
INTRODUCTION 

As will have been clear in Part I, and even more in Part 11, 
probability has become a rich field of study for philosophy. 
Diverging views about probability also play an ever more important 
role in philosophical controversy-in general epistemology as well 
as in philosophy of science proper. 

But probability is also a prime area for applications of symmetry 
arguments. I think these two points are not unconnected. Several 
times in Part I we came across the idea of a unique probability 
singled out on purely logical grounds-logical probability. In each 
case I asserted that this does not exist, that it is a philosophical 
will-o'-the-wisp. Here I return to this point, with a good deal of 
historical argument to draw on, for it concerns the first use of 
symmetries in probability theory. It is true that the historical 
controversy extended into our century, but I regard it as clearly 
settled now that probability is not uniquely assignable on the basis 
of a Principle of Indifference, or any other logical grounds. 

Similarly in Part 11, a crucial role was played by assertions about 
change of probabilities by Conditionalization. Paradoxically, it 
appears that this rule has the status of logic, and also that it need 
not be obeyed. This will be investigated in the last chapter, and 
central to it is a symmetry argument which fixes the form of 
admissible rules in probability kinematics. 

In the choice of these topics I have been specially concerned 
to bring us back full circle to earlier parts of this book. The 
more technical points investigated here-exploiting symmetry 
arguments-can substantiate or destroy positions taken in general 
philosophy of science and epistemology. As a result I have ignored 
much of intrinsic interest-for example, the most famous symmetry 
result of all, De Finetti's representation theorem for exchangeable 
(i.e. permutation invariant) probability functions. I have also 
ignored here to some extent my aim of elucidating the role of 
symmetry in theory and model construction in physical science. 
But such omissions can be made good especially fittingly within 
philosophical discussions of quantum mechanics. 

12. 

Indifference: The Symmetries of 
Probability 

On estime la probabilitt d'un tvenement par le 
nombre des cas favourables divid par le nombre 
des cas possibles. La difficulte ne consiste que 
dans I'tnumCration des cas. 

Lagrange, quoted as epigraph to ch. 1 of 
J. Bertrand, Calcul des probabilit6s. 

SINCE its inception in the seventeenth century, probability theory 
has often been guided by the conviction that symmetry can dictate 
probability. The conviction is expressed in such slogan formulations 
as that equipossibility implies equal probability, and honoured by 
such terms as indifference and sufficient reason. As in science 
generally we can find here symmetry arguments proper that are 
truly a priori, as well as arguments that simply assume contingent 
symmetries, and 'arguments' that reflect the thirst for a hidden, 
determining reality. The great failure of symmetry thinking was 
found here, when indifference disintegrated into paradox; and great 
success as well, sometimes real, sometimes apparent. The story is 
especially important for philosophy, since it shows the impossibility 
of the ideal of logical probability. 

I .  INTUITIVE PROBABILITY 

A traveller approaches a river spanned by bridges that connect its 
shores and islands. There has been a great storm the night before, 
and each bridge was as likely as not to be washed away. How 
probable is it that the traveller can still cross? This puzzle, devised 
by Marcus Moore, clearly depends on the pattern of bridges 
represented in Figure 12.1. 

It also depends on whether the survival of a bridge affects the 
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survival of another. The traveller believes not. Thus for him each 
bridge had an independent 50  per cent probability of washing away. 

1 

1 21 

FIG. 12.1. A symmetry argument for probabilities 

There is a simple but plodding solution (see Proofs and illus- 
trations). But there is a symmetry argument too. Imagine that 
besides the traveller, there is also a boat moving downstream. The 
boatman's problem is to get through, which is possible if sufficiently 
many bridges have been washed away. What is the probability he 
can get through? Our first observation is that he faces a problem 
with the same abstract structure. For the traveller, the entries are 
bridges I and 2, while for the boatman they are I and 4. The exits 
are 4 and 5 for traveller, and are 2 and 5 for boatman. For both , 

there is a connector, namely bridge 3. So each sees lying before him 
the 'maze' 

entry exit 
connector 

entry exit 

Good and bad are reversed for traveller and boatman; but suppose 
that for each, the good state of a bridge has the same independent 
probability of 50  per a n t .  Now, by the great Symmetry Require- 
ment, essentially similar problems must have the same solution. 
Hence: 

1, Probability (traveller crosses)=Probability (boat gets 
through) 

But the problems are not only similar; they are also related. For 
if the traveller has some unbroken path across, the boat cannot get 
through; and vice versa. Therefore: 

2. Probability (boat gets through) = Probability (traveller does 
not cross) 

3. [from 1 and 21 Probability (traveller crosses) = Probability 
(traveller does not cross) 

So i t  is exactly as likely as not that the traveller will cross-the 
probability is 50 per cent. 

Indifference 29 5 
This is a remarkable example, not only as a pure instance of a 

symmetry argument, but because it introduces all the basic in- 
gredients in the three centuries of controversy over the relation 
between symmetry and probability. In this problem, the initial 
probabilities are given: 50  per cent for any bridge that it will wash 
away. We are also given the crucial probability datum about how 
these eventualities are related: they are independent. That means 
that the collapse of one bridge is neither more nor less probable, 
on the supposition that some other bridge is washed away. 
(We are here distinguishing simple probability from conditional 
probability, marked by such terms as 'on the supposition that' or 
'given that'.) Then, purely a priori reasoning gives us the prob- 
abilities for the events of interest. 

