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INTERPRETATIONS

An argument is FO-valid if any interpretation that makes all 
of the premises true also makes the conclusion true.
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An argument is FO-valid if any interpretation that makes all 
of the premises true also makes the conclusion true.

So it is invalid if there is at least one interpretation that 
makes all the premises true and makes the conclusion 
false.
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INTERPRETATIONS

An argument is FO-valid if any interpretation that makes all 
of the premises true also makes the conclusion true.

So it is invalid if there is at least one interpretation that 
makes all the premises true and makes the conclusion 
false.

An interpretation gives the meaning of the constants, 
functions, and predicates and gives a domain (so we know 
what ‘for all x’ means). - it gives enough information to know 
whether any particular sentence is true or false.
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INTERPRETATIONS

∃x P(x) ∧ ∃x Q(x) ⊢ ∃x(P(x) ∧ Q(x))  - it is FO invalid

Wednesday, April 30, 2014



INTERPRETATIONS

∃x P(x) ∧ ∃x Q(x) ⊢ ∃x(P(x) ∧ Q(x))  - it is FO invalid

Domain: Natural numbers
P(x): Even numbers
Q(x): Odd numbers

A countermodel:
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INTERPRETATIONS

∃x P(x) ∧ ∃x Q(x) ⊢ ∃x(P(x) ∧ Q(x))  - it is FO invalid

Domain: Natural numbers
P(x): Even numbers
Q(x): Odd numbers

A countermodel:
A picture with one cube
   and one tet
P(x): Cubes
Q(x): Tets

Another countermodel:
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INTERPRETATIONS

∃x P(x) ∧ ∃x Q(x) ⊢ ∃x(P(x) ∧ Q(x))  - it is FO invalid

Domain: Natural numbers
P(x): Even numbers
Q(x): Odd numbers

A countermodel:
A picture with one cube
   and one tet
P(x): Cubes
Q(x): Tets

Another countermodel:

∃x(P(x) ∧ Q(x)) ⊢ ∃x P(x) ∧ ∃x Q(x)

But the other direction is correct
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1. ∃x∃y(Square(x) ∧ Square(y) ∧ LeftOf(x,y))
2. ∀x∀y(LeftOf(x,y) → ¬Filled(x))

3. ∀x∀y((Filled(x) ∧ Filled(y)) → SameRow(x,y))            

valid or not?
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1. ∃x∃y(Square(x) ∧ Square(y) ∧ LeftOf(x,y))
2. ∀x∀y(LeftOf(x,y) → ¬Filled(x))

3. ∀x∀y((Filled(x) ∧ Filled(y)) → SameRow(x,y))            

valid or not?

Try to make the premises true and the conclusion 
false. To do this, first add things to make the ∃x s 
true (in the premises) and to make the ∀x s false 
(if in the conclusion).
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1. ∃x∃y(Square(x) ∧ Square(y) ∧ LeftOf(x,y))
2. ∀x∀y(LeftOf(x,y) → ¬Filled(x))

3. ∀x∀y((Filled(x) ∧ Filled(y)) → SameRow(x,y))            

valid or not?

Try to make the premises true and the conclusion 
false. To do this, first add things to make the ∃x s 
true (in the premises) and to make the ∀x s false 
(if in the conclusion).

Ans: Picture on board in class - a non-filled square 
left of two filled squares which aren’t on the same 
row (for example - other pictures work).
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(x,y))            

valid or not?
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(x,y))            

valid or not?

You could try to give meanings to T, M, and A and then 
use Tarski’s world or a shapes diagram, but it is usually 
easier (and safer) to draw a diagram.
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(x,y))            

valid or not?

You could try to give meanings to T, M, and A and then 
use Tarski’s world or a shapes diagram, but it is usually 
easier (and safer) to draw a diagram.

