VVHICH ARE PROVABLE?

(PAQ) = R (PvQ) = R

(PAQ) = R (PvQ) = R

P— R P — R




VVHICH ARE PROVABLE?

P— R P—R
(PAQ) = R VALID (PvQ) = R INVALID
(PAQ) = R (PvQ) = R

B2 R INVALID P VALID

Friday, February 28, 2014



PROOFSWITH CONDITIONALS Il

Friday, 28 February




RULES FOR CONDITIONALS

® — Elimination: from P = Q and P, we can infer Q.

LR O
25

3.0 — Elim: 1,2

® < Elimination: from P < Q and P/Q, we can infer Q/P.

|.P & Q
2.0

3.P < Elim: 1,2
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FORMAL PROOF RULES

® — Introduction
From a proof from P to Q, we can infer P = Q.

i

j- Q

KPP0 — Intro: |-

This rule is often known as Conditional Proof
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THINK MAIN CONNECTIVE

Example:

o T
ST

(SoR)~ (PR))

Friday, February 28, 2014



THINK MAIN CONNECTIVE

Example: A

2.5T
o T ST
ST
(SR (P= RY)

(SoR) = (P—R))
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THINK MAIN CONNECTIVE

Example: A

2.5T
o T ST
B 3. S&R for = Intro
(SR (R R])
P—R
(S<R)—(P—R)) by —Intro 3-
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THINK MAIN CONNECTIVE

Example: A

2.5T
o T ST
B 3. S&R for = Intro
EHR)*(P*R)) 4. P for = Intro
R
P—R by —Intro 4-
(S<R)—(P—R)) by —Intro 3-
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THINK MAIN CONNECTIVE

Example: A

2.5T
o T ST
B 3. S&R for = Intro
EHR)*(P*R)) 4. P for = Intro
S+l —Elim 1,5
R
P—R by —Intro 4-
(S<R)—(P—R)) by —Intro 3-
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THINK MAIN CONNECTIVE

Example: A

2.5 1
P M g
B 3. SR for =Intro
EHR)*(P*R)) 4P for = Intro
o~ —Elim 1,5
6.5 <Elim 2,5
R
PR by —Intro 4-
(S<R)—(P—R)) by —Intro 3-
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THINK MAIN CONNECTIVE

Example: A

2.5 1
P M g
B 3. SR for =Intro
EHR)*(P*R)) 4P for = Intro
o~ —Elim 1,5
6.5 <Elim 2,5
/.R <Elim 3,6
PR by —Intro 4-
(S<R)—(P—R)) by —Intro 3-
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THINK MAIN CONNECTIVE

Example: A

2.5 1
e A BT
B 3. SR for =Intro
EHR)*(P*R)) 4P for = Intro
5.T —Elim [,4
6.5 <Elim 2,5
/.R <Elim 3,6
8.P—R — Intro 4-7
(S<R)—(P—R)) by —Intro 3-
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THINK MAIN CONNECTIVE

Example:

o T
ST

(SoR)~ (PR))

L1 o

2 5k
3. SR for —Intro
4. P for = Intro
oS- T —Elim [,4
6. S <Elim 2,5
/.R <Elim 3,6
8 P—R — Intro 4-7

9.(S~R)—(P—R))Intro 3-8
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THINK BACKWARDS

1. (P > Q)—R

Example:
(P 2Q)—R

(P=Q)—R

(P=Q)—R




THINK BACKWARDS

1. (P > Q)—R

2. PQ for —Intro

Example:

(P 2Q)—R

(P=Q)—R

R

(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

2. PQ for —Intro

Example:

(P 2Q)—R

(P=Q)—R

How to get R?

R

(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

2. PQ for —Intro

Example:

(P 2Q)—R

(P=Q)—R

How to get R?
From line 1

R

(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

Example: .
(P > Q)—R 2. PQ for —Intro
(P~Q)—R
How to get R?
From line 1
PO
R —Elim 1,

(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

2. PQ for —Intro

Example:

(P 2Q)—R

(P=Q)—R

P —Q
R —Elim 1,

(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

Example: .
(P > Q)—R 2. PQ for —Intro
_— 2 for = Intro
(P=Q)—R
Q
P—-Q — |ntro 3-
R — Elim 1,
(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

