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the genetic reification of “race”? a story of two 
mathematical methods
Rasmus Grønfeldt Winther, University of California, Santa Cruz  
and University of Copenhagen

Abstract

Two families of mathematical methods lie at the heart of inves-
tigating the hierarchical structure of genetic variation in Homo 
sapiens: diversity partitioning, which assesses genetic variation 
within and among predetermined groups, and clustering analysis, 
which simultaneously produces clusters and assigns individuals to 
these “unsupervised” cluster classifications. While mathematically 
consistent, these two methodologies are understood by many to 
ground diametrically opposed claims about the reality of human 
races. Moreover, modeling results are sensitive to assumptions 
such as preexisting theoretical commitments to certain linguistic, 
anthropological, and geographic human groups. Thus, models can 
be perniciously reified. That is, they can be conflated and confused 
with the world. This fact belies standard realist and antirealist 
interpretations of “race,” and supports a pluralist conventionalist 
interpretation.

Keywords: mathematical methods; genetic classification; diversity 
partitioning; clustering analysis; reification

1. Introduction

Two mathematical methods lie at the heart of genetic classifications of 
human groups: diversity partitioning and clustering analysis. They are two 
sides of the same mathematics coin. Both are legitimate and consistent 
methodologies. As probability theory and statistics modeling practices, 
they cannot be questioned. This is the constructive part of the article.

Importantly, neither of these methodologies necessarily implies any-
thing about the reality of human groups. This is meant in two ways. First, 
claims about the robustness of groups involve conventional choices based 
on assumptions about, for instance, how much genetic distance is required 
on average between groups for groups to be considered genuinely different 
and be granted ontic status. Different modeling assumptions yield different 
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outcomes. Second, the very data that are fed into the methods are neither 
unbiased nor theory-neutral. For instance, linguistic, archaeological and 
anthropological data are used to (pre-)define human groups; moreover, 
there may be visual or unconscious bias regarding which phenotypes of a 
particular group are sampled for genotyping.1 Running models based on 
data taken from different sets of individuals of each population would yield 
distinct group diversity partitionings and cluster assignment of particular 
individuals, at least in principle if not in practice. Thus, model assumptions 
and interpretations, as well as data input, are subject to theory-ladenness 
and bias. This is the critique.

The basic argument? The modeling machinery may be well-oiled. The 
variables, functions, and derivations of diversity partitioning and  clustering 
analysis are appropriately articulated and consistent, as we can expect 
from mathematical, formal systems. Yet model results are sensitive to (1) 
input, (2) particular assumptions made, and (3) output or interpretation. 
Reification of our expectations, biases, and preexisting theoretical maps 
(e.g., linguistic or geographic human groups) can occur in many places. 
In other words, we can make concrete things out of our abstract represen-
tations (i.e., reify) in various ways. That is, we might see or infer groups, 
natural kinds, and subdivisions when these do not exist. More broadly, 
arguments about the realism vs. reification of race are philosophical insofar 
as philosophy is critique (e.g., John Dewey, Michel Foucault). What is being 
critiqued in this article are the data and models used to answer empirical 
questions about whether our species is subdivided into groups (alterna-
tively: natural kinds). As Bas van Fraassen recently pointed out to me (May 
2014), these arguments are not philosophical in the broader sense of illu-
minating the aims (e.g., truth vs. empirical adequacy) and structure (e.g., 
syntactic vs. semantic) of scientific theory.

The goal? This article motivates the logic and procedure of these two 
 methods and identifies places where reification can occur. The conclusion lists 
a set of open research questions that could inspire students of these topics.

2. A Story of Two Methods

What is the logic of these two families of methods? Very briefly, diversity parti-
tioning assesses the amount of genetic differentiation present among distinct 
human groups. How much more genetically similar are two randomly chosen 
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individuals from the same group on average as compared to a  randomly 
 chosen individual from that group and an individual from another group 
(either from the same or a different continental region)? If there is no genetic 
differentiation among groups, then two individuals from the same group 
will, on average, be as different as two individuals from different groups. If 
there is some variation among groups, then two individuals from the same 
group will, on average, be more alike than two individuals from differing 
groups. The robust empirical result repeatedly found over the last forty years, 
using different molecular techniques on genes and proteins, and extensive 
global sampling, is that (approximately) 85 percent of all genetic variance is 
found within human subpopulations (e.g., Han Chinese or Sami), 10 per-
cent across subpopulations within a continental region, and only 5 percent of 
the genetic variance is found across continents (i.e., “Negroid,” “Caucasoid,” 
and “Mongoloid”—Lewontin 1972 terms) (e.g., Lewontin 1972; Nei 1973; 
Barbujani, et al.  1997). No one  questions these results, nor should they.2

In contrast, clustering analysis assigns particular individuals to groups 
(clusters) or to a specific weighting of more than one group. It also deter-
mines the gene allele frequencies of the clusters, under the assumption of 
a particular number of clusters. An individual is assigned probabilistically 
to the cluster or set of clusters that most closely matches what we call the 
“presence profile” of alleles in the individual. Intuitively, if an individual 
is AA, we would (ceteris paribus) prefer to assign it to a group with an 
A frequency of, say 90 percent rather than one with 50 percent A. But how 
do we assess the allele frequencies of groups? One way is to use Bayesian 
modeling. That is, we start with prior assumptions about gene frequencies 
in different populations (e.g., assume extremely high frequency of A, B, and 
C in some clusters, and extremely low frequency in others), and readjust the 
priors upon sampling of individual genotypes (e.g., Pritchard, Stephens, 
and Donnelly 2000). As long as a sufficiently high number of genetic loci 
are used (roughly 20 to 50), individuals can be assigned to clusters with 
extremely low probability of misclassification. The reliability of correct 
group assignation is very high. The computational power and programs 
for this task have been developed over the last ten years (e.g., Pritchard, 
Stephens, and Donnelly 2000; Edwards 2003; Rosenberg et al. 2002).

