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3. Pollsters trying to predict the outcomes of national elections always use
stratified random samples, Why do you suppose that they do so? If you were
conducting such a poll, how would you choose your strata?

Suggested readings

Morris J. Slonim, Sampling in a Nutshell (New York: Simon and Schuster,
1960), pp. 1-53.

The following is recommended for the advanced student:

Herman Chernoff and Lincoln E, Moses, Elementary Decision Theory
(New York: John Wiley & Sons, Inc., 1959).

VI

Coherence

VLI1. INTRODUCTION. The concepts of epistemic and inductive
probability were introduced in Chapter I as numerical measures grading
degree of rational belief in a statement and degree of support the premises of
an argument give its conclusion, In Chapter V we encountered a mathematical
characterization of probabilities and conditional probabilities. Why should
epistemic and inductive probabilities obey the mathematical rules laid down
for probabilities and conditional probabilities? One reason that can be given is
that these mathematical rules are required by the role that epistemic proba-
bility plays in rational decision.

This sort of argument can be made at various levels, depending on what
simplifying assumptions are made. The discussion can be elementary and
transparent, in the sort of classical gambling situation discussed in V.6. Here
we assume that all that is at issue in the decision problem is money. We also
assume that money has constant marginal utility across the range of stakes at
issue; that is, an extra dollar counts for as much whether it is added to big
winnings or big losses. Finally, we assume that if the bettor takes several
individual bets as fair (favorable, unfavorable), he takes the result of making
them all together as fair (favorable, unfavorable). Under these assumptions we
can show that if a bettor violates the rules of the probability calculus, he can
have a Dutch Book made against him; that is, a clever bookie can make a series
of bets with him, all of which he considers fair or favorable, such that he suffers
a net loss no matter what happens regarding the propositions he is betting on.

The assumptions for a Dutch Book argument can plausibly be held to be true
(or approximately true) for typical monetary gambles with small stakes, but
each of them breaks down when we consider the problem of rational decision
more globally. These considerations lead to a deeper level, which involves the
theory of utility and culminates in an analysis that shows how coherent systems
of preference can always be represented as having come from probability and
utility, with preference going by expected utility. In this chapter we will start
with the simpler situation and end with a sketch of the leading ideas of the
deeper results.

VL2, THE PROBABILITY CALCULUS IN A NUTSHELL. In
discussing these questions it will be useful to have as concise a char-
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acterization of the mathematical conception of a probability as is possible,
Here is the classic one, due to Kolmogorov:

Definition- 14: A probability (on statements) is a rule assigning
each statement, S, a unique probability, Pr(S), such that:

a. No probability is less than zero.

b. If T is a tautology, Pr(T) = 1

c. If P; Q are mutually exclusive, then Pr(PvQ) = Pr(P) + Pr(Q).

Let us see how this brief characterization yields the longer one of Chap-
ter V. Rules 1 and 4 of Chapter V are explicitly contained in Definition 14
as 14b and 14c. We saw in Chapter V that these two rules yield the negation
rule. Since Pv~P is a tautology and P;~P are mutually exclusive,

Pr(P) + Pr(~P) =1
Rule 5: Pr(—P) =1 — Px(P)

Since the denial of a contradiction is a tautology, 14b and Rule 5 show
that if C is a contradiction:

Rule 2: Pr(C) =0

It is not so obvious that Rule 3 (“if two statements are logically equiva-
lent, they have the same probability) is a consequence of Definition 14,
but it is. Suppose P is logically equivalent to Q. Then P; —Q are mutually
exclusive for ~Q is true when P is false and false when P is true, (If
the foregoing statement is not obvious, review what logical equivalence
means and prove it.) By the same token, Pv~Q is a tautology. So by 14b
and 14c: Pr(P) + Pr(—Q) = 1. Using the negation rule:

Pr(P) +1 — Pr(Q) =1
Pr(P) = Px(Q)

Rule 3: If P and Q are logically equivalent, then Px(P) = Pr(Q)

We have now only to show that Definition 14 restricts the possible
probability values to the range from 0 to 1, for everything else in Chap-
ter V was shown to follow from what we have here developed. We will
demonstrate this by showing something much more general and inter-
esting, First, a few preliminaries,
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Definition 15: Q is a logical consequence of P just if Q is true
‘in every case in which P is true.

So, for example, R is a logical consequence of R & S, as is S; and RvS is
a logical consequence of R and of S.

R S R&S RvS
Case 1; T T T T
Case 2: T F F T
Case 3: F T F T
Case 4: F F F F

Notice that a tautology is a logical consequence of everything, since a
tautology is true in all cases. And everything is a logical consequence of
a contradiction, since a contradiction is never true. We will now show
the Logical Consequence Principle:

If Q is a logical consequence of P, then Pr(Q) must be at least as
great as Pr(P),

Then, of course, every probability must fall in the interval from 0 to 1.

If Q is a logical consequence of P then either P and Q are true in
exactly the same cases or Q is true in the cases where P is, plus some
extra cases. In the former instance P and Q are logically equivalent and
thus have the same probability. Let us, then, look at the latter. For
example:

(Q&—P)

Case 1:
Case 2:
Case 3:
Case 4:
Case 5:
Case 6:
Case 7:
Case 8:

mEER g |~
HEmaaaEa | O
S

Here Q is a logical consequence of P. It is true in the cases where P is
[1, 3, 4, 7] plus some extra ones [5, 8]. At the right is the statement,
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Q&~P, which is true in just these extra cases and false otherwise. Notice
that (Q&—~P) and P are mutually exclusive. Next notice that Pv(Q&—P)
is logically equivalent to Q since (Q&—P) adds just the required extra
cases to P. Then:

Pr(Q) = Pr[PV(Q&~P)] = Pr(P) + Pr(Q & ~P)

Since Pr(Q&—P) is at worst zero, Pr(Q) must be at least as great as Pr(P).

This result completes the argument that Definition 14 captures the
probability calculus as developed in Chapter V. It is, however, of more
than incidental importance, It assures the probabilistic validity of deduc-
tive argument, If

P,
P,
P,
C

is a (truth-functionally) deductively valid argument, then the conclusion,
C, is a logical consequence of the conjunction of the premises P, & P,
.+ & P,,. Our result shows that our conclusion must be at least as prob-

able as the conjunction of the premises.
Think of the disastrous consequerices if this were not true! We could

have good reason for believing that all the premises of an argument are true,
deduce the conclusion from them, and not have equally good reason for
thereby believing the conclusion. Under such circumstances it would be
hard to imagine a rationale for applying deductive logic.

The probabilistic validity of deductive argument provides a justifica-
tion for applying deductive logic to situations where we are entitled to
assign high probability to the conjunction of the premises but are not
entitled to be certain of their truth, There are strong arguments to the
effect that this covers almost all applications of deductive logic to
empirical knowledge, '

Exercises:

1. Show:
a. If P is a logical consequence of Q and Q is a logical consequence of P,
then P is logically equivalent to Q.
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b. If P is a logical consequence of Q and Q is a logical consequence of R,
-then P is a logical consequence of R.

c. If P is logically equivalent to Q, then P and Q are logical consequences
of the same statements and have as logical consequences the same
statements.

2. Show that if R is a logical consequence of P and of Q and R has as a
logical consequence Pv(), then R is logically equivalent to either P or to Q or to
PvQ.

3. Study the following truth table:

P Q R ~P&Q&R P&Q&~R (~P&Q&R)v(P&Q&~R)

Case 1: T T T F F F
Case 2: T T F F T T
Case 3; T F T F F F
Case 4. T F F I F F
Case 5: F T T T F T
Case6: F T F F F F
Case 7: F F T F F F
Case 8: ¥F F F F F F
Theu:

a. Show that for any case in any truth table you can construct a sentence
which is true in that case and false in all other cases.

b. Show that for any set of cases in any truth table you can construct a
sentence true in those cases and false in all other cases.

