PUZZLE

You are an inhabitant of the island of knights and
knaves. Everyone on the island is either rich or poor.

1) You are a rich knave. Prove it with one statement.
2) You are a rich knight. Prove it with one statement.
3) Now there are normals on the island too. Prove

you are normal.
4) Could anyone prove they aren’t normal?
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UNIVERSAL ELIMINATION

® For any variable x, any wff P(x), and any constant c,
from Vx P(x) we can infer P(c).

® Note: the constant ¢ could even have been used in the
proof already.

|. Vy(Cube(y)— dz(Adjoins(z,y))

2. Cube(a) — dz(Adjoins(z,a) v Elim: |
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UNIVERSAL INTRODUCTION

® For a constant c naming an arbitrary object, any
variable x, and any wff P(x), if we show in a subproof

that P(c), we can conclude that Vx P(x).

® Note: the constant ¢ must be new. The step will only
work if ¢ only occurs within the subproof.

/.|C

12. Small(c) A BackOf(c,d)
| 3. Vy(Small(y) A BackOf(y,d) V Intro:/7-12
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1.P(a) = 2 Vx Q(x)
2. Vx(Q(x) v R(x))

A

Q(b)
Vx Q(x)

2 Vy P(y)

| 3. Vx ~R(x)
4. Vy P(y)
5. P(a) v Elim 4
6. 7 Vx Q(x) — Elim 1,5
7.[b

?Q(b) v R(b) V Elim 2

only way to use line 6
9.7R(b) w 3
V Intro

1 Intro
-1 |ntro

Vx = R(x) = = VyP(y)) — Intro
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1.P(a) = 2 Vx Q(x)
2. Vx(Q(x) v R(x))
3. Vx R(x)
4. Vy P(y)
 5.P(a) v Elim 4
6. 7 Vx Q(x) — Elim 1,5
7.|b
'8.Q(b) v R(b) V Elim2
9. 7R(b) vV Elim 3
10. Q(b) Taut Con 8,9
| 1. Vx Q(x) V Intro 10
2 ¢ 1 Intro 6,1 |
|3. 7 Vy P(y) 7 Intro 7-12
14. Vx 7R(x) = °Vy P(y)) —Intro 3-13
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EXISTENTIAL INTRODUCTION

® For any variable x, any wff P(x) and any constant c, if
we show that P(c), we can conclude that dx P(x).

® Note: the constant ¢ could even have been used in the
proof already. - V Elim and 3 Intro are ‘anything goes’

rules.

|. P(c)

2 S B(X) 3 Intro: |
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EXISTENTIAL ELIMINATION

® Existential elimination is like proof by cases, but with
only one case representing an infinite number of cases.

® For a constant ¢ naming an arbitrary object, any
variable x, and any wff P(x), if we know that dx P(x),

and we assume P(c) and show in a subproof that Q
follows (and Q does not contain ‘c’), we can conclude
that Q must be true (outside the subproof).

® Note: the constant ¢ must be new. The step will only
work if ¢ only occurs within the subproof.
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EXISTENTIAL ELIMINATION

k. Q 3 Elim: 1,2-]




EXISTENTIAL ELIMINATION

1. dx Cube(x)
2. Vx (Small(x) = Cube(x))

3./a| Cube(a) (for 3 Elim)

' 4.Small(a) = ~Cube(a) Vv Elim 2
5. 7Small(a) Taut Con 3,4

dx =Small(x)
dx =Small(x) 3 Elim
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EXISTENTIAL ELIMINATION

1. dx Cube(x)
2. Vx (Small(x) = Cube(x))

3.[a|Cube(a) (for 3 Elim)

' 4.Small(a) = ~Cube(a) Vv Elim 2
5. 7Small(a) Taut Con 3,4

6. dx "Small(x) 3IIntro 5
7. dx "Small(x) 3 Elim 1,3-6
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EXISTENTIAL ELIMINATION

1. Ax(Cube(x) A RightOf(x,a))
2. Vx (RightOf(x,a) = SameSize(a,x))

3.|b| Cube(b) A RightOf(b,a) (for 3 Elim)

