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1. Introduction. The theory of probability and statistics which I have been
upholding for more than twenty years originates in the conception that the only
aim of such a theory is to give a description of certain observable phenomena,
the so called mass phenomena and repetitive events, like games of chance or
some specified attributes occurring in a large population. Describing means
here, in the first place, to find out the relations which exist between sequences
of events connected in some way, e.g. a sequence of single games arid the sequence
composed of sets of those games or between a sequence of direct observations
and the so called inverse probability within the same field of observations. The
theory is a mathematical one, like the mathematical theory of electricity, based
on experience, but operating by means of mathematical processes, particularly
the methods of analysis of real variables and theory of sets.

We all know very well that in colloquial language the term probability or
probable is very often used in cases which have nothing to do with mass phe-
nomena or repetitive events. But I decline positively to apply the mathemati-
cal theory to questions like this: What is the probability that Napoleon was a
historical person rather than a solar myth? This question deals with an iso-
lated fact which in no way can be considered as an element in a sequence of
uniform repeated observations. We are all familiar with the fact that, e.g. the
word energy is often used in every day language in a sense which does not
conform to the notion of energy as adopted in mathematical physics. This
does not impair the value of the precise definition of energy used in physies and
on the other hand this definition is not intended to cover the entire field of daily
application of the term energy.

We discard likewise the scholastic point of view displayed in a sentence of this
kind: . .. that both in its meaning and in the laws which it obeys, probability
derives directly from intuition and is prior to objective experience.” This
sentence is quoted from a mathematical paper printed in a mathematical journal
of 1940. The same author continues calling probability a metaphysical problem
and speaking of the difficulties ‘““which must in the nature of things always be
encountered when an attempt is made to give a mathematical or physical solu-
tion to a metaphysical problem.” In my opinion the calculus of probability
has nothing to do with metaphysics, at any rate not more than geometry or
mechanics has.

1 Address delivered on September 11, 1940 at a meeting of the Institute of Mathematical
Statistics in Hanover, N. H.
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On the other hand we claim that our theory, which serves to describe ob-
servable facts, satisfies all reasonable requirements of logical consistency and is
free from contradictions and obscurities of any kind. I am now going to outline
the essential ideas of the theory as developed by me since 1919 and I shall have
to refer as to the proof of its consistency to the recent work of A. H. Copeland,
of J. Herzberg and of A. Wald. Then I will give some examples of application
in order to show how the theory works and how it applies to actual problems in
statistics.

2. The notion of kollektiv. The basic notion upon which the theory is estab-
lished is the concept of kollektiv. We consider an infinite sequence of experi-
ments or observations every one of which supplies a definite result in the form
of a number (or a group of numbers in the case of a kollektiv of more than one
dimension). We shall designate briefly by X the sequence of results z;, .,
23, --- . In tossing a die we get for X an endless repetition of the integers one
tosix,z = 1,2, -.. 6. If we are interested in death probability, we observe a
large group of healthy 40 year old men and mark a one for each individual sur-
viving his 41st aniversary and a zero for each man who dies before, so that the
sequence I, %2, %3, --- consists of zeros and ones. In a certain sense the
kollektiv corresponds to what is called a population in practical statistics. Ex-
perience shows that in such sequences the relative frequency of the different
results (one to six in the first of our examples, one and zero in the second) varies
only slightly, if the number of experiments is large enough. We are therefore
prompted to assume that in the kollektiv, i.e. in the theoretical model of the
empirical sequences or populations, each frequency has a limiting value, if the
number of elements increases endlessly. This limiting value of frequency is
called, under certain conditions which I shall explain later, the “probability of
the attribute in question within the kollektiv involved.” The set of all limiting
frequencies within one kollektiv is called its distribution.

Let me insist on the fact that in no case is a probability value attached to a
single event by itself, but only to an event as much as it is the element of a well
defined sequence. It happens often that one and the same fact can be considered
as an element of different kollektivs. It may then be that different probability
values can be ascribed to the same event. I shall give a striking example of this,
which we encounter in the field of actual statistical problems, at the end of this
lecture.

