

You meet A and B in the land of knights and knaves. A says "I am a knight if and only if B is also a knight." B says "A and I are of different kinds." Who is what?

Friday, 10 September

COMPLEX SENTENCES

- The truth-value of a complex sentence is a function of the truth-value of its parts.
- Assume that A and B are both true. What is the value of $(A \lor B) \rightarrow (A \land \neg B)$?
- Here, the antecedent, (A ∨ B) is true since A and B are both true. The consequent is false since it is a conjunction where the first conjunct (A) is true but the second conjunct (¬B) is false since B is true.
- Conditionals with true antecedents and false consequents are false, so the whole sentence is false.

• Example: partial truth table for $(A \lor B) \rightarrow (A \land \neg B)$

A	В	$(A \lor B) \rightarrow (A \land \neg B)$				
Т	т	T F F F				

- Truth tables show how the truth value of a complex sentence depends on the truth values of its components.
- They also help us keep track of relationships that exist between the truth values of different sentences.
- So, for example, we can use truth tables to show logical equivalence.
- Two sentences are logically equivalent if they have the same truth values in all possible circumstances.

• Example: joint truth table for $\neg(P \land Q)$ and $(\neg P \lor \neg Q)$ This shows that the two sentences are equivalent.

Р	Q	¬ (P ∧ Q)	(¬ P ∨ ¬ Q)
Т	Т	Γ τ τ τ	FTFFT
Т	F	TTFF	БТТТ
F	Т	TFFT	TFTFT
F	F	TFFF	тетте

We will construct truth tables in Boole.

000		Untitled 1	
$ \begin{array}{c} \wedge & \vee \neg \rightarrow \leftrightarrow 1 \\ a & b & c & d & e & f \\ \forall & \exists = \neq () \\ x & y & z & u & v & w \end{array} $	Tet Small Cube Medium Dodec Large SameSize BackOf	LeftOf SameCol RightOf SameRow FrontOf Smaller Larger	Adjoi Betwe SameSł Build Ref Cols Verify Table Fill Ref Cols Verify Asses
Correct? Complete	? Assessment	(none given)	
	T T T F F T F F	(1) (2) $\neg(P \land Q)$ $\neg P \lor \neg Q$ F T F T F T T F T J 1) (2)	4

Friday, September 10, 2010

- Two sentences are <u>logically equivalent</u> if they have the same truth conditions, i.e., are true in the same circumstances.
- Two sentences are <u>tautologically equivalent</u> if they have matching truth tables, i.e., the same truth values for all combinations of atomic sentences' truth values.

 Tautological equivalence results simply from the meanings of the truth-functional connectives. (Ex: DeMorgan's Laws, double negation, contraposition)

C. A. BETHLE MARKED ST.

Logical Equivalence

Tautological Equivalence

 $\neg(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

Bachelor(Sam) ⇔ Unmarried Man(Sam) Smaller(a, b) ⇔ Larger(b, a)

Friday, September 10, 2010

- A sentence is a <u>logical truth</u> iff it is <u>logically necessary</u>, i.e., is a logical consequence of any set of sentences. (It is impossible for a logical truth to be false.)
- A sentence is a <u>tautology</u> iff every row of its truth table assigns TRUE to that sentence.
- Tautologies are true in virtue of the meanings of the truth-functional connectives alone. (Ex: $P \lor \neg P$)

the Lord and the control of the state

Logical Truths

¬Smaller(a,a)

Tautologies $P \lor \neg P$ $(P \land Q) \rightarrow P$

Smaller(a,b) $\rightarrow \neg$ Smaller(b,a)

Friday, September 10, 2010

- A sentence S is a logical consequence of a set of sentences P₁...P_n iff whenever P₁...P_n are true, S is also true.
- If an argument is valid, then the conclusion is a logical consequence of the premises.
- A sentence Q is a <u>tautological consequence</u> of a set of sentences P₁...P_n iff every row of the truth table where P₁...P_n are all true, Q is also true.
- Note: The Ps and Qs might be complex sentences.

• Example: 1) A 2) $A \rightarrow B$ 3) $\neg B \lor C$ 4) Conclusion: C

A	В	C	Α	A→B	$\neg B \lor C$	C
Т	Т	Т	Т	Т	F T	Т
Т	Т	F	Т	Т	F F	F
Т	F	Т	Т	F	ТТ	Т
Т	F	F	Т	F	ТТ	F
F	Т	Т	F	Т	F T	Т
F	Т	F	F	Т	F F	F
F	F	Т	F	Т	ТТ	Т
F	F	F	F	Т	ТТ	F

No row is T, T, T, F

A	В	C	Α	A→B	B v C	С
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	т	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	т	Т
F	Т	F	F	Т	Т	F
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	F

Second row is T, T, T, F So NOT valid

CONDITIONALS AND LOGICAL CONSEQUENCE

- A sentence Q is a logical consequence of a set of sentences P₁, P₂... P_n iff it is impossible for the premises to be true and the consequent to be false.
- This is exactly the same as the falsity of $(P_1 \land P_2 \land \ldots \land P_n) \rightarrow Q$
- $(P_1 \land P_2 \land ... \land P_n) \rightarrow Q$ is a logical truth iff Q is a logical consequence of P₁, P₂... P_n.

CONDITIONALS AND LOGICAL CONSEQUENCE

- P ↔ Q is a logical truth iff P and Q are logically equivalent (have the same truth values).
- In other words, $P \leftrightarrow Q$ is a logical truth iff $P \Leftrightarrow Q$.
 - NOTE: P ↔ Q might just happen to be true without P and Q being equivalent
- Recall: $A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$.
- Similarly, A is logically equivalent to B iff A is a logical consequence of B and B is a logical consequence of A.