The great question for classical probability theory was: can the 
initial probabilities themselves be deduced too, on the basis of 
symmetry considerations? If we knew absolutely nothing about 
storms and bridges, except that one can wash away the other, 
would rationality not have required us to regard both possible 
outcomes as equally likely? Once the answer seemed to be obviously 
Yes, and now it seems self-evidently to be No, to many of us. But 
our century also saw the most sophisticated defences of the yes 
answer. And the history of the controversy spun off important and 
lasting insights. 

Proofi and illustrations 
In our example, the symmetry transformation used mapped bridge 
2 into 4, and vice versa, leaving the others fixed. The entry- 
connector-exit structure is invariant, as is the probability of 'good' 
(i.e. whole for traveller and broken for boatman). The reader is 
invited to consider similar patterns with 1, 3, 4, 5 islands, and to 
generalize. 

The single probability calculus principle that was utilized was- 
writing 'P' for 'Probability': 

which itself is an immediate corollary to the two axioms 

I. 0 = P(contradiction) ,< P(A) < P(tauto1ogy) = 1 
11. P(A) + P(B) = P(A or B) + P(A and B) 

which together exhaust the entire finitary probability theory. For 
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our present purposes, it is not necessary to focus on this calculus 
(which will be explored further in the next chapter), but the 
following notions will be relevant (and will be employed intuitively 
in this chapter): 

The conditional probability P(AI B) of A given that B equals P(A 
and B)/P(B) 
A and B are (stochastically or statistically) independent exactly if 
P(A 1 B) = P(A) 

That conditional probability P(AIB) is defined only if the antecedent 
B has probability P(B) # 0. The independence condition is equi- 
valent to 

P(BI A) = P(B) 
P(A and B) = P(A)P(B) 

always provided the conditional probabilities are defined. The last 
equation shows clearly, of course, that the condition is symmetric 
in A and B. 

2. CELESTIAL PRIOR PROBABILITIES 

The modern history of probability began with the Pascal-Fennat 
correspondence of 1654. The problems they discussed concerned 
gambling, games of chance. If someone wanted to draw practical 
advantage from these studies, he would learn &om them how to 
calculate probabilities of winning (or expectation of gain) from 
initial probabilities in the gambling set-up. But of course he would 
have to know those initial probabilities already. While we cannot 
attribute much sophistication here to the gambler, we may plausibly 
believe that he takes a hard-nosed empirical stance on this. He 
believes that the dice are fair exactly if all possible numerical 
combinations come up equally often-and that this assertion is 
readily testable even in a small number of tosses. Daggers and 
rapiers will be drawn if a challenged and tested die comes up even 
three sixes in a row. We know of course from the play Rosencrantz 
and Guildenstern Are Dead how inconclusive such tests must be on 
a more sophisticated understanding of probability. But the crucial 
role and status of initial probability hypotheses appears much more 
clearly in a different sort of problem. 

The Academy of Sciences in Paris proposed a prize subject for 
1732 and 1734: the configuration of planetary orbits in our solar 
system. This configuration may be described as follows: each planet 
orbits in a plane inclined no more than 7.5" to the sun's equator, 
and the orbits all have the same direction.2 

The prize was divided between John Bernoulli and his son Daniel. 
The latter included three arguments that this configuration cannot 
be attributed to mere chance. Of these the third argument is a 
typical eighteenth-century 'calculation' of initial probabilities: 7.5" 
is of 90" (possible maximum inclination of orbit to equator if we 
ignore direction); there are six (known) planets, so the probability 
of this configuration happening 'by chance' is which is 
negligibly small (circa 3 in 10 million). 

Daniel Bernoulli has here made two assumptions: of a certain 
uniformity (the probability of at most of the maximum, equals 
') and of independence (the joint probability of the six statements 12 
is the product of their individual probabilities). Before scrutinizing 
these assumptions, let us look at two more examples. 

Buffon, in his Historie naturelle gives an argument similar to 
Daniel Bernoulli's.3 BufTon says that the mutual inclination of any 
two planetary orbits is at most 7.5" Taking direction into account, 
the maximum is 180°, so the chance of this equals A. Taking now 
one planet as fixed, we have five others. The joint probability of 
all five orbits to be inclined no more than 7.5" is therefore (9. 
This probability (circa 1 in 10 million) is approximately three times 
smaller than the one noted by Bernoulli. Independently Buffon 
notes that the probability that all six planets should move in the 
same west to east direction for us, equals (:)6. It is clear that he is 
calculating initial probabilities by the same assumptions as Daniel 
Bernoulli. 

In Laplace's writings on celestial mechanics we find another such 
example.4 Bernoulli and BufTon argued for a common origin of the 
planets, that is, a common cause, on the basis of the improbability 
of mere chance or coincidence. Laplace argues conversely that a 
certain fact is not initially improbable, and therefore needs no 
common-cause explanation. The fact in question was that among 
the many observed comets, not a single hyperbolic trajectory has 
been reported.5 Laplace demonstrates that the probability of a 
comet with hyperbolic orbit is exceedingly low. The demonstration 
is based on a uniform distribution of probability over the possible 
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directions of motion of comets entering the sun's gravitational field , 

at some large given distance from the sun. 

3.  INDIFFERENCE AND SUFFICIENT REASON 

It is clear that each of these authors is entertaining what we may 
call a chance hypothesis: that the phenomenon in question arises 
'by mere chance', that is, without the presence of causal or other 
factors constraining the outcome. There is an ambiguity here: are 
the probabilities assigned the correct ones (a) given no hypotheses 
or assumptions about the physical situation, or (b) given a 
substantial, contingent hypothesis about the absence of certain 
physical features? 