The objection has been made: Since all empirical sequences are obviously
finite sequences, why then assume infinite kollektivs? Our answer is that any
straight line we encounter in reality has finite length, but geometry is based on
the notion of infinite straight lines and uses e.g. the notion of parallels which
has no sense, if we réstrict ourselves to segments of finite lengths. Another
objection, often repeated, reads that there is a contradiction between the exist-
ence of a frequency limit and the so called Bernoulli theorem which states that
sequences of any length showing a frequency say % can also occur in cases for
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which the probability equals 4. But it has been proved, in a rigorous way ex-
cluding any doubt, that the two statements are compatible, even by explicit
construction of infinite sequences fulfilling both conditions. I would even claim
that the real meaning of the Bernoulli theorem is inaccessible to any probability
theory that does not start with the frequency definition of probability.

Now we are in the position to explain how our probability theory works.
This sequence of zeros and ones

(X) 101(001|100/011]110]{011/010(111 ...

may represent the outcomes of a game of chance. The ones show gains, the
zeros losses for one of the two players. If we separate the terms of X into groups
of three digits and replace each group by a single one or zero according to the
majority of terms within the group, we get a new sequence

(X" 10011101 ...

which represents the gains and losses in sets of three games. Our task is now
to compute the distribution, i.e. the limiting frequencies of zeros and ones in
this new sequence X', assuming the two frequencies in X are known. A sequence
can formally be considered as a unique number like a decimal fraction with an
infinite number of digits. Then the transition from X to X’ can be called a
transformation of a number X’ = T(X). As our sequences have to fulfill certain
conditions Copeland calls the sequences X, X’ admissible numbers. What I
just quoted was of course a very special example of a transformation of a number.
But we have to emphasize that all problems dealt with in probability theory,
without any exception, have this unique form: The distribution or the limiting
frequencies in certain sequences are given, other sequences are derived from the
given ones by certain operations, and the distributions in these derived sequences
have to be computed. In other words: Probability theory is the study of trans-
SJormations of admissible numbers, particularly the study of the change of distribu-
tions tmplied by such transformations.

We know four and only four simple, i.e. irreducible transformations or four
Sundamental operations. They are called selection, mixing, partitioning and
combination. By combining these basic processes we can settle all problems
in probability theory. The formal, mathematical difficulties in carrying out the
computation of the new distributions may become very serious in certain cases,
particularly if we have to apply an infinite number of transformations (asymp-
totic problems). But, in the clearly defined framework of this theory no space
is left for any metaphysical speculations, for ideas about sufficient reason or in-
sufficient reason, for notions like degree of evidence or for a special kind of prob-
ability logic and so on. And further no modification is needed for handling usual
statistical problems: Terms like inverse probability, likelihood, confidence
degrees, etc. are justified and admitted only as far as they are capable of being
reduced to the basic notion of kollektiv and distribution within a kollektiv. I
will give some more details to this point later. Meanwhile let me turn to a
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general question which, in a certain way, is the crucial point in establishing the
new probability theory.

3. Place selections and randomness. It is obvious that we have to restrict
still further the notion of kollektiv or the field of sequences which can be con-
sidered as the objects of a probability investigation. The successive outcomes
of a game of chance differ very clearly from any regular sequence as defined by a
simple arithmetical law, c.g. the regularly alternating sequence 0 1 0 1
0101 .... A typical property which singles out the irregular or random
sequences and which has to be reproduced in every probability theory is that, if
p is the probability of encountering a one in the sequence, then p* is the prob-
ability of two ones following each other immediately. Any probability theory has
to introduce an axiom which enables us to deduce this theorem and others of a
similar type. The question is only how to find a sufficiently general and con-
sistent form for it. The procedure I have chosen consists.in using a special kind
of transformation of a sequence, which I call a place selection.

A place selection is defined by an infinite set of functions s.(z1, %z, - -+ Tn)
where 21, 72, %3, - - - are the digits of an admissible number or a kollektiv and
s, has one of the two values zero or one. Here s, = 1 means that the nth digit
of the sequence is retained, s, = 0 means that it is discarded. The decision
about retaining or discarding the nth elements depends as you see, only on the
preceding values ; , 22, - - - &a1, but not on z, or the following digits. Example
of a place selection:

$n = 1, if z,; = 0 for prime numbers 7,
if z,—; = 1 for » not prime,
8; = 1, and s, = 0 in all other cases.

