WHICH ARE PROVABLE?

$$P \to R$$

$$(P \land Q) \to R$$

$$P \to R$$

$$(P \lor Q) \to R$$

$$(P \land Q) \rightarrow R$$

$$P \rightarrow R$$

$$(P \lor Q) \to R$$

$$P \to R$$

WHICH ARE PROVABLE?

$$P \rightarrow R$$
 $P \rightarrow R$ $P \rightarrow$

$$(P \land Q) \rightarrow R$$

$$P \rightarrow R \quad INVALID$$

$$(P \lor Q) \rightarrow R$$

$$P \rightarrow R \qquad VALID$$

PROOFS WITH CONDITIONALS III Friday, 28 February Friday, February 28, 2014

RULES FOR CONDITIONALS

• \rightarrow Elimination: from P \rightarrow Q and P, we can infer Q.

$$\begin{array}{ccc}
I. P \rightarrow Q \\
2. P \\
\hline
3. Q \rightarrow Elim: 1,2
\end{array}$$

• \leftrightarrow Elimination: from P \leftrightarrow Q and P/Q, we can infer Q/P.

$$\begin{array}{ccc}
I.P \leftrightarrow Q \\
2.Q \\
\end{array}$$

$$3.P & \leftrightarrow Elim: 1,2$$

FORMAL PROOF RULES

From a proof from P to Q, we can infer $P \rightarrow Q$.

```
| I. P
| ...
| j. Q
| k. P → Q → Intro: I-j
```

This rule is often known as Conditional Proof

$$P \rightarrow T$$
 $S \leftrightarrow T$
 $(S \leftrightarrow R) \rightarrow (P \rightarrow R))$

$$P \rightarrow T$$

$$S \leftrightarrow T$$

$$(S \leftrightarrow R) \rightarrow (P \rightarrow R))$$

I. P → T
2. S
$$\leftrightarrow$$
T

$$(S \leftrightarrow R) \rightarrow (P \rightarrow R))$$

Example:

$$P \rightarrow T$$
 $S \leftrightarrow T$
 $(S \leftrightarrow R) \rightarrow (P \rightarrow R))$

 $(S \leftrightarrow R) \rightarrow (P \rightarrow R))$ by $\rightarrow Intro 3$ -

 $P \rightarrow R$

$$P \to T$$

$$S \leftrightarrow T$$

$$(S \leftrightarrow R) \to (P \to R))$$

$$P \to T$$

$$S \leftrightarrow T$$

$$(S \leftrightarrow R) \to (P \to R))$$

$$P \to T$$

$$S \leftrightarrow T$$

$$(S \leftrightarrow R) \to (P \to R)$$

$$P \to T$$

$$S \leftrightarrow T$$

$$(S \leftrightarrow R) \to (P \to R)$$

$$P \to T$$

$$S \leftrightarrow T$$

$$(S \leftrightarrow R) \to (P \to R)$$

$$P \to T$$

$$S \leftrightarrow T$$

$$(S \leftrightarrow R) \to (P \to R)$$

I. P → T
2. S ↔ T
3. S ↔ R for → Intro
| 4. P for → Intro
| 5. T → Elim I, 4
| 6. S ↔ Elim 2, 5
| 7. R ↔ Elim 3, 6
| 8. P → R → Intro 4-7
9.
$$(S \leftrightarrow R) \rightarrow (P \rightarrow R)) \rightarrow Intro 3-8$$

$$(P \to Q) \to R$$

$$(P \leftrightarrow Q) \to R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

$$(P \leftrightarrow Q) \rightarrow F$$

Example:

$$(P \to Q) \to R$$

$$(P \leftrightarrow Q) \to R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

$$|2.P\leftrightarrow Q|$$
 for \rightarrow Intro

R

$$(P \leftrightarrow Q) \rightarrow R \rightarrow Intro 2$$

Example:

$$(P \rightarrow Q) \rightarrow R$$

$$(P \leftrightarrow Q) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

$$|2.P\leftrightarrow Q|$$
 for \rightarrow Intro

How to get R?