VI. 3. *THE LOGICAL CONSEQUENCE PRINCIPLE ALONE
IS NOT ENOUGH. The Logical Consequence Principle is both plausible
and powerful. It is hardly open to dispute that if Q is true in every case
in which P is, Q must have at least as good a chance of being true as P.
We should be pleased that Definition 14 of the previous section leads
to this result; we should have been dismayed if it had not.
It is interesting to ask here how far the Logical Consequence Principle
will take us toward mathematical probability as characterized by Defi-

®This section may be omitted without loss of continuity.
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nition 14. It leads immediately to the principle that logically equivalent
statements have the same probability since P and Q are logically equiva-
lent just in case each is a logical consequence of the other. It leads to
the fact that there must be a maximum probability value, shared by
all tautologies, and a minimum probability value, shared by all con-
tradictions. But even if we arbitrarily choose 1 as the maximum and 0
as the minimum probability, the logical consequence principle does
not thereby lead to the additivity of probabilities of mutually exclusive
sentences, that is:

14 c. If P; Q are mutually exclusive, then Pr(PvQ) = Pr(P) + Pr (Q)

This can be most easily seen by considering a new quantity, plausibility,
which is defined in terms of probability as on the graph in Figure 4.
(To find a statement’s plausibility from its probability, first find its prob-
ability on the horizontal axis, go straight up to the curve and straight
over to its plausibility on the vertical scale.) Notice that the curve
defining plausibility is so drawn that greater probabilities lead to greater
plausibilities and greater plausibilities arise only from greater prob-
abilities. That is:

Probability (A) > Probability (B)
if and only if
Plausibility (A) > Plausibility (B)

The upshot of this is that if we were to arrange some statements in
order of increasing plausibility, we would place them in the same order
as we would if we were arranging them in order of increasing probability.
A short way of saying this is to say that probability and plausibility
are ordinally similar.

It is now easy to see that plausibility must satisfy the Logical Con-

sequence Principle. If Q is a logical consequence of P then the probability

of Q must be at least as great as the probability of P (since we showed,
in the last section, that probability satisfies the logical consequence
principle). Since plausibility is ordinally similar to probability, plausibility
of Q must be at least as great as plausibility of P,

However, plausibility need not add for mutually exclusive statements.
Assume that some statement, P, is as likely as not; so:
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Pr(P) = Pr(~P) = %

Plausibility
1
4
vd
0 M 1
Probability
Figure 4

Referring to Figure 4, we see that the plausibility values of P and of
~P are 1. We also see that since Pr(Pv—P) =1, the plausibility of
(Pv~P) = 1. So plausibility of (Pv—P) is definitely not equal to plausi-
bility of (P) plus plausibility of (—P).

Although plausibility satisfies the logical consequence principle, and

-has a maximum of 1 and a minimum of zero, it is not a probability.

To understand the need for the extra property of additivity which
distinguishes a probability we must look to quantitative applications of
probability. In the next few sections, we shall consider the oldest and
most general quantitative application of probabilities—that of a guide
for the intelligent gambler.

Exercises for the advanced student:

1. The following principle has been proposed for any grading of rational
degree of belief.
I. For any statements, R, S, T, if R and T are mutually exclusive and S and
T are mutually exclusive, then the degree of belief in R is greater than
the degree of belief in S, if and only if the degree of belief in RvT should
be greater than the degree of belief in SvT.
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- a. Show that probability satisfies principle I and that any quantity
ordinally similar to probability does also.
b. Show that any quantity representing degree of belief which:
i. Satisfies principle I,
ii. Gives logically equivalent sentences the same probability, and
iii. Requires that tautologies have the maximum probability and con-
tradictions the minimum
must satisfy the logical consequence principle.
2. Consider a language containing only two simple statements, P, Q, together
with every complex statement which can be built out of them using &, v, ~.
a. Show that every statement in the language is logically equivalent to one
of the following sixteen statements:
P&~P; ~P&~Q; ~ P&Q; ~P; P&~Q; ~Q; (P&~ Q)v(~ P&Q); ~ Pv
~Q; P&Q; (P&Q)V(~P&~Q); Q; ~ PvQ; P; Pv~Q; PvQ; Pv~P,
(Hint: Look at the truth table for all these statements.)

b. Assuming Pr(P&Q) = .41; Pr(P&~Q) = .29; Pr(~P&Q) = .2; Pr(~P&

~Q) = .1; calculate the probability values for each of the foregoing
statements.
c. Consider the quantity representing a degree of belief which takes as
values just the foregoing probabilities except that (~Pv~Q) and
(~PvQ) switch values, That is, for any statement R, D(R) = Pr(R)
except that D ( ~Pv~Q) = 71 and D(~PvQ) = .69
i. Show that D satisfies the Logical Consequence Principle.
(Hint: to verify that the Logical Consequence Principle is not vio-
lated you need only verify that no sentence of which ~PvQ is a
consequence has a probability greater than .69 and no statement
which is a consequence of ~P&~(Q has a probability less than .71.)

ii. Show that D violates principle 1. :
(Hint: ~PvQ is logically equivalent to (P&Q)v~P and ~Pv~Q is
logically equivalent to (P&~ Q)v~P.)

3. Exercises 1 and 2 show that satisfying the Logical Consequence Principle
is not a sufficient condition for being ordinally similar to probability, Show that
satisfying principle I also fails to be sufficient for ordinal similarity to probability.
(This is a difficult problem. The required proof can be found in the first of the
suggested readings. Conditions which are sufficient to guarantee ordinal similarity
to probability may be found in both of the suggested readings.)

Suggested readings

Kranz, Luce, Suppes, and Tversky, Foundations of Measurement (New
York: Academic Press, 1971).

Richard Cox, The Algebra of Probable Inference (Baltimore, Md.: The
Johns Hopkins Press, 1961).
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VI.4. BETS. A bet on a statement, P, is an arrangement by which
the bettor collects a certain sum,_ a, if P is true and forfeits a certain
sum, b, if P is false, The situation can be characterized in a payoff table:

P Net Gain
T +a
F —b

The total amount involved, a + b, is the stake and the ratio% is the
odds.

A bet on one statement may also constitute a bet on another state-
ment. In the most trivial case, if two statements are logically equivalent
then a bet on one is equally a bet on the other. In the next most trivial
case a negative bet on —P is identical to a positive bet on P.

~P Net Gain P

T —b F
F +a T

If B, and B, are betting arrangements, their sum is an arrangement
by which the bettor fulfills his obligations under both B, and B.. For

example:

B, B,
P Net Gain Q@ Net Gain
T a T c
F —~b F —d

Sum of B, and B,

P @  NetGain
T T a+tc
T F a—d
F T c—b
F F —(b+d

It should be clear that the sum of two bets need not be a bet on any
given statement. A bet on a statement, S, pays a certain value if S is true
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and costs a certain value if S is false, There is no differentiation about
ways that S can be true or ways that S can be false, So if in the payoff
table for the sum bet, there are at least three different figures under net
gain, the sum bet cannot be interpreted as a bet on any statement.

Let us move to a more interesting case of a sum bet being a bet on
a statement. Suppose that P and Q are mutually exclusive, that B, is

a bet on P for stakes (¢ + b) at odds b and B, is a bet on Q, for stakes

a
(c + d)at odds%:

P Q B, B, Sum of B, and B,
T F a —d a—d

F T —b c ¢c—b

F F

b —d  —(b+d

Since P and Q are mutually exclusive, there are only three possible
combinations of truth values. If the sum bet has a different payoff value
in each of the three cases, we know that it is not a bet on any statement.
But what if the payoff values in the first two cases are the same (that
is @ —d = ¢ — D)? Then the bettor wins this value in either of these
cases, that is whenever PvQ is true and loses b + d in the third case,
that is when PvQ is false. So if a — d = ¢ — b, the sum bet is a bet on
PvQ with stakes (¢ — d) + (b + d) = (a + b) and odds 2 i— 3 Under
what conditions does this interesting phenomenon occur? It doesn’t take
much algebra to show that a —d = ¢ — b just in case a + b = ¢+ d,
that is just in case the stakes of our bets on P and Q are equal. In
summary, /

If P and Q are mutually exclusive, the sum of bets on P and on Q
at equal stakes is a bet on PvQ at the same stakes.

There is another kind of betting arrangement which is of general
interest and which is not a bet on any statement. This is the sort of
bet that is called off if certain conditions are not met; call it a conditional
bet. 1t the bet is on Q and the conditions to be met are specified by P,
then it is called, not surprisingly, a bet on Q conditional on P and gives
rise to the following sort of payoff table:

V1. 4 BETS 177

P Q Payoft
T T a
T F -b
F T 0
F F 0

A little reflection should convince you that many of the betting situa-
tions that we get ourselves into are conditional bets. Sometimes we

may wish that even more of them were. If so, it should come as good.

news that we can always construct a betting arrangement conditional

on P by a simple hedging strategy.
Consider the sum of two bets, the first being a bet on P&Q and the

second being a bet on —P.

P Q P&Q Betl ~P  Bet2 Sumof Bets1

and 2
T T T c F —f c—f
T F F —d F —f —(d -+
F T F —d T e e—d
F F F —d T e e—d

If we arrange Bet 2 so that our winnings on ~P, e, equal our losses
from Bet 1, d, the sum of Bets 1 and 2 will be a bet on Q conditional

on P, as follows:

P 0 Sum of Bets 1 and 2
T T c—f

T F —(d +f)

F T ‘ 0

F F 0

In summary: The sum of two bets, the first on P & Q and the second
on —P with the winnings on the second being equal to the losses on
the first, is a bet on Q conditional on P.
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Exercise:

If you bet someone a dollar at 2 to 1 odds that P:
a, What is your payoff table for P? ¢. Whatis his payoff table for P?
b. What is your payoff table for ~ P? d. Whatis his payoff table for ~P?