Example: .
(P > Q)—R 2. PQ for —Intro
_— 2 for = Intro
(P=Q)—R

4.Q <—Elim 2,3
P—-Q — |ntro 3-
R — Elim 1,

(P~Q)—R —Intro 2-

Friday, February 28, 2014



THINK BACKWARDS

1. (P > Q)—R

Example: .
(P > Q)—R 2. PQ for —Intro
_— 2 for = Intro
(P=Q)—R

4.Q <—Elim 2,3
5P 2Q —Intro 3-4
R — Elim 1,

(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

Example: .
(P > Q)—R 2. PQ for —Intro
_— 2 for = Intro
(P=Q)—R

4.Q <—Elim 2,3
5P 2Q —Intro 3-4
6.R — Elim 1,5

(P~Q)—R —Intro 2-
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THINK BACKWARDS

1. (P > Q)—R

Example: .
(P > Q)—R 2. PQ for —Intro
_— 2 for = Intro
(P=Q)—R

4.Q <—Elim 2,3
5P 2Q —Intro 3-4
6.R — Elim 1,5

7.(P~Q)—R —Intro 2-6
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THINK BACKWARDS

1. (P > Q)—R

Example:
2.50Q
(P 2Q)—R
S0
(RS R
(P=28) >R
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THINK BACKWARDS

1. (P > Q)—R

Example:
2.50Q
(P —~Q)—R JHREDS for =Intro
S-Q Co
(PS> R
R
(P—S)—R — Intro 3-
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THINK BACKWARDS

1. (P > Q)—R

Example:
2.50Q
(P—=Q)—R 3RS for = Intro
S0 o
(PS> R

How to get R?

R
(P—S)—R — Intro 3-
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THINK BACKWARDS

1. (P > Q)—R

Example:
2.50Q
(P—=Q)—R 3RS for = Intro
S0 o
(PS> R

How to get R?
From line 1

R
(P—S)—R — Intro 3-
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THINK BACKWARDS

1. (P > Q)—R

Example:
2.50Q
Lma® i amd) J2P-2S for = Intro
S-Q Co
(Pe¥Sh R
How to get R?
From line 1
Hend ®
R —Elim 1,

(P—S)—R — Intro 3-
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E(Br @) >R
2.50
3.P—S for = Intro
P—-0Q
R — Elim 1,
(PS8R - —ntro;3-
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E(Br @) >R
2.5Q
3.P—S for = Intro
4. P for = Intro
Q
P—-Q —Intro 4-
R — Elim 1,
(PS8R - —ntro;3-
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1. (P 2 Q)—R

2.5Q
3.P—S for = Intro
4 P for = Intro

5.5 —Elim 3,4

Q

P—-Q —Intro 4-
R —Elim 1,
(PS8R - —ntro;3-
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1. (P 2 Q)—R

2.5Q
3.P—S for = Intro
4 P for = Intro

5.S —Elim 3.4
6.0Q —Elim 2.5

Q

P—-Q —Intro 4-
R —Elim 1,
(PS8R - —ntro;3-
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1. (P 2 Q)—R

2.5Q
BLP—'S for = Intro
4 P for = Intro

5.S —Elim 3.4
6.0Q —Elim 2.5

/.P 2Q —Intro 4-6
R — Elim 1,
(PS8R - —ntro;3-
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2.5Q
~ 13.P—S
|4.P
5.5

6.Q

8.R
(P—S)—R

1. (P 2 Q)—R

for 2 Intro

for = Intro
—Elim 3,4
<Elim 2,5

/.P 2Q —Intro 4-6

—Elim [,/
— Intro 3-
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1. (P 2 Q)—R

2.5Q
BLP—'S for = Intro
4 P for = Intro

5.S —Elim 3.4
6.0Q —Elim 2.5

/.P 2Q —Intro 4-6
8.R —Elim [,7
9.(P2S)2R —Intro 3-8
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EXAMPLE

. el L v g g T Ly B 2ak
1. I Q

Example:
2. QR
P—Q B
QR
(P—R)AR-P)
(P=R)A(R—P)
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EXAMPLE

. el L v g g T Ly B 2ak
1. I Q

Example:
: 2.Q-R
i 3.P for = Intro
QR i
(P2 R)A(R—P)
(P2 R)A(R—P)
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EXAMPLE

Example: Lo =@
2. QR
P—Q B
2R for = Intro
Aol 4.Q oElm 1,3
(P=R)A(R—P)
(P=R)A(R—P)
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EXAMPLE

Example: Lo =@
2. QR
P—Q e
3P for = Intro
Aol 4.Q oElm 1,3
(P—=R)A(R—P) 5.R < Elim 2,4
(P=R)A(R—P)
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EXAMPLE

Example: Lo =@
2. QR
P—Q e
3P for = Intro
Aol 4.Q oElm 1,3
(P—R)A(R—P) 5.R < Elim 2,4