2.1. Diversity Partitioning

Diversity partitioning assesses how much of the total genetic diversity or 
variation in a species exists among individuals within predefined groups at 
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Where HT is the total heterozygosity of the entire population, and HS   
is the heterozygosity within each subpopulation (group), averaged across 
all subpopulations. The fundamental idea here is to compare total hetero-
zygosity to average subpopulation heterozygosity. Total heterozygosity is 
calculated by first averaging all the allelic frequencies, for different loci, 
across all groups, and then using those allele frequencies to determine 
the expected heterozygosity of the total population. Average subpopula-
tion heterozygosity is calculated by taking the actual heterozygosity of each 
group and averaging those across all groups. In the extreme case where all 
groups are fixed for either one or the other allele of biallelic loci, the FST 
measure will be at its maximum of 1, since the average group heterozygos-
ity will be 0. Groups will be maximally different genetically. Conversely, 

various hierarchical levels. That is, the amounts of genetic diversity found 
among individuals at the following three levels of groups are compared: 
(1) within single, local groups, (2) within different intra-continental groups, 
and (3) within different inter-continental groups. In order to assess the  
hierarchical structure of genetic variation, we need to develop measures 
thereof. Two broad types of properties are used to ground measures of 
diversity or variation: group and individual properties. Classic population 
genetic theory (e.g., Sewall Wright 1965, 1969; Cockerham 1969, 1973; and 
Lewontin 1972, 1974a) focuses on group properties, especially heterozygos-
ity (see below). Other recent theoretical and empirical work uses detailed 
genetic sequence information to compare the genomes of individuals, 
within and across groups. Excoffier, Smouse, and Quattro (1992) devel-
oped a technique (Analysis of Molecular Variance, or AMOVA) that uses 
standard analysis of variance (ANOVA) theory to partition genetic variation 
at three hierarchical levels: individual, groups, and across groups of groups 
(e.g., continental regions) within a species (e.g., Barbujani, et al. 1997  used 
this method; on ANOVA, see Lewontin 1974b, Winther 2014a).

A common measure of variation used in these statistical methodolo-
gies is Wright’s F-statistics. The basic method is to assess the levels of het-
erozygosity (e.g., the frequency of 2Aa rather than AA or aa, for a single 
biallelic locus) at different loci, in distinct groups. The more similar hetero-
zygosity levels are to each other across groups, the more genetically similar 
the groups are.3 F-statistics are a group property. One of Sewall Wright’s 
F-statistics is as follows:

=
−

F
H H
HST
T S

T
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when groups have exactly the same levels of heterozygosity, for one or 
more biallelic loci, the averaged actual heterozygosity will be the same as 
the expected total heterozygosity (HT) and FST will be 0. Groups would be 
genetically identical. The Shannon information theoretic measure of varia-
tion used in Lewontin (1972)“strong[ly] resembl[es]” the heterozygosity 
measure, as Lewontin recognizes (388). For our purposes here, we can con-
sider Lewontin to have employed a kind of FST measure.

An example might help. Recall the mythical high school biology story 
of eye color genetics, in which two blue-eyed parents (each bb) always 
have a blue-eyed child, but two heterozygote brown-eyed parents (Bb), can 
have a child with either eye color. Setting aside the fact that eye color 
actually involves many genes—it is polygenic—this simple example helps 
motivate the meaning of heterozygosity, as well as the Hardy-Weinberg 
principle (HWP). Imagine a single population with thousands of only het-
erozygote brown-eyed parents (Bb). After a single generation of mating, 
their  children will have genotype frequencies of very close to 25 percent 
BB, 50 percent Bb, and 25 percent bb; the corresponding allelic frequen-
cies will be 50 percent B and 50 percent b. Barring the action of muta-
tion and random genetic drift, or other evolutionary forces, genotypic and 
allelic frequencies will remain the same throughout future  generations 
of mating. Now consider a separate second group with thousands of 
only blue-eyed parents. You already know what the allele frequency 
 distribution will be for their offspring: 100 percent aa. In general, HWP 
states that percentages do not change after the initial bout of mating. 
Now, in this hypothetical case     is 0.25 because it is simply the aver-
age heterozygosity across the two groups, calculated from genotypes:  
(0 + 0.5)/2. In contrast, HT is the expected heterozygosity in a single large 
population with allele frequencies equal to the mean allele frequencies 
in the two subpopulations. In the first population, with both brown-
eyed and blue-eyed individuals, these allelic frequencies are 0.5 and 0.5, 
while in the second they are 0 and 1, giving pooled allele frequencies of 
0.25 and 0.75. HT thus turns out to be 2(0.25)(0.75) = 0.375. Thus, FST 
is (0.375 - 0.25)/0.375 = 1/3. The example chosen is among the simplest 
 possible, and is intended to make the basic logic of FST explicit. Whenever 
allelic frequencies differ across two or more populations, the pooled allelic 
frequency average will be different than the average of  the allelic frequen-
cies of each individual group, and FST will be non-zero. There is inter-group 
variation. Consider two final observations. If  the first group had  consisted 
of BB parents, there would be no heterozygosity within either group  

H S
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table 1 allele frequencies of two distinct genes as used in lewontin 
(1972) and (1974a), across “races”

Gene Alleles Caucasoid Negroid Mongoloid

Duffy Fy 0.03 0.94 0.1

Fya 0.42 0.06 0.9

Fyb 0.56 0 0

Auberger Aua 0.62 0.64

Au 0.38 0.36

Note: Frequencies are rounded from four to two significant figures. Empty cells indicate lack of data. See 
esp. Lewontin 1974a, 153.

(i.e., H S  = 0), but the pooled heterozygosity would be 0.5. In this case, 
FST would be 1, its maximum. Second, whenever FST is non-zero, there will 
always be excess homozygosity (alternatively: deficient heterozygosity), 
per the Wahlund Effect.

Let us turn to the way F-statistics relate to diversity partitioning.  
FST and the two other hierarchical inbreeding coefficients related to it— 
i.e., individual-to-total population, FIT, and individual-to-group FIS—are 
used to calculate hierarchical variance partitioning. In fact, with the three 
group levels considered—in diversity partitioning of Homo sapiens— 
i.e., intra-group, intra-continental groups, and inter-continental groups—
FST must be calculated hierarchically, twice. Setting these complications 
aside, there are clean, relatively simple, and well-documented relations 
among inbreeding coefficients and variance components.4 Indeed, FST is 
equal to the between-group variance, at a given level. The general result 
using these typical methods of diversity partitioning in humans is the 
(approximately) 85 percent/10 percent/5 percent variance measures men-
tioned above.

