

You meet A and B in the land of knights and knaves. A says "I am a knight if and only if B is also a knight." B says "A and I are of different kinds." Who is what?

Building and Using Truth Tables

Monday, 3 February

Example: truth table for ¬(P∧Q)
 First, give truth conditions of the atomic sentences:

Р	Q	¬ (P ∧ Q)	
Т	Т	ТТ	
Т	F	TF	
F	Т	FΤ	
F	F	FF	

Р	Q	¬ (P ∧ Q)	
Т	Т	ТТТ	
Т	F	TFF	
F	Т	FFT	
F	F	F F F	

Р	Q	¬ (P ∧ Q)	
Т	Т	Γ Τ Τ Τ	
Т	F	TFF	
F	Т	FFT	
F	F	FFF	

Р	Q	¬ (P ∧ Q)	
Т	Т	Γ Τ Τ Τ	
Т	F	TTFF	
F	Т	FFT	
F	F	FFF	

Р	Q	¬ (P ∧ Q)	
Т	Т	Γ τ τ τ	
Т	F	TTFF	
F	Т	TFFT	
F	F	FFF	

Р	Q	¬ (P ∧ Q)	
Т	Т	Γ Τ Τ Τ	
Т	F	TTFF	
F	Т	TFFT	
F	F	TFFF	

Example: truth table for (¬P∨¬Q)
 First, give truth conditions of the atomic sentences:

And Black works at twee to

Example: truth table for (¬P∨¬Q) Then assign truth conditions of the combinations:

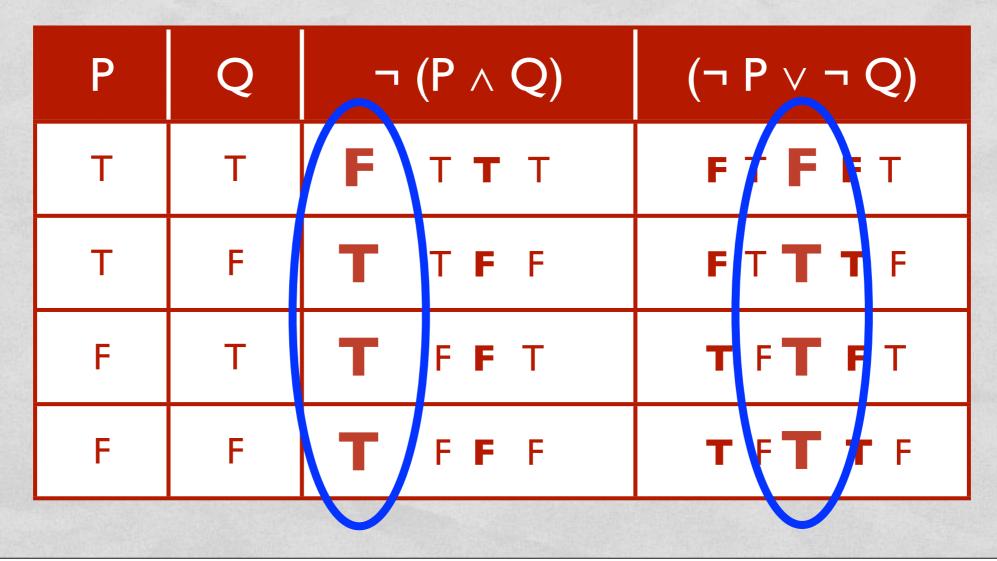
Example: truth table for (¬P∨¬Q) Then assign truth conditions of the combinations:

And the second of the ta

• Example: joint truth table for $\neg(P \land Q)$ and $(\neg P \lor \neg Q)$ This shows that the two sentences are equivalent.

Р	Q	¬ (P ∧ Q)	(¬ P ∨ ¬ Q)
Т	Т	Γ τ τ τ	FTFFT
Т	F	TTFF	БТТТ
F	Т	TFFT	T F T F T
F	F	TFFF	тетте

• Example: joint truth table for $\neg(P \land Q)$ and $(\neg P \lor \neg Q)$ This shows that the two sentences are equivalent.



And Market And The

We will construct truth tables in Boole.