Experience shows that, if we apply such a place selection to the sequence X
of outcomes of a game of chance, we get a new, selected sequence S(X) in which
the frequencies of gains and losses are about the same as in X. This fact or
the practical impossibility of a gambling system suggests the adoption of the
following procedure in handling transformations of admissible numbers.

First, if within a certain investigation the transformation applied to X is a
place selection, we assume that the distribution in X’ = S(X) is the same as
in X: distr S(X) = distr X. Second, if a general transformation T is applied
to X, say X’ = T(X), then we examine whether the existence of a place selection
S that changes the distribution in X’ (so as to have distr S(X’) # distr X")
implies the existence of a place selection S; that would affect the distribution in
X (so as to give distr S;(X) = distr X). If this is the case, we say that X' is
a kollektiv, provided that the original sequence X was considered to be a kollek-
tiv. Take e.g. for X the sequence resulting from tossing a die endlessly, and
call p; , P2, - - - pe the limiting frequencies of the six possible outcomes 1, 2, - - - 6.
The transformation T may consist in replacing every 1 in the sequence X by a
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2, every 3 by a 4, and every 5 by a 6. The new sequence consists of only three
different kinds of elements 2, 4, 6 and therefore its. distribution includes only
three values ps, ps, pe where evidently p; = p; + p. ete. Here it is almost
obvious that if a place selection applied to X’ changes the value of ps , the same
selection if applied to X must change either p; or p, .  So, if the original sequence
X was considered as a kollektiv, X’ has to be admitted too.

Now the question arises whether this procedure is in itself consistent or
whether it can lead to contradictions. We were concerned up to now with
kollektivs the elements of which belong to a finite set of distinet numbers
e, e, --- e and the distributions of which are therefore defined by % non-
negative values p:, p2, - - - pr with the sum 1. In this case it was pointed out
by Wald and by Copeland that, if an arbitrary distribution and an arbitrary
countable set T of place selections are given, there exists a continuum of se-
quences every one of which has the given distribution, which is not affected by
any place selection belonging to Z. Now it may be supposed that in a concrete
problem a sequence X’ is derived from a sequence X by a finite number of
fundamental operations involving a finite set Z’ of place selections. Another
finite set =/ may consist of selections employed in establishing that certain
sequences used in the derivation of X’ are “combinable’” ones. Finally an
arbitrary countable set = of selections S may be assumed. According to our
procedure we have shown that to any place selection S which affects the distribu-
tion in X’ corresponds a certain S; which, when applied to X, changes the dis-
tribution of X. All these S; corresponding to the elements S of Z form a
countable set Z;. Now the set Z, including Z’, 2/, Z; and also including all
products of two of its own elements is a countable set too. What we use in
computing the distribution of X’ is only the fact that the given sequence X is
unaffected by the selections that are elements of ;. It follows from the above
quoted results that we can substitute for X a numerically specified sequence
and carry out all operations upon this specified sequence. So it is proved that
no contradiction can arise in computing the final probability according to our
conception.

I cannot enter here into a discussion of the more complicated case where the
range within which the elements of a kollektiv vary, is an infinite one, either a
countable set or a continuum. All principal problems eonnected with estab-
lishing the notion of kollektiv can be settled satisfactorily, at any rate, by con-
sidering those general forms of sequences as limiting cases of kollektivs with a
finite set of attributes.

