VWVHICH ARE BIGGER?

The natural numbers {0,1,2,3....}
The prime numbers {2,3,5,7, 11....}
The odd numbers {3,5,7,9, 11....}

The rational numbers {m/n for integer m,n} = Q

2" = number of heads/tails sequences for an
infinite number of coin flips

The real numbers {1, 2/3,V2,e, i, etc.} = R




The naturals, primes, and odd numbers are the
same size - each can be listed where any given

member will appear in a finite time. These are
called countably infinite
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2 5 5 /111570 19 .21 23 9% . = Drimes
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The naturals, primes, and odd numbers are the
same size - each can be listed where any given

member will appear in a finite time. These are
called countably infinite

B2 5 485 baeifes 8 9 1= = nats
2 5 5 /111570 19 .21 23 9% . = Drimes
35 789l d 1305 4/ 19 2123 ...5= OGS

The rationals can be listed, but not in the
‘standard’ order of less than




Here is an ordering of all the positive rationals

1/1
1/2
1/3
1/4
1/5
1/6

2/1
2/2
2/3
2/4
2/5
2/6

3/1
3/2
3/3
3/4
3/5
3/6

4/1
4/2
4/3
4/4
4/5
4/6

5/1
5/2
5/3
5/4
5/5
5/6

6/1
6/2
6/3
6/4
6/5
6/6

7/1
7/2
7/3
7/4
7/5
7/6

8/1

... = nats

8/2 ...

8/3
8/4
8/5
8/6

...an infinite number of rows of infinite length




Follow the blue arrows zigzagging through the
whole set

171 A By /1 £ 7/1 8/1...=nats
6/2 7/2 8/2 ...

5/3 6/3 7/3 8/3

1/4 2/4 3/4° 4/4 5/4 6/4 7/4 8/4

1/E 3/5 4/5 5/5 6/5 7/5 8/5

1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6




Follow the blue arrows zigzagging through the

whole set --Don’t double count...
171 /1 £ 7/1 8/1...=nats
X 7/2 Q...
5/3 68 7/3 8/3
5/4 &4 7/4 &
 6/5 7/5 8/5
5/6 &6 7/6 O




Follow the blue arrows zigzagging through the
whole set --Don’t double count...

171 B/1 7/ 1581 = flals

o 7/2 M ..
, 5/3 68 7/3 8/3
1/ M 34 oyg S5/4 o 7/4
1/872/5 3/5 4/5 5 6/5 7/5 8/5
1/6 X6 3/6 6 5/6 6 7/6 G

Each rational has a specific place in the sequence
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But the reals are bigger. They are called uncountable
because they cannot be put into correspondence
with the naturals. They can’t be listed.
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then show that there is a real number not on the list.
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But the reals are bigger. They are called uncountable

because they cannot be put into correspondence
with the naturals. They can’t be listed.

To do a proof, assume that they can be listed. | will
then show that there is a real number not on the list.

First, note that every real number can be
represented by an infinite expansion of digits after a
decimal. 1/3 =.333333..., but also, 1/2 =

0.500000000...
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Here is a purported list

.0123456789100101010102929292.... =real;

.0513451589150115011502511111.... = real;
2222222222222222222222222222.... =reals

.1313131313131313131313131313.... =reals

7774447774447774447774447774.... = reals
...... = realg




Here is a purported list

digit 1 digit 10  digit 20

Pl l

.0123456789100101010102929292.... =real;

.0513451589150115011502511111.... = real;
2222222222222222222222222222.... =reals

.1313131313131313131313131313.... =reals

7774447774447774447774447774.... = reals
...... = realg




digit1 digit10  digit 20

& l

.0123456789100101010102929292.... = real;
.0513451589150115011502511111.... =real;
2222222222222222222222222222.... = reals
.1313131313131313131313131313.... =reals
A1774447774447774447774447774.... = reals

Here is a number not on the list:
.16345... where the nt" digit is the nt" digit of

real, + 1. Itis at least one digit different than
any number on the list
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2" = number of heads/tails sequences for an infinite

number of coin flips = the size of go(W) = the total

number of subsets of W (each number is either in or out
of a particular subset)
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number of coin flips = the size of go(W) = the total

number of subsets of W (each number is either in or out
of a particular subset)

Real numbers can be represented by infinite expansions
of decimals. The base ten that we are used to is
irrelevant. Make them binary expansions. Now they are
infinite strings of 1s and Os.
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2" = number of heads/tails sequences for an infinite

number of coin flips = the size of go(W) = the total

number of subsets of W (each number is either in or out
of a particular subset)

Real numbers can be represented by infinite expansions
of decimals. The base ten that we are used to is
irrelevant. Make them binary expansions. Now they are
infinite strings of 1s and Os.

(little quirks like the fact that .099999999...
=.100000000... can be worked out)
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VWVE CAN ALWAYS GET BIGGER

® The reals are not the biggest set of course. Take all the

subsets of the reals. This set is bigger (size 222™ to be
exact).

® For any set, the powerset is bigger. So there is no biggest
infinite number. Just like there is no biggest finite number.
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SET THEORY

Wednesday, | December
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POWERSET

The powerset of A is the set of all the subsets of A
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The powerset of A is the set of all the subsets of A
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POWERSET

The powerset of A is the set of all the subsets of A

P(A) =def {X| x € A}
If A ={l1,2,3} then
P(A) = {2, {1} {2} {3} {1,2},{2,3},{1,3}, {1,2,3}}

FACT: The number of elements in go(A) ="size” of ©o(A)
= 2 raised to the power of the size of A.
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POWERSET

The powerset of A is the set of all the subsets of A

P(A) =def {X| x € A}
If A ={l1,2,3} then
P(A) = {2, {1} {2} {3} {1,2},{2,3},{1,3}, {1,2,3}}

FACT: The number of elements in go(A) ="size” of ©o(A)
= 2 raised to the power of the size of A.