A simple table adapted from actual data in Lewontin (1972, 1974a)5 
helps further motivate intuitions (see table 1).

I choose the Duffy and Auberger genes of Homo sapiens from among the 
seventeen genes Lewontin used because they are instructive contrast cases. 
Duffy shows very high variation among the standard “races” (terms from 
Lewontin 1972), with one allele, Fy, being practically absent in Europeans 
but almost omnipresent in Africans. In contrast, Auberger exhibits very 
little interracial variation. Lewontin and others since him have discovered  
that most of our genes are like Auberger. This is another way of saying that 
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approximately 95 percent of genetic variation is found within races. On the 
other hand, if most of our genes had been like Duffy, FST would indeed be 
significant, potentially approaching 1. In that case, most genetic variation 
would have been between races. Emphatically, genes similar to Duffy in 
frequency distribution are relatively rare in the human population.6

Which ontology is inferred from the (approximately) 85 percent/10 
percent/5 percent result? Many interlocutors have argued that these results 
show that there is not very much genetic differentiation between groups 
defined on geographic, anthropological, or linguistic criteria. They reject 
these categories as “real,” or at least as “biologically relevant.” In particu-
lar, racial categories are testable empirical hypotheses that the data ultimately 
rejects. (Or so the interlocutors argue.) Diversity partitioning  methodologies  
indicate that the abstraction of “race” is neither grounded in, nor justified 
by, genetic data.

2.2. Clustering Analysis

Given the assumption of particular individuals belonging to either a single 
group (cluster) or to a specific weighted combination of more than one 
group (when multiple population ancestry— i.e., admixture—is suspected), 
and supposing that there is a certain specific number K of groups, how can 
individuals be assigned to their appropriate groups or weighted fractions 
of groups? Most basically, the presence profile of alleles in the individual is 
matched to the group or mix of groups that most closely matches it. Genetic 
structure across loci is used as information to infer cluster membership. 
“Structure” here does not mean (but it can mean, particularly for pheno-
typic “racial” characters; see section 5 below) that if an individual has allele 
A, she will also tend to have alleles B and C (alternatively: if she has a cer-
tain facial morphology, she will also tend to have a particular skin color and 
a specific hair type). After all, such correlation assumes significant linkage 
disequilibrium (i.e., statistical non-independence across loci) among the 
three loci, for which there is no guarantee, and which empirically is often 
not the case, certainly not for the neutral microsatellites, RFLPs, and SNPs 
that are used in many of these studies. Rather, structure here means that if 
the alleles of a sufficient number of loci in a given individual are identified, 
then we can classify that individual as belonging to a particular cluster with 
high probability.

A brief thought experiment might help motivate intuitions about 
the logic behind clustering analysis. Consider two groups ∆1 and ∆2, with 
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systematically different gene frequencies. For three biallelic loci, A, B, and 
C, respective frequencies of the dominant allele {A, B, C} are {0.9, 0.4, 
0.49} for ∆1 and {.05, 0.7, and 0.5} for ∆2. We now actually have cross-
loci information about the likelihood that an individual belongs to a cer-
tain cluster. Think about it: if I told you that an individual has haplotype 
Abc, what would you bet is her cluster membership? The answer is ∆1. 
After all, A is practically absent in ∆2 and b is significantly more likely in 
∆1 than in ∆2; admittedly, whether the individual has C or c provides very 
little information. More generally, model-based statistical analysis (through 
either maximum likelihood or Bayesian statistical methods, e.g., Pritchard, 
Stephens, and Donnelly 2000; Rosenberg et al. 2002, 2005) tells us with 
which (high) probability an individual belongs to ∆1.

7 I leave it as an exercise 
to the informed reader to evaluate how much money you would bet on in 
this case. The point is that with sufficient cross-loci information about the 
haplotype of individuals, we can safely identify the clusters to which an 
individual belongs.

The point is actually a bit trickier because the population allele fre-
quencies are often not actually known but are themselves estimated from 
the data. This may seem viciously circular or overly cumbersome. But it 
is neither. As long as we decide a priori on a fixed number of clusters, K, 
the mutual fitting of cluster allele frequencies and individual genotypes 
can be calculated in a straightforward manner. Pritchard, Stephens, and 
Donnelly (2000) do this through iterative sampling. This is their simplest 
algorithm, also built into the computer program STRUCTURE (947):

Step 1. Sample P(m) from Pr (P|X, Z(m-1)).
Step 2. Sample Z(m) from Pr (Z|X, P(m)).

Where m indicates the step, P is the random vector of population allele 
frequencies, Z is the random vector of populations of origin, and X is the 
random vector for individual genotypes. Pritchard, Stephens, and Donnelly 
write: “Informally, step 1 corresponds to estimating the allele frequencies 
for each population assuming that the population of origin of each indi-
vidual is known; step 2 corresponds to estimating the population of origin 
of each individual, assuming that the population of allele frequencies are 
known” (2000, 947). In other words, we start with prior assumptions about 
genotype frequencies (e.g., for three biallelic loci, assume extremely high 
frequencies of A, B, and C in some clusters, and low frequencies in others—
i.e., high frequencies of a, b, and c), place individuals in the clusters that best 
match their genotype frequencies, recalculate genotype frequencies for the 
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clusters and adjust priors accordingly, and repeat this entire  computational 
process until we have clusters in which Hardy-Weinberg expectations hold 
(per locus), and linkage equilibrium (across loci) exists.

Which ontology is inferred from the fact that individuals can be reli-
ably assigned to robust clusters? This fact could be taken as evidence for 
the strong reality of human groups, though few interlocutors have made 
this exact sort of statement, perhaps because of the potentially reactionary 
political repercussions such utterances may have or may imply (but see 
the recent book, Wade 2014). In discussing “Lewontin’s Fallacy,” Edwards 
(2003) claimed that the argument that the “division of Homo sapiens into 
these [racial] groups is not justified by the data” is fallacious because it 
“ignores the fact that most of the information that distinguishes populations 
is hidden in the correlation structure of the data and not simply in the varia-
tion of the individual factors” (798). He does not make ontologically strong 
pronouncements in this article, but his arguments are not inconsistent with 
a position stating that continental region classifications are real. The back-
ground argument here seems to be that significant inferential reliability of 
assigning individuals to clusters supports the reality of human group clas-
sifications. The results of diversity partitioning and clustering analysis pull 
in opposite ontological directions. Even so, their mathematics is mutually 
consistent, as we will now see.