4. RightOf(b,a) = SameSize(a,b) Vv Elim 2

5. Cube(b) A SameSize(a,b) Taut Con 3,4

6. Ax(Cube(x) A SameSize(a,x))

7. Ax(Cube(x) A SameSize(a,x)) 3 Elim from 1
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EXISTENTIAL ELIMINATION

1. Ax(Cube(x) A RightOf(x,a))
2. Vx (RightOf(x,a) = SameSize(a,x))

3.|b| Cube(b) A RightOf(b,a) (for 3 Elim)

4. RightOf(b,a) = SameSize(a,b) Vv Elim 2

5. Cube(b) A SameSize(a,b) Taut Con 3,4

6. Ax(Cube(x) A SameSize(a,x)) J Intro 5

7. Ax(Cube(x) A SameSize(a,x)) 3 Elim 1,3-6
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1. Vx((Q(x) v R(x)) = P(x))

2. dx Q(x)
iEIx —1P(x)
4.2 |Q(a) (for 3 Elim from 2)
' 5.(Q(a) v R(a)) = P(a) V Elim |
6. P(a) Taut Con 4,5
/. dy P(y) 3 Intro 6
i b mP(b) (for 3 Elim from 3)
9.(Q(b) v R(b)) = P(b) V Elim |
10. =R(b) Taut Con 8,9
| 1. dx ~R(x) 3 Intro 10

dx 7R(x) A dy P(y)

dx 7R(x) A dy P(y)
dx 7R(x) A dy P(y)

3 Elim from 3
3 Elim from 2




1. VX((Q(x) v R(x)) = P(x))

2. dx Q(x)
iEIx —1P(x)

4.

 5.(Q(a)vR(2))—P(a) V Elim 1
6. P(a)
/. dy P(y)

d

8.

Q(a)

b

P(b)

(for 3 Elim from 2)

Taut Con 4,5
3 Intro 6

(for 3 Elim from 3)

19.(Q(b) v R(b)) = P(b) v Elim |
0. =R(b)

| 1. dx ~R(x)

Taut Con 8,9
3 Intro |0

12. dx 7R(x) A dy P(y) A Intro 7,11

13. dx 7R(x) A dy P(y)
4. dx 7R(x) A dy P(y)

3 Elim 3,8-12
3 Elim 2,4-13
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THE PROOF SYSTEM ‘F

* We now know all of the rules of the natural deduction
system ‘f. These are the rules of ‘fr plus VElim,

VIntro, 3Elim, 3lntro, =Elim, and =Intro.

® |t turns out that this system is Sound and Complete
with respect to the semantics for First Order Logic.

® This system can prove the validity of all and only
arguments that are valid in virtue of the propositional
connectives, the quantifier symbols, and identity. The
meanings of the predicates (other than identity) don'’t

count (so SameSize(a,a) isn’t a theorem of 1).
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D

CONSEQUENCE

Propositional First-Order Logic| Basic Notion

Logic
Tautology FO Valid Logical Truth
Tautological FO Corstarilics Logical
Consequence Consequence
Taut.ologlcal B Equbiiaiioe Lf)glcal
Equivalence Equivalence
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FIRST-ORDER VALIDITY AND
CONSEQUENCE

TW-Necessities

Logical Truths

Tautologies
Pv-P

—dx Larger(x,x)

Cube(a)vDodec(a)vTet(a)
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FIRST-ORDER EQUIVALENCE

¢ Contraposition: P — Q taut equivalent to = Q — P

® This is true for any FOL sentences so
“1dxCube(x)— dy Small(y) is taut equivalent to

—1dy Small(y) = ——dxCube(x)

® Vx(Cube(x) = Small(x)) and Vx(7Small(x) = ~Cube(x))
are FOL equivalent, but not taut equivalent

Sunday, October 24, 2010



EQUIVALENCES FOR QUANTIFIERS

8 Vx(P(x) A Q(x)) & Vx P(x) A Vx Q(x)
® Vx(P(x) v Q(x)) ¥ Vx P(x) v Vx Q(x)

& o,
but < yes

& dx(P(x) v Q(x)) & dx P(x) v dx Q(x)
& Ax(P(x) A Q(x)) ¥ dx P(x) A dx Q(x)

YES,
but < no




