
FUN WITH INFINITY

The	  Hilbert	  Hotel	  is	  very	  large.	  	  It	  has	  an	  infinite	  
number	  of	  rooms	  -‐	  one	  for	  each	  natural	  number.

It	  is	  possible	  (even	  in	  theory)	  for	  the	  Hilbert	  
Hotel	  to	  be	  full?	  	  What	  if	  full	  means:
1)	  Each	  room	  is	  occupied
	  	  	  	  	  or	  
2)	  If	  anyone	  else	  came,	  the	  hotel	  could	  not	  
accommodate	  them
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FORMAL SEMANTICS

An interpretation (or structure in LPL chap 18) has:

A set of objects as the domain

A set of objects for each one place predicate (the set of 
things that satisfy the predicate)

A set of ordered pairs for each two place predicate
 [n-tuples for the n-place predicates]

A function which maps names into objects in the domain

Assigns a function (domain to domain) for each function in 
the language
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ADVANTAGES OF SETS

Give a model of the following set of sentences:
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))

Takes care of P1

Domain: {1,2}
R(x,y): {<1,2>}
S(x,y): {<2,1>}
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))

Takes care of P1, P2

Domain: {1,2,3,4}
R(x,y): {<1,2>}
S(x,y): {<2,1>}
B(x,y,z): {<1,2,3>}
D(x,y,z): {<1,2,3,4>}

a: 1
b: 2
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))

Domain: {1,2,3,4}
R(x,y): {<1,2>, <2,1>}
S(x,y): {<2,1>}
B(x,y,z): {<1,2,3>}
D(x,y,z): {<1,2,3,4>}

Added for P3

a: 1
b: 2
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AND LOGIC
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SET THEORY NOTATION 
AND LOGIC

Sets are just generic collections of objects 

{1,2,3} is the set which has three members - 1, 2, and 3

We say 2 is a member of {1,2,3} by writing “2 ∈ {1,2,3}”
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SET THEORY NOTATION 
AND LOGIC

Sets are just generic collections of objects 

{1,2,3} is the set which has three members - 1, 2, and 3

We say 2 is a member of {1,2,3} by writing “2 ∈ {1,2,3}”

Of course there is this mathematical theory - set theory - 
written in FOL where there are axioms giving the formal 
definition of set.  In set theory there is one 2-place 
predicate E(x,y) and a ∈ b is just shorthand for E(a,b)
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SET THEORY NOTATION 
AND LOGIC

We want sets to just be defined by their members

{1,2,3} = {2,3,1} = {1,2,2,3,3,1,2,3} because:
    1 ∈ the set
    2 ∈ the set
    3 ∈ the set
Nothing else is in the set
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SET THEORY NOTATION 
AND LOGIC

We want sets to just be defined by their members

{1,2,3} = {2,3,1} = {1,2,2,3,3,1,2,3} because:
    1 ∈ the set
    2 ∈ the set
    3 ∈ the set
Nothing else is in the set

To formalize this we have the first axiom: Extentionality
                 ∀x∀y[∀z(z∈x ↔ z∈y) → x=y]
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WHAT CAN WE GROUP INTO A SET?
INITIAL	  ANSWER:	  ANYTHING
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WHAT CAN WE GROUP INTO A SET?
INITIAL	  ANSWER:	  ANYTHING

For any property P, there is a set of things that have 
that property
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WHAT CAN WE GROUP INTO A SET?
INITIAL	  ANSWER:	  ANYTHING

For any property P, there is a set of things that have 
that property

{x| x is a Natural number}  = ℕ = N = ω
{x| x is a person in this room}
{{x,y} | x,y live in Ithaca and x,y are married to each other}
{<x,y> | x is a book written by Charles Darwin and y is a     
             pen in my backpack}
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WHAT CAN WE GROUP INTO A SET?
INITIAL	  ANSWER:	  ANYTHING

For any property P, there is a set of things that have 
that property

{x| x is a Natural number}  = ℕ = N = ω
{x| x is a person in this room}
{{x,y} | x,y live in Ithaca and x,y are married to each other}
{<x,y> | x is a book written by Charles Darwin and y is a     
             pen in my backpack}

This leads to some paradoxes e.g. The set of all truths

Tuesday, November 30, 2010



FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Really, this is an axiom scheme with an infinite number 
of axioms:

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Really, this is an axiom scheme with an infinite number 
of axioms:

∃y∀x[x∈y ↔ x≠x] - the empty set
∃y∀x[x∈y ↔ x=3] - the singleton set {3}

∃y∀x[x∈y ↔ (x ∈ a ∨ x ∈ b)] - the union of a,b

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 

   A ∪ B =def {x| x ∈ A ∨ x ∈ B}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 

   A ∪ B =def {x| x ∈ A ∨ x ∈ B}

The intersection of A and B:  A ∩ B 
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 

   A ∪ B =def {x| x ∈ A ∨ x ∈ B}

The intersection of A and B:  A ∩ B 

   A ∩ B =def {x| x ∈ A ∧ x ∈ B}
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B
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DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B

Distribution Laws

 (A ∪ B)c  = Ac ∩ Bc
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B

Distribution Laws

 (A ∪ B)c  = Ac ∩ Bc

A ∩ (B ∪ C)  = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C)  = (A ∪ B) ∩ (A ∪ C)
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