4. Example: Set-of-games problem. I want to present now a simple, but
instructive example to show how the theory works and what task a mathematical
foundation of the calculus of probability has to achieve. Let us recall the two
sequences X and X’ composed of zeros and ones of which we spoke above. The
first represented the outcomes of a sequence of single games, the second the
outcomes of triple sets of those games. If X is considered as a kollektiv with
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given probabilities p and ¢ for one and zero, it is easy to deduce the correspond-
ing values p’ and ¢’ for X’ and to show that X’ is a kollektiv too. We begin by
carrying out three selections which single out from the original sequence z;,
Z2, X3 - - - first, the elements z, , 24, 27, - - - second, the elements x,, 25, 23, - - -
and third, the elements 23, %5, 23, --- . It can be shown by means of certain
further place selections that these three kollektivs which we call X;, X,, X;
are combinable. That means that combining the corresponding elements of
the three sequences like xyxoms , 242s%s , Tos , - - - leads to a new three dimen-
sional kollektiv X, in which each permutation of three digits 0 and 1, has a
probability equal to the corresponding product of p- and g¢-factors. For in-
stance the probability of encountering the group 111 is p* and for the group 110
it is p’q. Now we operate a mixing upon X; by collecting all permutations
with two or three ones. We find in a well known way the sum p* + 3p’q for
the probability p’ of ones in the sequence X’. So far the result is very well
known and can be reached—in my opinion, in a very incomplete and unsatis-
factory way—also by the classical methods.

But what I want to discuss here is a slightly modified question. If the
sequence X means gains and losses for single games and if the arrangement for
sets of three games is made as indicated beforc, then in a real play the gains
and losses of sets are counted in a different way. For, if the first two games of
a set are both won or lost by the same player, the fate of the set is decided and
there is no sense to play the third game. So the loss of the second set in our
example will already be recognized after the fifth game and the actual sixth
game will be considered as the first game of the third set. In this way the
original sequence X decomposed into groups of two or three games

(X) 101/00|11/00]J011]11|00|11|010|11]-.-..
leads to a new sequence X’
0.:4)] 1010110101 ...

which is obviously different from X’. Everyone familiar with the usual han-
dling of the probability concept will say that in X"’ the probabilities of zeros and
ones must be the same as in X’. But a mathematical foundation of theory of
probability, if it deserves this name, has to clear up the question: From what
principles or particular assumptions and by what inferences may we deduce the
equality of the limiting frequencies in X’ and X"'?

There is no difficulty in solving this problem from the point of view of the
frequency theory. We have only to apply somewhat different place selections
instead of the above used which lead to the kollektivs X, Xz, X;. Ishowed
elsewhere how the general set-of-games problem can be satisfactorily treated in
this way. Here I want to stress only that the problem as a whole is completely
inaccessible by any of the other known approaches to probability theory. The
classical point of view which starts with the notion of equally likely cases and
rests upon a rather vague idea of the relationship between probability and
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sequences of events does not even allow the formulation of the problem. In
the so called modernized classical theory, as proposed by Fréchet, probabilities
are defined as ‘“physical magnitudes of which frequencies are measures.”
Fréchet would say that the frequencies both in X’ and in X’/ are measures of
the same quantity. But why? We face here obviously a mathematical ques-
tion which cannot be settled by referring to physical facts. It is clear that the
equality of the distributions in the two sequences X’ and X"’ is due to the
randomness or irregularity of the original sequence X. No theory which does
not take in account the randomness, which avoids referring to this essential
property of the sequences dealt with in probability problems, can contribute
anything toward the solution of our question.

I have to make some special remarks about the so-called measure theory of
probability.?

6. Probability as measure. Up to now we have been concerned only with
the simplest type of kollektivs, namely, with those sequences the elements of
which belong to a finite set of numbers so as to have a distribution consisting
of a finite number of finite probabilities with the sum 1. It may be true that
all practical problems, in a certain sense, fall into this range. For, the single
result of an observation is always an integer, the number of smallest units
accessible to the actual method of measuring. Nevertheless in many cases it
is much more useful to adopt the point of view that the possible outcomes of an
experiment belong to a more general set of numbers, e.g. to a continuous segment
or any infinite variety. If we include the case of kollektivs of more than one
dimension, we have to consider a point set in a k-dimensional space (where
even k may be infinite) as the label set or attribute set of the kollektiv. In
order to define the probability in this case we have to choose a subset A of the
label set and to count among the first # elements the number 7, of those elements
the attributes of which fall into A. Then the quotient n, : » is the frequency,
and its limiting value for # infinite will be called the probability of the attribute
falling into A within the given kollektiv.