6.PPR —Intro 3-5

(P2 R)A(R—P)
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EXAMPLE

Example: 1.P=Q
2. QR
P—Q e
39 for = Intro
Aol 4.Q oElm 1,3
(P—R)A(R—P) 5.R < Elim 2,4
6.P7R —Intro 3-5
/.R for = Intro
(P2 R)A(R—P)
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EXAMPLE

1.| EQ

Example:
2. QR
P—Q e
39 for = Intro
Aol 4.Q oElm 1,3
(P—R)A(R—P) 5.R < Elim 2,4
6.P7R —Intro 3-5
/.R for = Intro
8.0 <—Elim 2,7
(P2 R)A(R—P)
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EXAMPLE

1.| EQ

Example:
2. QR
P—Q e
39 for = Intro
Aol 4.Q oElm 1,3
(P—R)A(R—P) 5.R < Elim 2,4
6.P7R —Intro 3-5
/.R for = Intro
8.0 <—Elim 2,7
9P <—Elim 1,8
(P2 R)A(R—P)
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EXAMPLE

1.| EQ

Example:
2. QR
P—Q e
39 for = Intro
Aol 4.Q oElm 1,3
(P—R)A(R—P) 5.R < Elim 2,4
6.P7R —Intro 3-5
/.R for = Intro
8.0 <—Elim 2,7
9.P <—Elim 1,8
|0.R—=P —Intro 7-9
(P2 R)A(R—P)
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EXAMPLE

1.| EQ

Example:
2. QR
P—Q e
39 for = Intro
Aol 4.Q  oElim 1,3
(P—R)A(R—P) 5.R «Elim 2,4
6.P7R —Intro 3-5
/.R for = Intro
8.0 <—Elim 2,7
9.P <Elim 1,8
|0.R—P — |ntro 7-9
| 1.(P?R)A(R—P) Alntro 6,10
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FORMAL PROOF RULES

® < _Introduction: from a proof from P to Q and a

proof from Q to P, we can infer P & Q.

i

- Q
kQ

m. P

k.P < Q < Intro: | -j, k-m
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FORMAL PROOF RULES

® < _Introduction: from a proof from P to Q and a

proof from Q to P, we can infer P & Q.

|.P

IQ Proving a biconditional just is
O proving two conditionals
m. P l

k.P < Q < Intro: | -j, k-m
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BICONDITIONAL INTRODUCTION

1. P~Q
2.QoR

Example:

P—Q
Q<R

P—~R

P—R




BICONDITIONAL INTRODUCTION

. el L v g g T Ly B 2ak
1. I Q

Example:
P 2.Q0R
e 3R for <Intro
Q<R =
P—R
P—R
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BICONDITIONAL INTRODUCTION

Example: 1.PoQ
2.Q0R
L 3P for <Intro
el 4.Q ©Flim 13
P—R
P—R
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BICONDITIONAL INTRODUCTION

Example: 1.PoQ
2.Q0R
A 3.P for «Intro
Qe 4.Q oFim 1,3
POR 5.R  oElim 2,4
P—R
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BICONDITIONAL INTRODUCTION

Example: 1.PoQ
: 2.Q0R
e 3.P for «Intro
Aol 4.Q oElm 1,3
PoR R e ElimiZ.4
6.R for «Intro
P—R
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BICONDITIONAL INTRODUCTION

Example: 1.PoQ
: 2.Q0R
e 3.P for «Intro
Aol 4.Q oElm 1,3
PoR R e ElimiZ.4
.R for «Intro
7.Q —Elim 2,6
P—R
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BICONDITIONAL INTRODUCTION

Example: 1.PoQ
: 2.Q0R
e 3.P for «Intro
Aol 4.Q oElm 1,3
PoR R e ElimiZ.4
6.R for «Intro
7.Q —Elim 2,6
8.P <Elim 1,7
P—R
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BICONDITIONAL INTRODUCTION

Example: 1.PoQ
2.Q0R
i 3P for «<Intro
Qe 4.Q oEim 1,3
PR 5.R  oElim 2,4
.R for <Intro
7.Q  oElim 2,6
8.P <Elim 1,7
9.PoR  <lIntro 3-5, 6-8
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50O, 1.P~Q
12.QoR 2.Q<R

3. P for =Intro 3.P for <Intro
4.Q ofFlim 1,3 4 B iblinr] 3
5.R <Elim 2,4 5.R  <Elim 2,4

6.P7R —Intro 3-5
/.R for = Intro 6.R for «Intro
8.Q  oElim27 2.0 Blimas
9.P <Elim 1,8 8.P <Elim 1,7

|0. R—P — Intro 7-9

11.(P=R)A(R—P) alntro 6,10 | 9-PoR  «<lIntro 3-5,6-8
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BICONDITIONAL INTRODUCTION