3. Internal Methodological Consistency?

The two methods reviewed in section 2 are distinct ways of character-
izing the hierarchical structure of genetic variation. The former assesses 
the  hierarchical composition of genetic variance by exploring how simi-
lar groups are to one another, at a given level of the hierarchy. The latter 
assigns individuals to clusters, or finds groups, through the use of Bayesian 
modeling strategies or other methodologies (e.g., Principal Components 
Analysis). The two methods are used with the same overall aim of assess-
ing the hierarchical genetic structure of (human) populations, but they 
answer different questions and use distinct methods to do so.

They are mutually consistent. Indeed, differentiation among groups (as 
measured by F-statistics) is the logical outcome of similarity of individuals within 
groups (as found with the program STRUCTURE), and vice versa. Thus, nei-
ther method is “wrong” or invalid, though each may be used inappropriately 
if employed to answer a question it was not designed to answer.8 Diversity 
partitioning correctly indicates that there is very little genetic differentiation 
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among races, and just a little more among populations within a race. (N.b., 
there is extremely little variation among human beings in general. We are 
all basically identical across most of our genome.9 Only the sequences that 
vary are here considered.) Even though the vast majority of genetic variation 
exists among individuals rather than across groups, clustering into groups 
can still be done, if we assume that a certain number of clusters exist. All you 
need is a little variation (read: non-identity) among the allelic frequencies in 
different populations, and among the distinct continental regions. Indeed, 
to take the argument to its extreme, if two groups or clusters of individuals 
had identical frequencies at 9,999 loci, but differed in frequency at just one 
locus, they would be different groups. As observed in the last paragraph of 
Rosenberg et al. (2002): “The challenge of genetic studies of human history 
is to use the small amount of genetic differentiation among populations to 
infer the history of human migrations” (2384). One could add: “and to infer 
the group memberships of any particular individual (under the assumptions 
of the statistical model).”

While our two mathematical methods are consistent, their aims, ques-
tions of interest, and basic assumptions are distinct. Diversity partition-
ing is particularly useful for evolutionary analyses of the opportunity for 
selection and random genetic drift in hierarchical populations. Clustering 
analysis can be used for making medical predictions (e.g., Burchard et al. 
2003, Kumar et al. 2010). (But see the first item in the numbered list in 
the concluding section 6.) In fact, as Helen Longino put it to me recently 
(May 2014), discussion about “the metaphysics of race” is only interesting 
and important in so far as it connects with work in other areas such as bio-
medicine, forensics, and physical and cultural anthropology. Whether race 
is taken to exist or not—and in which sense (e.g., biological and/or social)—
impacts the practices and commitments of these fields. Naturally, highly 
charged ethical, social, and political questions enter. Moreover, it is interest-
ing that either method can be used for inferring migration patterns, because 
structured populations (with sufficiently high FST) and clusters (inferred 
populations in Hardy-Weinberg and linkage equilibrium) correspond, to an 
extent at least, to historical lineages. In summary, the two methods are con-
sistent but rely on distinct assumptions and have different purposes.

4. Loci of Reification

The mathematical methods described above are just naked  mathematics. 
Their logic is watertight, but they are highly dependent on the assumptions 
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used in their construction (see also Gelman 2008; Winther 2014a and 
 references therein). In exploring loci or places where pernicious reifica-
tion can occur, let us start with the data input stage of modeling. Which 
presuppositions are made about the homogeneity of sample sizes across 
groups, and how representative are the samples of the group (e.g., con-
sider the difference between sampling Han Chinese with a population 
size of approximately 1.2 billion, and the roughly 150,000 Samis of north-
ern Europe)? Are the sample data points independent of one another and 
homoscedastic (i.e., error variance in data samples is constant across loci 
and across clusters)? Is phenotypic appearance used as a conscious or 
unconscious sieve for which blood and tissue to sample? (If so, insofar as 
there is any correlation between genotype and phenotype, the data points 
are not independent.) With which cluster/group definitions do or should 
we start, either in collecting data and defining the groups to be tested in 
diversity partitioning, or in collecting data and setting the Bayesian pri-
ors in our cluster analysis? Do geography, archaeology, anthropology, and 
linguistics provide a priori information for genetical studies? These are 
all questions about the reliability of the data input to our models: who is 
sampled and which groups are presupposed? Defining the reification of 
race as conflating our theoretical expectations stemming from other fields 
such as anthropology and linguistics—as well as our phenotypic biases—
with the (genetic) world, then reification can easily occur in this stage of 
modeling.

In each of these two mathematical methods, an irreducible theoretical 
element exists vis-à-vis defining populations. Indeed, groups are presup-
posed—from linguistic and anthropological data—or at least highly prede-
termined. In diversity partitioning, the starting point is the set of groups 
already identified by phenotypic, geographic, or cultural (e.g., linguistic) 
characteristics. In other words, there must be a set of properties, invari-
ably correlated to culture, that gives the classification against which genetic 
variation is compared. In clustering analysis using the computer program 
STRUCTURE, assumptions stemming from linguistics and anthropology 
may be used to help set the strong Bayesian priors. The parameter space 
of multilocus information is too large, and clustering possibilities too mas-
sive, to not narrow down—guide—the possible clusters  using the abstract 
maps of culturally defined groups. Indeed: “[The Bayesian approach] also 
eases the incorporation of various sorts of prior information that may be 
available, such as information about the geographic [or linguistic, anthro-
pological, etc.?] sampling location of individuals” (Pritchard 2000, 947). 
Might there, though, be purely acultural priors in STRUCTURE? Perhaps, 
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but I suggest that unconscious (which individuals are actually sampled) and 
even practical (e.g., which genes are most easily sequenced) biases could 
be an unavoidable part of the modeling effort. A representative, indepen-
dent, and random sample of each and every human population (whatever 
these may be, given the clinal, gradating relation of human variation) is an 
extremely challenging undertaking. Of course, these claims regarding reifi-
cation and the conventionality of group definitions in diversity partitioning, 
and in the Bayesian priors of clustering analysis, require substantiation 
through examination of particular case studies. As a thought experiment, 
consider what modelers might do if they found a clustering that cut across 
culture. Would they accept it or might they tweak it by putting in more 
cultural or geographic priors? A number of sociology of science and phi-
losophy of science research projects await.10 The pernicious reification of 
our preexisting theoretical maps about groups and populations is difficult 
to avoid.11