It was rightly stressed by many authors that in the case of an infinite label set
some additional restrictions must be introduced. In particular A. Kolmogoroff
set up a complete system of such restrictions. We cannot ask for the exist-
ence of the limiting frequency in any arbitrary subset A. It will be sufficient
to assume that the limit exists for a certain Kérper or a certain additive family
of subsets. If it exists for two mutually exclusive subsets A and B, the limit
corresponding to A + B will be, by virtue of the original definition, the sum of
the limits connected with A and B. We can now insert a further axiom involving
the complete additivity of the limiting values. So we arrive at the statement

2 What I call measure theory here is essentially that proposed by Kolmogoroff in his
pamphlet of 1933. As to the new theory developed by Doob in his following paper (where
instead of the label space the space of all logically possible sequences is used in establishing
the measures) see my comment on page 215.



198 R. VON MISES

that probability is the measure of a set. All axioms of Kolmogoroff can be
accepted within the framework of our theory as a part of it, but in no way as a
substitute for the foregoing definition of probability.

Occasionally the expression probability as measure theory is used in a dif-
ferent sense. One tries to base the whole theory on the special notion of a set
of measure zero. One of the basic assumptions in my theory is that in the
sequence of results we obtain in tossing a so called correct die the frequency,
say of the point 6, has a certain limiting value which equals 1/6. A different
conception consists in stating that anything can happen in the long run with a
correct die, even that an uninterrupted sequence of six’s or an alternating se-
quence of two’s and four’s or so on may appear. Only all these events which
do not lead to the limiting frequency 1/6 form, together as a whole, a set of
events of measure zero. Instead of my assumption: the limiting value is 1/6
we should have to state: It is almost certain that a limit exists and equals 1/6.
Nothing can be said against such an alluring assumption from an empirical
standpoint, since actual experience extends in no case to an infinite range of
observations. The only question is whether the asumption is compatible with
a complete and consistent theory. I cannot see how this may be achieved.
Before saying that a set has measure zero we have to introduce a measure system
which can be done in innumerable ways. If e.g. we denote the outcome six by a
one and all other outcomes 1 to 5 by zero, we get as the result of the game with
a die an infinite sequence of zeros and ones. It has been shown by Borel that
according to a common measure system the set of all 0, 1 sequences which do not
have the limiting frequency % has the measure zero. In this way it turns out
to be almost certain that the limiting frequency of the outcome six in the case
of a correct die is . Other values for the limit can be obtained by a similar
inference. It is a correct but misleading idea that the measure zero is unaffected
by a regular (continuous) transformation of the assumed measure system, since
in our field of problems different measures which are not obtained from one
another by a regular transformation have equal rights. So, saying that a certain
set has the measure zero makes in our case no more sense than to state that an
unknown length equals 3 without indicating the employed unit.

In recapitulating this paragraph 1 may say: First, the axioms of Kolmogoroff
are concerned with the distribution function within one kollektiv and are
supplementary to my theory, not a substitute for it. Second, using the notion of
measure zero in an absolute way without reference to the arbitrarily assumed
measure system, leads to essential inconsistencies.

6. Statistical estimation. Let me now turn to the last point, the application
of probability theory to one of the most widely discussed questions in today’s
statistical research: the so-called estimation problem. Many strongly divergent
opinions are facing each other here. I think that the probability theory based
on the notion of kollektiv is best able to settle the dispute and to clear up the
difficulties which arose in the controversies of different writers.
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We may, without loss of generality, restrict ourselves to the simplest case
of a single statistical variable z and a single parameter #, where z of course may
be the arithmetical mean of n observed values. Here (and likewise in the case
of more variables and more parameters) we have to distinguish carefully among
four different kollektivs which are simultaneously involved in the problem.
The range within which both z and ¢ vary will be assumed to be a continuous
interval so that all distributions will be given by probability densities.

