25 #### THOMAS S. KUHN #### The Structure of Scientific Revolutions ## THE ROUTE TO NORMAL SCIENCE In this essay, 'normal science' means research firmly based upon one or more past scientific achievements. achievements that some particular scientific community acknowledges for a time as supplying the foundation for its further practice. Today such achievements are recounted, though seldom in their original form. by science textbooks, elementary and advanced. These textbooks expound the body of accepted theory, illustrate many or all of its successful applications, and compare these applications with exemplary observations and experiments. Before such books became popular early in the nineteenth century (and until even more recently in the newly matured sciences), many of the famous classics of science fulfilled a similar function. Aristotle's Physica. Ptolemy's Almagest. Newton's Principia and Opticks, Franklin's Electricity, Lavoisier's Chemistry, and Lyell's Geology-these and many other works served for a time implicitly to define the legitimate problems and methods of a research field for succeeding generations of practitioners. They were able to do so because they shared two essential characteristics. Their achievement was sufficiently unprecedented to attract an enduring group of adherents away from competing modes of scientific activity. Simultaneously, it was sufficiently openended to leave all sorts of problems for the redefined group of practitioners to resolve. The Structure of Scientific Revolutions (Chicago: University of Chicago Press, 1970). Reprinted with permission from The University of Chicago Press. Achievements that share these two characteristics I shall henceforth refer to as 'paradigms,' a term that relates closely to 'normal science.' By choosing it, I mean to suggest that some accepted examples of actual scientific practice-examples which include law, theory, application, and instrumentation together-provide models from which spring particular coherent traditions of scientific research. These are the traditions which the historian describes under such rubrics as 'Ptolemaic astronomy' (or 'Copernican'), 'Aristotelian dynamics' (or 'Newtonian'), 'corpuscular optics' (or 'wave optics'), and so on. The study of paradigms, including many that are far more specialized than those named illustratively above, is what mainly prepares the student for membership in the particular scientific community with which he will later practice. Because he there joins men who learned the bases of their field from the same concrete models, his subsequent practice will seldom evoke overt disagreement over fundamentals. Men whose research is based on shared paradigms are committed to the same rules and standards for scientific practice. That commitment and the apparent consensus it produces are prerequisites for normal science, i.e., for the genesis and continuation of a particular research tradition. Because in this essay the concept of a paradigm will often substitute for a variety of familiar notions, more will need to be said about the reasons for its introduction. Why is the concrete scientific achievement, as a locus of professional commitment, prior to the various concepts, laws, theories, and points of view that may be abstracted from it? In what sense is the shared paradigm a fundamental unit for the student of scientific development, a unit that cannot be fully reduced to logically atomic components which might function in its stead? Answers to these questions and to others like them will prove basic to an understanding both of normal science and of the associated concept of paradigms. That more abstract discussion will depend, however, upon a previous exposure to examples of normal science or of paradigms in operation. In particular, both these related concepts will be clarified by noting that there can be a sort of scientific research without paradigms, or at least without any so unequivocal and so binding as the ones named above. Acquisition of a paradigm and of the more esoteric type of research it permits is a sign of maturity in the development of any given scientific field. If the historian traces the scientific knowledge of any selected group of related phenomena backward in time, he is likely to encounter some minor variant of a pattern here illustrated from the history of physical optics. Today's physics textbooks tell the student that light is photons, i.e., quantummechanical entities that exhibit some characteristics of waves and some of particles. Research proceeds accordingly, or rather according to the more elaborate and mathematical characterization from which the usual verbalization is derived. That characterization of light is, however, scarcely half a century old. Before it was developed by Planck, Einstein, and others early in this century, physics texts taught that light was transverse wave motion, a conception rooted in a paradigm that derived ultimately from the optical writings of Young and Fresnel in the early nineteenth century. Nor was the wave theory the first to be embraced by almost all practitioners of optical science. During the eighteenth century the paradigm for this field was provided by Newton's Opticks, which taught that light was material corpuscles. At that time physicists sought evidence, as the early wave theorists had not, of the pressure exerted by light particles impinging on solid bodies.1 These transformations of the paradigms of physical optics are