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Mises redux

Once one has clarified the concept of random sequence, one can define the
probability of an event as the limit of the relative frequency with which this
event occurs in the random sequence. This concept of probability then has
a well defined physical interpretation. (Schnorr, 1971, pp. 8-9)

Mises’ (1919) concept of irregular (“random”) sequence resisted
precise mathematical definition for over four decades. (See Martin-
Lof, 1970, for some details.) This circumstance led many to see the
difficulty of defining “irregular” as the obstacle to success of
Mises’ program, and to suppose that the solution of that difficulty in
recent years has finally set probability theory on the sure path of a
science along lines that Mises had envisaged. To the contrary, I shall
argue that since stochastic processes do not go on forever, Mises’
identification of each such process with the infinite sequence of
outputs it would produce if it ran forever is a metaphysical conceit
that provides no physical interpretation of probability.

1. BERNOULLI TRIALS

Martin-Lof (1966) showed how to overcome the distracting tech-
nical obstacle to Mises’ program, and Schnorr (1971) and others
have continued his work. The air is clear for examination of the
substantive claim that probabilities can be interpreted in physical
terms as limiting relative frequencies of attributes in particular infi-
nite sequences of events.

The simplest examples are provided by binary stochastic pro-
cesses such as coin-tossing. Here, Mises conceives of an unknown
member, A, of the set of all functions from the positive integers to
the set {0, 1} as representing the sequence of outputs that the process
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would produce if it ran forever. He then identifies the physical
probabilities of attributes as the limiting relative frequencies of
those attributes in that sequence; e.g., in the case of tosses of a
particular coin, # is defined by the condition
(1) h(@) = 1 iff the ith toss (if there were one) would

yield a head,
and the probability of the attribute head is defined,

@) p(head) = lim-}; > ha).
n—oe ' =]

Both parts of this definition are essential to Mises’ attempt to in-
terpret p(head) as a physical magnitude.

In their algorithmic theory of randomness for infinite sequences,
Martin-Lof, Schnorr, et al. have provided satisfactory abstract mod-
els within which part (2) of the definition makes mathematical
sense. Thus, Martin-Lof (1968) proposes a model in which Mises’
irregular collectives are represented by the set of all functions £ that
belong to all sets of Lebesgue measure 1 that are definable in the
constructive infinitary propositional calculus, e.g., the set of se-
quences for which p(head) = 1/2 in (2). In proving that the intersec-
tion of all such sets has measure 1, he shows that his definition
escapes the fate of von Mises’ (according to which there would be
no random sequences) and yields the desired result, that “almost”
all infinite binary sequences are random. The condition p(head) =
1/2 is inessential: The same approach works for Bernoulli trials with
any probability of head on each.

But the brilliance of this abstract model of Bernoulli trials is far
from showing how probability is connected with physical reality:
Rather, it deepens the obscurity of Mises’ condition (1), which
purports to provide that connection. For most coins are never tossed,
and those that are, are never tossed more than finite numbers of
times. No infinite sequence of physical events determines the func-
tion & of (2): For all but a finite number of values of “i,” the clause
following “iff” in (1) must be taken quite seriously as a counterfac-
tual conditional. But unless the coin has two heads or two tails (or
the process is otherwise rigged), there is no telling whether the coin
would have landed head up on a toss that never takes place. That’s
what probability is all about.

A coin is tossed 20 times in its entire career. Would it have landed
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head up if it had been tossed once more? We tend to feel that there
must be a truth of the matter, which could have been ascertained by
performing a simple physical experiment, viz., toss the coin once
more and see how it lands. But there is no truth of the matter if there
is no 21st toss. The impression that there is a truth of the matter
arises through the analogy between (a) extending a series of tosses
of a coin, and (b) extending a series of measurements of a physical
parameter, e.g., mass of a certain planet. If p(head) is a physical
parameter on a par with m(Neptune), then — the argument goes — (a)
really is just like (b). But the analogy is a false one because while
Neptune exists, and has a mass whether or not we measure it to a
certain accuracy, the 21st toss of a coin that is tossed only 20 times
does not exist and has no outcome: Neither head nor tail. A truer
analogy would compare p(head) with m(x) where x is a nonexistent
planet, e.g., the 10th from the Sun. Mises defines p(head) as the
limiting relative frequency of heads in an infinite sequence that has
no physical existence. If one could and did toss the coin forever
(without changing its physical characteristics) one would have
brought such a sequence into physical existence, just as one would
have brought an extra planet into existence by suitable godlike feats,
if one were capable of them and carried them out. But in the real
world, neither the sequence nor the planet exists, and the one is as
far from having a limiting relative frequency of heads as the other is
from having a mass.