If the former is the case, we have here typical symmetry thinking: 
the fact that certain information is absent in the statement of the 
problem, is used as a constraint on the solution. If the latter, we 
are in the presence of a metaphysical assumption, which may have 
empirical import: that nature, when certain physical constraints are 
absent, is equally likely to produce any of the unconstrained 
possibilities, and therefore tends to produce each equally often. 

Ian Hacking locates the first theoretical discussion of this topic 
in Leibnia'g; memorandum 'De incerti aestimatione' (1678).6 In this 
note Leibniz equates probability with gradations of possibility 
('probabilitas est gradus possibilitas'). He states the Principle of 
Indifference, that equipossible cases have the same probability, and 
asserts that such a principle can be 'proved by metaphysics'. 

We can only speculate what metaphysical proof Leibniz envisaged, 
but it must surely be based on his Principle of Sufficient Reason. 
Leibniz's programme set out in the Discourse of Metaphysics was 
to deduce the structure of reality from the nature of God. As a 
first step, this nature entails that God does, or creates, nothing 
without sufficient reason. In this marriage of metaphysics with 
divine epistemology, the difference between points (a) and (b) above 
vanishes. For Leibniz's God solves the problem of what nature 
shall do without contributing factors of his own to destroy the 
symmetries of the problem-as-stated. 

This is how Leibniz must have derived symmetry principles 
governing nature-determining what the real, objective probabilities 
shall be in a physical situation. We cannot be sure on the basis of 
this brief note, but he must have given the principle of sufficient 
reason also this form: that a rational being should assign equal 

probabilities to distinct possibilities unless there be explicit reason 
to differentiate them. Since Leibniz clearly appreciated the great 
value of such an equation for metaphysics, he must have appreciated 
that strictly speaking, his new beginning for metaphysics effects a 
collapse of two logically distinct ,problems. 

It was certainly in the terminology of sufficient reasons-perhaps 
always with a equivocation between (we have reason) and (there is 
reason)- that principles of indifference were formulated. There were 
two; we have seen both at work in the arguments of Bernoulli, 
Buffon, and Laplace. 

The first is the Principle of Uniform Distribution. Suppose I shoot 
bullets at a target and am such a poor marksman that it makes no 
difference at which point of the target I aim. Then any two equal 
areas on the target are equally likely to be hit. We call this a 
uniform distribution. The first indifference principle for assigning 
probabilities is to assume a uniform distribution in the absence of 
reasons to the contrary. 

The second is the Principle of Stochastic Independence. I explained 
independence above; let me illustrate it here. Suppose we are told 
that 40 per cent of the population smokes and 10 per cent has lung 
cancer. This gives me the probability that a randomly chosen person 
is a smoker, or has lung cancer, but does not tell me the joint 
probability of these two characteristics. There are three cases (see 
Fig. 12.2). Each of the three lines p, q, r has 10 per cent of the 
area below it. In the case of the horizontal line q, the joint prob- 
ability of lung cancer and smoking is 10 per cent of 40 per cent, 
namely 4 per cent. For p it is larger and for r it is smaller. 
The second indifference principle is to assume statistical independ- 
ence, in the absence of reasons to the contrary. 

p : positive correlation 
q : independence 

Are these two principles consistent with each other? The joint 
probability of two events is the same as the ordinary probability 
of a single complex event. It seems possible therefore that the two 
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principles could be made to apply to the same example, and offer 
contradictory advice. In the Proofs and illustrations we will see that 
this is not so; the two are consistent with each other. 

Proofs and illustrations 
Let us consider two variables, say height h and weight w. Suppose 
height varies from zero to 10 and weight from zero to 100. Given 
no other informath (hence no teasons to diverge from uniformity 
or independence), assign probabilities to all possibilities. 

The first procedure is to choose uniform distributions for each: 

Then calculate the joint probability by assuming independence: 

The other procedure is to look at the complex variable hw which 
has pairs of numbers as values. A person with height 6 and weight 
60 has hw equal to <6, 6O>. The big rectangle in Fig. 12.3 
encompasses all possibilities (0 < h < 10 and 0 < w < 100) while 
the smaller one describes the possibility of having hw fall between 
c 0,O > and c a, b > in the proper sense of 'between'. Uniformity 
alone applies now and demands a probability proportional to the 
area: 

But as we see, 2 and 3 agree. We have proved in effect that if 
variables h and w are uniformly distributed and independent, then 
the complex variable hw is uniformly distributed. Hence the two 
principles are mutually consistent and together constitute the great 
symmetry principle of classical probability theory-the Principle of 
Indzference. 

Indifference 30 1 

4. BUFFON'S NEEDLE: EMPIRICAL IMPORT OF INDIFFERENCE 

If we must assign initial probabilities, in the absence of relevant 
information, reason bids us be like Buridan's ass. Do not choose 
between P(A) > P( - A) and P(A) < P( - A), but set them equal. 
Similarly in such a case, do not choose between P(A and B) > 
P(A) . P(B) and P(A and B) c P(A) . P(B), but set those equal 
as well. Very well; but will nature oblige us with frequencies to 
which these initial probabilities have a good fit? Is this dictate of 
reason one that will let reason unlock the mysteries of nature? 