scientific revolutions, and the successive transition from one paradigm to another via revolution is the usual developmental pattern of mature science. It is not, however, the pattern characteristic of the period before Newton's work, and that is the contrast that concerns us here. No period be- tween remote antiquity and the end of the seventeenth century exhibited a single generally accepted view about the nature of light. Instead there were a number of competing schools and subschools, most of them espousing one variant or another of Epicurean, Aristotelian, or Platonic theory. One group took light to be particles emanating from material bodies; for another it was a modification of the medium that intervened between the body and the eye; still another explained light in terms of an interaction of the medium with an emanation from the eye; and there were other combinations and modifications besides. Each of the corresponding schools derived strength from its relation to some particular metaphysic, and each emphasized, as paradigmatic observations, the particular cluster of optical phenomena that its own theory could do most to explain. Other observations were dealt with by ad hoc elaborations, or they remained as outstanding problems for further research.2 At various times all these schools made significant contributions to the body of concepts, phenomena, and techniques from which Newton drew the first nearly uniformly accepted paradigm for physical optics. Any definition of the scientist that excludes at least the more creative members of these various schools will exclude their modern successors as well. Those men were scientists. Yet anyone examining a survey of physical optics before Newton may well conclude that, though the field's practitioners were scientists, the net result of their activity was something less than science. Being able to take no common body of belief for granted, each writer on physical optics felt forced to build his field anew from its foundations. In doing so, his choice of supporting observation and experiment was relatively free, for there was no standard set of methods or of phenomena that every optical writer felt forced to employ and explain. Under these circumstances, the dialogue of the resulting books was often directed as much to the members of other schools as it was to nature. That pattern is not unfamiliar in a number of creative fields today, nor is it incompatible with significant discovery and invention. It is not, however, the pattern of development that physical optics acquired after Newton and that other natural sciences make familiar today. . . . ## NORMAL SCIENCE AS PUZZLE-SOLVING Perhaps the most striking feature of the normal research problems we have just encountered is how little they aim to produce major novelties, conceptual or phenomenal. Sometimes, as in a wave-length measurement, everything but the most esoteric detail of the result is known in advance, and the typical latitude of expectation is only somewhat wider. Coulomb's measurements need not, perhaps, have fitted an inverse square law; the men who worked on heating by compression were often prepared for any one of several results. Yet even in cases like these the range of anticipated, and thus of assimilable, results is always small compared with the range that imagination can conceive. And the project whose outcome does not fall in that narrower range is usually just a research failure, one which reflects not on nature but on the scientist. In the eighteenth century, for example, little attention was paid to the experiments that measured electrical attraction with devices like the pan balance. Because they yielded neither consistent nor simple results, they could not be used to articulate the paradigm from which they derived. Therefore, they remained mere facts, unrelated and unrelatable to the continuing progress of electrical research. Only in retrospect, possessed of a subsequent paradigm, can we see what characteristics of electrical phenomena they display. Coulomb and his contemporaries, of course, also possessed this later paradigm or one that, when applied to the problem of attraction, yielded the same expectations. That is why Coulomb was able to design apparatus that gave a result assimilable by paradigm articulation. But it is also why that result surprised no one and why several of Coulomb's contemporaries had been able to predict it in advance. Even the project whose goal is paradigm articulation does not aim at the unexpected novelty. But if the aim of normal science is not major substantive novelties—if failure to come near the anticipated result is usually failure as a scientist—then why are these problems undertaken at all? Part of the answer has already been developed. To scientists, at least, the results gained in normal research are significant because they add to the scope and precision with which the paradigm can be applied. That answer, however, cannot account for the enthusiasm and devotion that scientists display for the problems of normal research. No one devotes years to, say, the development of a better spectrometer or the production of an improved solution to the problem of vibrating strings simply because of the importance of the information that will be obtained. The data to be gained by computing ephemerides or by further measurements with an existing instrument are often just as significant, but those activities are regularly spurned by scientists because