

There are three defendants -A, B, and C - and the following facts are known:

If A is innocent, then both B and C are guilty.
 If A is guilty, then B is also guilty.
 If C is guilty, then B is innocent.

Note that you do not know how many of these defendants are guilty. It may be 0, 1, 2, or all 3.

Who is innocent and who is guilty?

BICONDITIONALS AND TRUTH TABLES

Friday, 31 January

MORE TRANSLATION EXAMPLES

- If a is a Tet, then so are b and c
 - Tet(a) \rightarrow (Tet(b) \land Tet(c))
- Neither a nor b are large unless c is
 - \neg Large(c) $\rightarrow \neg$ (Large(a) \lor Large(b))
 - \neg Large(c) \rightarrow (\neg Large(a) $\land \neg$ Large(b))
 - (Large(a) ∨ Large(b)) → Large(c)

MORE TRANSLATION EXAMPLES

• *a* is a Tet only if at least one of *b* and *c* is a Tet

- Tet(a) \rightarrow (Tet(b) \vee Tet(c))
- *a* is a Tet if exactly one of *b* and *c* is a Tet
 - ((Tet(b) $\land \neg$ Tet(c)) \lor (\neg Tet(b) \land Tet(c))) \rightarrow Tet(a)

TRANSLATIONS

Contractions and Street to

- **a** is a Tet if **b** is and also only if **b** is.
 - $(Tet(b) \rightarrow Tet(a)) \land (Tet(a) \rightarrow Tet(b))$
- **a** is a Tet if **b** is but **a** is not a Tet unless **b** is.
 - (Tet(b) \rightarrow Tet(a)) \land (\neg Tet(b) \rightarrow \neg Tet(a))

• **a** is a Tet if and only if (exactly when, just in case) **b** is

• Tet(a) \leftrightarrow Tet(b)

THE BICONDITIONAL

- Another new connective: the biconditional (\leftrightarrow) .
- If A and B are sentences, then $A \leftrightarrow B$ is a sentence.
- A sentence of the form P ↔ Q is true iff P and Q have the same truth value.
- Generally, the English expression used to express the biconditional is "if and only if". Our book also uses "just in case".

THE BICONDITIONAL

Truth table for the biconditional:

A	В	$A\leftrightarrowB$		
TRUE	TRUE	TRUE		
TRUE	FALSE	FALSE		
FALSE	TRUE	FALSE		
FALSE	FALSE	TRUE		

• A \leftrightarrow B is logically equivalent to (A \rightarrow B) \land (B \rightarrow A)

The Biconditional

• A \leftrightarrow B is logically equivalent to (A \rightarrow B) \land (B \rightarrow A)

and and the second of the state

- A \leftrightarrow B is logically equivalent to (A \rightarrow B) \land (\neg A \rightarrow \neg B)
- A \leftrightarrow B is logically equivalent to (A \land B) \lor (\neg A \land \neg B)

THE BICONDITIONAL

- A ↔ B just means that A and B have the same truth value (it could just be a coincidence)
- ¬(A ↔ B) means that A and B have different truth values
- So ¬(A ↔ B) is logically equivalent to ¬A ↔ B which is logically equivalent to A ↔ ¬B. (Which means exactly one of A and B)

Equivalence

- We saw some equivalences already:
 - Neither A nor B
 - $\neg(A \lor B)$ is equivalent to $\neg A \land \neg B$
 - Not both A and B
 - $\neg(A \land B)$ is equivalent to $\neg A \lor \neg B$
 - These two equivalences are called "DeMorgan's Laws"

Equivalence

- We denote FOL equivalences using the symbol ⇔,
 e.g., ¬¬P ⇔ P
- When two sentences are <u>logically equivalent</u>, they have the same truth conditions, i.e., are true in the same circumstances.
- DeMorgan'sLaws: $\neg(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

 $\neg(P\lor Q) \Leftrightarrow (\neg P\land \neg Q)$

Equivalence

There are LOTS of equivalences. Some more obvious than others.

Either Alice or Bill went to the party

- P(a)∨P(b)
- P(b)∨P(a)
- ¬¬P(a)∨¬¬¬¬P(b)
- ¬[¬P(a)∧¬P(b)]
- $[\neg P(a) \rightarrow P(b)] \land [\neg P(b) \rightarrow P(a)]$
- $[\neg P(a) \rightarrow P(b)]$

- Truth tables show how the truth value of a complex sentence depends on the truth values of its components in all possible cases.
- They also help us keep track of relationships that exist between the truth values of different sentences.
- So, for example, we can use truth tables to show logical equivalence.
- Two sentences are logically equivalent if they have the same truth values in all possible circumstances.

Example: truth table for ¬(P∧Q)
 First, give truth conditions of the atomic sentences:

Р	Q	¬ (P ∧ Q)	
Т	Т	ТТ	
Т	F	TF	
F	Т	FΤ	
F	F	FF	

Example: truth table for ¬(P∧Q) Then assign truth conditions of the combinations:

Р	Q	¬ (P ∧ Q)	
Т	Т	Γ τ τ τ	
Т	F	TTFF	
F	Т	TFFT	
F	F	TFFF	

Example: truth table for (¬P∨¬Q)
 First, give truth conditions of the atomic sentences:

And Black with a Street to

Example: truth table for (¬P∨¬Q) Then assign truth conditions of the combinations:

• Example: joint truth table for $\neg(P \land Q)$ and $(\neg P \lor \neg Q)$ This shows that the two sentences are equivalent.

Р	Q	¬ (P ∧ Q)	(¬ P ∨ ¬ Q)
Т	Т	Γ τ τ τ	FTFFT
Т	F	TTFF	БТТТ
F	Т	TFFT	TFTFT
F	F	TFFF	тетте

ALL MARKEN AND THE REAL

We will construct truth tables in Boole.

000			_	Untitled	1		_	
∧ ∨ ¬ → a b c d ∀ ∃ = ≠ x y z u	↔ ⊥ e f () « v w	Tet Cube Dodec SameSize	Small Medium Large BackOf	LeftOf RightOf FrontOf Larger	SameCol SameRow Smaller	Adjoi Betwe SameSł	30	Delete ColumnVerify RowBuild Ref ColsVerify TableFill Ref ColsVerify Asses
Correct?	Complete	? <u>As</u>	sessment	(none	given)			
				T F F T F T F T	(2) P v ¬Q	4		

Saturday, February 1, 2014