Label the Ts and the Ms and then have A(x,y) = x 
points to y
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EXAMPLES

T3

M3

T1

M1 M2

T1 T2

M1 M2

T3T1 T2

M1 M2
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EXAMPLES

∃x(T(x) ∧ ∀y(M(y) → A(x,y)))

T3

M3

T1

M1 M2

T1 T2

M1 M2

T3T1 T2

M1 M2
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EXAMPLES

∃x(T(x) ∧ ∀y(M(y) → A(x,y))) True,   False,   True

T3

M3

T1

M1 M2

T1 T2

M1 M2

T3T1 T2

M1 M2
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EXAMPLES

∃x(T(x) ∧ ∀y(M(y) → A(x,y))) True,   False,   True

T3

M3

T1

M1 M2

T1 T2

M1 M2

T3T1 T2

M1 M2

∀x(M(x) → ∃y(T(y) ∧ ¬A(y,x)))
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EXAMPLES

∃x(T(x) ∧ ∀y(M(y) → A(x,y))) True,   False,   True

T3

M3

T1

M1 M2

T1 T2

M1 M2

T3T1 T2

M1 M2

∀x(M(x) → ∃y(T(y) ∧ ¬A(y,x))) False,   False,   True
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EXAMPLES

∃x(T(x) ∧ ∀y(M(y) → A(x,y))) True,   False,   True

T3

M3

T1

M1 M2

T1 T2

M1 M2

T3T1 T2

M1 M2

∀x(M(x) → ∃y(T(y) ∧ ¬A(y,x)))

∀x(T(x) → ∃y(M(y) ∧  A(x,y)) 

False,   False,   True
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EXAMPLES

∃x(T(x) ∧ ∀y(M(y) → A(x,y))) True,   False,   True

T3

M3

T1

M1 M2

T1 T2

M1 M2

T3T1 T2

M1 M2

∀x(M(x) → ∃y(T(y) ∧ ¬A(y,x)))

∀x(T(x) → ∃y(M(y) ∧  A(x,y)) 

False,   False,   True

True,   True,   False
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3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?
1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))
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3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

Lets try to show this is invalid using a diagram. We are 
trying to make both of the premises true and the 
conclusion false. 

1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))
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1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?
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1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P2, we need an M that every T points to. - Lets call it M1
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1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P2, we need an M that every T points to. - Lets call it M1

T1

M1
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1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P2, we need an M that every T points to. - Lets call it M1

T1

M1

The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2
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1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P2, we need an M that every T points to. - Lets call it M1

T1

M1

The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2

M2
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1. ∀x(T(x) → ∃y(M(y) ∧ A(x,y))
2. ∃x(M(x) ∧ ∀y(T(y) → A(y,x))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P2, we need an M that every T points to. - Lets call it M1

T1

M1
For P1, we need to make sure that for every 
T, there is at least one M that it points to. 
Right now, that is true. So we are done.

The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2

M2
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1

For P2, we need a T that points to no M. - T2
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1

For P2, we need a T that points to no M. - T2

T2
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1

For P2, we need a T that points to no M. - T2

T2
The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1

For P2, we need a T that points to no M. - T2

T2
The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2M2
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1

For P2, we need a T that points to no M. - T2

T2
The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2M2

But don’t forget T1 was supposed to point to 
every M. Every time you add to the picture, 
make sure you keep that true. 
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1

For P2, we need a T that points to no M. - T2

T2
The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2M2

But don’t forget T1 was supposed to point to 
every M. Every time you add to the picture, 
make sure you keep that true. 
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1. ∃x(T(x) ∧ ∀y(M(y) → A(x,y))
2. ∃x(T(x) ∧ ∀y(M(y) → ¬A(x,y))

3. ∀x(M(x) → ∃y(T(y) ∧ A(y,x))            

valid or not?

For P1, we need a T that points to every M. - Lets call it T1

T1

M1

For P2, we need a T that points to no M. - T2

T2
The conclusion says for every M, there is a T 
that points to it. For this to be false, we need 
at least one M that nothing points to. - M2M2

***But you can’t do that here. M2 was the 
meeting that nothing went to. Adding an 
extra meeting won’t help either. So it is valid.
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MAKING A UNIVERSAL FALSE

∀x(M(x) → ∃y(T(y) ∧ A(y,x))  -- How to make it false? 
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NEGATED QUANTIFIERS
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NEGATED QUANTIFIERS

∀xP(x) is like a big conjunction.
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NEGATED QUANTIFIERS

∀xP(x) is like a big conjunction.