they are so largely repetitions of procedures that have been carried through before. That rejection provides a clue to the fascination of the normal research problem. Though its outcome can be anticipated, often in detail so great that what remains to be known is itself uninteresting, the way to achieve that outcome remains very much in doubt. Bringing a normal research problem to a conclusion is achieving the anticipated in a new way, and it requires the solution of all sorts of complex instrumental, conceptual, and mathematical puzzles. The man who succeeds proves himself an expert puzzle-solver, and the challenge of the puzzle is an important part of what usually drives him on. The terms 'puzzle' and 'puzzle-solver' highlight several of the themes that have become increasingly prominent in the preceding pages. Puzzles are, in the entirely standard meaning here employed, that special category of problems that can serve to test ingenuity or skill in solution. Dictionary illustrations are 'jigsaw puzzle' and 'crossword puzzle,' and it is the characteristics that these share with the problems of normal science that we now need to isolate. One of them has just been mentioned. It is no criterion of goodness in a puzzle that its outcome be intrinsically interesting or important. On the contrary, the really pressing problems, e.g., a cure for cancer or the design of a lasting peace, are often not puzzles at all, largely because they may not have any solution. Consider the jigsaw puzzle whose pieces are selected at random from each of two different puzzle boxes. Since that problem is likely to defy (though it might not) even the most ingenious of men, it cannot serve as a test of skill in solution. In any usual sense it is not a puzzle at all. Though intrinsic value is no criterion for a puzzle, the assured existence of a solution is. We have already seen, however, that one of the things a scientific community acquires with a paradigm is a criterion for choosing problems that, while the paradigm is taken for granted, can be assumed to have solutions. To a great extent these are the only problems that the community will admit as scientific or encourage its members to undertake. Other problems, including many that had previously been standard, are rejected as metaphysical, as the concern of another discipline, or sometimes as just too problematic to be worth the time. A paradigm can, for that matter, even insulate the community from those socially important problems that are not reducible to the puzzle form, because they cannot be stated in terms of the conceptual and instrumental tools the paradigm supplies. Such problems can be a distraction, a lesson brilliantly illustrated by several facets of seventeenth-century Baconianism and by some of the contemporary social sciences. One of the reasons why normal science seems to progress so rapidly is that its practitioners concentrate on problems that only their own lack of ingenuity should keep them from solving. . . . # THE NATURE AND NECESSITY OF SCIENTIFIC REVOLUTIONS These remarks permit us at last to consider the problems that provide this essay with its title. What are scientific revolutions, and what is their function in scientific development? Much of the answer to these questions has been anticipated in earlier sections. In particular, the preceding discussion has indicated that scientific revolutions are here taken to be those non-cumulative developmental episodes in which an older paradigm is replaced in whole or in part by an incompatible new one. There is more to be said, however, and an essential part of it can be introduced by asking one further question. Why should a change of paradigm be called a revolution? In the face of the vast and essential differences between political and scientific development, what parallelism can justify the metaphor that finds revolutions in both? One aspect of the parallelism must already be apparent. Political revolutions are inaugurated by a growing sense, often restricted to a segment of the political community, that existing institutions have ceased adequately to meet the problems posed by an environment that they have in part created. In much the same way, scientific revolutions are inaugurated by a growing sense, again often restricted to a narrow subdivision of the scientific community, that an existing paradigm has ceased to function adequately in the exploration of an aspect of nature to which that paradigm itself had previously led the way. In both political and scientific development the sense of malfunction that can lead to crisis is prerequisite to revolution. Furthermore, though it admittedly strains the metaphor, that parallelism holds not only for the major paradigm changes, like those attributable to Copernicus and Lavoisier, but also for the far smaller ones associated with the assimilation of a new sort of phenomenon, like oxygen or X-rays. Scientific revolutions . . . need seem revolutionary only to those whose paradigms are affected by them. To outsiders they may, like the Balkan revolutions of the early twentieth century, seem normal parts of the developmental process. Astronomers, for example, could accept X-rays as a mere addition to knowledge, for their paradigms were unaffected by the existence of the new radiation. But for men like Kelvin, Crookes, and Roentgen, whose research dealt with radiation theory or with cathode ray tubes, the emergence of X-rays necessarily violated one paradigm as