An empiricist will ask these questions with a distinct tinge of 
mockery to his voice. But here we should report a marvellous 
example in which calculation by the Principle of Indifference led 
to beautifully confirmed empirical results. This is Buffon's needle 
problem. It is much more probative than planetary orbit and comet 
examples, where one only finds explanation-that beautiful but airy 
creature of the fecund imagination-and not prediction. 

Buffon's needle problem7 

Given: a large number of parallel lines are drawn on the floor, and 
a needle is dropped. What is the probability that the needle cuts 
one of the lines? 

To simplify the problem without loss of essential generality, let 
the lines be exactly two needle lengths apart. Touching will count 
as cutting, but clearly at most one line is cut. We may even speak 
sensibly of the line nearest the needle's point (choose either if the 
point is exactly halfway between). Then our question is equivalent 
to: what is the probability that the needle cuts this nearest line? In 
Fig. 12.4 the needle point is a distance 0 < d < 1 away from line 
L, and its inclination to L is the angle 8. Thus we have: 

favourable cases: the needle cuts L exactly if d C y = sin 8 

This 8 varies from zero to 2~ ( = 360 degrees), and so we can 
diagram the situation with an area of 1 (needle length) by 2~ 
(radians) as in Fig. 12.5. To distinguish the favourable cases from 
the unfavourable ones, we draw in the sine curve and shade the 
area where y > d. Assuming independence and uniform distribution, 
the probability of the favourable cases must be proportional to the 

I 
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FIG. 12.4. Buffon's needle 

shaded area. Since a little calculus quickly demonstrates that this 
area equals 2, we arrive at the number 2/2.7r: 

FIG. 12.5. Buffon's probability calculation 

The probability of a favourable case equals l/n, the solution 
Buffon himself found for his problem. . . 

Since the experiment can be carried out, this is an empirical 
prediction. It has been carried out a number of times and the 
outcomes have been in excellent agreement with Buffon's predic- 
tion.8 Now is this not marvellous and a result to make the rationalist 
metaphysician squeal with delight? For the assumption of symmetry 
in the probabilities of equipossible cases has here led to a true 
prediction made a priori. 

What I have so far recounted has been very favourable to the 
1 Principle of Indifference. Many readers, knowing of its later 

rejection, but perhaps less familiar with attempts to refine and save 
it, may already be a little impatient, I will argue for the rejection 
of its uncritical versions-the empirical phenomena cannot be 
predicted a priori-but this will be a rejection of naive symmetry 
arguments in favour of deeper symmetries, with due respect for the 
insights that were gained along the way. 

We have seen that the Principle has two parts, which are indeed 
consistent with each other. We have also seen the significant 
successes of explanations and predictions arrived at in the eighteenth 
century by means of this Principle. But the challenge to this attempt 
to calculate initial probabilities on the basis of physical symmetry 
came exactly from the fundamental principle of symmetry argu- 
ments. If two problems are essentially the same, they must receive 
essentially the same solution. So a fortiori if a situation can be 
equally described in terms of different parameters, we should arrive 
at the same probabilities if we apply the Principle of Indifference 
to these other parameters. There will be a logical difficulty-indeed, 
straightforward inconsistency-if different descriptions of the prob- 
lem lead via Indifference to distinct solutions. 

This logical difficulty with the idea was expounded systematically 
in a series of paradoxes by Joseph Bertrand at the end of the 
nineteenth century.9 Leaving his rather complex geometric examples 
for Proofs andlllustrations, let us turn immediately to a paradigmatic 
but simple example: the perfect cube factory.10 

A precision tool factory produces iron cubes with edge length 
< 2 cm. What is the probability that a cube has length < 1 cm, 
given that it was produced by that factory? 

A naive application of the Principle of Indifference consists in 
choosing length 1 as parameter and assuming a uniform distribution. 
The answer is then i. But the problem could have been stated in 
different words, but logically equivalent form: 

Possible cases Favourable 

edge length < 2 length < 1 
area of side < 4 area < 1 
volume < 8 volume < I 

Treating each statement of the problem naively we arrive at answers 
i, $, i. These contradict each other. 
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The correspondence 1" ++ I", for a parameter I with range (0, k) is 
one to one, but does not preserve equality of intervals. ' .  

Hence uniform distribution on 1" entails non-uniform distribution 
on I". Now sometimes the problem is indeed constrained by 
symmetries. The cubes example illustrates how these constraints 
may be so minimal as to leave the set of possible solutions 
unreduced. More information about the factory could improve the 
situation. But the Indifference Principle is supposed to fill the gap 
left by missing information! 

Even taken by itself, the example is devastating. But since we shall 
discuss various attempts to salvage Indifference, it is important to 
assess two more examples, with somewhat different logical features. 

Von Kries posed a problem which is like that of the perfect cube 
factory, in that several parameters are related by a simple logical 
transformation. Consider volume and density of a liquid. If mass 
is set equal to 1, then these parameters are related by: 

density = l/volume; volume = lldensity. 

But a uniform distribution on parameter x is automatically . . 
non-uniform on y = (l/x). For example, 

x is between 1 and 2 exactly if y is between 4 and 1 
x is between 2 and 3 exactly if y is between : and 5. 

Here the two intervals for x are equal in length, but the cor- 
responding ones for y are not. Thus Indifference appears to give 
us two conflicting probability assignments again. 

Von Mises's example of a Bertrand-type paradox concerned a 
mixture of two liquids, wine and water. We have a glass container, 
with a mixture of water and wine. To remove division by zero from 
every inversion, let the following be data: 

the glass contains 10 cc of liquid, of which at least 1 cc is water 
and at least 1 cc is wine. 