- Vx [p(x)] = 2X

and yes, - Vx (x < 2¥) even for infinite x
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By comprehension, there is a universal set:
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By comprehension, the powerset of U exists
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OOPS - CONTRADICTION
 -CANTOR’S PARADOX-

By comprehension, there is a universal set:

dyVx[xey < x=x] - the universal set - lets call it U
By comprehension, the powerset of U exists

dyVx[xey & x € U]
But we know that U C ¢o(U) and (U) € U

From these two we can prove U = ¢o(U)
-- but we just showed that  |p(U)| < |U]
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MORE STRAIGHTFORWARD
_ -RUSSELL'S PARADOX-

By comprehension, there is a set of everything that isn’t
a member of itself:
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MORE STRAIGHTFORWARD
_ -RUSSELL'S PARADOX-

By comprehension, there is a set of everything that isn’t
a member of itself:

JdyVx[xey < x&x] - lets call it R for Russell set

Vx[xeR < x¢&x]

But is ReR or not?
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MORE STRAIGHTFORWARD
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By comprehension, there is a set of everything that isn’t
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JdyVx[xey < x&x] - lets call it R for Russell set
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MORE STRAIGHTFORWARD
_-RUSSELL'S PARADOX-

By comprehension, there is a set of everything that isn’t
a member of itself:

JdyVx[xey < x&x] - lets call it R for Russell set

Vx[xeR < x¢x]

But is ReR or not?
ReR < RgR

— —dyVx[xey < x¢&x] by Russell’s argument
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Now WHAT???
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version of set theory.
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Now WHAT???

Since 1900, logicians have developed a restricted
version of set theory.

Axiom of (full or naive) comprehension:
JdyVx[xey < P(x)]

Axiom of (restricted) comprehension:
VzdyVx[xey < (xez A P(x))]

So from a set z, you can shrink it down.
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BUT HOW TO GET BIGGER SETS?

Now comprehension allows us to shrink sets, but to
get sets, we have to add axioms.
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Pairing (we can put two sets together into one)

Union

Powerset (we can make the powerset)

Wednesday, December 1, 2010



BUT HOW TO GET BIGGER SETS?

Now comprehension allows us to shrink sets, but to
get sets, we have to add axioms.

Pairing (we can put two sets together into one)

Union
Powerset (we can make the powerset)

Axiom of Infinity (the natural numbers are a set)
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BUT HOW TO GET BIGGER SETS?

Now comprehension allows us to shrink sets, but to
get sets, we have to add axioms.

Pairing (we can put two sets together into one)
Union

Powerset (we can make the powerset)

Axiom of Infinity (the natural numbers are a set)

+Replacement, Foundation, Choice make ZFC Set Theory
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FOUNDATIONS OF MATHEMATICS

® Mathematical theories and objects are commonly developed
in set theory.

® Algebra - groups, rings, fields, etc. are just sets that obey
certain axioms

® Analysis - the real numbers are [the] complete
Archimedean field. They are sets that satisfy certain axioms.
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SET THEORY AS THE

FOUNDATIONS OF MATHEMATICS

® Mathematical theories and objects are commonly developed
in set theory.

® Algebra - groups, rings, fields, etc. are just sets that obey
certain axioms

® Analysis - the real numbers are [the] complete
Archimedean field. They are sets that satisfy certain axioms.

® Manifolds, Vector Spaces, Probability Spaces, and anything
else you think of are sets.
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SET THEORY AS THE

FOUNDATIONS OF MATHEMATICS

® In fact, it is sets ‘all the way down’. Every element of a set is
another set

® Numbers are sets. 0=g, |={0}, 2={0,1}, n+1=n u {n}
® Models (Interpretations) are functions

® Functions are relations - a function from A -~ B is an R such
that VxeA dlyeB R(x,y)

® Relations are sets of ordered pairs R(a,b) means <x,y>eR
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SET THEORY AS THE

FOUNDATIONS OF MATHEMATICS

® Time for some philosophy
® View |:All mathematical objects ARE sets.

® View 2:All mathematical objects can be modeled by sets and
by proving things about the relevant sets, you can thereby
understand these objects.
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SET THEORY AS THE

FOUNDATIONS OF MATHEMATICS

® Time for some philosophy
® View |:All mathematical objects ARE sets.

® View 2:All mathematical objects can be modeled by sets and
by proving things about the relevant sets, you can thereby
understand these objects.

® View 3: (My view) Set Theory is powerful and helps make
precise lots of important notions. But it can’t cover all of
mathematics and definitely not all of logic.
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MATHEMATICAL LOGIC

Set Theory - what follows from various axioms?
- lots of independence proofs
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- lots of independence proofs

Model Theory - are all models of some axioms isomorphic?

Proof Theory - Is it possible to prove this fact in analysis
without resorting to facts about geometry?
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MATHEMATICAL LOGIC

Set Theory - what follows from various axioms?
- lots of independence proofs

Model Theory - are all models of some axioms isomorphic?

Proof Theory - Is it possible to prove this fact in analysis
without resorting to facts about geometry?

Recursion Theory (Computability Theory) - is there a
general algorithm for determining whether
a given kind of equation has integer roots?
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