
FUN WITH INFINITY

The	
  Hilbert	
  Hotel	
  is	
  very	
  large.	
  	
  It	
  has	
  an	
  infinite	
  
number	
  of	
  rooms	
  -­‐	
  one	
  for	
  each	
  natural	
  number.

It	
  is	
  possible	
  (even	
  in	
  theory)	
  for	
  the	
  Hilbert	
  
Hotel	
  to	
  be	
  full?	
  	
  What	
  if	
  full	
  means:
1)	
  Each	
  room	
  is	
  occupied
	
  	
  	
  	
  	
  or	
  
2)	
  If	
  anyone	
  else	
  came,	
  the	
  hotel	
  could	
  not	
  
accommodate	
  them
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SET THEORY

Monday, 29 November
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FORMAL SEMANTICS

An interpretation (or structure in LPL chap 18) has:

A set of objects as the domain

A set of objects for each one place predicate (the set of 
things that satisfy the predicate)

A set of ordered pairs for each two place predicate
 [n-tuples for the n-place predicates]

A function which maps names into objects in the domain

Assigns a function (domain to domain) for each function in 
the language
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ADVANTAGES OF SETS

Give a model of the following set of sentences:
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))

Takes care of P1

Domain: {1,2}
R(x,y): {<1,2>}
S(x,y): {<2,1>}
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))

Takes care of P1, P2

Domain: {1,2,3,4}
R(x,y): {<1,2>}
S(x,y): {<2,1>}
B(x,y,z): {<1,2,3>}
D(x,y,z): {<1,2,3,4>}

a: 1
b: 2
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ADVANTAGES OF SETS

Give a model of the following set of sentences:

∃x∃y(R(x,y) ∧ S(y,x))

∃x∃y(B(a,x,y) ∧ D(a,b,x,y))

∀x∀y(R(x,y) → R(y,x))

Domain: {1,2,3,4}
R(x,y): {<1,2>, <2,1>}
S(x,y): {<2,1>}
B(x,y,z): {<1,2,3>}
D(x,y,z): {<1,2,3,4>}

Added for P3

a: 1
b: 2
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SET THEORY NOTATION 
AND LOGIC
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Sets are just generic collections of objects 
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SET THEORY NOTATION 
AND LOGIC

Sets are just generic collections of objects 

{1,2,3} is the set which has three members - 1, 2, and 3

We say 2 is a member of {1,2,3} by writing “2 ∈ {1,2,3}”
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SET THEORY NOTATION 
AND LOGIC

Sets are just generic collections of objects 

{1,2,3} is the set which has three members - 1, 2, and 3

We say 2 is a member of {1,2,3} by writing “2 ∈ {1,2,3}”

Of course there is this mathematical theory - set theory - 
written in FOL where there are axioms giving the formal 
definition of set.  In set theory there is one 2-place 
predicate E(x,y) and a ∈ b is just shorthand for E(a,b)
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SET THEORY NOTATION 
AND LOGIC

Tuesday, November 30, 2010



SET THEORY NOTATION 
AND LOGIC

We want sets to just be defined by their members
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SET THEORY NOTATION 
AND LOGIC

We want sets to just be defined by their members

{1,2,3} = {2,3,1} = {1,2,2,3,3,1,2,3} because:
    1 ∈ the set
    2 ∈ the set
    3 ∈ the set
Nothing else is in the set
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SET THEORY NOTATION 
AND LOGIC

We want sets to just be defined by their members

{1,2,3} = {2,3,1} = {1,2,2,3,3,1,2,3} because:
    1 ∈ the set
    2 ∈ the set
    3 ∈ the set
Nothing else is in the set

To formalize this we have the first axiom: Extentionality
                 ∀x∀y[∀z(z∈x ↔ z∈y) → x=y]
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WHAT CAN WE GROUP INTO A SET?
INITIAL	
  ANSWER:	
  ANYTHING
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WHAT CAN WE GROUP INTO A SET?
INITIAL	
  ANSWER:	
  ANYTHING

For any property P, there is a set of things that have 
that property
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WHAT CAN WE GROUP INTO A SET?
INITIAL	
  ANSWER:	
  ANYTHING

For any property P, there is a set of things that have 
that property

{x| x is a Natural number}  = ℕ = N = ω
{x| x is a person in this room}
{{x,y} | x,y live in Ithaca and x,y are married to each other}
{<x,y> | x is a book written by Charles Darwin and y is a     
             pen in my backpack}
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WHAT CAN WE GROUP INTO A SET?
INITIAL	
  ANSWER:	
  ANYTHING