What is the probability that at least 5 cc is water? Let the parameters 
be: 

a = proportion of wine to total: (1110) < a ,< (9110) 
b = proportion of water to total: (1110) < b < (9110) 
x = proportion of wine to water: (119) < x < 9 
y = proportion of water to wine: (119) < y ,< 9 

Obviously b = (1 - a), x = (alb), y = llx, and a = x/(l + x), so 
descriptions of the situation by means of any parameter can be 
completely translated into any other parameter. It is easy to see 
that the same problem recurs. Here are two equal intervals for the 
proportion of wine to total: 

a = Proportion of wine to total x = Proportion of wine to water 

Since 1 - (213) is not equal to (312) - 1, it is clear that a uniform 
distribution on the proportion a entails a non-uniform proportion 
on proportion x. 

In each case the Principle of Uniformity is applied to one per- 
fectly adequate description of the problem. The statements of the 
problem, both as to sets of possible cases and set of favourable 
cases, differ only verbally. But the great underlying principle 
of symmetry thinking is that essentially similar problems must 
receive the same solution. Thus the attempt to assign uniform 
distribution on the basis of symmetries in these statements of the 
problem, is drastically misguided-it violates symmetry in a deeper 
sense. 

Most writers commenting on Bertrand have described the prob- 
lems set by his paradoxical examples as not well posed. In such a 
case, the problem as initially stated is really not one problem but 
many. To solve it we must be told what is random; which means, 
which events are equiprobable; which means, which parameter 
should be assumed to be uniformly distributed. 

But that response asserts that in the absence of further information 
we have no way to determine the initial probabilities. In other 
words, this response rejects the Principle of Indifference altogether. 
After all, if we were told as part of the problem which parameter 
should receive a uniform distribution, no such Principle would be 
needed. It was exactly the function of the Principle to turn an 
incompletely described physical problem into a definite problem in 
the probability calculus. 

There have been different reactions. We have to list Henri 
Poincark, E. T. Jaynes, and Rudolph Carnap among the writers 
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who believed that the Principle of Indifference could be refined and 
sophisticated, and thus saved from paradox. 

Proofs and illustrations 
The famous chord problem asks for the problem that a stick, tossed 
randomly on a circle, will mark out a chord of given length. For 
a definite standard of comparison we inscribe an equilateral triangle 
ABC in the circle (see Fig. 12.6). However we draw the triangle, it 
is clear that the separated arcs, like arc AEB, must each be : of 
the circurnference. Thus the length of the side of any such triangle 
is the same. In fact it is r J 3, where r is the radius, and the point 
D is exactly halfway along the radius OE. 

FIG. 12.6. Bertrand's chord problem 

What is the probability that chord XY is greater than side AB? 
If we try to answer this question on the basis of the Principle of 
Indifferen'ce, we actually find three variables which might be asserted 
to have uniform distribution: 

XY > AB exactly if any of the following holds: 

(a) 02 < r/2 
(b) Y is located between f and f of the circurnference away from 

X, as measured along the circumference 
(c) the point Z falls within the 'inner' circle with centre 0 and 

radius rl2. 

This gives us three possible applications of the Principle of 
Uniformity. 

Using description (a) we reason: OZ can be anything from 0 to 
r; the interval [0, r/z] of favourable cases has length f of the interval 
[0, r] of possible cases; hence the probability equals f (Solution A). 

Using (b) we reason: each point of contact X, Y can be any point 
on the circle. So given the point X, we can find point Y at 
any fraction between 0 and 1 of the circurnference, measuring 
counter-clockwise. Of these possible locations, 5 fall in the favourable 
interval [i, f]; hence the probability equals j (Solution B). 

Using (c) we note that the centre Z of the stick can fall anywhere 
in the whole circle. In the favourable cases it falls in the 'inner' 
circle with radius rl2-which has an area $ that of the big circle. 
Hence the probability equals $ (Solution C). 

Henri Poincari and E. T. Jaynes both argued that if we pay 
attention to the geometric symmetries in Bertrand's problem, we 
do arrive at a unique solution.ll Their general idea applies to all 
apparent ambiguities in the Principle of Indifference: a careful 
consideration of the exact symmetries of the problem will remove the 
inconsistency, provided we focus on the symmetry transformations 
themselves, rather than on the objects transformed. 

In order to show the logical structure very clearly I will 
concentrate on the simple examples of the perfect cubes, mass 
versus density, and water mixed with the wine. Let us begin by 
analysing the intuitive reaction to the cube factory, which led us 
into paradox. Focusing first on the parameter of length, we used 
the natural length measure for intervals: 

This is the underlying measure12 that gave us our probabilities for 
cases inside the range [0,2]: 

P(a, b) = m(a,b)/m(range) for a, b inside the range. 

Now this underlying measure has a very special feature, from the 
point of view of symmetry: 
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Translation invariance: if x' = x + k 
then m(a, b) = m(a', b'). 

Up to multiplication by a scalar, m is the unique measure to have 
this feature. That is easy to see, because one interval can be moved 
into another by a translation exactly if they have the same length 
(and are of the same type: open, half-open, etc.).l3 

The number K represents the scale, if m' = Km, because for 
example the length in inches is numerically 12 times that in feet. It 
will not affect the probability at all, because it will cancel out (being 
present in both numerator and denominator in the equation for P 
in terms of m). We have therefore the following result: 

Translation invariant measure. The probability distribution on a 
real valued parameter x is uniquely determined, if we are given 
its range and the requirement that it derive from an underlying 
measure which is translation invariant. 