R

$$(P \leftrightarrow Q) \rightarrow R \rightarrow Intro 2$$

Example:

$$(P \rightarrow Q) \rightarrow R$$

$$(P \leftrightarrow Q) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

$$|2.P\leftrightarrow Q|$$
 for \rightarrow Intro

How to get R? From line 1

R

$$(P \leftrightarrow Q) \rightarrow R \rightarrow Intro 2$$

Example:

$$(P \rightarrow Q) \rightarrow R$$

$$(P \leftrightarrow Q) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

$$|2.P\leftrightarrow Q|$$
 for \rightarrow Intro

How to get R? From line 1

$$P \rightarrow Q$$

$$(P \leftrightarrow Q) \rightarrow R \rightarrow Intro 2$$

$$(P \to Q) \to R$$
$$(P \leftrightarrow Q) \to R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

$$|2.P\leftrightarrow Q|$$
 for \rightarrow Intro

$$P \rightarrow Q$$

R
$$\rightarrow$$
 Elim 1,

$$(P \leftrightarrow Q) \rightarrow R \rightarrow Intro 2$$

$$(P \to Q) \to R$$

$$(P \leftrightarrow Q) \to R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $P \leftrightarrow Q$ for \rightarrow Intro

3. P for \rightarrow Intro

Q

P $\rightarrow Q$ \rightarrow Intro 3-

R \rightarrow Elim 1,

 $(P \leftrightarrow Q) \rightarrow R$ \rightarrow Intro 2-

$$(P \rightarrow Q) \rightarrow R$$

$$(P \leftrightarrow Q) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $P \leftrightarrow Q$ for \rightarrow Intro

3. P for \rightarrow Intro

4. Q \leftrightarrow Elim 2,3

 $P \rightarrow Q$ \rightarrow Intro 3-

 R \rightarrow Elim 1,

 $(P \leftrightarrow Q) \rightarrow R$ \rightarrow Intro 2-

$$(P \to Q) \to R$$

$$(P \leftrightarrow Q) \to R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $P \leftrightarrow Q$ for \rightarrow Intro

3. P for \rightarrow Intro

4. Q \leftrightarrow Elim 2,3

5. $P \rightarrow Q$ \rightarrow Intro 3-4

 R \rightarrow Elim 1,

 $(P \leftrightarrow Q) \rightarrow R$ \rightarrow Intro 2-

$$(P \to Q) \to R$$
$$(P \leftrightarrow Q) \to R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $P \leftrightarrow Q$ for \rightarrow Intro

3. P for \rightarrow Intro

4. Q \leftrightarrow Elim 2,3

5. $P \rightarrow Q$ \rightarrow Intro 3-4

6. R \rightarrow Elim 1,5

 $(P \leftrightarrow Q) \rightarrow R$ \rightarrow Intro 2-

$$(P \to Q) \to R$$

$$(P \leftrightarrow Q) \to R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $P \leftrightarrow Q$ for \rightarrow Intro

3. P for \rightarrow Intro

4. $Q \leftrightarrow$ Elim 2,3

5. $P \rightarrow Q \rightarrow$ Intro 3-4

6. $R \rightarrow$ Elim 1,5

7. $(P \leftrightarrow Q) \rightarrow R \rightarrow$ Intro 2-6

$$(P \rightarrow Q) \rightarrow R$$

$$S \leftrightarrow Q$$

$$(P \rightarrow S) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $S \leftrightarrow Q$

$$(P \rightarrow S) \rightarrow P$$

$$(P \rightarrow Q) \rightarrow R$$

$$S \leftrightarrow Q$$

$$(P \rightarrow S) \rightarrow R$$

$$\begin{vmatrix}
 1. (P \to Q) \to R \\
 2. S \leftrightarrow Q
 \end{vmatrix}$$

$$\begin{vmatrix}
 R \\
 (P \to S) \to R
 \end{vmatrix}$$

Intro 3-

$$(P \rightarrow Q) \rightarrow R$$

$$S \leftrightarrow Q$$

$$(P \rightarrow S) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $S \leftrightarrow Q$
3. $P \rightarrow S$ for \rightarrow Intro
How to get R?

$$(P \rightarrow Q) \rightarrow R$$

$$S \leftrightarrow Q$$

$$(P \rightarrow S) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $S \leftrightarrow Q$
| 3. $P \rightarrow S$ for \rightarrow Intro
| How to get R?
| From line 1

$$(P \rightarrow Q) \rightarrow R$$

$$S \leftrightarrow Q$$

$$(P \rightarrow S) \rightarrow R$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $S \leftrightarrow Q$
| 3. $P \rightarrow S$ | for \rightarrow Intro
| How to get R?
| From line 1
| P \rightarrow Q | R \rightarrow Elim 1,
| $(P \rightarrow S) \rightarrow R$ \rightarrow Intro 3-