0)	0		0									Untit	ed 1				
∧ a ∀ ×	v b J y	:	- c = z	→ d ≠ u	↔ e (v	⊥ f) ₩	e		Tet Cube Dodec SameSizo		Small Mediun Large BackO	n	LeftOf RightO FrontO Larger	f SameRo f Smalle	W	Adjoi Betwe SameSł	30	Delete ColumnVerify RowBuild Ref ColsVerify TableFill Ref ColsVerify Asses
0	Cor	reo	ct?			Co	mpl	lete	?	Asse	ssmen	t	(no	ne given)				
									2	(l) P	(2) Q T	(F	(l) P∧Q) T	(2) ¬P v ¬Q				
									3	F	F F	Т Т Т (1)	F F F	T T (2)		4		

Monday, February 17, 2014

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

- Control March March & Constant

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

AND BUSIL . MATTER

A	В	$(A \land \neg B) \lor (\neg A \land B)$
Т	Т	
Т	F	
F	Т	
F	F	

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

ALL STRAND AND THE

A	В	$(A \land \neg B) \lor (\neg A \land B)$
Т	Т	F F
Т	F	TF
F	Т	F T
F	F	ТТ

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

AND SHOULD AND THE

A	В	(A ∧ ¬ B) ∨ (¬ /	A ∧ B)
Т	Т	F F F	F
Т	F	ΤΤ F	F
F	Т	Б Б Т	Т
F	F	Б Т Т	F

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

AND SHOULD AND THE

A	В	$(A \land \neg B) \lor (\neg A \land B)$
Т	Т	FF F FF
Т	F	TT FF
F	Т	F F T T
F	F	FT TF

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

Α	В	$(A \land \neg B) \lor (\neg A \land B)$		
Т	Т	FF F FF		
Т	F	Тт Т ғ Ғ		
F	Т	F F T T		
F	F	FT TF		

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

A	В	$(A \land \neg B) \lor (\neg A \land B)$		
Т	Т	FF F FF		
Т	F	Тт Т F F		
F	Т	FF TT		
F	F	FT TF		

• Example: truth table for $(A \land \neg B) \lor (A \land \neg B)$

Α	В	$(A \land \neg B) \lor (\neg A \land B)$		
Т	Т	FF F FF		
Т	F	Тт Т F F		
F	Т	FF TT		
F	F	F т F т F		

A	В	$(A \land \neg B) \lor (\neg A \land B)$		
Т	т	FF F FF		
Т	F	TT TFF		
F	Т	FF TT		
F	F	F т F т F		

Α	В	$(A \land \neg B) \lor (\neg A \land B)$		
Т	Т	FF F FF		
Т	F	Тт Т F F		
F	Т	FF TT		
F	F	F т F т F		

A	В	$(A \land \neg B) \lor (\neg A \land B)$	$\neg(A \leftrightarrow B)$
Т	Т	FF F FF	Т
Т	F	ТТ Т F F	F
F	Т	FF T T	F
F	F	F т F т F	Т

Α	В	$(A \land \neg B) \lor (\neg A \land B)$	$\neg(A \leftrightarrow B)$
т	Т	FF F FF	Fт
т	F	Тт Т F F	F
F	Т	F F Т Т	F
F	F	F т F т F	FT

 When there are two atomic sentences involved (say P and Q) there are four possibilities

- When there are two atomic sentences involved (say P and Q) there are four possibilities
- But if there are three atomic sentences involved, there are eight possibilities.

- When there are two atomic sentences involved (say P and Q) there are four possibilities
- But if there are three atomic sentences involved, there are eight possibilities.

In general, X atoms means 2[×] possibilities

EXAMPLES WITH THREE ATOMS

and the second second second second

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

EXAMPLES WITH THREE ATOMS

A Charles and the second of the second

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

EXAMPLES WITH THREE ATOMS

and the second second second second

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

and the second second second second

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	
F	F	Т	
F	F	F	

Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	
F	F	F	

Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	

Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	TF
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	TF
Т	F	Т	TF
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	TF
Т	F	Т	TF
Т	F	F	TF
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	TF
Т	F	Т	TF
Т	F	F	TF
F	Т	Т	ТТ
F	Т	F	F
F	F	Т	F
F	F	F	F

Wind and a second a straight and

A	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	TF
Т	F	Т	TF
Т	F	F	TF
F	Т	Т	ТТ
F	Т	F	FF
F	F	Т	F
F	F	F	F