it created another. That is why these rays could be discovered only through something's first going wrong with normal research. This genetic aspect of the parallel between political and scientific development should no longer be open to doubt. The parallel has, however, a second and more profound aspect upon which the significance of the first depends. Political revolutions aim to change political institutions in ways that those institutions themselves prohibit. Their success therefore necessitates the partial relinquishment of one set of institutions in favor of another, and in the interim, society is not fully governed by institutions at all. Initially it is crisis alone that attenuates the role of political institutions as we have already seen it attenuate the role of paradigms. In increasing numbers individuals become increasingly estranged from political life and behave more and more eccentrically within it. Then, as the crisis deepens, many of these individuals commit themselves to some concrete proposal for the reconstruction of society in a new institutional framework. At that point the society is divided into competing camps or parties, one seeking to defend the old institutional constellation, the others seeking to institute some new one. And, once that polarization has occurred, political recourse fails. Because they differ about the institutional matrix within which political change is to be achieved and evaluated, because they acknowledge no supra-institutional framework for the adjudication of revolutionary difference, the parties to a revolutionary conflict must finally resort to the techniques of mass persuasion, often including force. Though revolutions have had a vital role in the evolution of political institutions, that role depends upon their being partially extrapolitical or extrainstitutional events. The remainder of this essay aims to demonstrate that the historical study of paradigm change reveals very similar characteristics in the evolution of the sciences. Like the choice between competing political institutions, that between competing paradigms proves to be a choice between incompatible modes of community life. Because it has that character, the choice is not and cannot be determined merely by the evaluative procedures characteristic of normal science, for these depend in part upon a particular paradigm, and that paradigm is at issue. When paradigms enter, as they must, into a debate about paradigm choice, their role is necessarily circular. Each group uses its own paradigm to argue in that paradigm's defense. The resulting circularity does not, of course, make the arguments wrong or even ineffectual. The man who premises a paradigm when arguing in its defense can nonetheless provide a clear exhibit of what scientific practice will be like for those who adopt the new view of nature. That exhibit can be immensely persuasive, often compellingly so. Yet, whatever its force, the status of the circular argument is-only that of persuasion. It cannot be made logically or even probabilistically compelling for those who refuse to step into the circle. The premises and values shared by the two parties to a debate over paradigms are not sufficiently extensive for that. As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists. . . . # REVOLUTIONS AS CHANGES OF WORLD VIEW Examining the record of past research from the vantage of contemporary historiography, the historian of science may be tempted to exclaim that when paradigms change, the world itself changes with them. Led by a new paradigm, scientists adopt new instruments and look in new places. Even more important, during revolutions scientists see new and different things when looking with familiar instruments in places they have looked before. It is rather as if the professional community had been suddenly transported to another planet where familiar objects are seen in a different light and are joined by unfamiliar ones as well. Of course, nothing of quite that sort does occur: there is no geographical transplantation; outside the laboratory everyday affairs usually continue as before. Nevertheless, paradigm changes do cause scientists to see the world of their research-engagement differently. In so far as their only recourse to that world is through what they see and do, we may want to say that after a revolution scientists are responding to a different world. It is as elementary prototypes for these transformations of the scientist's world that the familiar demonstrations of a switch in visual gestalt prove so suggestive. What were ducks in the scientist's world before the revolution are rabbits afterwards. The man who first saw the exterior of the box from above later sees its interior from below. Transformations like these, though usually more gradual and almost always irreversible, are common concomitants of scientific training. Looking at a contour map, the student sees lines on paper, the cartographer a picture of a terrain. Looking at a bubble-chamber photograph, the student sees confused and broken lines, the physicist a record of familiar subnuclear events. Only after a number of such transformations of vision does the student become an inhabitant of the scientist's world, seeing what the scientist sees and responding as the scientist does. The world that the student then enters is not, however, fixed once and for all by the nature of the environment, on the one hand, and of science, on the other. Rather, it is determined