,0,1>,
in which § plays the formally analogous role of a set of
propositions that is closed under the operations formally
analogous to the ways “~", “&”, and “\/" were described
above, where => corresponds to implication, and where for
any element X of §, 0 is equivalent (and identical) to X&~X
and 1 is equivalent (and identical) to X\/~X.

A Boolean algebra is called atomless if, for every element X
of it, there is another element Y of it that is “strictly less than”
X. Understanding the algebra as a set of propositions, this
means that Y implies X but X does not imply Y (so that X #
Y). Of course, all atomless Boolean algebras are infinite. And
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atomless Boolean algebras do not have any maximally spe-
cific elements. All finite Boolean algebras have maximally
specific elements, called atoms, such that every member of the
algebra is a disjunction of these atoms. A Boolean algebra is
complete (or sigma-additive) if it contains all infinite conjunc-
tions and disjunctions of its members, as well as the finite
conjunctions and disjunctions of its members. All complete
Boolean algebras have atoms such that every member of the
algebra is a disjunction of atoms; not all infinite Boolean

algebras are atomless.
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