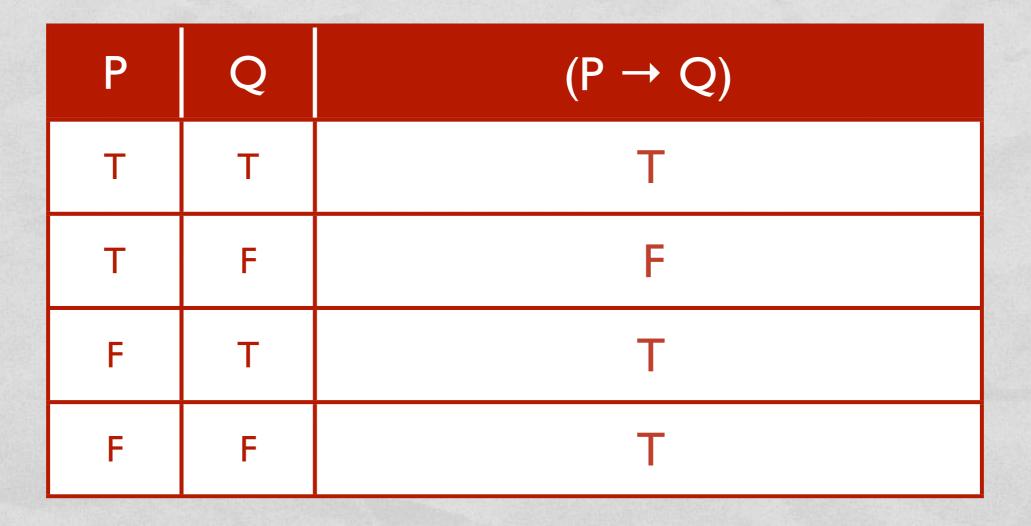
Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	TF
Т	F	Т	TF
Т	F	F	TF
F	Т	Т	ТТ
F	Т	F	FF
F	F	Т	F F
F	F	F	F

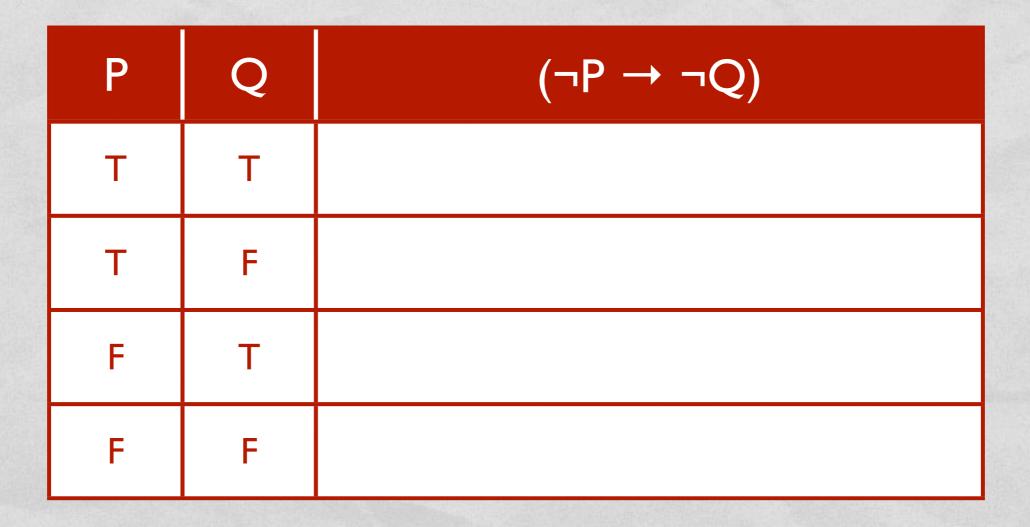
Wind and the second of the second

Α	В	С	$A \vee (B \wedge C)$
Т	Т	Т	T T
Т	Т	F	TF
Т	F	Т	TF
Т	F	F	TF
F	Т	Т	ТТ
F	Т	F	FF
F	F	Т	F F
F	F	F	F F

• Example: truth table for $(P \rightarrow Q)$

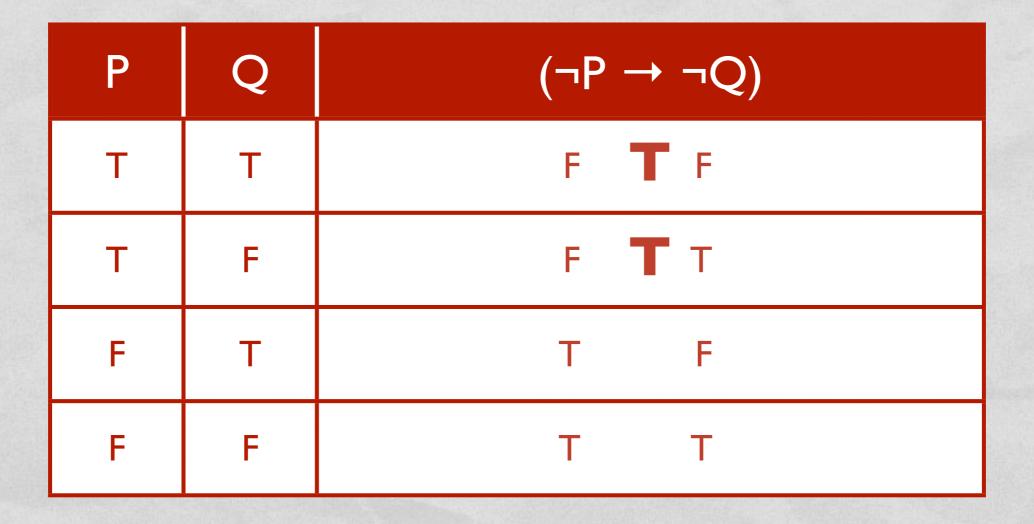
• Example: truth table for $(P \rightarrow Q)$