In what sort of example would the given be exactly as required? 
Suppose I tell you that Peter is a marksman with no skill whatever, 
and an unknown target. Now I ask you the probability that his 
bullet will land between 10 and 20 feet from my heart, given that 
it lands within 20 feet. Treating this formally, I choose a line that 
falls on both my heart and the impact point of the bullet, 
coordinatize this line by choosing a point to call zero, and one foot 
away from it a point to call + 1. I choose a measure m' on this 
line, call my heart's coordinate X, and calculate 

and give you the resulting number as answer. If my procedure was 
properly in tune with the problem, this answer should better not 
depend on how I chose the points to call zero and + 1 (which two 
choices together determined the coordinate X). That entails that m' 
must be translation invariant, and is therefore now uniquely 
identified. We note with pleasure that the answer is also not affected 
by the choice of the foot as unit of measurement-as indeed it should 
not, because nothing in the problem hinged on its Anglo-Saxon 
peculiarities. 

Now, in what sort of problem is the 'given' so different that this 
procedure is inappropriate? Obviously, when translation invariance 
is the wrong symmetry. This happens when the range of the physical 

quantity in question is not closed under addition and subtraction, 
for example, if the quantity has an infimum, which acts as natural 
zero point. For example, no classical object has negative or zero 
volume, mass, or absolute temperature. 

In such a case, the scale or,unit may still be irrelevant. For the 
transformation of the scaling unit consists simply in multiplication 
by a positive number, which operation does not take us out of this 
range. Consider now von Kries's problem, which concerns the 
positive quantities mass and density. With the units of measurement 
essentially irrelevant we look for an underlying measure 

M(a, b) = M(ka, kb) 

for any positive number k (invariance under dilations). 
There is indeed such a measure, and it is unique in the same 

sense.14 That is the log unijbrm distribution: 

M(a, b) = logb - loga 

where log is the natural logarithm. This function has the nice 
properties: 

log(xy) = logx + logy 
log(Y) = nlogx 
log(1) = 0 

but should be used only for positive quantities, because it moves 
zero to minus infinity. The first of these equations shows already 
that M is dilation invariant. The second shows us what is now 
regarded as equiprobable: 

The intervals (P, P + k, all receive the same value klogb, so if 
within the appropriate range, the following are series of equi- 
probable cases: 

(0.1, 1), (1, lo), (10, loo), ..., (lo", lo"+ I ) ,  ... 
(0.2, l), (1, 5), (5, 25), ..., (5", 5" + '), ... 

and so forth. A probability measure derived from the log uniform 
distribution will therefore always give higher probabilities 'closer' 
to zero, by our usual reckoning. 

For example, in the case of temperature we have since Kelvin 
accepted that this is essentially a positive quantity. Of course we 
are at liberty to give the name -273 to absolute zero. But this does 
not remove the infimum; subtraction eventually takes one outside 
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the range. The presence of this infimum creates, or rather is, an 
.asymmetry: it obstructs translation invariance. But it is no obstacle 
to dilation invariance, so the log uniform distribution is right-it 
is dictated by the symmetries of the problem. 

This reasoning, being rather abstract, may not get us over our 
initial feeling of surprise. But as Roger Rosencrantz pointed out, 
we can test all this on the von Kries problem.15 Our argument 
implies that von Kries's puzzle is due to focusing on the wrong 
transformation group. Attention to the right one dictates use of 
the log uniform distribution. To our delight this removes the 
conflict: 

M( 1 /b < 1 /x < 1 /a) = K(1oga - ' - log b - I )  

= K(1ogb - loga) 
= M(a g x g b). ' 

This is certainly a success for this approach to Indifference. 
Consider next the perfect cube factory. Suppose that again we 

regard the unit of measurement as essentially irrelevant to this 
problem, conceived in true generality, but observe that length, area, 
volume are positive quantities. The uniqueness of the log uniform 
measure for dilation invariance, forces us then to use it as underlying 
the correct probabilities. This will not help us, unless we ask all 
our questions about intervals that exclude zero; but for them it 
works wonderfully well: 

What is the probability that the length is < 2, given that it is 
between 1 and 3 inclusive? 
What is the probability that the area is < 4, given that it is 
between 1 and 9 inclusive? 
The probability that the length is < 2, given that it is between 1 
and 3 inclusive, equals M(l, 2)/M(1, 3) = log2/log3 = 0.63 1. 
The probability that the area is < 4, given that it is between 1 
and 9 inclusive, equals M(l, 4)/M(1, 9) = 21og2/21og3 = 0.63 1. 

Thus the two equivalent questions do receive the same answer. The 
point is perfectly general, because the exponent becomes a multiplier, 
which appears in both numerator and denominator, and so cancels 
out. This is again a real success. By showing us how to reformulate 
the problem, and then using its symmetries to determine a unique 
solution, this approach has as it were taught us how to understand 
our puzzled but insistent intuitions. 
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There is therefore good prima-facie reason to take this approach 
seriously. In the Proofs and Illustrations I shall show how this 
approach does give us a neat solution for the puzzle of Buffon's 
needle, construed as a Bertrand problem. But in subsequent sections 
we'll see that the approach does not generalize sufficiently to save 
the Principle of Indifference. 

Proofs and illustrations 
I shall here explain this rescue by geometric symmetries with 
another illustration. For this purpose I choose Buffon's needle 
problem again, for properly understood it can itself be described 
as a rudimentary Bertrand paradox.16. 