Let us now turn to model output. Once we have our FST measures and 
variance decompositions, how much difference is enough? Is the human FST 
of roughly 0.15 sufficient for calling intra-continental and  inter-continental 
groups distinct and attributing ontic status to them, or must we meet the 
typical boundary FST of between 0.25 and 0.30 (see Templeton 1998)? 
Second, given that “the problem of inferring the number of clusters, K, 
present in a data set is notoriously difficult” and because the “posterior dis-
tribution can be peculiarly dependent on the modeling assumptions made” 
(Pritchard, Stephens, and Donnelly 2000, 949), it is unclear exactly how 
to interpret the reliability of the clustering for any particular K. Indeed, 
note that a K of 3 or 5 (see Bamshad et al. 2003 and Rosenberg et al. 2002, 
respectively) is sometimes perceived to be a true and natural cut of human 
genetic variation, reflecting continental regions. But this may itself be a 
reification. After all, STRUCTURE identifies “multiple ways to divide the 
sampled individuals into K clusters when K > 6 (Rosenberg et al. 2002). 
For example, in 10 replicates, STRUCTURE found 9 different ways to 
divide the sampled individuals into 14 clusters . . . (N. Rosenberg, pers. 
comm.)” (Bolnick 2008, 76). Thus, the apparent naturalness of K = 3 or  
K = 5 is actually a conventional choice about how to interpret the robustness 
of modeling results, rather than a mirror of nature.12 The problem is wors-
ened by the fact that for high K, there is not even a robust clustering. And, 
we need to assume a particular K to do the iterative sampling mentioned in 
section 2.2 above. How to interpret the model output depends on conven-
tional judgments: choose the appropriate cut-off point of FST and choose 
the appropriate K.
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Reification of our biases and our theoretical interpretations can occur 
in many places in this modeling process, especially in the input and out-
put phases. The argument here is not that the two modeling methods lack 
merit or that the mathematics is wrong. But in certain places of the model-
ing stream, it is hard to know how to interpret input and output, or how 
to apply the modeling machinery. An assumption archaeology is necessary 
(Winther, under contract). Suppositions of various sorts (methodological, 
ontological, data-analytical, etc.) need to be stated clearly and self-reflec-
tively. Questions and aims must be explicitly articulated and understood. 
Both for epistemic and ethical reasons, critical care is required.

5. Can There Be Phenotypic “Races” without Genetic “Races”?

In all of this, the question remains whether phenotypic “race” could exist 
even if genetic “race” is a reification. Regardless of the genetic facts, are 
there phenotypic races? Consider this passage from Feldman and Lewontin 
(2008):

Using skin color, facial shape, and hair form, all obviously largely 
genetically determined . . . no one has any difficulty in differentiating 
between a random person taken from West Africa, from China, from 
Norway, or from the tropical rainforest of the Orinoco basin. With 
only a little more subtlety one can differentiate Amharic-speaking 
natives of Ethiopia from Zulus, Chinese from Japanese, and villagers 
of Andhra Pradesh from Afghanis by external morphology. (90–91)

As we saw above, Lewontin is hardly a realist about genetic race, yet he 
seems to be endorsing phenotypic race here. The measurement and meta-
physical status of groups may have to be assessed separately at the genetic 
and phenotypic levels. That is, even if genetic race turns out to be a reifi-
cation, phenotypic race could be a “human kind” (Hacking 1995), some-
thing about which I remain completely neutral. Moreover, mapping the 
causal links between these two levels is also a potential research project 
(e.g., phenotypic race could impact genetic—i.e., heritable— population 
structure via sexual selection, as Charles Darwin argued). These empiri-
cal, technical, and philosophical questions about phenotypic race are 
worth further consideration.
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6. Whither Two Mathematical Methods and Genetic Reification?

The overarching research project of which this article is a small piece is 
the search for methods for identifying promises and dangers of scientific 
abstractions (Winther, under contract). I wish to find criteria and norms 
that will allow us to differentiate between the generative and productive use 
of our scientific abstract maps (such as cultural or linguistic groups), and 
the dangerous application—i.e., pernicious reification —of such maps. In 
other words, are particular groups of certain sorts grounded in patterns of 
genetic variation, or is an ontological interpretation of a clustering a biased 
and “viciously abstract”—to use William James’s locution13—imposition on 
genetic data? This article’s case study of abstraction and reification in sci-
ence allows us to think about whether (1) biologists are actually measuring 
something significant in their clusters, (2) they are justified in their kind-
making (see Hacking 1995, 2007), and (3) there is any knowledge/power 
(empirically and normatively) to their use of clusters in making predictions 
and formulating explanations of human evolution, capacity ascriptions 
(e.g., intelligence and athleticism), and disease proclivities.

Why should we care? It seems obvious that the political and social 
stakes are high. Our very understanding of what it means to be human is 
under question, as are (our understandings of) human freedom, potential, 
and dignity. The main purpose of this text is to help clarify the two math-
ematical methods before turning to deeper questions of the normativity 
and metaphysical nature of potential natural kinds of Homo sapiens.

Here are a few research projects that could be developed going forward: 

1. Classification and Function. Do the genes we use in classifying human 
groups have any functional or mechanistic relevance? Our material and 
theoretical technologies do not yet allow us to assess the causal relevance 
of whatever genes do differ in systematic ways across at least some clus-
ters. Presumably some of these genes are involved in the making of phe-
notypes that seem to differ across human groups. (This is a controversial 
claim.) But until we have found ways of describing actual genetic causal 
networks, the functional relevance of cluster-distinct genes (i.e., “pri-
vate” alleles or genes that have extremely different frequencies in the two 
populations) remains unclear. Which sorts of empirical studies must be 
made to identify genetic causation? Can our classificatory investigations 
shed any light on mechanistic questions?
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2. The SMEO-P Account of Modeling. In previous work (Winther 2006a, 
b), I provided a simplified and linear account of the modeling process. 
Modeling consists in setting up, mathematically manipulating, explain-
ing, objectifying, and pluralizing. The SMEO-P account emphasizes the 
importance of ontological and methodological assumptions in modeling. 
I have only just begun to excavate the assumptions at play in the two 
mathematical methods of diversity partitioning and clustering analysis.