For any property P, there is a set of things that have 
that property

{x| x is a Natural number}  = ℕ = N = ω
{x| x is a person in this room}
{{x,y} | x,y live in Ithaca and x,y are married to each other}
{<x,y> | x is a book written by Charles Darwin and y is a     
             pen in my backpack}

This leads to some paradoxes e.g. The set of all truths
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Really, this is an axiom scheme with an infinite number 
of axioms:

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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FOR MATHEMATICAL PURPOSES, 
WE USE FORMULAS

First order set theory: for any FOL formula P 
containing x, there is a set of all things that satisfy P(x)

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Really, this is an axiom scheme with an infinite number 
of axioms:

∃y∀x[x∈y ↔ x≠x] - the empty set
∃y∀x[x∈y ↔ x=3] - the singleton set {3}

∃y∀x[x∈y ↔ (x ∈ a ∨ x ∈ b)] - the union of a,b

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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SOME REALLY COMMON NOTATION

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 

   A ∪ B =def {x| x ∈ A ∨ x ∈ B}
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 

   A ∪ B =def {x| x ∈ A ∨ x ∈ B}

The intersection of A and B:  A ∩ B 
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SOME REALLY COMMON NOTATION

The complement of A:  Ac

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

   Ac =def A {x| x ∉ A}

The complement of A relative to B:  B∖A [B minus A]

   B∖A =def {x| x ∈ B ∧ x ∉ A}

The union of A and B:  A ∪ B 

   A ∪ B =def {x| x ∈ A ∨ x ∈ B}

The intersection of A and B:  A ∩ B 

   A ∩ B =def {x| x ∈ A ∧ x ∈ B}
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B
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DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B

 (A ∪ B)c  = Ac ∩ Bc
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B

Distribution Laws

 (A ∪ B)c  = Ac ∩ Bc
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LAWS OF BOOLEAN ALGEBRAS

DeMorgan’s Laws

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

 C∖(A ∪ B)  = C∖A ∩ C∖B

Distribution Laws

 (A ∪ B)c  = Ac ∩ Bc

A ∩ (B ∪ C)  = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C)  = (A ∪ B) ∩ (A ∪ C)
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

Everything in A = blue
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

Everything in A = blue

Everything in B = red
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

Everything in A = blue

Everything in B = red

A ∪ B = colored

A ∩ B = purple

C∖(A ∪ B) = in C but not colored
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8

region	
  6	
  =	
  A∩B∩C
region	
  3	
  =	
  A∩B∩Cc
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VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8

region	
  6	
  =	
  A∩B∩C
region	
  3	
  =	
  A∩B∩Cc

A=2+3+5+6
A∩B	
  =	
  2+3+5+6	
  ∩	
  3+4+6+7	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  =	
  3+6                  

Tuesday, November 30, 2010



VENN DIAGRAMS

∃y∀x[x∈y ↔ x=3] - the singleton set {3}

A B

C

1
2

3
4

5
6

7

8

region	
  6	
  =	
  A∩B∩C
region	
  3	
  =	
  A∩B∩Cc

A=2+3+5+6
A∩B	
  =	
  2+3+5+6	
  ∩	
  3+4+6+7	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  =	
  3+6                  

region	
  5+6+7	
  =
	
  	
  	
  	
  	
  	
  C	
  ∩	
  (A	
  ∪	
  B) = (C∩A)	
  ∪	
  (C∩B) 
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SUBSETS

A is a subset of B iff A is “contained in” B
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SUBSETS

A is a subset of B iff A is “contained in” B

AB
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SUBSETS

A is a subset of B iff A is “contained in” B

   A ⊆ B =def  ∀x(x ∈ A → x ∈ B)

AB
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SUBSETS

A is a subset of B iff A is “contained in” B

   A ⊆ B =def  ∀x(x ∈ A → x ∈ B)

AB

   A ⊊ B =def  A ⊆ B ∧ A≠B
A is a “proper subset” of B
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SUBSETS

A is a subset of B iff A is “contained in” B

   A ⊆ B =def  ∀x(x ∈ A → x ∈ B)

AB

   A ⊊ B =def  A ⊆ B ∧ A≠B
A is a “proper subset” of B

   ⊢ (A ⊆ B ∧ B ⊆ A) → A=B
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SUBSETS