VL5. FAIR BETS. Remember from Chapter V that the expected
value of a betting arrangement is the sum of the quantities obtained
by multiplying the payoff in a given case by the probability of that case.
For example, the bet:

Bet 1
P Payoff
T a
F —b

has an expected value of aPr(P) — bPr(~P) and the betting arrange-
ment:

Bet 2
P Q Payoff
T T a
T F b
F T c
F F —d

has an expected value of aPr(P&Q) + bPr(P&~Q) + cPr(~P&Q) —
dPr(~ P&~ Q).

If the expected value of a bet is positive, it is called a favorable bet;
if negative, it is an unfavorable bet; if zero, it is a fair bet. Whether a bet
is fair, favorable, or unfavorable depends on how the probabilities balance
out the odds. Consider Bet 1 on P. It is fair just in case:

aPr(P) — bPr(~P) =0
aPr(P) — b[1 — Pr(P)] =0
aPr(P) — b + bPr(P) = 0
aPr(P) + bPr(P) = b
Pr(P)la +b] = b

V1.5 FAIR BETS 179

The quantity a-i-Lb is called the betting quotient for P, So we can say

that a bet on P is fair just in case the probability of P equals the betting
quotient for P.
Suppose we have fair bets on P and Q:

P Payoft Q Payoff
T T a T c
F —b F —~d

Must the sum of these two bets be fair? The sum bet:

P Q Payoff
T T a+c
T F a—d
F T c—b
F F —b—d

is fair if and only if:

Pr(P&Q)(a + ¢) + Pr(P&~Q)(a — d) + Pr(~P&Q)(c —b)
+ Pr(~P&~Q)(—b —d)=10

. aPr(P&Q) + cPr(P&Q) + aPr(P&~Q) — dPr(P& ~Q) + cPr(~P&Q)
— DPr(~P&Q) — bPr(~P&~Q) — dPr(~P&~Q) = 0
or:
a[Pr(P&Q) + Pr(P&~Q)] — b[Pr(~P&Q) + Pr(~P&~Q)]
+ c[Pr(~P&Q) + Pr(P&Q)] — d[Pr(P&~Q) + Pr(~P&~Q)] =0
or:

aPr(P) — bPr(~P) + cPr(Q) — dPr(~Q) = 0

But since our bet on P is fair, aPr(P) — bPr(~P) = 0; and since our
bet on Q is fair, ¢cPr(Q) — dPr(~Q) = 0. So if bets on two statements
are fair their sum is fair.!

1Note that this is not the only way that the sum bet can be fair. If the expected
value of one bet is +e and that of the other is —e, then the sum bet will be
fair,
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The argument is summarized in Figure 5. Each square contains the
payoff for one case of the sum bet multiplied by the probability of that
case (e.g., in the upper left-hand square Pr(P&Q)(a + ¢) = aPr(P&Q) +
cPr(P&Q). Thus, the expected value of the sum bet is just the sum of
everything in all the squares. The squares are divided into triangles to
suggest a way of adding. The quantities in the lower left triangles are
added downward and summed at the bottom of the columns. The quan-
tities in the upper right triangles are added to the right. The sum of
the quantities at the bottom of the columns is the expected value of the

P ~p
Payoff 4 Payoff -b
N\ \
N\ N +cPr(~P&Q)
o N\ +cPr(P&Q) \
N \
Q N \ cPr(Q)
2 N N
A | aPr(P&Q) T\ HPr(~P&Q) \
\
AN
N dPr(~ P&~
o~ \\ dPr(P&~Q) | e~ Pe~Q)
-0 & N N
Q S N N -dPr(~Q)
= aPr(P&~Q)\\ -bpr(~p&~Q)\\
aPr(P) “bPr(~P)
Figure 5

bet on P; the sum of the quantities a the right of the rows is the expected
value of the bet on Q. So we have shown that the expected value of
the sum of bets on P and on Q is the sum of the expected values of
those bets. Of course, then, if two bets are fair, their sum bet is fair.

So far, we have only talked about the sum of two fair bets, rather
than two fair betting arrangements. Remember, a bet on a statement, P,
admits of only two possibilities—P is true or P is false—and specifies a
unique payoff in each case. As we saw in the last section, the sum of
the two bets (on statements) is a betting arrangement, which typically is
not a bet on any statement. Thus, we have still to ask whether the sum
of any two fair betting arrangements is a fair betting arrangement. The
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answer, happily, is yes—by the same sort of argument we used in the
simpler case. The argument is indicated in Figure 6. Again the lower
left triangles are summed downwards and when they are added at the
bottom we find that their sum equals the expected value of betting
arrangement 1. Likewise the sum of all the contents of all the upper
right triangles equals the expected value of betting arrangement 2. But
the sum of all the triangles is just the expected value of the sum betting
arrangement,

Betting Arrangement 1

Case 1 Cz2 Cj
Payoff | V1 V2 vi
[} ]
~ cyV, °
d o
= ‘!
g CaV 2 .
[
50
g AN {p &
& Y r(cidcy)
< AN
o N ' ! ‘
E ¢ v o o o AN oo v]Pr(cj)
o AN
[a]

v,-Pr(ci&c}-) \\

viPr(c;)
Figure 6
So we know in general that:
The expected value of a sum of betting arrangements is the sum
of the expected values of the individual betting arrangements.
and in particular that:
A sum of fair betting arrangements is fair.

Perhaps you may think that this is not very surprising and that we
have been, perhaps, belaboring the obvious. Well and good! Think then
how surprising it would be if this were not true—in fact how disastrous
it would be for making decisions under uncertainty. We could under-
take a series of fair risks and yet have no assurance that the total
arrangement was not unfair.




182 V1. COHERENCE

What is surprising is not that probabilities, as measures of belief,
lead to such well-behaved concepts of expected value and fair bets but
that probabilities are the only kinds of measures of belief which will
do so.

Imagine us using some new measure of belief, call it plausibility (P1),
to take the place of probability. Again, we will call a bet on a state-
ment S

S Payoft
T a
F —b

fair just in case the betting quotient for S, a—’_})_—g, equals the plausibility

of S.
Now remember that the foregoing bet of S is also a bet' on ~§ with
negative payoff (—b) if ~S is true and a negative loss (—a) if ~S is false.?

~S Payoff
T —b
F —(~—a)

The betting quotient for —S$ is
—a _a
(—a)+(=b) a+b
Now suppose S has a certain plausibility, PI(S). If a bet on S is fair,
the betting quotient for S must equal that plausibility:
-_b_
a+b

Since this bet is also a bet on ~S and since it is fair, the betting quo-
tient for ~ S must equal its plausibility:

PI(S)

2 Remember that a bet on a statement, P, is an arrangement by which the
bettor collects a certain sum, a, if P is true and forfeits a certain sum, b, if P is
false. These quantities may be negative, Thus a bet of P is literally also a bet on
~P. This argument thus depends on fairness being a property of the arrange-
ment rather than on the way it is described (as bet on P or bet on ~P, etc.).
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Pl~$) = -5
Notice that plausibility is beginning to resemble probability since:
Pi~S) =1 — PI(S)
‘Now let’s look at the case where we have two mutually exclusive
statements, P; Q. Suppose we find the proper betting quotients _c—z——l{)—_b—

and to assure fair bets. Keeping to these quotients, we can

d
c+d
choose the stakes so that they are equal on the bets (¢ + b = ¢ + d). In
section VI.4 we saw that under such circumstances the sum of these

. . . . b+d
bets is a bet on PvQ with betting quotient T ERCET) (If you

don’t understand where this came from, go back to section VI.4 and

. . . ... b+d_ b d .
work it out.) This is just PRy My » + PR Since we assumed
the stakes were equal, @ + b =c¢ + d. So the betting quotient for

. b d : .
PvQ is equal tom+m, that is, to the sum of the betting

quotients for P and for Q.

At this point we need to add one modest assumption about fairness
to make any headway:

If a bet is a sum of fair bets it is fair.
Given this assumption it follows that:

If P and Q are mutually exclusive then PIPvQ) = PIP) + PKQ).

Taken together with the foregoing fact about negation [ie., that
Pl (—S) = 1 — PI(S)] this shows us the Pl(Pv~P) = 1 and PI(P&—P) =
0. Remember now from VL4 that if two statements are logically equiva-
lent, a bet on one is equally a bet on the other. Thus every tautology
must have plausibility 1 and every contradiction plausibility 0. It would
be hard to imagine anything less worthy of belief than P&~P or more
worthy than Pv—P. If we make this final assumption,

A tautology has the maximum plausibility and a contradiction
the minimum

we have insured that all the clauses of Definition 14, section VI.2, have
been met and thus that plausibility must, in fact, be probability.
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To sum up: If plausibility meets the following conditions, it is
probability:
(i) A bet on a statement, S, is fair if and only if the
betting quotient for S equals the plausibility of S.
(ii) If two bets are fair, their sum bet is fair.
(iii) A tautology has the maximum plausibility value and
a contradiction the minimum.