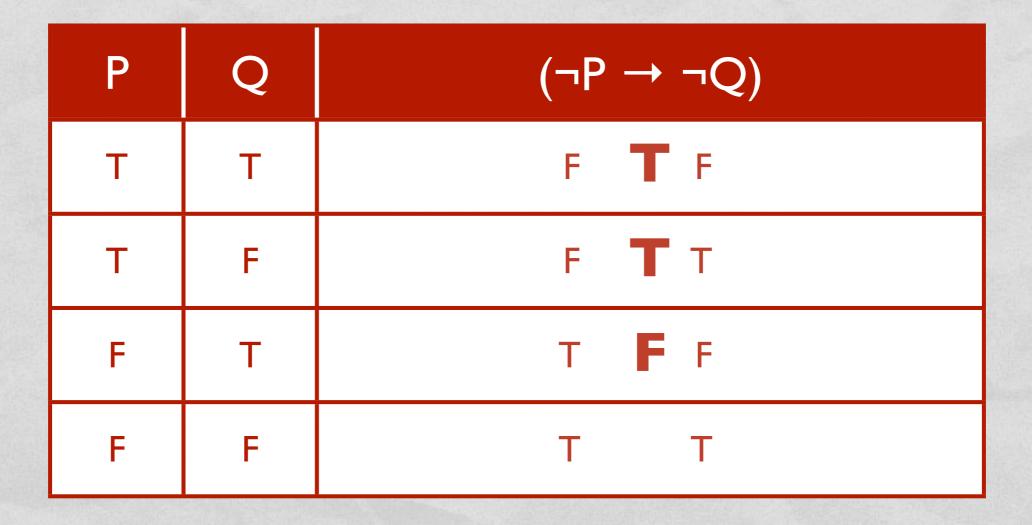


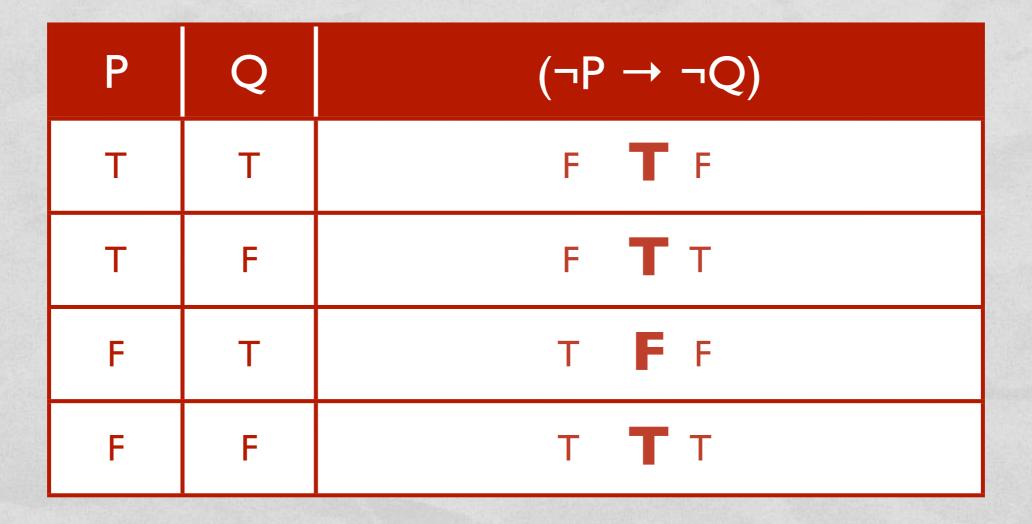


Р	Q	$(\neg P \rightarrow \neg Q)$	
Т	Т	F F	
Т	F	FT	
F	Т	TF	
F	F	ТТ	

Р	Q	$(\neg P \rightarrow \neg Q)$	
Т	Т	F T F	
Т	F	FT	
F	Т	TF	
F	F	ТТ	



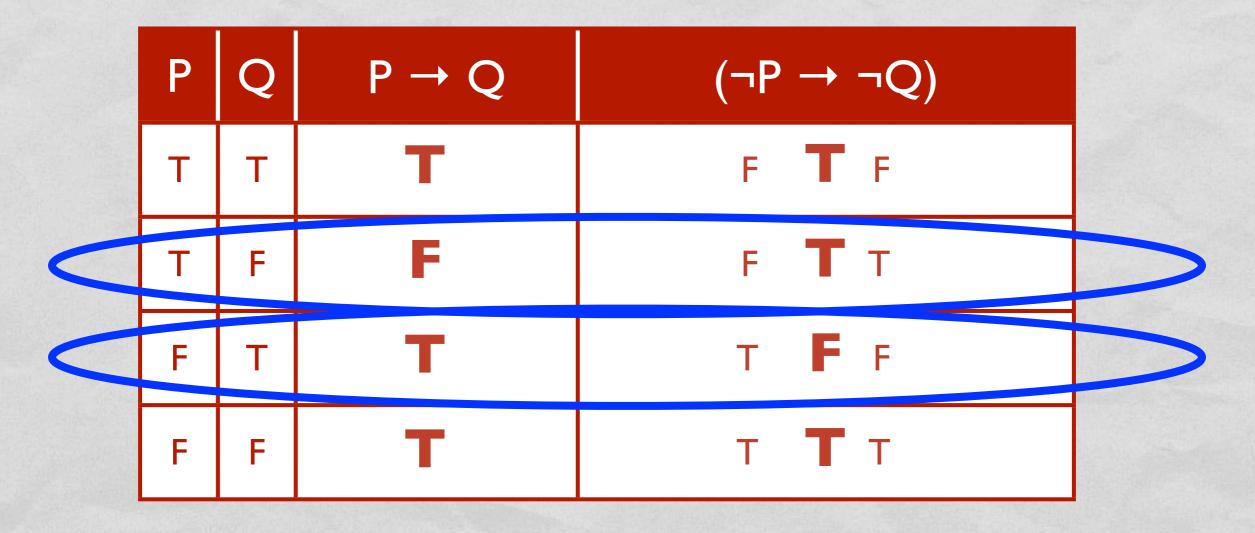




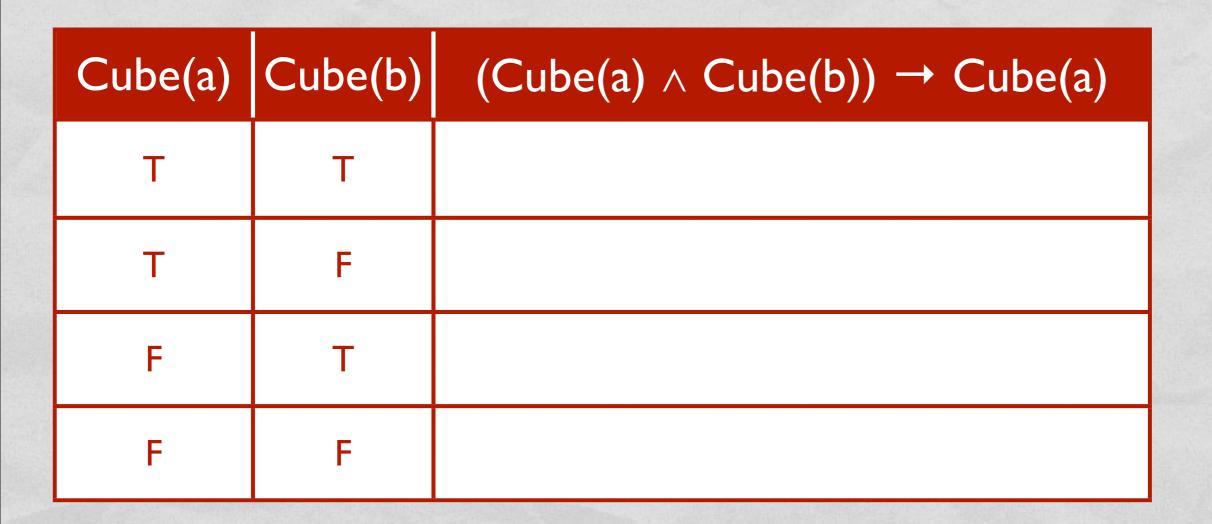
• Joint truth table for $P \rightarrow Q$ and $(\neg P \rightarrow \neg Q)$ These are <u>not</u> equivalent

Ρ	Q	$P \rightarrow Q$	(¬P → ¬Q)
Т	Т	Т	F T F
т	F	F	F T T
F	т	Т	т F ғ
F	F	T	т Т Т

• Joint truth table for $P \rightarrow Q$ and $(\neg P \rightarrow \neg Q)$ These are <u>not</u> equivalent



Truth table for (Cube(a) ∧ Cube(b)) → Cube(a)



Cube(a)	Cube(b)	$(Cube(a) \land Cube(b)) \rightarrow Cube(a)$	
т	Т	Т	
Т	F	F	
F	т	F	
F	F	F	

Cube(a)	Cube(b)	$(Cube(a) \land Cube(b)) \rightarrow Cube(a)$	
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	F
F	F	F	F