Granted: There is a telling difference between the two cases. In
the case of the nonexistent 10th planet we are at a loss to say what its
mass would be if it had one, while in the case of the coin that is
tossed just 20 times we are ready enough to name a probability for
heads. If the coin is a short cylinder with differently marked ends
and homogeneous mass distribution, we are confident that heads
have probability 1/2. But this difference tells against Mises: It iden-
tifies the probability of heads as a physical parameter of the coin,
whether or not it is ever tossed, in terms of which we explain and
predict actual finite sequences of events — directly, and not by
reference to a nonexistent infinite sequence of tosses. It is because
the probability of heads is 1/2 that we grant: If the coin were tossed
ad infinitum without changing its physical characteristics, the limit-
ing relative frequency of heads would be 1/2. But since there is no

194

infinite sequence of tosses, “its” characteristics cannot explain why
heads have probability 1/2.

2. IRREGULAR FINITE SEQUENCES

In the 1960s, Kolmogorov and others (Chaitin, Solomonoff) found-
ed a theory of algorithmic complexity of finite sequences that sheds
fresh light on probability. In showing that the sequences irregular in
Kolmogorov’s sense are those that pass a certain universal test for
randomness, Martin-Lof (1966) provided an alternative definition
of irregularity that he was able to extend quite naturally to the case
of infinite sequences. In deprecating the foundational importance of
the infinite case, I am far from denying the importance and founda-
tional relevance of the finite case as treated by Kolmogorov, Martin-
Lof, and others. What I do wish to deny is that by continuity with
the finite case, or by mathematical infection from it, the infinite
case gets the importance it would have if ours were a world in which
each Bernoulli process went on forever (and in which each Markov
process, infinitely replicated, went on forever). To get a sense of the
importance and autonomy of the finite case, let us review it briefly.
Tables of “random numbers” are long, irregular sequences of
digits — binary digits, let us suppose. The easiest and surest way to
generate such sequences is by Bernoulli processes with equi-
probability for the two outcomes on each trial, e.g., by repeated
tosses of a coin, with heads recorded as 1’s and tails as 0’s. In
principle, such a process could yield a table of a million 1’s, but in
practice, no one would buy such a table or give it shelf space.
Why? Well, why spend the money? The table is utterly regular,
the relevant rule being, “Write 1 000 000 ones.” It is not only
cheaper but easier to use that rule in your head than to buy and
consult the table. Moral: We use “equi-Bernoulli” processes to
generate tables of “random numbers” not because we have use for
the outputs of such processes no matter what they may prove to be,
but because we expect such outputs to be irregular, and it is irreg-
ularity of the sequence that we seek, irrespective of its provenance.
Kolmogorov (1962) pointed to incompressibility as a definitive
characteristic of irregularity of finite sequences. Thus, a string of
1 000 000 1’s is compressible, for the rule “Write 1 000 000 ones”
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would be only some 100 binary digits long if letters, digits, and
spaces were coded in some fairly simple way as blocks of binary
digits. In detail, questions of compressibility are relative to (1)
choice of one out of the infinity of universal systems of algorithms
or programming schemes for generating binary sequences, and to
(2) choice of one out of the infinity of measures of complexity of
algorithms belonging to the same universal system — let us say, via
length of representation in one of the infinity of effective binary
coding schemes. Once these choices have been made, we have the
means to define the irregular (“random”) finite sequences as those
about as long as the shortest binary coded algorithms that generate
them. If we define the algorithmic complexity of a finite binary
sequence as the length of the shortest binary coded algorithms that
generate it, then the irregular sequences are those whose lengths are
approximately equal to their algorithmic complexities.