Exercises:

1. I bet on P with you, with the betting quotient for P being and

a
a+b
the stakes being ¢ + b with a and b both positive quantities. Descrlbe your bet
on —P with me.

2. More precisely, when we bet with someone he enters into an arrange-
ment where our winnings are his losses, and vice versa. That is, the entries on
his payoff table are the negative of the corresponding payoffs in our table,
Call his bet the complement of our bet,

Consider the principle that a bet is fair if and only if its complement is fair, Us-
ing the results of Exercise 1, show that this principle can replace the use of negative
winnings and losses in the argument for:

PYS) + PI(~S) =1

3. What kinds of bets give rise to betting quotients greater than 1 or less

than 0P (Hint: if ¢ and b are both positive must be between 0 and 1.

_a
a+b
If a is positive and b is zero, a-(i 5= 1. If b is positive and a is zero,
= 0. What if a and b are both negative?)

4. Give an intuitive argument as to why the kinds of bets that give rise to
betting quotients less than 0 or greater than 1 could not reasonably be de-
scribed as fair no matter how plausible or implausible the statement in ques-
tion. Remember that a bet that is favorable or unfavorable is not fair,

5. Suppose we allowed some statements to have greater plausibility than
a tautology, and some less than a contradiction, but kept to the other restric-
tions. So, for example: Pr(P) =2 and Pr(~P) = 1 —Pr(P) = —1. Suppose
also that we calculate the expected value of a bet on P in the normal way as
aPr(P) — b Pr(—P).

a. Show that these plausibility values would give an expected value of
0 to some of the types of bets discussed in Exercises 3 and 4.

b. Show that these plausibility values would violate the following prin-
ciple:

4
at+b
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If Bet 1 and Bet 2 differ only in that Bet 2 has a greater payoff in one
case than Bet 1, then Bet 2 has at least as great an expected value as
Bet 1.

6. When we showed that if fair bets and expected values are to work reason-
ably, plausibility must be probability, our demonstration was based on minimal
assumptions about fair bets. If we assume more about fair bets, the argument
becomes very short. Assume that the expected value of a betting arrangement
is the sum of the products of the plausibility of a case and the payoff in that
case. We will consider only unfair bets.

a. Consider:

Bet 1 Bet 2

P Payoff Pv~P Payoft

T a T a
F a F -b

Show that they are the same bet.

-b. Assume the followmg sure-thing principle: If a bet pays off a fixed
amount, a, in every possible case, then the expected value of that bet
must be a. Under this assumption, show that the plausibility of
tautology must be 1 and the plausibility of ~S must be 1 — PJ(S).

c. Suppose that P and Q are mutually exclusive. Consider the betting

arrangement:
P Q Payoff
TF a
F T a
F F a

Using the rule for calculating expected value and the sure-thing prin-
ciple, relate Pl(P&—Q); P1(—P&Q); PI(—P&—Q). Assuming that
logically equivalent statements have the same plausibility, show that
PI(P) + PI(Q) = PI(PvQ)

d. Show that logically equivalent statements must have the same plausi-
bility.

VL6. THE DUTCH BOOK. If you are so foolish and your bookie
is so clever that you conclude a series of bets with him such that he
wins the sum bet no matter what happens he is said to have made a
Dutch Book against you,
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The f'ollowing striking fact is often cited as a justification for the
assumption that epistemic probabilities should obey the rules of the
probability calculus:

If you count as fair any bet on S if the betting quotient for S
equals the plausibility of S, and if you are willing to make any
series of bets each of which you regard as fair, then if your
plausibility values do not obey the rules of the probability cal-
culus a Dutch Book can be made against you..

:Against the background of the previous two sections, the reasons for
thl'S theorem should be fairly transparent. Let us take the conditions for
being a probability in order.

14a: No probability is less than zero.

If you have done the exercises you have already discovered the un-
pleasant results of taking plausibilities less than 0. Such plausibilities
would lead me to regard a bet on P as fair, which would result in a loss
whether P is true or false. For example, a plausibility of —.10 would
lead me to regard the following bet as fair

P Payoff

T ~110
F —-10
since the bettin tient i b__ 10 = —

b .1 g quotient is EY R ETUESTN 10. In general,
any plausibility value, €, for S will justify as fair a bet on S with win-
nings a if S is true and losses b if S is false just in case %2 1- <, (Exer-
cise: Show .that this is true.) Thus, if € is negative, it will justify a bet with
negative winnings (a) and positive losses (b).

14b. If T'is a tautology, Pr(T) = 1.

Any plausibility greater than 1 will get us into what we just discussed

P l—e,
because if € is greater than 1, € is negative. Suppose, on the other

hand, we underestimate a tautology and give it plausibility less than 1.
Then there will be some odds at which we consider it fair to bet against
T (ie., bet on T with negative winnings and negative losses). This is a
bet we are sure to regret. For example, suppose we assign a plausibility
of 75 to a tautology. This justifies a bet where ¢ = $—25 and b = $—75.
My bookie need only do a truth table to collect my $25.
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14c: If P; Q are mutually exclusive, then Pr(PvQ) = Pr(P) + Pr(Q).

We have already learned that if P and Q are mutually exclusive, the
sum of bets on P and on Q of equal stakes is a bet on PvQ such that the
betting quotient on PvQ is the betting quotient on P plus the betting quo-
tient on Q. Since I am committed to accepting any series of bets, each mem-
ber of which I consider as fair, my bookie can always compel me to act as if
PI(PvQ) = PI(P) + PI(Q) by placing separate bets at equal stakes on
P and Q. He makes a bet on P which I consider fair. This means that
the betting quotient for P equals what I take to be PI(P). Likewise with
Q at equal stakes. The sum of these bets is a bet on (PvQ) which I
would consider fair if and only if I took PI(PvQ) to equal PI(P) + PI(Q).
But we are assuming that I take PI(PvQ) to have another value which
establishes a different betting quotient for what I take to be a fair bet.
I am offering my bookie two separate sets of odds on PvQ! Obviously,
the thing for him to do is bet on PvQ at one set of odds and against
PvQ at the other, choosing the most lucrative odds and catching me in
the middle. For example, suppose the effective fair betting ratio on PvQ
resulting from separate bets on P and Q is .6 while the betting ratio I
judge directly to be fair is .5. Then I will judge to be fair separate bets
on P and Q whose sum will pay me $4 if PvQ is true and cost me $6 if
PvQ is false. I will also judge a bet to be fair which costs me $5 if PvQ
is true and pays me $5 if PvQ is false, If my bookie makes all these bets
he will win $1 from me no matter what happens. The whole story is in
the following table:

Beton Beton Sumof Beton Sum of Betson

P O P Q P, Q PvQ P; Q; PvQ
T F 7 -3 4 —5 —1
F T -3 7 4 -5 -1
F F -3 -3 —6 +5 —~1

If you understand the principles at work, you should be able to now
show for yourself how this can be done in general.

The moral of the story is important. The Dutch Book being made
against me results from my having two different effective betting quo-
tients for PvQ. If we regard the odds that a person is willing to give on
P a measure of his degree of belief on P, my problems stem from my
having two incompatible degrees of belief. The most extreme case of
this disease would occtr if I gave a proposition degrees of belief 0 and 1,
thus in effect believing with certainty both P and ~P. Thus, if degrees
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of belief are held to be tied to betting quotients and betting behavior®
in the manner indicated, the additivity requirement for probability is
a kind of consistency requirement for degrees of belief. The fact that we
do use our epistemic probabilities as weights for determining what risks
to take in uncertain situations makes this the strongest argument to the
effect that epistemic probabilities are probabilities.

The argument lacks one step of being complete, We have shown that
if you violate the rules of the probability calculus you lay yourself open
to a Dutch Book. But we have not shown that compliance with those
rules protects you against a Dutch Book. Does it? Stop now, if you do
not know, and think about the answer.

The answer is, of course, implicit in section VL5, When someone
makes a Dutch Book against you he entices you into a sum bet such
that it is a sum of individual bets which you consider to be fair, but
which itself guarantees you a loss in every case. Now if you are dealing
in genuine probabilities (rather than some wacky plausibilities with

values less than 0 or greater than 1) you will consider the sum bet to -

be unfair. The expected value of the sum bet is the sum of the products
of the payoffs and the corresponding probabilities. Some of the prob-
abilities will be positive; none will be negative. All the payoffs will be
negative; so will the expected value.