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $S \leftrightarrow Q$
3. $P \rightarrow S$ for \rightarrow Intro

$$P \rightarrow Q$$

$$R \rightarrow Elim 1,$$

$$(P \rightarrow S) \rightarrow R \rightarrow Intro 3-$$

1.
$$(P \rightarrow Q) \rightarrow R$$

2. S \leftrightarrow Q
| 4. P | for \rightarrow Intro
| Q | P \rightarrow Q \rightarrow Intro 4-
| R | \rightarrow Elim 1,
| (P \rightarrow S) \rightarrow R \rightarrow Intro 3-

1. (P →Q)→R
2. S↔Q
3. P→S for →Intro
4. P for →Intro
5. S →Elim 3,4

$$Q$$

P →Q →Intro 4-
R →Elim 1,
(P→S)→R →Intro 3-

1. (P → Q) → R
2. S ↔ Q
3. P → S for → Intro
4. P for → Intro
5. S → Elim 3,4
6. Q
$$\leftrightarrow$$
 Elim 2,5
Q
P → Q → Intro 4-
R → Elim 1,
(P → S) → R → Intro 3-

1.
$$(P \rightarrow Q) \rightarrow R$$

2. $S \leftrightarrow Q$
3. $P \rightarrow S$ for \rightarrow Intro
4. P for \rightarrow Intro
5. S \rightarrow Elim 3,4
6. Q \leftrightarrow Elim 2,5
7. $P \rightarrow Q$ \rightarrow Intro 4-6
8. R \rightarrow Elim 1,7
9. $(P \rightarrow S) \rightarrow R$ \rightarrow Intro 3-8

Example:

$$P \leftrightarrow Q$$

$$Q \leftrightarrow R$$

$$(P \rightarrow R) \land (R \rightarrow P)$$

 $(P \rightarrow R) \land (R \rightarrow P)$

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$

$$(P \rightarrow R) \land (R \rightarrow P)$$

$$(P \rightarrow R) \land (R \rightarrow P)$$

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$
 $(P \rightarrow R) \land (R \rightarrow P)$

1.
$$P \leftrightarrow Q$$

2. $Q \leftrightarrow R$

$$\begin{vmatrix} 3. P & \text{for } \rightarrow \text{Intro} \\ 4. Q & \leftrightarrow \text{Elim } 1,3 \end{vmatrix}$$

$$(P \rightarrow R) \land (R \rightarrow P)$$

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$
 $(P \rightarrow R) \land (R \rightarrow P)$

$$(P \rightarrow R) \land (R \rightarrow P)$$

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$
 $(P \rightarrow R) \land (R \rightarrow P)$

$$(P \rightarrow R) \land (R \rightarrow P)$$

Example:

$$\begin{array}{c}
P \leftrightarrow Q \\
Q \leftrightarrow R \\
\hline
(P \rightarrow R) \land (R \rightarrow P)
\end{array}$$

```
1. P↔Q
2. Q⇔R
      for →Intro
 3. P
 5. R
      ⇔Elim 2,4
6. P→R →Intro 3-5
 7. R for →Intro
```

 $(P \rightarrow R) \land (R \rightarrow P)$

$$|P \leftrightarrow Q|$$

$$Q \leftrightarrow R$$

$$(P \rightarrow R) \land (R \rightarrow P)$$

```
1. P↔Q
2. Q⇔R
        for →Intro
 3. P
 4. Q ↔Elim 1,3
 5. R
        ⇔Elim 2,4
6. P \rightarrow R \rightarrow Intro 3-5
  7. R for →Intro
```

$$(P \rightarrow R) \land (R \rightarrow P)$$

$$|P \leftrightarrow Q|$$

$$Q \leftrightarrow R$$

$$(P \rightarrow R) \land (R \rightarrow P)$$

```
1. P↔Q
2. Q⇔R
        for →Intro
 3. P
 4. Q ↔Elim 1,3
 5. R
        ⇔Elim 2,4
6. P \rightarrow R \rightarrow Intro 3-5
  7. R for →Intro
 9. P
         ⇔Elim 1,8
```

$$(P \rightarrow R) \land (R \rightarrow P)$$

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$
 $(P \rightarrow R) \land (R \rightarrow P)$

```
1. P↔Q
2. Q⇔R
  3. P
         for →Intro
  4. Q ↔ Elim 1,3
 5. R
         ⇔Elim 2,4
6. P \rightarrow R → Intro 3-5
  7. R for →Intro
  10. R \rightarrow P \rightarrow Intro 7-9
(P \rightarrow R) \land (R \rightarrow P)
```

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$

$$(P \rightarrow R) \land (R \rightarrow P)$$

```
1. P↔Q
2. Q⇔R
  3. P
          for →Intro
  5. R
          ⇔Elim 2,4
6. P \rightarrow R \rightarrow Intro 3-5
  7. R for →Intro
  10. R \rightarrow P \rightarrow Intro 7-9
II. (P \rightarrow R) \land (R \rightarrow P) \land Intro 6, 10
```

FORMAL PROOF RULES

• \leftrightarrow Introduction: from a proof from P to Q and a proof from Q to P, we can infer P \leftrightarrow Q.