Example:

P—Q

“P—Q




BICONDITIONAL INTRODUCTION

. el L v g g T Ly B 2ak
1. I Q

Example:

P—Q

“P—Q

“P--0Q




BICONDITIONAL INTRODUCTION

Example: 1.PoQ
P
e 2o=P for «Intro
“P—Q -Q
—Q for «Intro
]
“Po-Q <Intro
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1.P<Q

“P—nQ
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1.P<Q

7 24 for «<Intro

“P—nQ <|ntro
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1.P<Q

7 24 for «<Intro

3.0 for mintro

—Q —|ntro

“P—nQ <|ntro
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1.P<Q

7 24 for «<Intro

3.0 for mlntro
4 P <Elim |,3

—Q —|ntro

“P—nQ <|ntro
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1.P<Q

7 24 for «<Intro

3.0 for mlntro
4 P <Elim |,3

5ol 1 Intro 2,4

—Q —|ntro

“P—nQ <|ntro
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1.P~Q

25:P

3.Q
4.P

S el

“P—Q

for <Intro

for =intro
<Elim |,3

1 Intro 2,4
=lntro 3-5

<|ntro
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1.P~Q

“P—Q

for <Intro

for =intro
<Elim |,3

1 Intro 2,4
=lntro 3-5

for <lIntro

<|ntro
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| for <lIntro

3.0 for =lntro
4.P <Elim |,3

Sl 1 Intro 2,4
6.Q —|ntro 3-5

7.7Q for «Intro
8.P for =lntro
P

“P-Q <Intro
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1.P~Q

for «<Intro
for =intro
<Elim |,3

1 Intro 2,4
=lntro 3-5

for <lIntro

for Tlntro

<Elim 1,8

<|ntro
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1.P~Q

| for <lIntro

3.0 for =lntro
4.P <Elim |,3

Sl 1 Intro 2,4
6.Q —|ntro 3-5

7.7Q for «Intro
8.P for =lntro
9.0 <Elim 1,8
0. L 1 Intro 7,9

-P
“P-Q <Intro
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1.P~Q

sV % for «<Intro

3.0 for mlntro
4. P < Elim I,3

5. Souli 1 Intro 2,4
6.Q =|ntro 3-5

fa () for «Intro
8.P for =lntro
9.Q <Elim 1,8
0. L 1 Intro 7,9

5 e 11 =|ntro 8-10
“P—Q <|ntro
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1.P<~Q

] o for <lIntro

3.0 for =lntro
4.P <Elim I,3

D sl 1 Intro 2,4
6.Q =|ntro 3-5

7.7Q for «Intro
8.P for =lntro
9.0 <Elim 1,8
0. L 1 Intro 7,9

| |. =P =|ntro 8-10
|2. " P~Q <Intro 2-6,7-11
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BICONDITIONAL INTRODUCTION




BICONDITIONAL INTRODUCTION

® When you prove a biconditional, you are
showing that you can do two proofs - one from
left to right and one from right to left.
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BICONDITIONAL INTRODUCTION

® When you prove a biconditional, you are
showing that you can do two proofs - one from
left to right and one from right to left.

® |f two sentences are equivalent, then you could
do a proof from the first to the second and you
could also do a proof from the second to the
first.

Friday, February 28, 2014



TABLES AND PROOFS




TABLES AND PROOFS

® |f a sentence is a tautology, you can prove it from
no premises at all.
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TABLES AND PROOFS

® |f a sentence is a tautology, you can prove it from
no premises at all.

® |f two sentences are equivalent, then the
biconditional between them is a tautology
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TABLES AND PROOFS

® |f a sentence is a tautology, you can prove it from
no premises at all.

® |f two sentences are equivalent, then the
biconditional between them is a tautology

® ---- S0 you can prove the biconditional
from no premises at all (by doing the two
relevant proofs and then sticking them
together

Friday, February 28, 2014



EXAMPLES OF EQUIVALENCES

DeMorgan’s Laws

(P v Q) -PA=Q

and also —

“PAQ =Ry 1)

so by doing both proofs and then doing <lIntro

(P v Q) & (-PA-Q)




EXAMPLES OF EQUIVALENCES

Contraposition

P—Q 51 ) g ]
e and also e
“Q—-P P—=Q

so by doing both proofs and then doing <lIntro

?—bQ) o (Q—-P)