Now we proved in section VL5 that if we are using genuine probabili-
ties to define fairness, if two bets are fair, their sum bet is fair, and if
two betting arrangements are fair their sum is fair. It follows that if you
are using genuine probabilities, no sequence of bets you consider fair
can constitute a Dutch Book against you.

Exercises:

1. Suppose someone assigns a plausibility to P v Q different from the sum
of the plausibilities he assigns to P and to Q. Give explicit instructions for making
a Dutch Book against him.

2.' Show.that if you are using genuine probabilities, no sequence of bets you
consider fair or favorable can constitute a Dutch Book against you.

3. If you conclude a series of bets such that there is no possible circumstance
under which you can win on the sum bet and there is some possible circum-
stance under which you can lose on the sum bet, we will say that you are the vic-

3 That a series of bets may be made if the bets individually are fair.

V1.7 CONDITIONALIZATION 189

tim of a semi-Dutch Book. (This concept is due to Shimony, as are the following
theorems.) :
a. Prove that if you assign probability 1 to any statement other than a
tautology, you lay yourself open to a semi-Dutch Book,
b. Show that if you adhere to the rules of the probability calculus and
assign probability 1 only to tautologies, you are not open to a semi-
Dutch Book.

Suggested readings

Abner Shimony, “Scientific Inference,” in The Nature and Function of
Scientific Theories, ed, Robert Colodny (Pittsburgh: University of Pitts-
burgh Press, 1970), pp. 79-172.

Richard Jeffrey, The Logic of Decision (New York: McGraw-Hill Book
Company, 1965).

VL7. CONDITIONALIZATION. In the preceding sections we
have discussed why epistemic probabilities should, in fact, be prob-
abilities. The question of inductive probabilities has been left open. In
this section, let us approach the question of inductive probabilities from
rather a different angle than that of Chapter 1; that is, via the rule
of conditionalization.

Let us assume, for the moment, that we are operating within a cer-
tainty model. We get to know more and more things with certainty
and these items pile up, so to speak, in an ever-growing stock of knowl-
edge. Suppose we have a certain “initial” set of epistemic probabilities;
Pr;; and our senses toss a new item of knowledge, P, into our stock of
knowledge. How are we to move to a “final” set of epistemic probabilities,
Pr;, which accommodate our new item of knowledge in a rational
fashion? The rule of conditionalization gives this answer:

Rule C: For any statément Q, take its new probability to be its
old probability conditional on the new item of knowledge, ie.,

Pr(Q) = Pri(Q given P).

Note that Rule C gives P the new value of 1, a status commensurate
with its new-found certainty. Rule C, however, can also effect a change
in the epistemic probability of nearly every other statement. What justi-
fication is there for making these changes according to this rule? For
the answer we must go back to bets once more.

Remember that the sum of bets on P&Q and on ~P is, if the stakes
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are right, a bet on Q conditional on P with a payoff table as represented

below: «
p Q Payoff
T T 2
T F —b
F T 0
F F 0

gl'hlts.betting arrangement is fair just in case its expected value is zero
at is: ,

aPr(P&Q) — bPr(P&—Q) = 0
or:

Pr(P&Q) _ b
Pr(P&—Q) a

Note that several sets of probability values will render such a bet fair.
l:‘ or example, if @ = $1 and b = $2, then Pr(P&Q) = < and Pr(P&~Q) =
5 renders the bet fair, as does Pr(P&Q) = % and Pr(P&—Q) =+. The
first set of values makes Pr(P) = 1 and the second set makes Pr(le’)- =1
In fact, any value of P is compatible with our conditional bet so loxfé

Zst it is* divided up into Pr(P&Q) and Pr(P&~() in the same ratio as
o a. ‘

In other words, the bet is fair just in case:®

Pr(P&Q) = Pr(P)

b
a+b
Pr(P&~Q) = —Z— Px(P)

or
Pr(P& = —_—
—Lr()&) = Pr(Q given P) P _?_ A
Pr(P&—~Q ~ P) =
_(T(_)__)_Pr( Q given P) aib

4 If not zero.
50rPr(P)=0o0ra=254=0.
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If we call i > the betting quotient on Q conditional on P, which
a

seems reasonable, we can now say that a conditional bet is fair when
the conditional betting quotients equal the corresponding conditional
probabilities.

Now the interesting thing to notice about all this is the connection
between a conditional bet’s remaining fair under a belief change and
that change taking place by conditionalization. Suppose a bet on Q

is fair on a

conditional on P with conditional betting quotient 7D

set of initial probabilities Pr;. Then Pr_él_’((%@l = Pr;(Q given P) =
b 1

Suppose now that a change to a new set of probabilities is

a+b

made by conditionalizing on P. Then Pr(P&Q) = Pr;(P&Q given P) =

Pr;(Q given P) and Pry(P) = Pr/(P given P)= 1. Thus, _r;f_(P(%),;):
Iy

Pri(Q given P) b
1 Ta+b
tion on P, fair bets conditional on P remain fair.

Very nice. But what's nicer is that conditionization is the only
method for changing beliefs under these circumstances® which has
this property. Suppose a bet on Q conditional on P is fair before and
Pr;(P&Q) b

Pri(P) a+ b

—I:;le&ig—). If this belief is a result of P becoming certain, then Pr(P) = L.
Iy
Furthermore, Pr/(P&Q) must equal Pr/(Q) for Pr(Q) = Pr/(P&Q) =
Pr/(~P&Q) and Pr{(~P&Q) must be 0, since Pr(P) =1. So Pr/(Q) =
PLP‘(—I%)—) and the change has taken place by conditionalization. The
8]
only method of changing beliefs such that P becomes certain and bets
conditional on P which are fair remain fair is conditionalization on P'.
If this is true, a Dutch Book argument cannot be far away. We have
shown that if someone does not change his beliefs according to Rule C,
the conditional betting quotient which he regards as assuring a fair
bet on Q conditional on P will change upon the acquisition of P as an

. So, if beliefs are changed by conditionaliza-

after a belief change from Pr; to Pr. Then

¢ Certainty model.
7 Excepting cases where Pr(P) =0 or a = b=0.
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it.em Of. knowledge. If the bookie knows how the bettor will change
his betting quotients he is clearly in a position to guarantee a profit if P
oceurs, By making conditional bets before and after that occurrence, he
is essentially betting on Q at two different sets of odds. We have alre,ady
seen how a bookie can assure himself a profit in such a situation. If
Pr,-(Q 'given P) is less than Pr/(Q given P), he will bet initially 01; Q
‘condxtlonal on P and finally against Q conditional on P. If Pr,(Q given P)
is greater than Pr(Q given P), he will bet initially against Q conditional
on P and finally on Q conditional on P. Choosing the stakes correctly
l:le guarantees himself a profit if P occurs. Furthermore, he breaks evex;
if P does not occur, since all bets are conditional on P. Only one more
s¥nall step is required to achieve a proper Dutch Book. The bookie con-
sxdirs the a&mount, a, thlat he has guaranteed he will win if P occurs, and
Z:)?n st;a:liz yl')et of ;a on ~P, guaranteeing himself net winnings
The virtues of conditionalization having been firmly established, now
leF us look a little more closely at the workings of the certainty I’nodel
with the rule of conditionalization. As we travel through life, with
our eyes open, we come to know more and more things. This g,rowth
of knowledge is represented by the adding of statements (04, Oy, ... Oy)
to our stock of knowledge. Upon the addition of a new ite’m o’f kn.ow'i-
edgé, Os, to our stock of knowledge, we revise our belief structure b
passing from old epistemic probabilities, Pr, to new epistemic rob}-’
abilities Pr,, ,, by conditionalization on O,.* So for any statemerr:t Q
Prn s 1(Q)= Pr.(Q given O,), and ,
Pr(n + 2)(Q) = Pr,, 1(Q'given O,. 1)

3

but
Pr,.(Q given O, , ;) =

Pr,. ,(Q&0,,,) _
Pr” + 1(Oﬂ + 1) B

Pr,(Q&0, , , given O,)
Prn(on +1 given O”)

Pr,(Q&0, , ,&0,)/Pr,(0.)
Prn(On + 1&On)/Prn(O,,,)

8We are assumi - .
well define d.ummg that Pr,, (O,;) > 0, so that the conditional probabilities are
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Pr,(Q&0, , :&0,) _
Pr'n(on + l&on) N

Pr.(Q given 0,&0,.1).

So two steps can be compressed into one. First conditionalizing on O,
and moving from the resulting distribution by conditionalizing on Opna
is equivalent to moving from the original distribution by conditional-
izing on the conjunction 0,&0, . 1. It follows that we can compress
any finite number of steps into one.