3. The Role of Biologists in the “Race Debates.” Regardless of empirically 
robust modeling outcomes, and regardless of whichever definition or 
criteria of group reality biologists may have, social and political consid-
erations may force scientists to keep a low profile about which sort of 
realism/constructivism/eliminativism interpretation to give (Haslanger 
2008 discusses these interpretations). Put differently, is the history of 
racial discourse and of the biologization, objectification, and reification 
of racial categories so violent that everyone must engage in an enlight-
ened dialogue that states not only the biological facts and methodolo-
gies, but also the historical, political, and social context? Should we even 
keep the categories of “race,” ethnicity,” and “population” in the face of 
historical baggage? Do our mathematical methodologies suggest that we 
can ascribe group reality at least sometimes, and with some justifica-
tion? What can and should biologists add to the discussion of the reality/
reification of “race”?

notes

This article is an edited version of an earlier book chapter, which appeared in Spanish 
as “¿La cosificación genética de la ‘raza’? Un análisis crítico,” in Genes (&) Mestizos. 
Genómica y raza en la biomedicina Mexicana, ed. C. López Beltrán (Mexico City: 
UNAM, 2011), http://philpapers.org/rec/WINLCG. The chapter was mostly written 
in Spanish, and Dr. Fabrizzio McManus Guerrero, my former PhD student, helped 
with final editing. Given that Spanish is not as much a lingua franca as English, that 
this book chapter has garnered significant interest, and, finally, that Paul Taylor, editor 
of Critical Philosophy of Race, kindly solicited a contribution from me on “analytic race 
theory,” the piece here appears reprinted in English, with some changes. Prof. Taylor 
asked me to introduce the article.

While still a professor at UNAM (Universidad Nacional Autónoma de México), 
I was part of a “critical genomics” reading group led by Dr. Carlos López Beltrán. 
Discussions about the discourses and histories surrounding concepts of “race” and 
“mestizo,” both within and without science, were lively, detailed, and insightful.  
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Upon moving to UC Santa Cruz in 2007, I had the pleasure of having Ian Hacking as 
a colleague for a few quarters. I am grateful to him for pointing me to Edwards’s now-
classic 2003 article, and for discussion about what might be called “the Lewontin-
Edwards conundrum.” (I have since discussed these matters both with Professors 
Richard C. Lewontin and Anthony W. F. Edwards.) Finally, a number of lengthy and 
energetic exchanges with Google statistician Dr. Amir Najmi, an old friend, added 
immeasurably to my understanding of the statistical and probability theory issues at 
stake. Thus, when Prof. Carlos López Beltrán generously invited me to contribute to 
his 2011 volumes, I had been amply primed to write on the topic by his reading group 
and by discussions with many, but especially Prof. Hacking and Dr. Najmi. Research 
support was provided by UC Santa Cruz and by both the Biocomplexity Center at the 
Niels Bohr Institute and the Center for Philosophy of Nature and Science Studies at 
Copenhagen University, during a research stay in Denmark. Prof. López Beltrán’s con-
stant encouragement and critique are and will always be appreciated. I am grateful to 
John Dupré, Carlos Galindo, Peter Godfrey-Smith, Eduardo García Ramirez, Cathrine 
Winther Jørgensen, Ian Hacking, Fabrizzio McManus, Amir Najmi, Christina Okai 
Mejborn, Francisco Vergara Silva, and Michael J. Wade for discussion. Alex Dor pro-
vided research assistance.

The book chapter seeded further work via three routes. First, upon sharing the 
book chapter, I received invitations to give lectures at Cambridge University, UC 
Berkeley, the University of Cape Town, and the University of Copenhagen. Second, 
shortly before the book chapter went to press, I sent it to Dr. Jonathan M. Kaplan. We 
exchanged several emails and he subsequently presented some of the book chapter’s 
ideas, together with his own, at the Konrad Lorenz Institute in the summer of 2011. 
We decided to work together and I have greatly enjoyed our collaboration, which has 
resulted in three publications to date, in Biological Theory, Philosophy of Science, and 
Theoria: A Journal of Social and Political Theory (South Africa). Each of these articles 
has been written fully jointly and each was peer-reviewed. We look forward to fur-
ther collaboration, perhaps including a book. Finally, the Lewontin-Edwards conun-
drum stimulated the writing of research grants, and I am now Principal Investigator 
for a trans-university research cluster (UC Berkeley, UC Davis, Stanford University, 
and UC Santa Cruz) on “Philosophy in a Multicultural Context,” focusing during the 
2013–14 academic year on “Genomics and Philosophy of Race,” and institutionally 
rooted via the Institute for Humanities Research at UC Santa Cruz, http://ihr.ucsc.
edu/portfolio/philosophy-in-a-multicultural-context/?id=15003.

Two workshops (Stanford University and UC Davis) and a big public conference 
(UC Santa Cruz) will result in at least a collection of articles. I look forward to further 
collaborations and many more learning experiences on the topics I first had the plea-
sure to address in this article.

In editing this translation, various stylistic and grammatical infelicities have been 
addressed. Examples, conceptual clarifications, and a few footnotes and  bibliographic 
items have been added. Insightful comments by Doc Edge, Helen Longino, Mette 
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Smølz Skau, Bas van Fraassen, and an anonymous reviewer were addressed to the 
extent possible in this translation for Critical Philosophy of Race.
1. Since writing this piece, work surrounding implicit bias and the “implicit associa-

tion test,” IAT (e.g., Greenwald, McGhee, and Schwartz 1998), was pointed out to 
me. The relation to my argument is not that biologists acquiring data are “racist,” 
associating different moral weights to different groups. Rather, the link to the IAT 
is that there may be unconscious mechanisms essentializing and singling out par-
ticular phenotypes from each human population as the appropriate exemplar of 
individual phenotype from which to draw blood samples for genotyping.