The first kollektiv we deal with is a one-dimensional one where the probability
of z falling into the interval z, ¢ 4+ dz depends on x and on a parameter ¢. If

(1) (x| )

denotes the corresponding density and the limits A, B within which z possibly
falls depend on ¢ too, we have

B(¥)
1) f plx|d)de =1 for each &.
4(®)

In order to fix the ideas we may imagine that the first kollektiv consists in
drawing a number = out of an urn and that ¢ characterizes the contents of the
urn. Asking for an estimate of ¢ implies the assumption that different possible
urns are at our reach every one of which can be used for drawing the z. The &
values for the different urns fall into a certain interval C, D. It is usual to sup-
pose that the urns are picked out at random so as to give another one-dimensional
kollektiv with the independent variable &. Let po(#) d¢ be the probability of
picking an urn with the characteristic value falling into the interval ¢, ¢ + dd.
This density

@) Po(d)

is often called the prior or a priori probability of 4. As the range within which
& varies is confined by the constants C and D, we have obviously

@) [ i -1

Now from these two one-dimensional kollektivs with the variables z in the
first, ¢ in the second, we deduce by combination (multiplication) a two-dimen-
sional kollektiv with the density function

®3) P(8,2) = po(8)-p(z | 3).

The individual experiment which forms the element of this third kollektiv con-
sists of picking at random an urn and drawing afterwards from this urn. Both
z and ¢ are now independent variables (attributes of the kollektiv) and it is easy
to see that it follows from (1) and (2)

D pB(9) D B(d)
") f j P(3,7) dz ds = f o) d8 f plz|9) dz = 1.
c JA®) c A(D)
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We will return later to this two-dimensional kollektiv. Let us, first, derive
from it, by applying the operation of partitioning (Teilung), our fourth and last
kollektiv which is one-dimensional again. Partitioning means that we drop
from the sequence of experiments which form the third kollektiv all those for
which the z-value falls outside a certain interval z, £ 4+ dz; and that in this
way we consider a partial sequence of experiments with only the one variable &.
The distribution of #-values within this sequence with quasi-constant z is given,
according to the well known rule of division or rule of Bayes (a rule which can
be proved mathematically) by®

@ P 2) = 20— oa) po(®) pla | 9).
fc P@,z) do

It follows immediately that

4" f: n(@ | z) dé = 1.

This function p; of ¢ depending on the parameter x is generally called the
posterior or a postertori probability of &.

If p1(¢ | x) can be computed according to the formula (4), every question con-
cerning the “presumable” value of ¢ as drawn from the outcome z of an ex-
periment is completely answered. We can find indeed, by integration the
probability which corresponds to any part of the interval C, D of ¢ and so the
estimation problem is definitely solved. But the trouble is that in most cases of
practical application nothing or almost nothing is known about the prior prob-
ability po(¢#) which appears as a factor in the expression of p,. Hence arises
the new question: What can we say about the 9-values without having any informa-
tion about its prior probability? This is the estimation problem as it is generally
conceived today.

The first successful approach to the answering of this question was made by
Gauss. If we do not know p, , we know however, except for a constant factor,
the quotient p;/p,, posterior probability to prior probability which equals
cp(z | #). The maximum of this quotient must be greater than one, since the
average values of both po and p, are the same. So the maximum means the
point of the greatest increase produced by the observed experimental value of =
upon the probability of ¢. It seems reasonable to assume the d-value for which
the ratio p;/po reaches its maximum as an estimate for ¢: It is the value upon
which the greatest emphasis is conferred by the observation. This idea, orig-
inally proposed by Gauss in his theory of errors, has been later developed chiefly
by R. A. Fisher, and is known today as the maximum likelihood method. Calling
the ratio p,/pe likelihood seems indeed an adequate nomenclature.

3 For brevity Bayes’ rule is employed in the text as in the case of a discontinuous dis-
tribution. The correct procedure in the case of a continuous z would require that we first
use finite intervals and then pass to the limit.
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The method of estimation used most frequently today is not the maximum
likelihood method, but the so called confidence interval method, inaugurated
by R. A. Fisher and now successfully extended and applied by J. Neyman. This
method uses the third of the above mentioned kollektivs instead of the fourth,
i.e. the two-dimensional probability P(#, z). At first sight it seems hopeless
to use this function which includes the unknown prior probability po(¥) as a
factor. But it turns out as Neyman has shown® (and this is the decisive idea
of the confidence interval method) that we can indicate in the z, d-plane special
regions for which the probability ff P(¢, z) dz d¢ is independent of po(#). In
fact, if we point out for every ¢ such an interval z, , z, as to have

zg(2)
(5) f(d) p(z|9) dz = q 0<a<l,

|
|
T
|
!
|
1

X X
Fi1g.1

it follows immediately from (2) and (5) for the region covered by these intervals