jointly by the environment and the particular normal-scientific tradition that the student has been trained to pursue. Therefore, at times of revolution, when the normalscientific tradition changes, the scientist's perception of his environment must be re-educated-in some familiar situations he must learn to see a new gestalt. After he has done so the world of his research will seem, here and there, incommensurable with the one he had inhabited before. That is another reason why schools guided by different paradigms are always slightly at cross-purposes. In their most usual form, of course, gestalt experiments illustrate only the nature of perceptual transformations. They tell us nothing about the role of paradigms or of previously assimilated experience in the process of perception. But on that point there is a rich body of psychological literature, much of it stemming from the pioneering work of the Hanover Institute. An experimental subject who puts on goggles fitted with inverting lenses initially sees the entire world upside down. At the start his perceptual apparatus functions as it had been trained to function in the absence of the goggles, and the result is extreme disorientation, an acute personal crisis. But after the subject has begun to learn to deal with his new world, his entire visual field flips over, usually after an intervening period in which vision is simply confused. Thereafter, objects are again seen as they had been before the goggles were put on. The assimilation of a previously anomalous visual field has reacted upon and changed the field itself.3 Literally as well as metaphorically, the man accustomed to inverting lenses has undergone a revolutionary transformation of vision. . . . Still other experiments demonstrate that the perceived size, color, and so on, of experimentally displayed objects also varies with the subject's previous training and experience. Surveying the rich experimental literature from which these examples are drawn makes one suspect that something like a paradigm is prerequisite to perception itself. What a man sees depends both upon what he looks at and also upon what his previous visual-conceptual experience has taught him to see. In the absence of such training there can only be, in William James's phrase, "a bloomin' buzzin' confusion." In recent years several of those concerned with the history of science have found the sorts of experiments described above immensely suggestive. N. R. Hanson, in particular, has used gestalt demonstrations to elaborate some of the same consequences of scientific belief that concern me here.5 Other colleagues have repeatedly noted that history of science would make better and more coherent sense if one could suppose that scientists occasionally experienced shifts of perception like those described above. Yet, though psychological experiments are suggestive, they cannot, in the nature of the case, be more than that. They do display characteristics of perception that could be central to scientific development, but they do not demonstrate that the careful and controlled observation exercised by the research scientist at all partakes of those characteristics. Furthermore, the very nature of these experiments makes any direct demonstration of that point impossible. If historical example is to make these psychological experiments seem relevant, we must first notice the sorts of evidence that we may and may not expect history to provide. The subject of a gestalt demonstration knows that his perception has shifted because he can make it shift back and forth repeatedly while he holds the same book or piece of paper in his hands. Aware that nothing in his environment has changed, he directs his attention increasingly not to the figure (duck or rabbit) but to the lines on the paper he is looking at. Ultimately he may even learn to see those lines without seeing either of the figures, and he may then say (what he could not legitimately have said earlier) that it is these lines that he really sees but that he sees them alternately as a duck and as a rabbit. . . . Unless there were an external standard with respect to which a switch of vision could be demonstrated, no conclusion about alternate perceptual possibilities could be drawn. With scientific observation, however, the situation is exactly reversed. The scientist can have no recourse above or beyond what he sees with his eyes and instruments. If there were some higher authority by recourse to which his vision might be shown to have shifted, then that authority would itself become the source of his data, and the behavior of his vision would become a source of problems (as that of the experimental subject is for the psychologist). The same sorts of problems would arise if the scientist could switch back and forth like the subject of the gestalt experiments. The period during which light was "sometimes a wave and sometimes a particle" was a period of crisis—a period when something was wrong-and it ended only with the development of wave mechanics and the realization that light was a self-consistent entity different from both waves and particles. In the sciences, therefore, if perceptual switches accompany paradigm changes, we may not expect scientists to attest to these changes directly. Looking at the moon, the convert to Copernicanism does not say, "I used to see a planet, but now I see a satellite."That locution would imply a sense in which the Ptolemaic system had once been