FORMAL PROOF RULES

• \leftrightarrow Introduction: from a proof from P to Q and a proof from Q to P, we can infer P \leftrightarrow Q.

Example:

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$

Example:

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$

Example:

$$P \leftrightarrow Q$$
 $Q \leftrightarrow R$

Example:

$$P \leftrightarrow Q$$

$$Q \leftrightarrow R$$

$$P \leftrightarrow Q$$

$$Q \leftrightarrow R$$

$$P \leftrightarrow R$$

$$P \leftrightarrow Q$$

$$Q \leftrightarrow R$$

$$P \leftrightarrow R$$

$$P \leftrightarrow Q$$

$$Q \leftrightarrow R$$

$$P \leftrightarrow R$$

$$P \leftrightarrow Q$$

$$Q \leftrightarrow R$$

9.
$$P \leftrightarrow R \leftrightarrow Intro 3-5, 6-8$$

for →Intro
⇔Elim 1,3
⇔Elim 2,4
→Intro 3-5
for →Intro
⇔Elim 2,7
⇔Elim 1,8
→Intro 7-9
\land (R \rightarrow P) \land Intro 6,10

$$P \leftrightarrow Q$$

$$\neg P \leftrightarrow \neg Q$$

$$\neg P \leftrightarrow \neg Q$$

1.
$$P \leftrightarrow Q$$

| 2. ¬P for \leftrightarrow Intro
| ¬Q

| ¬Q for \leftrightarrow Intro
| ¬P \leftrightarrow P \leftrightarrow P \leftrightarrow Intro

1. P↔Q	
2. ¬P	for ⇔Intro
3. Q	for ¬Intro
4. P	⇔Elim 1,3
5. ⊥ 6. ¬Q	⊥ Intro 2,4
6. ¬Q	¬Intro 3-5
7. ¬Q	for ↔Intro
8. P	for ¬Intro
9. Q 10. ⊥	⇔Elim 1,8
10. ⊥	⊥ Intro 7,9
□¬P	
$\neg P \leftrightarrow \neg Q$	⇔Intro

1. P↔Q	
2. ¬P	for ↔Intro
3. Q	for ¬Intro
4. P	⇔Elim 1,3
5. ⊥ 6. ¬Q	⊥ Intro 2,4
6. ¬Q	¬Intro 3-5
7. ¬Q	for ↔Intro
8. P	for ¬Intro
9. Q	⇔Elim 1,8
10. ⊥	⊥ Intro 7,9
	¬Intro 8-10 ⇔Intro

```
1. P↔Q
2. ¬P
        for ↔Intro
 3. Q for ¬Intro
  ⊥ Intro 2,4
6. ¬Q ¬Intro 3-5
7. ¬Q for ↔Intro
 |8.P for ¬Intro
  10. ⊥ ⊥ Intro 7,9
11.¬P ¬Intro 8-10
12. \neg P \leftrightarrow \neg Q \leftrightarrow Intro 2-6, 7-11
```


 When you prove a biconditional, you are showing that you can do two proofs - one from left to right and one from right to left.

- When you prove a biconditional, you are showing that you can do two proofs - one from left to right and one from right to left.
- If two sentences are equivalent, then you could do a proof from the first to the second and you could also do a proof from the second to the first.

TABLES AND PROOFS

 If a sentence is a tautology, you can prove it from no premises at all.

TABLES AND PROOFS

- If a sentence is a tautology, you can prove it from no premises at all.
- If two sentences are equivalent, then the biconditional between them is a tautology

TABLES AND PROOFS

- If a sentence is a tautology, you can prove it from no premises at all.
- If two sentences are equivalent, then the biconditional between them is a tautology
 - ---- So you can prove the biconditional from no premises at all (by doing the two relevant proofs and then sticking them together

EXAMPLES OF EQUIVALENCES

DeMorgan's Laws

so by doing both proofs and then doing ⇔Intro

$$\neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q)$$

EXAMPLES OF EQUIVALENCES

Contraposition

$$P \rightarrow Q$$
 and also $Q \rightarrow \neg P$ $\neg Q \rightarrow \neg P$

so by doing both proofs and then doing ⇔Intro

$$(P \rightarrow Q) \leftrightarrow (\neg Q \rightarrow \neg P)$$