D pz3(®) ) z2(9)
® [ Podds = pwds [ pa|8)ds=a
C Jzy(9) c z1(
For given a the intervals can be chosen in different ways. If we choose z; = 4
for 8 = C and z, = B for ¢ = D, we get a strip or belt, as shown in Fig. 1
which supplies for every given z a smallest value #; and a greatest value ¥, .
The definition of our third kollektiv leads to the conclusion: If we predict each
time a certain x is observed that & lies between the corresponding ¢, and J:, then
the probability is a that we are right, whatever the prior probability may be.® It is

4J. Neyman, Roy. Stat. Soc. Jour., Vol. 97 (1934), pp. 590-92.

8 After my lecture Dr. A. Wald called my attention to Neyman’s suggestion; namely
that this statement can be generalized by admitting that the infinite sequence of #-values
which results from picking out successively the urns for drawing a number z, does not
fulfill the conditions of a kollektiv. So, instead of the terms ‘“‘whatever the prior prob-
ability may be’’ we can say ‘‘whatever the method of picking out the urns may be.’”’ In
fact, let us consider the case where ¢ can assume only a finite number of values#; , 92, -
%y . Among the n first trials let n, be the number of cases where & = ¢, and n, < n, the
number of cases where ¢ = ¢ and z falls into the interval z:(9c), 2(9c). The relative
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understood that in this argument both z and # are variables the values of which
may change from one trial to the next. I cannot agree with the statement,
which is often made, that « only is a variable and & a constant or that we are
only interested in one specified value of 4. In no way is it possible, in the
framework of the confidence limits method, to avoid the idea of a so-called
superpopulation, i.e. the existence of a manifold of urns every one of which forms
a kollektiv.® Thus no contradiction and no antagonism exists between this
method and the Bayes formula. Only a different kollektiv, a two-dimensional
instead of a one-dimensional, is here considered.

I have no time to enter here in a discussion of the very interesting develop-
ments of Neyman’s theory which are intended to supply additional conditions
in order to determine the arbitrary choice of the z-intervals in a unique way.
May I only mention that what is called in Neyman’s theory the probability of a
second type error in testing the hypothesis ¢ = &, is given by the expression

D pza(dg) D z9(39)
) [ [ P@, ) dsds = f pol®) d3 f p(z | 9) da.

¢ Yz1(d9) c z)(8%9)
If we want to determine the confidence belt or the intervals z; , 22 in such a way
as to minimize this expression independently of the function p(#), we obtain
Neyman’s maximum power condition

zg(dg)
8) f oo p(x|¥) de = F(8, &) = min. for each pair ¢, &,.
z11Vy.

This condition, it is well known, cannot be fulfilled under general assumptions
for p(z|®#). Moreover the above-mentioned boundary conditions z;(C) =
A(C) and z(D) = B(D) (or similar ones in other cases) have to be considered
too. If they are not satisfied, the statement which can be made with probability
a would include the prediction that certain z-values are impossible. Except
for this case the above formulated theorem is equally valid for every region
determined according to (5).

It is clear that if the original distribution is given by a regular, slightly vary-
ing function p(z | ¢), the confidence limits method cannot give very substantial
results. Let us take e.g. for p(z | #) the uniform distribution

9) px|d) = 1/8for0 Sz < 9, 0ss9=1.

frequency of correct predictions is then (n] + ny + : -+ ny): n where n equals n; + ns +
--- mg . If n tends to infinity, at least one part of the nx must become infinite. For those
the limit of n,:n, tends to a according (5) while the other terms (with finite n, and n,)
have no influence. So the limiting value of the frequency (n; + n; + -+- n;): n equals
in any event . This generalization does not apply, if we ask for the probability of a second
type error of the hypothesis ¢ = #,. Here the existence of the prior probability po is
essential.