Everything in A = blue
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

Everything in A = blue

Everything in B = red
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

Everything in A = blue

Everything in B = red

A ∪ B = colored

A ∩ B = purple

C∖(A ∪ B) = in C but not colored
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8

region	  6	  =	  A∩B∩C
region	  3	  =	  A∩B∩Cc
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8

region	  6	  =	  A∩B∩C
region	  3	  =	  A∩B∩Cc

A=2+3+5+6
A∩B	  =	  2+3+5+6	  ∩	  3+4+6+7	  	  	  	  	  
	  	  	  	  	  	  	  	  =	  3+6                  
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8

region	  6	  =	  A∩B∩C
region	  3	  =	  A∩B∩Cc

A=2+3+5+6
A∩B	  =	  2+3+5+6	  ∩	  3+4+6+7	  	  	  	  	  
	  	  	  	  	  	  	  	  =	  3+6                  

region	  5+6+7	  =
	  	  	  	  	  	  C	  ∩	  (A	  ∪	  B) = (C∩A)	  ∪	  (C∩B) 
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A is a subset of B iff A is “contained in” B
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SUBSETS

A is a subset of B iff A is “contained in” B

   A ⊆ B =def  ∀x(x ∈ A → x ∈ B)

AB
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SUBSETS

A is a subset of B iff A is “contained in” B

   A ⊆ B =def  ∀x(x ∈ A → x ∈ B)

AB

   A ⊊ B =def  A ⊆ B ∧ A≠B
A is a “proper subset” of B
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SUBSETS

A is a subset of B iff A is “contained in” B

   A ⊆ B =def  ∀x(x ∈ A → x ∈ B)

AB

   A ⊊ B =def  A ⊆ B ∧ A≠B
A is a “proper subset” of B

   ⊢ (A ⊆ B ∧ B ⊆ A) → A=B
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SUBSETS

Let A = {1,2,3}

1 ∈ A
{1,2} ⊆ A

{1} ⊆ A

{1} ∉ A
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SUBSETS

Let A = {1,2,3}

1 ∈ A
{1,2} ⊆ A

{1} ⊆ A

{1} ∉ A

Subset is transitive

(A ⊆ B ∧ B ⊆ C) → A ⊆ C
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SUBSETS

Let A = {1,2,3}

1 ∈ A
{1,2} ⊆ A

{1} ⊆ A

{1} ∉ A

Subset is transitive

(A ⊆ B ∧ B ⊆ C) → A ⊆ C

Membership isn’t (generally)

(1 ∈ {1,2}, {1,2} ∈ {{1,2}, {2,3}}

but 1 ∉ {{1,2}, {2,3}}
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POWERSET

The powerset of A is the set of all the subsets of A
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The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}

   FACT:  The number of elements in ℘(A) = “size” of ℘(A) 
= 2 raised to the power of the size of A.
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}

   ⊢ ∀x |℘(x)| = 2|x| 

   FACT:  The number of elements in ℘(A) = “size” of ℘(A) 
= 2 raised to the power of the size of A.
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}

   ⊢ ∀x |℘(x)| = 2|x| 

   FACT:  The number of elements in ℘(A) = “size” of ℘(A) 
= 2 raised to the power of the size of A.

           and yes, ⊢∀x (x < 2x) even for infinite x
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OOPS - CONTRADICTION
-CANTOR’S PARADOX-

By comprehension, there is a universal set:

∃y∀x[x∈y ↔ x=x] - the universal set - lets call it U

By comprehension, the powerset of U exists

∃y∀x[x∈y ↔ x ⊆ U] 

But we know that U ⊆ ℘(U) and ℘(U) ⊆ U
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OOPS - CONTRADICTION
-CANTOR’S PARADOX-

By comprehension, there is a universal set:

∃y∀x[x∈y ↔ x=x] - the universal set - lets call it U

By comprehension, the powerset of U exists

∃y∀x[x∈y ↔ x ⊆ U] 

But we know that U ⊆ ℘(U) and ℘(U) ⊆ U

From these two we can prove U = ℘(U)
   -- but we just showed that  ⊢ |℘(U)| < |U| 

Tuesday, November 30, 2010



MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

Tuesday, November 30, 2010
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∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

∀x[x∈R ↔ x∉x] 
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

But is R∈R or not?

∀x[x∈R ↔ x∉x] 
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

But is R∈R or not?

∀x[x∈R ↔ x∉x] 

R∈R ↔ R∉R
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

But is R∈R or not?

∀x[x∈R ↔ x∉x] 

R∈R ↔ R∉R

⊢ ¬∃y∀x[x∈y ↔ x∉x] by Russell’s argument
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NOW WHAT???

Since 1900, logicians have developed a restricted 
version of set theory. 

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Axiom of (restricted) comprehension:
                 ∀z∃y∀x[x∈y ↔ (x∈z ∧ P(x))]
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NOW WHAT???

Since 1900, logicians have developed a restricted 
version of set theory. 

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Axiom of (restricted) comprehension:
                 ∀z∃y∀x[x∈y ↔ (x∈z ∧ P(x))]

So from a set z, you can shrink it down.  
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BUT HOW TO GET BIGGER SETS?

Now comprehension allows us to shrink sets, but to 
get sets, we have to add axioms.
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Pairing (we can put two sets together into one)
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Pairing (we can put two sets together into one)

Union 
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BUT HOW TO GET BIGGER SETS?

Now comprehension allows us to shrink sets, but to 
get sets, we have to add axioms.

Pairing (we can put two sets together into one)

Powerset (we can make the powerset)

Union 
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