The set of epistemic probabilities, Pr(n.:)(Q) arrived at by succes-
sive conditionalizations on items in a stock of knowledge (O, O, . . . On)
is identical to the set of probabilities which would be arrived at by
conditionalization on the conjunction of all those items of knowledge,
Pry(Q given 0,&0:%& . . . &O,).

Pr,(Q given O,&0,& . . . &0,) is a measure of the firmness with which
0.&0,& . . . &0, supports Q. Since Pr; is not the result of a condition-
alization, it does not depend upon the contents of our stock of knowl-
edge. This suggests that we might identify it as the inductive probability

of the argument:
O,
0.

This identification is vouchsafed by Definition 5 of Chapter I:

In the certainty model the epistemic probability of a' statement
is the inductive probability of that argument which has that state-
ment as its conclusion and whose premises consist of all the
observation reports which comprise our stock of knowledge.

and it answers the question with which we began this section. “Inductive
probabilities” must, in fact, be conditional probabilities.

In Chapter I, we started with inductive probabilities and, in the
certainty model, defined epistemic probabilities in terms of them. In
this section we started with epistemic probabilities and, within the
assumptions of the certainty model, recovered inductive probabilities.
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;['S}sle ?qu(rioacl'l of Chapter I is that of Carnap; that of this section is
ociate with the Bayesian school. That they coincide to such an
extent is a pleasant and informative fact,

Exercise;

Sh . " . oy
ow that if I move from an initial set of probabilities, first by conditional-

izing on P, then on Q, then iliti
g o b ther Q, on R, to a final set of probabilities, then for any state-

Pr,(P&Q&R&T) — Pr,(R&KOKR&T)

(provided the initial probabilities are positive),

Observ‘:'l'& Fi?LLIBILI'I_'Y. YA man .would be rash indeed if his acts of
ation all resulted in certainty in an associated observation state-
:;:: In ‘factl,l there are reasons to believe that it is never rational to be
obse::atg;l; atl eszt stense of assigning epistemic probability of 1) of any
erv atement. The first reason is Shimony’s argument that
assxgnln'g probability 1 or 0 to any statement not a logical truth or
contradiction respectively lays us open to a quasi-Dutch Book Th:
ol':her.reaspns have emerged from much threshing about by episte‘molo-
gists in this century. Tﬁe Fhreshing is perhaps not yet over, and no brief
:llin;lmary of its results is likely to be regarded as fair by all sides. Never-
i ;g(;s:,gzv}:jé I take to be tbe heart of the matter is this: no matter what
ongaage W o}lsg ;o c.lescrxbe our observations, the act of obsérvation
anc the f believing a sentenc.e attributing a certain character to
ha observation are distinct.” Doing one does not entail doing the
1(; ine;.a'rl;(}ixebh(rl)k bgtween them is causal, not logical. If I am of sound
mind and tohiz', a op; a modest observation language, and am proficient
genemﬁné s SZEZ?S %x;(l)tc:}sls may be highly reliable as a means for
B n . ere is no reason whatsoever to believe that
In such 'circumstances it is hard to see how it would be reasonabl
to .b.e certain. Remember that certainty for us means an epistemi . be
ability equal to I. And if Pr(P) = 1, the bet ’ e

*Thi i i i
s section deals with an advanced topic and may be omitted without loss of continuity

N.B. DlStlﬂCt means not
ldentlcal. It does not mean “dis oint™; it t
J) HED | does no
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P Payoff
T 0
F —b

is fair no matter how great b is. It is common folk knowledge that someone
who says he is certain and who even feels certain, may shrink from putting
his money where his mouth is. Certainty of the sort in which we are in-
terested involves the willingness to risk everything if you are wrong
over against no gain if you are right.

If all this has not convinced you that certainty is never warranted
for contingent statements, I hope it has at least convinced you that
there are some times when we wish to change our beliefs under the
pressure of new evidence where the certainty model is inappropriate.
We need, then, a way of changing our epistemic probabilities when an
observation raises our degree of belief in a statement, without raising
it all the way to L.

Suppose that an observation causes us to change our degree of belief in
P from Pr;(P) to Pr/(P). We might hope that our rule for changing
beliefs in such a situation would be such that bets conditional on P and
bets conditional on ~P which are fair before the change remain fair.
We saw in section VL7 that bets conditional on P remain fair just in
case the ratio of Pr(P&Q) to Pr(P&~Q) remains constant. And this ratio
remains constant just in case the conditional probabilities Pr(Q given P)
and Pr(—Q given P) remain constant. By the same token, fair bets
conditional on ~P remain fair just in case the conditional probabilities
Pr(Q given —P) and Pr(—~Q given ~P) remain constant. Thus if fair
bets conditional on P and on ~P are to remain fair:

Pr/(P&Q) = Pry(P)Pr;(Q given P)
Pr,(P&—~Q) = Pr/(P)Pr;(~Q given P)
Pr/(~P&Q) = Pr(~P)Pr;(Q given ~P)
Pr(~P&—Q) = Pr(~P)Pr;(~Q given ~P)
and |

Pr/(Q) = Pr(P&Q) + Pry{~P&Q)

Putting these together we have:
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Jeﬂrey’s Rule: If our new information is represented as a change
in degree of belief in P from Pri(P) to Pr/(P), then for any state-
ment Q, take:

Pr(Q) = Pr/(P)Pr;(Q given P) + Pr/(~P)Pr;(Q given —P)

Notice that Jeffrey’s rule is a generalization of Rule C. In the special
case W)here Pr(P) = 1, Jeffrey’s rule reduces to Rule C. Notice also that
Jeffrey’s rule can be viewed as a weighted average of Rule C to both P
and t.o‘ ~P. Conditionalizing on P, Pr/(Q) would be Pri(Q given P)
t(;londmonailizing on ~P, Pr/(Q) would be Pr/(Q given ~P), Averagingl
]ezizyfsesrl:ﬂt:., weighting the average by Pry(P) and Pr(—P), gives us

We have, then, a viable fallibility model for changing. from one set

of epistemic probabilities to another, But now it is not so easy as it

was in the certainty model to represent an epistemic probability as the
result of an inductive probability operating on a stock of knowledge
What observation gives us now is not a set of certain sentences.
04, 05, ..., but rather a set of observational probabilities, Pr,(0),); Pr,(0,);
+ «» . The observational probabilities are to be the outcome solefy of t}ie’
observation, not of inductive reasoning, for the point is to separate out
the factors of observation and induction.

In the. certainty model we showed that conditionalizing first on 0
Fhen on 0., etc., gave the same result as conditionalizing on their cori:
]m?c.tlon 0, & 0.. Hence the possibility of “factoring” our epistemic prob-
ability into a stock of knowledge and a set of inductive probabilities
In .general there is no long conjunction and associated probability to.
W.hleh we can apply Jeffrey’s rule and get the same set of epistemic
f}i:t raé)lléftles as we would have gotten from successive applications of

Suppp.se we attempt to define our epistemic probability as the result
of applylgg Je.ffrey’s rule successively to each item in our stock of knowl-
te}(ligef,i taking inductive ;-)robabilities as the conditional probabilities in

e first step, the resulting epistemic conditional probabilities as con-
ditional probabilities for the next step, and so on, This will not do, for
' several reasons. The first is that the final result differs depending, on

thfe order in which the items in our stock of knowledge are taken in
this process. This will not work, since the same data coupled with the
same inductive probabilities should generate the same epistemic prob
ability, The second reason is that at each stage in this procesf th<;
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observational probability is taken as the final probability. In the cer-
tainty model if P is observed, it becomes certain. Well and good. Its
final probability becomes 1. But if we are sophisticated enough to
realize that observations may fall short of certainty, we should be
sophisticated enough to realize that observational probability need not
be the only factor influencing final probability. Final probability is
rather the result of the interaction of observational probability with
theories which we may hold on the basis of previous observations.

Let me illustrate. Suppose I see a bird at twilight which 1 clearly
identify as a raven, Because the light is not so good, the probability I
can assign to him being black on the basis of that observation is only .8.
Suppose further that I hold the theory that all ravens are black and
that this theory is buttressed by massive numbers of previous observa-
tions. In such a situation the final probability I assign to the statement
that the raven is black will be higher than the observational probability,
and quite properly so. Otherwise I could disconfirm lots of theories just
by running around at night.

All right, my theory (which is really the conduit of the force of pre-
vious observations) pulls up the observational probability in this case.
It is just as easy to think of cases where it pulls it down, say where I think I see
a water buffalo on the San Bernardino Freeway at 3 a.m.

Can we have an analysis of the interaction of theory and observation along
these lines? Is there a valid Dutch Book argument for Jeffrey’s rule? These are
controversial questions under current investigation. If you find them of
compelling interest, you may want to follow up the suggested readings.