¢ According to the generalization supplied by Neyman’s point of view (Phil. Trans.
Roy. Soc., Vol. A-236 (1937), pp. 333-380) which is discussed in footnote 5, the superpopu-
lation does not necessarily satisfy the conditions of a kollektiv.
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We have here A = 0, B = ¢, C = 0, D = 1 and the domain in which z and ¢
vary is the 45° right triangle shown in Fig. 2. Whatever po(¢) may be, the
integral of p(#, ) = po(d)-p(x | ¥) over this domain is 1 and if we omit the
part of the triangle on the left of the straight line x = (1 — a)d, the integral
over the remaining part is «. For a = 0.90, a statement which can be made
with a probability of 909, reads: The value of ¢ lies between z and 10z. On
the other hand we know from the very beginning with 1009, certainty that &
lies between z and 1, so that for z = 0.1 the statement is futile. (If one chooses
as confidence belt the part on the left of the straight line # = a4, the statement
would run: ¢ lies between 1.1 z and 1 and values of = greater than 0.9 are
impossible.) If we apply in this case the Bayes formula, we find that the out-
come depends to the highest extent on what is known about the prior prob-
ability po(d).

In most cases however which present themselves in practical statistics the
original density function p(z | #) has a different character from that assumed in

 x=(£-s)
11

=X

Fic. 2

(9). It depends generally on an integer n and the distribution is concentrated
more and more when n increases. (We may define here concentration as
standard deviation tending towards zero. The integer n means in general the
number of basic experiments). We have e.g. in the so-called Bayes problem
where z is the arithmetical mean of n observations the asymptotic expression
for p:

z|9) ~ /‘/_I—‘“ g InEN2Ba—D)
(10) pla) 2r9(1 — )

0=d=1, 0=sz=1
If we denote by ® the probability integral

(11) B(z) = \.%_r fo " du,

the z-intervals corresponding to a given probability value « are defined by

(120 m=9—-§ =m=0+¢ Where“’(f't/zT(_gln-—a))=“'
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If » has a large value, the £’s are very small and we get a narrow belt along the
straight line # = ¢ as shown in Fig. 3 for « = 0.90 and n about 100. The
prediction which can be made with the probability « reads approximately

(13) t—n<d=<z+n1 where<1>(n1/%ﬁl":x.))=a,

On the other hand it is well known that in this case the Bayes formula supplies
a posterior probability p:(¢ | ) which turns out to be more and more independent
of the prior probability po(#) when 7 increases. It has been shown that the
asymptotic expression for pi(¢ | £) whatever py(#) may be, is

~ n —in(0—2)3/z(1—2x)
(19 P12 ~ g/ s :

It follows that, on the basis of the Bayes formula, we can predict for every
single value of z with the probability a that ¢ lies between the above given

A

%

F16. 3

limits (13). This is more than the confidence limits method supplies, but the
result is subjected to the restriction that po(d) is a continuous function. How-
ever, for large values of n (generally this means for large numbers of basic ex-
periments) the outcomes of both methods are essentially the same.

Let me recapitulate in three brief sentences the essential results we have
found in the problem of estimation.

1. There is no contradiction of any kind between the Bayes formula and the
confidence limits method and no difference at all in the underlying probability
concept. In both methods the idea of a sort of “super-population’ is used.
Only two different kollektivs are considered in both cases.

2. If the original distribution has a regular, slightly varying density function
p(z | &), the Bayes method gives a complete answer when the prior probability
is known and no answer when it is unknown. The confidence limits method gives
in both cases a definite solution; it lies in the nature of things that the solution
cannot be very substantial if p(x, #) is only slightly varying.
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3. If the original distribution p(z | #) depends on a further parameter » and
becomes concentrated more and more with increasing n, both approaches give,
for large n, asymptotically about the same results.

It is not intended by these remarks to impair the value of the confidence
limits method which both from theoretical and from practical point of view
deserves our attention. But the rather inconceivably aggressive attitude
towards the Bayes’ theory as displayed by a number of statisticians, which,
however, does not include J. Neyman, turns out to be completely unfounded.
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