
PUZZLE

You meet two people on the island of knights and 
knaves.

A says “Either I am a knight or B is a knight.”

B says “A is a knave.”

Who is what?
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CONSTRUCTING A FORMAL PROOF

In a proof you assume a set of premises, and work 
step by step to the desired conclusion (if the 
conclusion is a logical consequence of the premises!)

Each step is justified by invoking a rule that is part of 
our formal system of deduction.   

In this class, we have been using Fitch but there are 
other systems of proof (deductive systems). 
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From P and Q, we can infer P∧Q.
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From P∧Q, we can infer P.  
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∧ Introduction                                                  
From P and Q, we can infer P∧Q.

∧ Elimination                                                       
From P∧Q, we can infer P.  

1. P ∧ Q
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PROOFS

Disjunction (∨) Introduction

Intuitively, if you know that A is true, then you can 
conclude that either A or B (or both).  

Ex: If Alice will be at the party, then it is true that 
either Alice or Bill will be there.

In general, from P we can infer ‘P or Q’.  
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FORMAL PROOF RULES (∨)

∨ Introduction                                                  
From P, we can infer P∨Q.

Another example: 

1. P

2. P∨((Q↔R)→¬S)     ∨ Intro: 1

1. P

2. P ∨ Q               ∨ Intro: 1
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that C follows from A and C also follows from B, then 
you know that C is the case.  
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PROOF BY CASES

Intuitively, if you know that A or B is the case, and 
that C follows from A and C also follows from B, then 
you know that C is the case.  

Example: I will either go to the bank on Monday or 
Tuesday.  So either way, I will have some money to 
buy lunch on Wednesday. 
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In general, proof by cases (disjunction elimination) is 
when you start with a disjunction and show for each 
disjunct that, if you assume its truth, some sentence S 
follows.  
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PROOF BY CASES

Disjunction (∨) Elimination

In general, proof by cases (disjunction elimination) is 
when you start with a disjunction and show for each 
disjunct that, if you assume its truth, some sentence S 
follows.  

Note: you don’t need to know which disjunct is true.
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PROOF BY CASES

Disjunction Elimination formalizes proof by cases.

In order to use proof by cases, we need to be able to 
make assumptions in our proof. 

To show that certain things follow from a set of 
assumptions, we use subproofs.

BUT we can only make assumptions within a 
subproof.
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∨ Elimination                                                          
If R follows from P, and if R 
follows from Q, then from    
P∨Q, we can infer R.  
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PROOF BY CASES

∨ Elimination                                                          
If R follows from P, and if R 
follows from Q, then from    
P∨Q, we can infer R.  

1. P ∨ Q

2. P 

… 
j. R           ?? 

k. Q 

… 
m. R          ??

n. R            ∨Elim: 1,2-j,k-m

Scope Lines

Scope Lines indicate assumptions 
that don’t necessarily follow from 
earlier assumptions
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∧, ∨ DISTRIBUTION RULES

Distribution rules:

P∧(Q∨R) ⇔ (P∧Q)∨(P∧R)

P∨(Q∧R) ⇔ (P∨Q)∧(P∨R)
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