Cube(a)	Cube(b)	$(Cube(a) \land Cube(b)) \rightarrow Cube(a)$	
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	F
F	F	F	F

Cube(a)	Cube(b)	$(Cube(a) \land Cube(b)) \rightarrow Cube(a)$	
т	Т	Т	Тт
Т	F	F	Т
F	т	F	F
F	F	F	F

Cube(a)	Cube(b)	(Cube(a) ∧ Cube(b)) → Cube(a)	
Т	Т	Т	Тт
Т	F	F	Тт
F	Т	F	F
F	F	F	F

Cube(a)	Cube(b)	$(Cube(a) \land Cube(b)) \rightarrow Cube(a)$	
т	Т	Т	Тт
Т	F	F	Тт
F	Т	F	ΤF
F	F	F	F

Cube(a)	Cube(b)	$(Cube(a) \land Cube(b)) \rightarrow Cube(a)$	
т	т	Т	Тт
Т	F	F	Тт
F	Т	F	ΤF
F	F	F	F

Truth table for (Cube(a) ∧ Cube(b)) → Cube(a)
 This sentence is a <u>Tautology</u>

Cube(a)	Cube(b)	(Cube(a) <> Cube(b)) -	→ (Cube(a)
т	Т	Т	Г	Т
Т	F	F	Г	Т
F	Т	F	Г	F
F	F	F	Г	Т

Truth table for (Cube(a) ∧ Cube(b)) → Cube(a)
 This sentence is a <u>Tautology</u>

Cube(a)	Cube(b)	(Cube(a) <pre> Cube(b) </pre>		Cube(a)
Т	т	Т	(т	Т
Т	F	F	Т	Т
F	т	F	Т	F
F	F	F	Т	Т

The Lorentee States and the Street to

 Two sentences are <u>logically equivalent</u> if they have the same truth conditions, i.e., are true in the same circumstances.

- Two sentences are <u>logically equivalent</u> if they have the same truth conditions, i.e., are true in the same circumstances.
- Two sentences are <u>tautologically equivalent</u> if they have matching truth tables, i.e., the same truth values for all combinations of atomic sentences' truth values.

- Two sentences are <u>logically equivalent</u> if they have the same truth conditions, i.e., are true in the same circumstances.
- Two sentences are <u>tautologically equivalent</u> if they have matching truth tables, i.e., the same truth values for all combinations of atomic sentences' truth values.

 Tautological equivalence results simply from the meanings of the truth-functional connectives. (Ex: DeMorgan's Laws, double negation, contraposition)

And Black AND STA

Logical Equivalence

Tautological Equivalence

Low Anter Store of Mary of Sta

Logical Equivalence

Tautological Equivalence

 $\neg(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

CONTRACTOR OF THE STATE

Logical Equivalence

Tautological Equivalence

 $\neg(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

Bachelor(Sam) ⇔ Unmarried Man(Sam)

A LAND LAND AND A STATE

Logical Equivalence

Tautological Equivalence

 $\neg(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

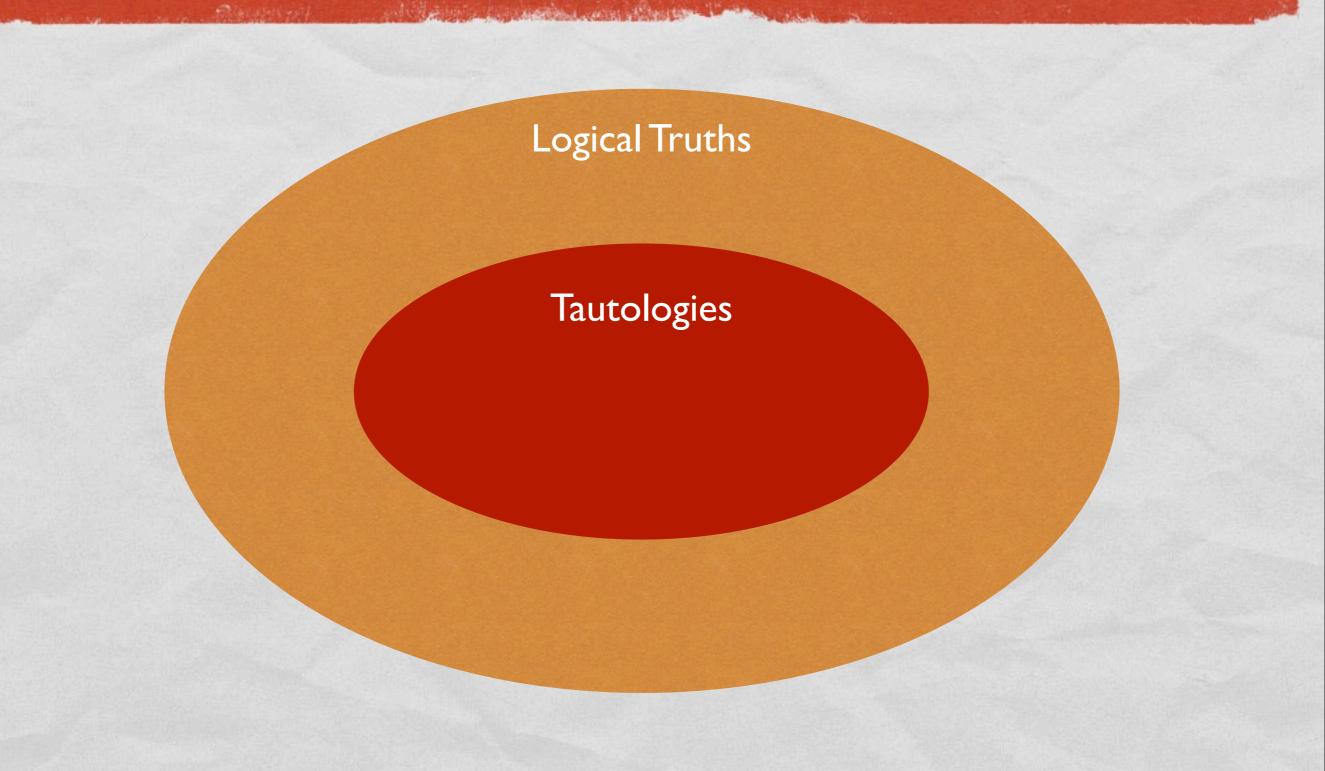
Bachelor(Sam) ⇔ Unmarried Man(Sam) Smaller(a, b) ⇔ Larger(b, a)