Locally (i.e., for each particular sequence) the relativity of al-
gorithmic complexity to choices (1) and (2) is problematical [cf.
Goodman’s (1955) “grue” paradox], but globally its effect is negli-
gible, for if k; and k, are two particular measures of algorithmic
complexity, there will be a finite bound on the absolute differences
between k,(s) and k,(s) as “s” ranges over all finite binary se-
quences. Thus, one proves that the percentage of irregular se-
quences among all sequences of the same length approaches 100 as
the length of the sequences increases without bound: For large n,
practically all sequences of length n are irregular.

Why do we turn to equi-Bernoulli processes as sources of irreg-
ular finite sequences? Kolmogorov’s theory provides a clear answer,
as follows. (1) For such processes, all output sequences of length n
have probability 2—7. (2) For large n, practically all sequences of
length n are irregular. Therefore: (3) For large n, the probability is
practically 1 that the output of such a process will be irregular. Then
devices lie ready to hand that, with practical certainty, generate long
irregular sequences. But mathematical certainty about irregularity is
far more difficult to attain: (4) For universal systems of algorithms,
the halting problem is unsolvable, and therefore there is no effective
test for irregularity of finite sequences. In principle, one might
nevertheless be able to prove that particular finite sequences are
irregular, but in practice we do well to rest content with high proba-
bility.
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3. MIXED BAYESIANISM

Suppose that a coin is tossed 40 times, and the process yields
nothing but heads. There is a dim argument to the effect that this
should not surprise us, for the sequence of 40 heads is no less
probable than any other sequence of that length, be it ever so irreg-
ular. Of course, this argument must be wrong if we rightly see in
such an output compelling evidence that the source was not as we
had supposed it to be, e.g., if we see the output as overwhelming
evidence that the source, far from being equi-Bernoullian, is one
that yields heads with probability 1 on each toss. But what is the
rationale behind this sensible view of the evidence? Here I give a
mixed Bayesian answer to this question — “mixed” in the sense that
while statistical hypotheses about the source are treated objec-
tivistically (as hypotheses about physical magnitudes), probabilities
of those hypotheses are treated judgmentalistically (“subjec-
tivistically”).

(1) Consciously or not, we do or should entertain various hypoth-
eses H, H,, . . . about the source, where (in the present example)
initially we judge H, (the equi-Bernoullian hypothesis) to be over-
whelmingly more probable than H, (the hypothesis that heads have
probability 1 on each toss), in some such sense as this:

P (H 1) = 920 ~
o, 2 1 000 000.

(2) After seeing the output sequence and so verifying the evi-
dence-statement E = “The output is a string of 40 heads,” we revise
our judgment via the probability calculus, changing our degree of
belief in each hypothesis H from its prior value, p(H), to its posteri-
or value,

pH|E)=pE|H) X p#) (Bayes’ Theorem).
p(E)
so that now H, is overwhelmingly less probable than H,, in the

sense that
p(Hl |E) —_ P(E | Hl)p(Hl) — 2202_40 = 0.000 001
P(HzlE) P(Ele)P(Hz)

In this Bayesian answer, the probabilities of the hypotheses are
“subjective” in the sense that they are degrees of belief, which need
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not be “subjective” in the sense of being ill-founded, arbitrary, or
idiosyncratic. But the statistical hypotheses H, and H, themselves
are treated objectivistically. Some Bayesians — notably, de Finetti —
would treat all probabilities as degrees of belief, and others would
treat all of them objectivistically. The mixed position represented
here is the commonsensical version of Bayesianism that Bayesian
extremists must explain away or reproduce within their own terms
of reference.