¬∀xP(x) is like the negation of a big conjunction.
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NEGATED QUANTIFIERS

∀xP(x) is like a big conjunction.

¬∀xP(x) is like the negation of a big conjunction.

           By DeMorgan’s like thinking....
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NEGATED QUANTIFIERS

∀xP(x) is like a big conjunction.

¬∀xP(x) is like the negation of a big conjunction.

           By DeMorgan’s like thinking....

¬∀xP(x) ⇔ ∃x¬P(x)  (a big disjunction of negations)
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NEGATED QUANTIFIERS

∀xP(x) is like a big conjunction.

¬∀xP(x) is like the negation of a big conjunction.

           By DeMorgan’s like thinking....

¬∀xP(x) ⇔ ∃x¬P(x)  (a big disjunction of negations)

By the same thought....
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NEGATED QUANTIFIERS

∀xP(x) is like a big conjunction.

¬∀xP(x) is like the negation of a big conjunction.

           By DeMorgan’s like thinking....

¬∀xP(x) ⇔ ∃x¬P(x)  (a big disjunction of negations)

By the same thought....

¬∃xP(x) ⇔ ∀x¬P(x)
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MAKING A UNIVERSAL FALSE
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MAKING A UNIVERSAL FALSE

To make an existential true, add something to the picture.
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MAKING A UNIVERSAL FALSE

To make an existential true, add something to the picture.

To make an existential false, don’t add anything.
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MAKING A UNIVERSAL FALSE

To make an existential true, add something to the picture.

To make an existential false, don’t add anything.

To make a universal true, you have to make sure that each 
time you add something to the picture, you go back and 
check the universal.
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MAKING A UNIVERSAL FALSE

To make an existential true, add something to the picture.

To make an existential false, don’t add anything.

To make a universal true, you have to make sure that each 
time you add something to the picture, you go back and 
check the universal.

To make a universal false, create a counterexample.
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MAKING A UNIVERSAL FALSE

To make an existential true, add something to the picture.

To make an existential false, don’t add anything.

To make a universal true, you have to make sure that each 
time you add something to the picture, you go back and 
check the universal.

To make a universal false, create a counterexample.

To make ∀xP(x) false, make ∃x¬P(x) true. 
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MAKING A UNIVERSAL FALSE

∀x(Cube(x) → Small(x))  -- How to make it false? 
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MAKING A UNIVERSAL FALSE

∀x(Cube(x) → Small(x))  -- How to make it false? 

¬∀x(Cube(x) → Small(x))   ⇔
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MAKING A UNIVERSAL FALSE

∀x(Cube(x) → Small(x))  -- How to make it false? 

¬∀x(Cube(x) → Small(x))   ⇔

∃x¬(Cube(x) → Small(x))   ⇔  (negate the quantifier)
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MAKING A UNIVERSAL FALSE

∀x(Cube(x) → Small(x))  -- How to make it false? 

¬∀x(Cube(x) → Small(x))   ⇔

∃x¬(Cube(x) → Small(x))   ⇔  (negate the quantifier)

∃x(Cube(x) ∧ ¬Small(x))     ⇔   (by taut con)
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MAKING A UNIVERSAL FALSE

∀x(Cube(x) → Small(x))  -- How to make it false? 

¬∀x(Cube(x) → Small(x))   ⇔

∃x¬(Cube(x) → Small(x))   ⇔  (negate the quantifier)

∃x(Cube(x) ∧ ¬Small(x))     ⇔   (by taut con)

So there is a cube which is not small
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MAKING A UNIVERSAL FALSE

∀x(M(x) → ∃y(T(y) ∧ A(y,x))  -- How to make it false? 
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MAKING A UNIVERSAL FALSE

∀x(M(x) → ∃y(T(y) ∧ A(y,x))  -- How to make it false? 

¬∀x(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔
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MAKING A UNIVERSAL FALSE

∀x(M(x) → ∃y(T(y) ∧ A(y,x))  -- How to make it false? 

¬∀x(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔

∃x¬(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔  (negate the quantifier)
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MAKING A UNIVERSAL FALSE

∀x(M(x) → ∃y(T(y) ∧ A(y,x))  -- How to make it false? 