Exercises:

1. Start with initial probabilities Pr(P&Q) = 1/3; Pr(P&~Q) = .001;
Pr(~P&Q) = 1/3; Pr(~P&~Q) = 1/3. Apply Jeffrey’s rule taking Pr,{(P) = .99,
Calculate Pr; (P&Q); Pr; (P&+Q); Pry (~P&Q); Pr; (~P&Q). Now taking this
set of probabilities as initial probabilities, apply Jeffrey’s rule taking Pr(Q) =
.99, Calculate the final probabilities of all the same statements.

Now repeat the process in opposite order; that is, first apply Jeffrey’s rule on
Q at Pry(Q) = .99, then on P at Pr(P) = .99. Compare this set of final proba-
bilities with the previous one.

2. Suppose we move from Pr; to Pr; by applying Jeffrey’s rule to P, taking
Pr/(P) to have some value between 0 and 1. Suppose also that Pr;(S) = 1 only
if S is a tautology and Pr/(S) = 0 only if S is a contradiction.

a. Show that Pr(S) = 1 if S is a tautology and Pry(S) = 0 only if S is a
contradiction.
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b. Show that for any contingent statements S and T,
Pry(P&S)  Pr/(P&S)
and
c. If Pry(P) = g and Pry(P) = b, show that first applying Jeffrey’s rule to

Pljihv;)ith PréP) = b and then applying it to that set of probabilities
with Pri(P) = a gets you back to the initial set of probabilities.
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- t'VI.9t.hUTILITY. We 'have been operating so far within a set of as-
stakgs 1(;?s. t.at often If.pprommate the truth for monetary gambles at small
. It is time to take i i i
pake a more global viewpoint and question these assump-
efm exltsra }.mndrgd doll:jtrs means less to a millionaire than to an ordinary
\I,)Vi so‘n. ut ?f .I win a million, I'm a millionaire. So the difference between
v nn(;lrilg a million + 100 dollars and winning a million means less to me than
tefm ; ;mencef between winning 100 dollars and winning nothing. In the
nology of economics, money has decreasi
gimal ot o s y ng rather than constant mar-
. The 1fiea of utiliFy was introduced into the literature on gambling in this
P(;Itmeitlon by Daniel I.Sernoulli in 1738. Bernoulli was concerned with the St
e ntlars ur%1 game. In this game, you flip a fair coin until it comes up heads. If it
es up heads on the first toss; you get $2; if on the second toss, $4; if on the
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third toss, $8; if on the nth toss, $2". The expected dollar value of this game is
infinite. (Exercise: check this!) How much would you pay to get into this game?
Bernoulli’s idea was that if the marginal utility of money decreased in the right
way,®® the St. Petersburg game could have a reasonable finite expected utility
even though the monetary expectation is infinite.

When we consider decisions whose payoffs are in real goods rather than
money, there is another complication we must take into account. That is, the
value of having two goods together may not be equal to the sum of their
individual values because of interactions between the goods. If a man wants to
start a pig farm, and getting a sow has value b for him and getting a boar has
value ¢, then getting both a sow and a boar may have value greater than b + c.
The sow and the boar are, for him, complementary goods. Interaction between
goods can also be negative, as in the case of the prospective chicken farmer
who wins two roosters in two lotteries. The presence of an active market
reduces, but does not eliminate the effect of complementarities. The second
rooster is still of more value to a prospective chicken farmer in Kansas than to
Robinson Crusoe. The farmer can, for example, swap it for a hen; or at least sell
it and put the money toward a hen. Because of complementarities, we cannot
in general assume that if a bettor makes a series of bets each of which he
considers to be fair, he will judge the result of making them all together as fair.
Where payoffs interact, the right hand may need to know what the left is
doing, »

The preceding points about how utility works are intuitively easy to grasp.
But it is harder to say just what utility is. We know how to count money, pigs,
and chickens; but how do we measure utility? Von Neumann and Morgenstern
showed how to use the expected utility principle to measure utility if we have
some chance device (such as a wheel of fortune, a fair coin, a lottery) for which
we know the chances. We pick the best payoff in our decision problem and
give it (by convention) utility 1; likewise, we give the worst payoff utility 0.
Then we measure the utility of a payoff, P, in between by judging what sort of
a gamble with the worst and the best payoffs as possible outcomes has value
equal to P. For instance, farmer Jones wants a horse, a pig, a chicken, and a
husband. Her current decision situation is structured so that she will get
exactly one of these. She ranks the payoffs:

1. Horse
2. Husband
3. Pig

4. Chicken

10 Utility = log Money.
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S}}:e is indifferfent between (1) a lottery that gives 3 chance of a horse and >
ct an(:f of a chicken, and one tlhat gives a husband for sure; and (2) a lottery tha:t
gives 5 chance of a horse and chance of a chicken, and one that gives a pig for
sure, Thus, her utility scale looks like this: P

Utility
Horse 1
Husband 8
Pig 5
Chicken 0

If her decision situation were striictured so that she might end up with all these
goods, an.d if they didn’t interfere with one another, then her utility scale might
have a different top: Horse and Husband and Pig and Chicken. If it w%re
structured so that she might end up getting none of these goods af.ter going to
some expense, there might be a different bottom, which would ilave utilit g0

. Utll?t.y, as measured by the von Neumann-Morgenstern method, is sulz, 'eé
tive utility, determined by the decision maker’s own preferences. Th,ere arei n :
doubt, various senses in which a decision maker can be wrong about whz;t s
good for him. However, such questions are not addressed by this theor ’

‘ F.‘rom a decision maker’s utilities we can infer his degrees of belief >l;arm
Smith has bought two tickets to win for a race at the county fair. one :1:
Sﬁewball and one on Molly. If he holds a ticket on a winning horse h,e wins
pig; otherwise he gets nothing. We assume that he does not care, about thz
((;utcome of'the Ihorse race per se; it is important to him only insofar as it does or

oes not' win him a pig. He is indifferent to keeping his ticket on Stewball or
exchanging it for an objective lottery ticket with a known 10 per cent chance of

winning; likewise for Molly or an objecti i i
chance s Wi y objective lottery ticket with a 15 per cent

Farmer Smith’s utility scale looks like this:

Utility
Pig 1
Ticket on Molly 15
Ticket on Stewball .10
Nothing 0

If he maximi i1 . . )
Molly 1y imizes expected utility, his expected utility for his bet (ticket) on

Degree of Belief (Molly Wins) Utility (Pig) +
Degree of Belief (Molly Loses) Utility (Nothing)
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This is just equal to his degree of belief that Molly wins. Then his degree of
belief that Molly wins is .15; in the same way, his degree of belief that Stewball
wins is .10. Subjective degrees of belief are here recovered from subjective
utilities in an obvious and simple way. (Things would be more complicated if
farmer Smith cared about the outcome of the race over and above the question
of the pig, but as we shall see in the next section, his subjective degrees of belief

could still be found.)

Exercises:

1. A decision maker with declining marginal utility of money is risk averse in
monetary terms. He will prefer $50 for sure to a wager that gives a chance of ¥ of
winning $100 and a chance of % of winning nothing, because the initial $50 has more
utility for him than the second $50. Suppose that winning $100 is the best thing that can
happen to him and winning nothing is the worst.

a. What is his utility for winning $100?

b. What is his utility for winning nothing?

c. What is his utility for a wager that gives a known objective chance of % of
winning $100 and ¥ of winning nothing?

d. What can we say about his utility for getting $50? ‘

e. Draw a graph of utility as against money for a decision maker who is generally
risk averse. ‘

2. Suppose farmer Smith has one ticket on each horse running at the county fair, and
thus will win a pig no matter which horse wins. Let U(pig) = 1 and U(nothing) = 0.
Suppose farmer Smith’s preferences go by expected utility.

a. Farmer Smith believes that all his tickets taken together are worth one pig for
sure. What does this tell you about his degrees of belief about the race?

b. Suppose that farmer Smith also believes that each of his tickets has equal
utility. What does this tell you about his degrees of belief about the race?

3. (Advanced) Let us say that the physical sum of two bets, By; B, pays off, at each
case, both the physical goods that B, pays off and the physical goods that B, pays off.
However, let us say that a bet B; is the mathematical sum of B; and B, if it pays off, at
each case, a physical good whose utility is equal to the sum of the utilities of the physical
payoffs of Byand B, in that case. Show the following:

a. For someone who cares only about gold, and whose marginal utility for gold is
constant, the physical sum of two bets (with payoffs in gold) is the mathemat-
ical sum.,

b. For someone who cares only about gold but whose marginal utility for gold is
declining, the physical sum of two bets need not equal their mathematical
sum. (Hint: see Exercise 1.)