Let A = {1,2,3}

1 ∈ A
{1,2} ⊆ A

{1} ⊆ A

{1} ∉ A
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SUBSETS

Let A = {1,2,3}

1 ∈ A
{1,2} ⊆ A

{1} ⊆ A

{1} ∉ A

Subset is transitive

(A ⊆ B ∧ B ⊆ C) → A ⊆ C
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SUBSETS

Let A = {1,2,3}

1 ∈ A
{1,2} ⊆ A

{1} ⊆ A

{1} ∉ A

Subset is transitive

(A ⊆ B ∧ B ⊆ C) → A ⊆ C

Membership isn’t (generally)

(1 ∈ {1,2}, {1,2} ∈ {{1,2}, {2,3}}

but 1 ∉ {{1,2}, {2,3}}
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POWERSET
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POWERSET

The powerset of A is the set of all the subsets of A
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}

   FACT:  The number of elements in ℘(A) = “size” of ℘(A) 
= 2 raised to the power of the size of A.
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}

   ⊢ ∀x |℘(x)| = 2|x| 

   FACT:  The number of elements in ℘(A) = “size” of ℘(A) 
= 2 raised to the power of the size of A.
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POWERSET

The powerset of A is the set of all the subsets of A

   ℘(A) =def  {x| x ⊆ A}

  If A = {1,2,3}  then 
℘(A) = {∅, {1}, {2}, {3}, {1,2}, {2,3},{1,3}, {1,2,3}}

   ⊢ ∀x |℘(x)| = 2|x| 

   FACT:  The number of elements in ℘(A) = “size” of ℘(A) 
= 2 raised to the power of the size of A.

           and yes, ⊢∀x (x < 2x) even for infinite x
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∃y∀x[x∈y ↔ x=x] - the universal set - lets call it U
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∃y∀x[x∈y ↔ x=x] - the universal set - lets call it U
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OOPS - CONTRADICTION
-CANTOR’S PARADOX-

By comprehension, there is a universal set:

∃y∀x[x∈y ↔ x=x] - the universal set - lets call it U

By comprehension, the powerset of U exists

∃y∀x[x∈y ↔ x ⊆ U] 

But we know that U ⊆ ℘(U) and ℘(U) ⊆ U

Tuesday, November 30, 2010



OOPS - CONTRADICTION
-CANTOR’S PARADOX-

By comprehension, there is a universal set:

∃y∀x[x∈y ↔ x=x] - the universal set - lets call it U

By comprehension, the powerset of U exists

∃y∀x[x∈y ↔ x ⊆ U] 

But we know that U ⊆ ℘(U) and ℘(U) ⊆ U

From these two we can prove U = ℘(U)
   -- but we just showed that  ⊢ |℘(U)| < |U| 

Tuesday, November 30, 2010



MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:
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By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

∀x[x∈R ↔ x∉x] 
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

But is R∈R or not?

∀x[x∈R ↔ x∉x] 
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

But is R∈R or not?

∀x[x∈R ↔ x∉x] 

R∈R ↔ R∉R
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MORE STRAIGHTFORWARD
-RUSSELL’S PARADOX-

By comprehension, there is a set of everything that isn’t 
a member of itself:

∃y∀x[x∈y ↔ x∉x] - lets call it R for Russell set

But is R∈R or not?

∀x[x∈R ↔ x∉x] 

R∈R ↔ R∉R

⊢ ¬∃y∀x[x∈y ↔ x∉x] by Russell’s argument
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Since 1900, logicians have developed a restricted 
version of set theory. 
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NOW WHAT???

Since 1900, logicians have developed a restricted 
version of set theory. 

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Axiom of (restricted) comprehension:
                 ∀z∃y∀x[x∈y ↔ (x∈z ∧ P(x))]
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NOW WHAT???

Since 1900, logicians have developed a restricted 
version of set theory. 

Axiom of (full or naive) comprehension:
                 ∃y∀x[x∈y ↔ P(x)]

Axiom of (restricted) comprehension:
                 ∀z∃y∀x[x∈y ↔ (x∈z ∧ P(x))]

So from a set z, you can shrink it down.  
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BUT HOW TO GET BIGGER SETS?

Now comprehension allows us to shrink sets, but to 
get sets, we have to add axioms.
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Pairing (we can put two sets together into one)
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BUT HOW TO GET BIGGER SETS?

Now comprehension allows us to shrink sets, but to 
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+Replacement, Foundation, Choice make ZFC Set Theory

Tuesday, November 30, 2010