¬∀x(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔

∃x¬(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔  (negate the quantifier)

∃x(M(x) ∧ ¬∃y(T(y) ∧ A(y,x))     ⇔   (by taut con)
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MAKING A UNIVERSAL FALSE

∀x(M(x) → ∃y(T(y) ∧ A(y,x))  -- How to make it false? 

¬∀x(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔

∃x¬(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔  (negate the quantifier)

∃x(M(x) ∧ ¬∃y(T(y) ∧ A(y,x))     ⇔   (by taut con)

So there is an M where it is false that there is a T that 
points to it. -- So no T points to it.
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MAKING A UNIVERSAL FALSE

∀x(M(x) → ∃y(T(y) ∧ A(y,x))  -- How to make it false? 

¬∀x(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔

∃x¬(M(x) → ∃y(T(y) ∧ A(y,x))   ⇔  (negate the quantifier)

∃x(M(x) ∧ ¬∃y(T(y) ∧ A(y,x))     ⇔   (by taut con)

So there is an M where it is false that there is a T that 
points to it. -- So no T points to it.

∃x(M(x) ∧ ∀y(T(y) → ¬A(y,x))     (quantifer + taut con)

Wednesday, April 30, 2014



EXAMPLES

T3

M3

T1 T2

M1 M2

T1 T2

M1 M2

T3

M3

T1 T2

M1 M2
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EXAMPLES

T3

M3

T1 T2

M1 M2

T1 T2

M1 M2

T3

M3

T1 T2

M1 M2

A very natural thing you might want to do is to talk not just 
about single teachers or single meetings, but about pairs of 
teachers or pairs of meetings. E.g. there is a pair of teachers 
who went to exactly the same meetings. Or a pair of 
meetings that between the two, every teacher went to.
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T3

M3

T1 T2

M1 M2

T1 T2

M1 M2

T3

M3

T1 T2

M1 M2
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∃x∃y(T(x) ∧ T(y) ∧ ∀z(M(z) → (A(x,z) ∨ A(y,z))))

T3

M3

T1 T2

M1 M2

T1 T2

M1 M2

T3

M3

T1 T2

M1 M2
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∃x∃y(T(x) ∧ T(y) ∧ ∀z(M(z) → (A(x,z) ∨ A(y,z))))

T3

M3

T1 T2

M1 M2

T1 T2

M1 M2

T3

M3

T1 T2

M1 M2

There is a pair of Ts such that for every M, at least 
one of those Ts went.
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For every M, there is a pair of Ts such that the 
first went to the M if and only if the second did.

How could this be right? What pair could work 
for say the first diagram?  -- Ans, <T1, T1>
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∀x(M(x) → ∃y∃z(T(y) ∧ T(z)) ∧ A(y,x) ↔ A(z,x)))

For every M, there is a pair of Ts such that the 
first went to the M if and only if the second did.

How could this be right? What pair could work 
for say the first diagram?  -- Ans, <T1, T1>

In fact, the above sentence follows just from ∃z T(y)
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But sometimes you explicitly want to talk about 
pairs of distinct Ts - two different Ts. For this you 
need identity.
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∀x(M(x) → ∃y∃z(T(y) ∧ T(z)) ∧ A(y,x) ↔ A(z,x)))

But sometimes you explicitly want to talk about 
pairs of distinct Ts - two different Ts. For this you 
need identity.

Identity is used whenever you want to count things
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COUNTING IN DIAGRAMS
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T1 T2
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T1 T2
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M3

T1 T2

M1 M2

A very natural thing you might want to say about these 
diagrams essentially involves counting. For example, there is 
one teacher who went to three meetings and two teachers 
who went to none (true in diagram 3). For this, you need 
identity.
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TRANSLATIONS
 WITH IDENTITY

∃x∃y(T(x) ∧ T(y))

Both x and y are teachers

- but not necessarily different!

∃x∃y(T(x) ∧ T(y) ∧ x≠y)

There are at least two teachers

∃x∃y(T(x) ∧ T(y) ∧ x≠y ∧ ∀z(M(z) → (A(x,z) ∧ A(y,z))) 

There are at least two painters

There are at least two teachers who attended every meeting
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