correct. Instead, a convert to the new astronomy says, "I once took the moon to be (or saw the moon as) a planet, but I was mistaken." That sort of statement does recur in the aftermath of scientific revolutions. If it ordinarily disguises a shift of scientific vision or some other mental transformation with the same effect, we may not expect direct testimony about that shift. Rather we must look for indirect and behavioral evidence that the scientist with a new paradigm sees differently from the way he had seen before. Let us then return to the data and ask what sorts of transformations in the scientist's world the historian who believes in such changes can discover. Sir William Herschel's discovery of Uranus provides a first example. . . . On at least seventeen different occasions between 1690 and 1781, a number of astronomers, including several of Europe's most eminent observers, had seen a star in positions that we now suppose must have been occupied at the time by Uranus. One of the best observers in this group had actually seen the star on four successive nights in 1769 without noting the motion that could have suggested another identification. Herschel, when he first observed the same object twelve years later, did so with a much improved telescope of his own manufacture. As a result, he was able to notice an apparent disk-size that was at least unusual for stars. Something was awry, and he therefore postponed identification pending further scrutiny. That scrutiny disclosed Uranus' motion among the stars, and Herschel therefore announced that he had seen a new comet! Only several months later, after fruitless attempts to fit the observed motion to a cometary orbit, did Lexell suggest that the orbit was probably planetary.⁶ When that suggestion was accepted, there were several fewer stars and one more planet in the world of the professional astronomer. A celestial body that had been observed off and on for almost a century was seen differently after 1781 because it could no longer be fitted to the perceptual categories (star or comet) provided by the paradigm that had previously prevailed. The shift of vision that enabled astronomers to see Uranus, the planet, does not, however, seem to have affected only the perception of that previously observed object. Its consequences were more far-reaching. Probably, though the evidence is equivocal, the minor paradigm change forced by Herschel helped to prepare astronomers for the rapid discovery, after 1801, of the numerous minor planets or asteroids. Because of their small size, these did not display the anomalous magnification that had alerted Herschel. Nevertheless, astronomers prepared to find additional planets were able, with standard instruments, to identify twenty of them in the first fifty years of the nineteenth century.7 The history of astronomy provides many other examples of paradigm-induced changes in scientific perception, some of them even less equivocal. Can it conceivably be an accident, for example, that Western astronomers first saw change in the previously immutable heavens during the halfcentury after Copernicus' new paradigm was first proposed? The Chinese, whose cosmological beliefs did not preclude celestial change, had recorded the appearance of many new stars in the heavens at a much earlier date. Also, even without the aid of a telescope, the Chinese had systematically recorded the appearance of sunspots centuries before these were seen by Galileo and his contemporaries.8 Nor were sunspots and a new star the only examples of celestial change to emerge in the heavens of Western astronomy immediately after Copernicus. Using traditional instruments, some as simple as a piece of thread, late sixteenth-century astronomers repeatedly discovered that comets wandered at will through the space previously reserved for the immutable planets and stars. The very ease and rapidity with which astronomers saw new things when looking at old objects with old instruments may make us wish to say that, after Copernicus, astronomers lived in a different world. In any case, their research responded as though that were the case. #### **NOTES** - Joseph Priestley, The History and Present State of Discoveries Relating to Vision, Light, and Colours (London, 1772), pp. 385-90. - Vasco Ronchi, Histoire de la lumière, trans. Jean Taton (Paris, 1956), chaps i-iv. - The original experiments were by George M. Stratton, "Vision without Inversion of the Retinal Image," Psychological Review, IV (1897), 341-60, 463-81. A more up-to-date review is provided by - Harvey A. Carr, An Introduction to Space Perception (New York, 1935), pp. 18–57. - For examples, see Albert H. Hastorf, "The Influence of Suggestion on the Relationship between Stimulus Size and Perceived Distance," Journal of Psychology, XXIX (1950), 195–217; and Jerome S. Bruner, Leo Postman, and John Rodrigues, "Expectations and the Perception of Color," American Journal of Psychology, LXIV (1951), 216-27. - N. R. Hanson, Patterns of Discovery (Cambridge, 1958), chap. i. - Peter Doig, A Concise History of Astronomy (London, 1950), pp. 115–16. - Rudolph Wolf, Geschichte der Astronomie (Munich, 1877), pp. 513–15, 683–93. Notice particularly how difficult Wolf's account makes it to explain these discoveries as a consequence of Bode's Law. - 8. Joseph Needham, Science and Civilization in China, III (Cambridge, 1959), 423–29, 434–36. - T. S. Kuhn, *The Copernican Revolution* (Cambridge, Mass., 1957), pp. 206–9.