
PUZZLE

You meet three individuals - one knight who always tells 
the truth, a knave who always lies, and a normal person 
who can do either.  They know each other’s identities.

A says “B is the normal one.”

B says “No, C is the normal one.”

C says “No, B is definitely the normal one.”

Who is what?
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CONSTRUCTING A FORMAL PROOF

In a proof you assume a set of premises, and work 
step by step to the desired conclusion (if the 
conclusion is a logical consequence of the premises!)

Each step is justified by invoking a rule that is part of 
our formal system of deduction.   

In this class, we have been using Fitch but there are 
other systems of proof (deductive systems). 
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FORMAL PROOF RULES (OLD)

Reiteration

*Ana Con (follows logically because of logical 
operators plus meaning of some TW predicates)

1. P

2. P                Reit: 1

1. Smaller(a,b)

2. ¬Smaller(b,a)       Ana Con 1
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FORMAL PROOF RULES (=)

= Introduction                                                        

= Elimination                                                          

1. a=a                 = Intro

2. a=b

3. Pred(b)           = Elim: 1,2

1. Pred(a)
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FORMAL PROOF RULES (∧)

∧ Introduction                                                  
From P and Q, we can infer P∧Q.

∧ Elimination                                                       
From P∧Q, we can infer P.  

1. P ∧ Q

2. P                   ∧ Elim: 1

1. P

3. P ∧ Q            ∧ Intro: 1,2

2. Q
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FORMAL PROOF RULES (∨)

∨ Introduction                                                  
From P, we can infer P∨Q.

∨ Elimination

Start with P∨Q.  Assume P - get R.  Assume Q - get 
R.  Then you can infer R by ∨E.                                                     

1. P

2. P ∨ Q               ∨ Intro: 1
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PROOF BY CASES

Example: 

¬Tet(a)

Cube(a) ∨ Dodec(a) 

1. Cube(a) ∨ Dodec(a) 

6.   ¬Tet(a)    ∨ Elim: 1,2-3,4-5

2.  Cube(a)

3.  ¬Tet(a)     Ana Con 2

4. Dodec(a)

5.  ¬Tet(a)     Ana Con 4
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∧, ∨ DISTRIBUTION RULES

Distribution rules:

P∧(Q∨R) ⇔ (P∧Q)∨(P∧R)

P∨(Q∧R) ⇔ (P∨Q)∧(P∨R)
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NESTED SUBPROOFS

We can introduce any assumption you want any time 
in a proof by introducing a new scope line.  (If you do 
so, make sure you know how to get rid of it).

Some proofs require nested subproofs - subproofs 
inside other subproofs.

Example - when you have two ∨Elims in the same 
proof.
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FORMAL PROOF RULES (¬)

¬ Elimination                                                       
From ¬¬P, we can infer P.  

1. ¬¬P

2. P                      ¬ Elim: 1

1. ¬¬P ∨ Q

2.  P ∨ Q               ¬ Elim: 1

Incorrect (not main connective)
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NESTED SUBPROOFS

¬¬P ∨ Q

R ∨ ¬¬S               

(P∧R) ∨ (P∧S) ∨ (Q∧R) ∨ (Q∧S)
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RULES USING CONTRADICTIONS

¬ Introduction                                                     
From showing P leads to ⊥, we can infer ¬P.  

1. P 

… 
j. ⊥          

k. ¬P         ¬ Intro: 1-j

Within a subproof we derive ⊥ from P; outside the subproof we conclude ¬P.  
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RULES USING CONTRADICTIONS

⊥ Introduction                                                  
From P and ¬P, we can infer ⊥.

1. P

3. ⊥            ⊥ Intro: 1, 2

2. ¬P
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REDUCTIO AD ABSURDUM

Example: 

a≠b ∧ b≠c

¬(a=b ∨ b=c) 

1. ¬(a=b ∨ b=c) 

8.   ⊥                ⊥ Intro 1,7

2.  a=b

3.  a=b ∨ b=c     ∨ Intro 2

6. b=c

7.  a=b ∨ b=c     ∨ Intro 6

4.  ⊥                 ⊥ Intro 1,3
5.  a≠b               ¬ Intro 2-4

9.  b≠c               ¬ Intro 6-8
10. a≠b ∧ b≠c    ∧ Intro 5-9
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RULES USING CONTRADICTIONS

⊥ Elimination                                                     
From ⊥, we can infer absolutely whatever we want.

This is helpful when we want to eliminate a disjunct 
when we know that its negation is true.  

We don’t technically need this rule; we could just use 
¬ Intro and ¬ Elim. 

2. BlueCheese(Moon)            ⊥ Elim: 1

1. ⊥
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RULES USING CONTRADICTIONS

Example:  Disjunctive Syllogism

¬P

Q

P ∨ Q

4.  ⊥             ⊥ Intro 2,3
3.  P

6. Q

 5.  Q             ⊥ Elim 4

7.  Q               ∨ Elim 1,3-5,6-6

2.  ¬P
1. P ∨ Q
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