2. Importantly, neither Edwards (2003) nor Smouse, Spielman, and Park (1982) dis-
pute these results. Indeed, the latter article’s central argument is that “if one uti-
lizes a multiple-locus approach, one will discover that human subspecific taxonomy 
is quite efficacious, even with the sort of marker loci alluded to above [i.e., the 
results of Lewontin 1972]” (Smouse, Spielman, and Park 1982, 445).

3. Lewontin (1972) provides four conditions that correctly describe the characteristics 
of any diversity measure: “(1) It should be a minimum (conveniently, 0) when there 
is only a single allele present so that the locus in question shows no variation. (2) 
For a fixed number of alleles, it should be maximum when all are equal in fre-
quency—this corresponds to our intuitive notion that the diversity is much less, 
for a given number of alternative kinds, when one of the kinds is very rare. (3) The 
diversity ought to increase somehow as the number of different alleles in the popu-
lation increases. Specifically, if all alleles are equally frequent, then a population 
with ten alleles is obviously more diverse in any ordinary sense than a population 
with two alleles. (4) The diversity measure ought to be a convex function of frequen-
cies of alleles; that is, a collection of individuals made by pooling two populations 
ought always to be more diverse than the average of their separate diversities [the 
Wahlund Effect], unless the two populations are identical in composition” (388).

4. These were pioneered by Cockerham (1973); Holsinger and Weir (2009) is a recent 
instructive review of these relations.

5. Lewontin (1974a) attributes the data to Cavalli-Sforza and Bodmer (1971).
6. See Rosenberg (2011) for a synthetic review of state-of-the-art knowledge on pat-

terns of human genetic variation.
7. Pritchard, Stephens, and Donnelly (2000) put it well: “Our main modeling 

assumptions are Hardy-Weinberg equilibrium within populations and complete 
linkage equilibrium between loci within populations. . . . Loosely speaking, the 
idea here is that the model accounts for the presence of Hardy-Weinberg or linkage 
disequilibrium by introducing population structure and attempts to find popula-
tion groupings that (as far as possible) are not in disequilibrium. . . . Under these 
assumptions each allele at each locus in each genotype is an independent draw from 
the appropriate frequency distribution, and this completely specifies the probability dis-
tribution Pr (X|Z, P). . . . [Where] X denote the genotypes of the sampled individu-
als, Z denote the (unknown) population of origin of the individuals, and P denote 
the (unknown) allele frequencies in all populations” (946, emphasis mine; sentence 
order slightly rearranged, as indicated with ellipses). Note that upon estimating  
the allele  frequencies in actual populations, and sequencing individual genotypes, 
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we can use Pritchard et al.’s (2000) Bayesian clustering approach, embodied in the 
 computer program STRUCTURE, to infer the population(s) Z of origin of the indi-
viduals. N.b., this article has been cited 11,753 times according to Google Scholar, 
May 14, 2014; on the same day, Rosenberg et al. (2002) had been cited 1768 times.

8. See Feldman and Lewontin (2008), 89–90, for another way to make this general point.
9. Subsequently to this piece, this point was made in note 3 of Kaplan and Winther 

(2013), 404 and note 14 of Winther and Kaplan (2013), 75. See also Barbujani, 
Ghirotto, and Tassi (2013).

10. Having recently learned about actual genetic protocols used in, e.g., Noah 
Rosenberg’s lab, it seems that some of my worries here were unwarranted. See also 
section 3 of Kaplan and Winther (forthcoming).

11. Weiss and Fullerton (2005), and Kaplan (2011) provide brief, useful discussions of 
these points.

12. Kalinowski (2010) points to another related problem with STRUCTURE, which can 
also lead to reifications of clusters: “STRUCTURE is also frequently used to  identify 
the main genetic clusters within species. In this second type of analysis, individuals 
are assigned to clusters . . . but K is deliberately set to be smaller than the actual 
number of populations. . . . The mathematical model used by STRUCTURE was 
designed for clustering individuals into Hardy-Weinberg/linkage equilibrium pop-
ulations. It was not designed for clustering individuals into groups of populations, 
and may not work as its users intend when this is done” (1–2). Kalinowski’s simula-
tions show that when too few clusters are chosen, STRUCTURE pools individuals 
who would be pooled with other individuals if a higher K were chosen. Again, this 
is not a problem with the probabilistic mathematics, but is a problem with the inter-
pretation of nature that we impose from our modeling result.

13. See Winther (2014b).

works cited

Bamshad, M. J., S. Wooding, W. S. Watkins, C. T. Ostler, M. A. Batzer, and L. B. Jorde. 
2003. “Human Population Genetic Structure and Inference of Group 
Membership.” American Journal of Human Genetics 72: 578–89.

Barbujani, G., A. Magagni, E. Minch, and L. L. Cavalli-Sforza. 1997. “An Apportionment 
of Human DNA Diversity.” Proceedings of the National Academy of Sciences 94: 
4516–19.

Barbujani, G., S. Ghirotto, and F. Tassi. 2013. “Nine Things to Remember about Human 
Genome Diversity.” Tissue Antigens 82: 155–64.

Bolnick, D. A. 2008. “Individual Ancestry Inference and the Reification of Race as a 
Biological Phenomenon.” In Revisiting Race in a Genomic Age, ed. B. A. 
Koenig, S. S.-J. Lee, and S. S. Richardson, 70–85. New Brunswick, NJ: Rutgers 
University Press.

Burchard, E. G., et al. 2003. “The Importance of Race and Ethnic Background in 
Biomedical Research and Clinical Practice.” New England Journal of Medicine 
348: 1170–75.

CPR 2.2_02_Symposium.indd   221 31/07/14   4:26 PM



222 ■ critical philosophy of race

Cavalli-Sforza, L. L., and W. F. Bodmer. 1971. The Genetics of Human Populations. San 
Francisco: Freeman.

Cavalli-Sforza, L. L., P. Menozzi, and A. Piazza. 1996. The History and Geography of 
Human Genes (abridged). Princeton, NJ: Princeton University Press.

Cockerham, C. C. 1969. “Variance of Gene Frequencies.” Evolution 23: 72–84.
———. 1973. “Analyses of Gene Frequencies.” Genetics 74: 679–700.
Edwards, A. W. F. 2003. “Human Genetic Diversity: Lewontin’s Fallacy.” BioEssays 25: 

798–801.
Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. “Analysis of Molecular Variance 

Inferred from Metric Distances among DNA Haplotypes: Application to 
Human Mitochondrial DNA Restriction Data.” Genetics 131: 479–91.