The Lorentee States and the Street to

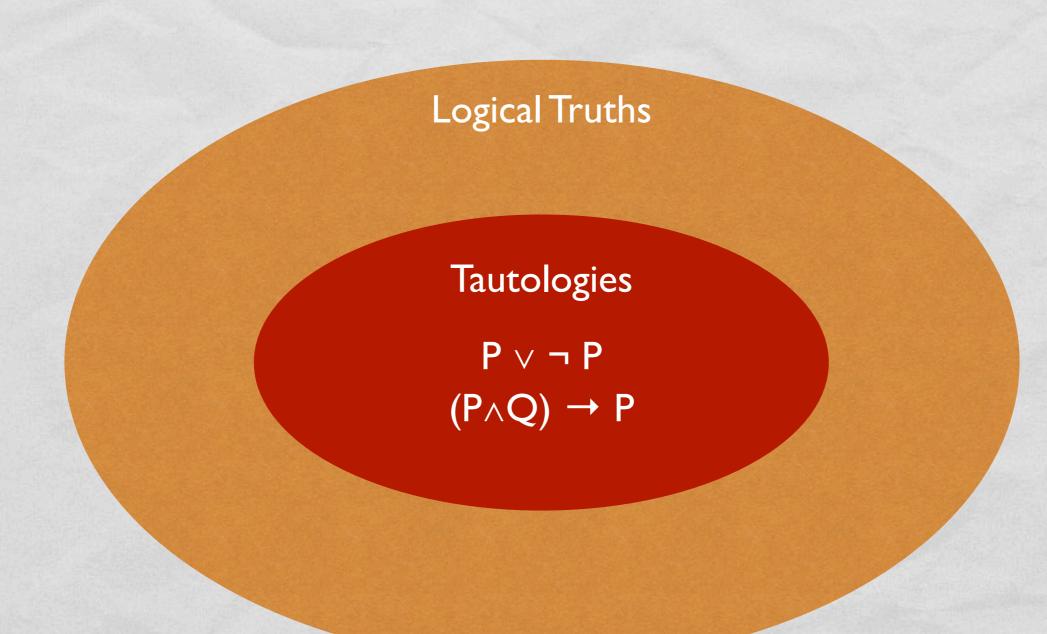
 A sentence is a <u>logical truth</u> iff it is <u>logically necessary</u>, i.e., is a logical consequence of any set of sentences. (It is impossible for a logical truth to be false.)

- A sentence is a <u>logical truth</u> iff it is <u>logically necessary</u>, i.e., is a logical consequence of any set of sentences. (It is impossible for a logical truth to be false.)
- A sentence is a <u>tautology</u> iff every row of its truth table assigns TRUE to that sentence.

- A sentence is a <u>logical truth</u> iff it is <u>logically necessary</u>, i.e., is a logical consequence of any set of sentences. (It is impossible for a logical truth to be false.)
- A sentence is a <u>tautology</u> iff every row of its truth table assigns TRUE to that sentence.
- Tautologies are true in virtue of the meanings of the truth-functional connectives alone. (Ex: $P \lor \neg P$)



A Destanting to the second second a Cherry to



A CONTRACTOR LAND AND A CAMPAGE AND A CONTRACT ON A CONTRACT.