¢. For payoffs in arbitrary physical goods, the physical sum of two bets may fail
to equal their mathematical sum as a result of complementarities.
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d. Suppose that propositions p and q are incompatible and that one has a betting
arrangement that has a payoff of utility x if p is true (and g false), and again a
payoff of utility x if g is true (and p false), and a utility 0 if p and g are both false
(x > 0). This betting arrangement can be correctly described in two ways: (i)
as a bet with payoff of utility x if p or q is true, utility 0 otherwise; (ii) as the
mathematical sum of two bets, one of which yields a payoff of utility x if pis
true, utility O otherwise; the other of which yields a payoff of utility x if ¢ is
true, utility 0 otherwise. Reconsider the Dutch Book arguments in light of the
foregoing,

Suggested readings

R. D. Luce and H. Raiffa, Games and Decisions (New York: Wiley, 1957)
chap. 2. ’

J. von Neumann and O. Morgenstern, Theory of Games and Economic Be-
havior (2nd ed.) (Princeton: Princeton University Press, 1947).

VL10. RAMSEY. The von Neumann-Morgenstern theory of utility is
really a rediscovery of ideas contained in a remarkable essay, “Truth and
Probability,” written by F. P. Ramsey in 1926. In the essay, Ramsey goes even
deeper into the foundations of utility and probability. The von Neumann-
Morgenstern method requires that the decision maker know some objective
c.hances, which are then used to scale his subjective utilities. From his subjec-
tive utilities and preferences, information about his subjective probabilities
can be recovered. Ramsey starts without the assumption of knowledge of some
chances, and with only the decision maker’s preferences.

Ramsey starts by identifying propositions that, like the coin flips, lotteries
and horse races of the previous section, have no value to the decision maker ir;
and of themselves, but only insofar as certain payoffs hang on them. He calls
such propositions “ethically neutral.” A proposition, p, is ethically neutral for a
fzollection of payoffs B if it makes no difference to the agent’s preferences, that
Is, if he is indifferent between B with p true and B with pfalse. A propositi:)n p
is ethically neutral if p is ethically neutral for maximal collections of pay(;ff;
relevant to the decision problem. The nice thing about ethically neutral
propositions is that the expected utility of gambles on them depends only on
their probability and the utility of their outcomes. Their own utility is not a
complicating factor,

' Now we can identify an ethically neutral proposition, H, as having proba-
bility % for the decision maker if there are two payoffs, A;B, such that he
prfafers A to Bbut is indifferent between the two gambles: (1) Get A if H is true
Bi if H is false; (2) get B if H is true, A if H is false. (If he thought H was more:
likely than ~ H, he would prefer gamble 1; if he thought ~ H was more likely

VI. 10 RAMSEY | B 203

than H, he would prefer gamble 2, For the purpose of scaling the decision
maker’s utilities, such a proposition is just as good as the proposition that a fair
coin comes up heads.

The same procedure works in general to identify surrogates for fair lotteries.
Suppose there are 100 ethically neutral propositions, H;;H,; . . . ;Hieo which are
pairwise incompatible and jointly exhaustive. Suppose there are 100 payoffs,
Gi13Gys + + +;Guoos Such that G is preferred to G,, G, is preferred to G;, and so
forth up to Gie. Suppose the decision maker is indifferent between the

complex gamble:

IfH getG &
If H? get G, &

IfH get G;&

If H,g get Gioo

and every other complex gamble you can get from it by moving the Gs around.
Then each of the H;s gets probability .001, and together they are just as good as
a fair lottery with 100 tickets for scaling the decision maker’s utilities,

A rich enough preference ordering has enough ethically neutral propositions
forming equiprobable partitions of the kind just discussed to carry out the von
Neumann-Morgenstern type of scaling of utilities described in the last section
to any desired degree of precision. Once the utilities have been determined, the
degree of belief probabilities of the remaining ethically neutral propositions
can be determined in the simple way we have seen before. The decision
maker’s degree of belief in the ethically neutral proposition, p, is just the utility
he attaches to the gamble: Get G if p, B otherwise, where G has utility 1 and B
has utility 0.

With utilities in hand, we can also solve for the decision maker’s degrees of
belief in non-ethically neutral propositions, although things are not quite so
simple here. Suppose that farmer Smith owned Stewball and wanted his horse
to win, as well as wanting to win a pig. Then “Stewball wins” and “Molly wins”
are not ethically neutral for him. Now suppose we want to determine his
degree of belief in the proposition that Molly wins. Given our conventions, we
can’t set up a gamble that gives utility 1 if Molly wins because what farmer

Smith desires most and gives utility 1 is: “Get a pig and Stewball wins.” But we .
know that the expected utility of the wager “Pig if Molly wins, no prize if she
loses” is equal to:

Pr(Molly wins) U(get pig and Molly wins) +
1 — Pr(Molly wins) U(no prize and Molly loses)
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If we know the utility of the wager, of “Get pig and Molly wins,” and of “No
prize and Molly loses,” we can solve for Pr(Molly wins). ,

F.or a rich and coherent preference ordering over gambles, Ramsey has
cs)r.n]ured up both a subjective utility assignment and a degree of belief proba-
bility assignment such that preference goes by expected utility. This sort of

repre.sentation theorem shows how deeply the probability concept is rooted in
practical reasoning,

Exercises:

1.t Suppose that the four propositions, HH; HT;TH; TT, are pairwise incompatible (at
most one of them can be true) and jointly exhaustive (at least one must be true),

Describe the preferences you would need to find i
Doscribe th equiprObable'y need to find to conclude that tbey are ethically

2. Sup;?ose that farmer Smith owns Stewball and that “Molly wins” is not ethicall
fle}‘ltl‘al. I:IIS most preferred outcome is “Get pig and Stewball wins”; his least preferreg
is “N o pig and Molly loses”; therefore, these get utility 1 and 0, respectively. The
‘I‘)ropos¥tlons, HH;HT;TH;TT are as in Exercise 1. Farmer Smith is indifferent be);.ween

Get plg.and Molly wins” and a hypothetical gamble that would ensure that he would
get the pig and Stewball would win if HH or HT or TH and that he would getno pig and
Stewball. w,c’)uld lose if TT. (What does this tell you about his utility for “Get pig and
Molly wins”?) He is indifferent between “No pig and Molly loses” and the hypofhgtical
gamble that would ensure that he would get the pig and Stewball would win if HH and
lt)hat he would get no pig and Stewball would lose if HT or TH or HH. He is indifferent

etween the gamble “Pig if Molly wins; no pig if she loses” and the gamble “Get pi
and Stewball wins if HH or HT, but no pig and Stewball loses if TH or TT.” P
a. What are his utilities for “Get pig and Molly wins”; “No pig and Molly loses”;
the gamble “Pig if Molly wins; no pig if Molly loses™? ’ ’
b. What is his degree of belief probability that Molly will win?
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VII
Kinds of Probability

VIL1. INTRODUCTION. Historically, a number of distinct but relat-
ed concepts have been associated with the word probability. These fall into
three families: rational degree of belief, relative frequency, and chance. Each
of the probability concepts can be thought of as conforming to the mathemat-
ical rules of probability calculus, but each carries a different meaning, We
have, in one way or another, met each of these probability concepts already in
this book. A biased coin has a certain objective chance of coming up heads. If
we are uncertain as to how the coin is biased and what the objective chance
really is, we may have a rational degree of belief that the coin will come up
heads that is unequal to the true chance. If we flip the coin a number of times,
a certain percentage of the tosses will come up heads; that is, the relative
frequency of heads in the class of tosses will be a number in the interval from 0
to 1. The relative frequency of heads may well differ from both our degree of
belief that the coin will come up heads and the objective chance that the coin
comes up heads. The concepts are distinct, but they are closely related.
Observed relative frequencies are important evidence that influences our ra-
tional degrees of belief about objective chances. If, initially, we are unsure
whether the coin is biased 2 to 1 in favor of heads or 2 to 1 in favor of tails
(degree of belief 1), and then we flip the coin 1000 times and get 670 heads, we
will have gotten strong evidence indeed that the coin is biased toward heads.
Along just these lines, Cicero evaluated divination as a statistical theory and
found it unworthy of a high degree of belief. In our own time, microphysics
consists of theories that postulate chances, and that are largely tested against
frequentist evidence. This final chapter is devoted to a review of these con-

ceptions of probability and a sketch of their interrelation.

VIL2. RATIONAL DEGREE OF BELIEF. Belief is not really an all or
nothing affair; it admits of degrees. You might be reasonably sure that the
president was guilty without being absolutely certain. You might be extremely
dubious about the plaintiff’s supposed whiplash injury without being certain
that he is malingering, You might think of it as only slightly more likely than
not that the cause of a sore throat is a virus. Degrees of belief can be repre-
sented numerically, with larger numbers corresponding to stronger beliefs.
What should the mathematics of these numbers be for a rational agent?

Chapter VI introduced some of the reasons why it has been held that rational
degrees of belief should admit a numerical representation that obeys the
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