Feldman, M. W., and R. C. Lewontin. 2008. “Race, Ancestry, and Medicine.” In Revisiting 
Race in a Genomic Age, ed. B. A. Koenig, S. S.-J. Lee, and S. S. Richardson, 
89–101. New Brunswick, NJ: Rutgers University Press.

Gelman, A. 2008. “Variance, analysis of.” In The New Palgrave Dictionary of Economics, ed. 
S. N. Durlauf and L. E. Blume. Basingstoke, Hampshire: Palgrave Macmillan. 
http://www.dictionaryofeconomics.com/article?id=pde2008_A000098.

Greenwald, A. G., D. E. McGhee, and J. L. K. Schwartz. 1988. “Measuring Individual 
Differences in Implicit Cognition: The Implicit Association Test.” Journal of 
Personality and Social Psychology 74 (6): 1464–80.

Hacking, I. 1995. “The Looping Effect of Human Kinds.” In Causal Cognition: An 
Interdisciplinary Approach, ed. D. Sperber et al., 351–83. Oxford: Oxford 
University Press.

———. 2007. “Natural Kinds: Rosy Dawn, Scholastic Twilight.” Royal Institute of 
Philosophy Supplement 82, no. 61: 203–39.

Haslanger, S. 2008. “A Social Constructionist Analysis of Race.” In Revisiting Race in a 
Genomic Age, ed. B. A. Koenig, S. S.-J. Lee, and S. S. Richardson, 56–69. New 
Brunswick, NJ: Rutgers University Press.

Holsinger, K. E., and B. S.Weir. 2009. “Genetics in Geographically Structured Populations: 
Defining, Estimating and Interpreting FST.” Nature Rev. Genetics: 639–50.

Kalinowski, S. T. 2010. “The Computer Program STRUCTURE Does not Reliably Identify 
the Main Genetic Clusters within Species: Simulations and Implications for 
Human Population Structure. Heredity 1, no.8. http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3183908/.

Kaplan, J. M. 2011. “‘Race’: What Biology Can Tell Us about a Social Construct.” 
Encyclopedia of the Life Sciences (ELS). Chichester: John Wiley & Sons.

Kaplan, J. M., and R. G. Winther. 2013. “Prisoners of Abstraction? The Theory and 
Measure of Genetic Variation, and the Very Concept of ‘Race.’” Biological 
Theory 7: 401–12.

———. Forthcoming. “Realism, Antirealism, and Conventionalism about Race.” 
Philosophy of Science.

Kumar, R., et al. 2010. “Genetic Ancestry in Lung-Function Predictions.” New England 
Journal of Medicine 363: 321–30.

Lewontin, R. C. 1972. Apportionment of Human Diversity. Evolutionary Biology 6: 
381–98.

CPR 2.2_02_Symposium.indd   222 31/07/14   4:26 PM



223 ■ symposium: winther

———. 1974a. The Genetic Basis of Evolutionary Change. New York: Columbia University 
Press.

———. 1974b. “Annotation: The Analysis of Variance and the Analysis of Causes.” 
American Journal of Human Genetics 26: 400–11.

Nei, M. 1973. “Analysis of Gene Diversity in Subdivided Populations.” PNAS 70: 
3321–23.

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. “Inference of Population Structure 
using Multilocus Genotype Data.” Genetics 155: 945–59.

Rosenberg, N. A. 2011. “A Population-Genetic Perspective on the Similarities and 
Differences among Worldwide Human Populations.” Human Biology 83: 
659–84.

Rosenberg, N. A., S. Mahajan, S. Ramachandran, C. Zhao, J. K. Pritchard, and  
M. W. Feldman. 2005. “Clines, Clusters, and the Effect of Study Design on the 
Inference of Human Population Structure.” PLoS Genetics 1(6)e70: 660–71.

Rosenberg N. A., J. K. Pritchard, J. L. Weber, H. M. Cann, K. K. Kidd, L. A. Zhivotovsky, 
and M. A. Feldman. 2002. “Genetic Structure of Human Populations.” Science 
298: 2381–85.

Smouse, P. E., R. S. Spielman, and M. H. Park. 1982. “Multiple-Locus Allocation of 
Individuals to Groups as a Function of the Genetic Variation within and 
Differences among Human Populations.” The American Naturalist 119, no. 4: 
445–63.

Templeton, A. 1998. “Human Races: A Genetic and Evolutionary Perspective.” American 
Anthropologist 100: 632–50.

Wade, N. 2014. A Troublesome Inheritance. Genes, Race and Human History. New York: 
Penguin.

Weiss, K. M., and S. M. Fullerton. 2005. “Racing Around, Getting Nowhere.” Evolutionary 
Anthropology 14: 165–69.

Winther, R. G. 2006a. “Fisherian and Wrightian Perspectives in Evolutionary Genetics 
and Model-Mediated Imposition of Theoretical Assumptions.” Journal of 
Theoretical Biology 240: 218–32.

———. 2006b. “On the Dangers of Making Scientific Models Ontologically Independent: 
Taking Richard Levins’ Warnings Seriously.” Biology and Philosophy 21: 703–24.

———. 2014a. “Determinism and Total Explanation in the Biological and Behavioral 
Sciences.” Encyclopedia of the Life Sciences. http://philpapers.org/rec/
WINDAT-4.

———. 2014b. “James and Dewey on Abstraction.” The Pluralist 9, no. 2 (Summer 
2014): 1–28.

———. Under Contract. When Maps Become the World: Abstraction and Analogy in 
Philosophy of Science. Chicago: University of Chicago Press.

Winther, R. G., and J. M. Kaplan. 2013. “Ontologies and Politics of Bio-Genomic ‘Race.’” 
Theoria: A Journal of Social and Political Theory (South Africa) 60, no. 136: 
54–80.

Wright, S. 1965. “The Interpretation of Population Structure by F-Statistics with Special 
Regards to Systems of Mating.” Evolution 19: 395–420.

———. 1969. Evolution and the Genetics of Populations. The Theory of Gene Frequencies, 
Vol 2. Chicago: University of Chicago Press.

CPR 2.2_02_Symposium.indd   223 31/07/14   4:26 PM