Buffon assumes no marksmanship-the location of the lines on 
the floor does not, as far as we know, affect the location of the 
fallen needle. So our description of the situation utilizes a frame 
of reference chosen for convenience, in which we treat as X-axis 
the line through needle point A which is parallel to the drawn lines, 
as in Fig. 12.4. Here d is the Y-coordinate of line L, 0 the inclination 
of line AB to the X-axis, and y is Y-coordinate of B, and A is the 
origin. 

Why not assume that y and d are independent and uniformly 
distributed? We must be careful to describe y so that it does not 
depend on d. But it is just sine 8, and 0 does not depend on d, so 
that is fine. Thus y ranges from - 1 to + 1 (being measured from 
the X-axis, chosen so that the line L has equation Y = I). The 
possible and favourable cases are depicted in Fig. 12.7, and we see 
that the probability of y < d equals a. Hence by applying the 
Principle of Indifference to Buffon's problem differently but equi- 
valently described, we have arrived at a different solution. 

But our description-or rather the solution that utilizes this 
description in the Principle of Indifference-may itself be faulted 
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for failing to respect geometric symmetry. Consider what happens 
if the axes are rotated through some angle around point A-that 
is, the orientation of the lines drawn on the floor is changed. 
Whatever method of solution we propose, should not make the 
answer-probability of a cut-depend on this orientation, for the 
problem remains essentially unchanged. (The aspect varied did not 
appear at all in the statement of the problem.) How do the two 
rival solutions vary with respect to this criterion? 

Buffon's solution fares very well. For the initial parameter (angle 
which the needle makes with the X-axis) is changed by adding 
something (the angle of rotation), modulo 360". A uniform dis- 
tribution on that initial parameter induces automatically a uniform 
distribution also on its transform-equal angular intervals continue 
to receive equal probability. 

But, and here is the rub, if we assume that y is uniformly 
distributed, it follows that y' (the corresponding coordinate in the 
rotated frame) is not. The easy way to see this is to look at equal 
increments in y and notice that they do not correspond to equal 
increments in y'. 

To see this it is necessary to use the formula that transforms 
coordinates, when the frame is rotated. If the original coordinates 
of a point are (x, y) they become, upon rotation through angle a 
around the origin 

t (x )  = x cos a - y sin a 
tCy) = x sin a + y cos a 

In our case, point B has coordinates (x, y) but because AB = 1 we 
know that 2 + Y2 = 1. Hence x = J ( l  - 3) and we have 

t ~ )  = J(I - 9 )  sin a + y cos a 

Let us now look at two events that have equal probability if y has 
uniform distribution: 

These are the same events as 

If the variable t(y) has uniform distribution, these events will have 
equal probabilities only if 

so that is what we need to check. A single counter-example will 
do, so let us choose the angle of 30" (i.e. n/6 radians) which has 
sine i and cosine (J3)/2. Therefore: 

It is very obvious that our desired equation does not hold. Figure 
12.8 shows the different cases. 

7.  PYRRHIC VICTORY A N D  ULTIMATE DEFEAT 

The successes we found in the preceding section, even together with 
their more sophisticated variants (to be discussed in the Proofs and 
Illustrations), constitute only a Pyrrhic victory. Again we can see 
this in simple examples, just because of the power of the uniqueness 
results utilized. Recall that invariance under translations and 
invariance under dilations each dictate an essentially unique answer 
to all probability questions. What happens when the examples take 
on more structure? 

Peter Milne, writing about Rosencrantz's solution to von Kries's 
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problem, has shown exactly how things go wrong." To show this, 
he asked how the above results are to be applied to von Mises's 
water and wine problem. Let us again ask the same question in 
two different ways, referring back to the notation we had before. 

What is the probability that at least 5 cc is water? 
b = proportion of water to the total 
x = proportion of wine to water. 
P(b20.5 10.1 < b 6 0.9 = (log0.9 - log0.5)/(10g0.9 - logo. 1) = 
0.267 
P(x 6 1 1 119 < x 6 9) = log1 - log(1/9))/(log9 - log(119)) = 
log9/21og9 = 0.5 

We have received two contradictory answers. 
Were we justified in treating the problem in this way? Well, the 

problem specified cc as unit of measurement but we have just as 
much warrant to regard this as irrelevant as we had for cm in the 
cubes problem. If we focus on parameter x here, say, we must treat 
it in the same way, if we have indeed found the correct form of 
the Principle of Indifference. Restating the problem then in terms 
of b, we have not introduced any new information-so we must 
derive the answer from the probability distribution on x, plus the 
definition of b in terms of x. Exactly the same would apply if we 
had started with b, and then moved on to x. But the two end 
results are not the same, so we have our paradox back. 

It is also rather easy to see the pattern that will produce such 
paradoxes. A translation invariant measure will be well behaved 
with respect to addition and multiplication, while a dilation invariant 
measure will be equally good with respect to multiplication and 
exponentiation. But the relation between b and x uses both sorts 
of operations: 

b = water/(water + wine) = water110 
x = winelwater = (10 - water)/water 
hence, water = lob and x = (100 - b)/b. 

Now neither sort of measure will do. If the required dilation 
invariance did not dictate an essentially unique measure, we would 
perhaps have had some leeway to look for something other than 
logarithms-but we do not. 

The history of the Principle of Indifference is instructive. .If its 
mention in scientific sermons serves to remind us to look for 
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symmetries, then it serves well. But a rule to determine initial 
probabilities a priori it is not. It violates a higher symmetry 
requirement when it is conceived of in that way. 