“Bayesians” are so called because of their willingness to use
Bayes’ theorem in cases where most thoroughgoing objectivists
would reject as senseless the prior probabilities p(H) and p(E) of
evidence and hypothesis that appear in it. The affinity of Baye-
sianism with “subjectivism” (judgmentalism) derives from the fact
that we may have broadly shared judgments in the form of degrees
of belief in H and E even in cases like the present example, where
prior inspection of the coin is supposed to have led us to think the
equi-Bernoullian hypothesis overwhelmingly more probable than
the other, but where we envisage no definite stochastic process of
which the coin is the product — a process of which the ratio of phys-
ical probabilities would be p(H,)/p(H,) = 1 000 000. Pure object-
ivists who would be Bayesian must envisage some such higher-level
process, and treat the prior probability function p as the probability
law of that process. Thus, commonsense objectivists sometimes
speak (without conviction) of urns containing assortments of coins,
some normal, some bent, some two-headed, etc., out of one of
which the coin actually used is imagined to have been drawn. In that
vision, p(H,) is the proportion of normal coins in the urn.

Observe that where the “subject” thinks she knows the objective
probability of an event (e.g., the event that all 40 tosses yield heads)
and thinks she knows nothing else that bears on the matter, (e.g.,
perhaps, that the first toss yielded a tail!), she will adopt what she
takes to be the objective probability as her degree of belief. Then
“subjective” does not mean whimsical. To call a probability “sub-
jective” is simply to say that it is somebody’s degree of belief. One
does not thereby deny that the belief has a sound objective basis.
Furthermore, the “events” to which subjective probabilities can be
attributed need have no special character (e.g., “unique,” weird,
etc.), for they are simply the events concerning which people can
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have degrees of belief, viz., all events whatever. [These remarks are
directed in part to the comments on subjective probability in
Schnorr (1971, p. 10).]

4. NONFREQUENTIST OBJECTIVISM

Frequencies are important: The laws of large numbers tell us why;
€.g., they tell us that in stationary binary processes, the relative
frequency of “success” will in all probability be very close to the
probability of success on the separate trials. Notice that here, the
notion of probability appears along with that of relative frequency in
the formulation of the law itself. (The notion of probability appears
as well in the definition of “stationary,” viz., invariance of proba-
bility of specified outcomes on specified trials, under translation of
trials.) Frequentism is a doomed attempt to define probability in
such a way as to turn the laws of large numbers into tautologies.

The lure of von Mises’ program lies in its goal of providing a
uniform, general definition of probability as a physical parameter —
a definition that can be applied prior to the scientific discoveries that
reveal the detailed physical determinants of stochastic processes, as
e.g., the discoveries by Mendel, Crick, and many others revealing
the mechanisms underlying the mass phenomena encountered in
genetics. Mises sought to found probability as an independent sci-
ence, on the basis of imaginary infinite sequences of events. Taxed
with the unreality of those foundations, he replied that they are as
real as the foundations of physics: To measure the physical param-
eter prob(head) to a desired accuracy it suffices to toss the coin often
enough, for prob(head) is the limit of such a sequence of measure-
ments just as surely as m(Neptune) is the limit of another sequence
of measurements. Shall we hold the foundations of probability to a
higher standard of physical reality than that to which we hold phys-
ics itself?

Surely not; but here, Mises holds physics itself to a remarkably
low standard of reality, i.e., essentially, the idealist standard to
which Bishop Berkeley held it: Esse percipi est. The suggestion is
that the mass of Neptune exists to the extent to which we measure it,
just as the sequence of outcomes exists to the extent to which we
toss the coin. As was suggested in Section 1, the limiting relative
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frequency of heads in the “ideal” (i.e., nonexistent) infinite se-
quence of tosses is more properly compared with the mass of some
nonexistent planet, e.g., the 10th from the Sun.

But if probabilities are not limiting relative frequencies, what are
they? If there is no uniform, general definition of probability that is
independent of other scientific inquiries, how shall we define proba-
bility as an objective magnitude? I would answer these questions as
follows.