Logical Truths

Tautologies $P \lor \neg P$ $(P \land Q) \rightarrow P$

Smaller(a,b) $\rightarrow \neg$ Smaller(b,a)

the second states and the second states the

Logical Truths

¬Smaller(a,a)

Tautologies $P \lor \neg P$ $(P \land Q) \rightarrow P$

Smaller(a,b) $\rightarrow \neg$ Smaller(b,a)

 A sentence S is a logical consequence of a set of sentences P₁...P_n iff whenever P₁...P_n are true, S is also true.

- A sentence S is a logical consequence of a set of sentences P₁...P_n iff whenever P₁...P_n are true, S is also true.
- If an argument is valid, then the conclusion is a logical consequence of the premises.

- A sentence S is a logical consequence of a set of sentences P₁...P_n iff whenever P₁...P_n are true, S is also true.
- If an argument is valid, then the conclusion is a logical consequence of the premises.
- A sentence Q is a <u>tautological consequence</u> of a set of sentences P₁...P_n iff every row of the truth table where P₁...P_n are all true, Q is also true.

- A sentence S is a logical consequence of a set of sentences P₁...P_n iff whenever P₁...P_n are true, S is also true.
- If an argument is valid, then the conclusion is a logical consequence of the premises.
- A sentence Q is a <u>tautological consequence</u> of a set of sentences P₁...P_n iff every row of the truth table where P₁...P_n are all true, Q is also true.
- Note: The Ps and Qs might be complex sentences.

• Example: 1) A 2) $A \rightarrow B$ 3) $\neg B \lor C$ 4) Conclusion: C

A	В	C	Α	A→B	$\neg B \lor C$	C
Т	Т	Т	Т	Т	FT	Т
Т	Т	F	Т	Т	F F	F
Т	F	Т	Т	F	ТТ	Т
Т	F	F	Т	F	ТТ	F
F	Т	Т	F	Т	FT	Т
F	Т	F	F	Т	F F	F
F	F	Т	F	Т	ТТ	Т
F	F	F	F	Т	ТТ	F

No row is T, T, T, F

A	В	C	Α	A→B	B v C	С
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F
Т	F	Т	Т	F	т	Т
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	т	Т
F	Т	F	F	Т	Т	F
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	F

Second row is T, T, T, F So NOT valid

 A sentence Q is a logical consequence of a set of sentences P₁, P₂... P_n iff it is impossible for the premises to be true and the consequent to be false.

- A sentence Q is a logical consequence of a set of sentences P₁, P₂... P_n iff it is impossible for the premises to be true and the consequent to be false.
- This is exactly the same as the falsity of $(P_1 \land P_2 \land \ldots \land P_n) \rightarrow Q$

- A sentence Q is a logical consequence of a set of sentences P₁, P₂... P_n iff it is impossible for the premises to be true and the consequent to be false.
- This is exactly the same as the falsity of $(P_1 \land P_2 \land \ldots \land P_n) \rightarrow Q$
- $(P_1 \land P_2 \land ... \land P_n) \rightarrow Q$ is a logical truth iff Q is a logical consequence of P₁, P₂... P_n.

 P ↔ Q is a logical truth iff P and Q are logically equivalent (have the same truth values).

 P ↔ Q is a logical truth iff P and Q are logically equivalent (have the same truth values).

- P ↔ Q is a logical truth iff P and Q are logically equivalent (have the same truth values).
- In other words, $P \leftrightarrow Q$ is a logical truth iff $P \Leftrightarrow Q$.

- P ↔ Q is a logical truth iff P and Q are logically equivalent (have the same truth values).
- In other words, $P \leftrightarrow Q$ is a logical truth iff $P \Leftrightarrow Q$.
 - NOTE: P ↔ Q might just happen to be true without P and Q being equivalent

- P ↔ Q is a logical truth iff P and Q are logically equivalent (have the same truth values).
- In other words, $P \leftrightarrow Q$ is a logical truth iff $P \Leftrightarrow Q$.
 - NOTE: P ↔ Q might just happen to be true without P and Q being equivalent
- Recall: $A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$.

- P ↔ Q is a logical truth iff P and Q are logically equivalent (have the same truth values).
- In other words, $P \leftrightarrow Q$ is a logical truth iff $P \Leftrightarrow Q$.
 - NOTE: P ↔ Q might just happen to be true without P and Q being equivalent
- Recall: $A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$.
- Similarly, A is logically equivalent to B iff A is a logical consequence of B and B is a logical consequence of A.