Even if the Principle were unambiguous, the question whether 
its results would be probability functions with a good fit to actual 
frequencies in nature, would anyway be a purely contingent one. 
To imagine that it would not be-that empirical predictions could 
be made a priori, by 'pure thought' analysis-is feasible only on 
the assumption of some metaphysical scheme such as Leibniz's, in 
which the symmetries of the problems which God selects for 
attention, determine the structure of reality.lE But because it is not 
unambiguous, even that assumption would leave us stranded, unless 
we knew how God selected his problems. 

When E. T. JayneslQ discussed Bertrand's chord paradox, 
although noting that most writers had regarded it as an ill-posed 
problem, he responded: 

But do we really believe that it is beyond our power to predict by 'pure 
thought' the results of such a simple experiment? The point at issue is far 
more important than merely resolving a geometric puzzle; for . . . 
applications of probability theory to physical experiments usually lead to 
problems of just this type. . . . @. 478) 

Jaynes's analysis of tke Bertrand chord problem is along the lines 
of the preceding section. He shows that there is only one solution 
which derives from a measure which is invariant under Euclidean 
transformations. 

But when we look more carefully at other parts of Jaynes's paper 
we see that his more general conclusions nullify the radical tone. 
Jaynes says of von Mises's water and wine problem, that the fatal 
ambiguities of the Principle of Indifference remain. More important: 
the strongest conclusion Jaynes manages to reach is merely one of 
advice, to regard a problem as having a definite solution until the 
contrary has been proved. The method he advises us to follow is 
that of symmetry arguments: 

To summarize the above results: if we merely specify complete ignorance, 
we cannot hope to obtain any definite prior distribution, because such a 
statement is too vague to define any mathematically well-defined problem. 
We are defining what we mean by complete ignorance far more precisely 
if we can specify a set of operations which we recognize as transforming 
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the problem into an equivalent one, and the desideratum of consistency 
then places non-trivial restrictions on the form of the prior.20 

But as we know, this method always rests on assumptions which 
may or may not fit the physical situation in reality. Hence it cannot 
lead to a priori predictions. Success, when achieved, must be 
attributed to the good fortune that nature fits and continues to fit 
the general model with which the solution begins. 

Proofs and illustrations 
Harold Jeffreys introduced the search for invariant priors into the 
foundations of statistics; there has been much subsequent work 
along these lines by others.21 We must conclude with ~ a b i d ,  
however, that the programme 'produces a whole range of choices 
in some problems, and no prior free from all objections in others' 
('Invariant Prior Distributions', 235). I just wish to take up here 
the elegant logical analysis that Jaynes introduced to generalize the 
approach which we have been studying in these last two sections.22 

Here some powerful mathematical theorems come to our aid. 
For under certain conditions, there exists indeed only one possible 
probability assignment to a group, so there is no ambiguity. . 

The general pattern of the approach I have been outlining is as 
follows. First one selects the correct group of transformations of 
our sets K which should leave the probability measure invariant. 
Call the group G. Then one finds the correct probability measure 
p on this group. Next define 

where xo is a chosen reference point in the set K on which we want 
our probability defined. If everything has gone well, P is the 
probability measure 'demanded' by the group. 

What is required at the very least is that (a) p is a privileged 
measure on the group; (b) P is invariant under the action of the 
group; and (c) P is independent of the choice of xo. Mathematics 
allows these desiderata to be satisfied: if the group G has some 
'nice' properties, and we require p to be a left Haar measure (which 
means that p(S) = p({ggl : g' E S)) for any part S of G and any 
member g) then these desired consequences follow, and p, P are 
essentially unique.Z3 

This is a very tight situation, and the required niceties can be 

expected in geometric models such as are used to define Bertrand's 
chord problem. But other sorts of models will not be equally nice; 
and even if they are, different models of the same situation could 
fairly bring us diverse answers. In any case there'is a no a priori 
reason why all phenomena should fit models with such 'nice' 
properties only. 

8 .  THE ETHICS OF AMBIGUITY 

From the initial example, of a traveller on a treacherous shore, to 
the partial but impressive successes in the search for invariant 
priors, I have tried to emphasize how much symmetry considerations 
tell us. That is the positive side of this definitive dissolution of the 
idea of unique logical probability. Yet the story is far from complete, 
and its tactical and strategic suggestions for model construction far 
from exhausted. 

But throughout the history of this subject, there wafts the siren 
melody of empirical probabilities determined a priori on the basis 
of pure symmetry considerations. The correct appreciation leads 
us to exactly the same conclusion as in Chapter 10. Once a problem 
is modelled, the symmetry requirement may give it a unique, or at 
least greatly constrained solution. The modelling, however, involves 
substantive assumptions: an implicit selection of certain parameters 
as alone relevant, and a tacit assumption of structure in the 
parameter space. Whenever the consequent limitations are ignored, 
paradoxes bring us back to our senses-symmetries respected in 
one modelling of the problem entail symmetries broken in another 
model. As soon as we took the first step, symmetries swept us 
along in a powerful current-but nature might have demanded a 
different first step, or embarkation in a different stream. 

Facts are ambiguous. It is vain to desire prescience: which 
resolution of the present ambiguities will later facts vindicate? Our 
models of the facts, on the other hand, are not ambiguous; they 
had better not be. To choose one, is therefore a risk. To eliminate 
the risk is to cease theorizing altogether. That is one message of 
these paradoxes. 