The physical determinants of probabilities will vary from class to
class of cases; there is no telling a priori what they will prove to be.
In the case of die-casting, the experience of gamblers and tricksters
joins with physical and physiological theory to point to the shape,
mass distribution, and (most important) markings of the die itself,
as the determinants of the probabilities of the possible outcomes on
each toss, and these considerations also join to say that different
tosses are probabilistically independent. The case is similar for
coin-tossing (where the point about markings is that there are two-
headed coins about). In lotteries, by design, the determinants are the
numbers of tickets of each sort (or the numbers of balls of different
colors in the urn), but design is not enough: Empirical and the-
oretical inquiry may show the design to have been defective, e.g.,
because the balls of one color share a palpably distinct texture. As
with games of chance, so with social, biological, and physical prob-
abilities, but even more so: We look to experience, informed with
theory, to identify the objective determinants of the probability laws
of types of stochastic processes.

The easiest cases are lotteries and urn processes. There, we iden-
tify objective statistical hypotheses with the makeup of (say) the
urn, and, by a happy accident, the probability of drawing a ball of a
certain color is numerically equal to the proportion of balls of that
color in the urn. In practically all other cases, such a numerical
coincidence is lacking. The “classical” view tried to generalize that
coincidence to all stochastic processes. The frequentist view tries to
generalize a different coincidence — one that is probable where the
law of large numbers holds. On a nonfrequentist objectivistic view,
one must face the fact that typically, no such coincidence will be
forthcoming — not uniformly in all cases, and not even differentially,
on a case-by-case basis. Still, we are often in a position where we
can be fairly sure that the relevant determinants, difficult as they
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may be to describe explicitly and in detail, are the same in two
processes, as when we ascertain that two coins were cast in the same
mold under similar conditions: Believing that the determinants are
shape, mass distribution, and markings, and having good reason to
think that these determinants were determined in the same way for
the two coins, we have good reason to think that the same proba-
bility law will govern the two processes of tossing them — even
though we are at a loss to specify the common shape or the common
mass distribution except ostensively.

No pure objectivist, I think it important to use judgmental proba-
bilities, e.g., as illustrated in §3 (in an extreme, simplified exam-
ple). The present suggestion is that the objective statistical hypoth-
eses to which judgmental probabilities are attributed in such cases
will be hypotheses about various kinds of physical magnitudes,
which we shall seldom be in a position to specify explicitly and in
detail, but which we can often identify ostensively, well enough for
our purposes, once we understand what the kinds of magnitudes are
that determine the process at hand — kinds like shape, mass distribu-
tion, and marking.

This is a far cry from Mises’ uniform, general identification of
probability with a particular physical magnitude, found in all cases;
but that magnitude does not exist.
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Statistical explanation vs.
statistical inference

Hempel is not the first philosopher to have held that causal explana-
tions are deductive inferences of a special sort. In the Posterior
Analytics! Aristotle distinguishes a special sort of deductive in-
ference — the demonstrative syllogism — in these terms:

By demonstration I mean a syllogism productive of scientific knowledge, a
syllogism, that is, the grasp of which is eo ipso such knowledge.

He then lays down defining conditions for this special sort of in-
ference:

. . . the premisses of demonstrated knowledge must be true, primary, im-
mediate, better known than and prior to the conclusion, which is further
related to them as effect to cause.

And he remarks,

Syllogism there may indeed be without these conditions, but such syl-
logism, not being productive of scientific knowledge, will not be demon-
stration.

Now we can fault this account on various grounds, but so can we
fault contemporary accounts. We must give the old man credit; as he
says at the end of the Organon (at the end of De Sophisticis Elen-
chis), his was the first book on logic; and he concludes,

. . . there must remain for all of you, or for our students, the task of
extending us your pardon for the shortcomings of the inquiry, and for the
discoveries thereof your warm thanks.

The affinities between the Hempelian and Aristotelian accounts of
explanation may be obscured by differences in terminology. Thus,
Aristotle speaks of syllogism, Hempel of deductive inference; and
Aristotle speaks of knowledge, Hempel of explanation. But re-
member that “syllogism” was Aristotle’s general term for deductive

First published by R. Jeffrey, in Essays in Honor of Carl G. Hempel, N. Rescher et al., ed.,
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1. Book 1, ch. 2. All citations from this work are from the Oxford translation.
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