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Hume's Problem: Induction and the Justification of Belief
Colin Howson offers a solution to one of the central, unsolved problems of Western
philosophy, the problem of induction. In the mid-eighteenth century David Hume argued that
successful prediction tells us nothing about the truth of the predicting theory. No matter how
many experimental tests a hypothesis passes, nothing can be legitimately inferred about its
truth or probable truth. But physical theory routinely predicts the values of observable
magnitudes to many places of decimals and within very small ranges of error. The chance of
this sort of predictive success without a true theory seems so remote that the possibility should
be dismissed. This suggests that Hume's argument must be wrong; but there is still no
consensus on where exactly the flaw in the argument lies. Howson argues that there is no
flaw, and examines the implications of this disturbing conclusion for the relation between
science and its empirical base.
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None but a fool or madman will ever pretend to dispute the authority of experience.

(David Hume)

The greatest, and perhaps the only, use of philosophy of pure reason is thus purely negative,
since it serves not as an organon for the extension of knowledge, but as a discipline for
determining knowledge's limits; and, instead of discovering truth, has only the modest merit
of preventing error.

(Immanuel Kant)

The laws of probability are laws of consistency, an extension to partial beliefs of formal logic,
the logic of consistency.

(F. P. Ramsey)
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Introduction

Colin Howson
Half-way through the eighteenth century the Scottish !

1 Not English, as Glymour states (1992: 108).

philosopher David Hume published a philosophical argument that was, metaphorically, dynamite. Its famous conclusion,
that there is no justification for regarding what has been observed to happen in the past as any sort of reliable guide
to the future, subverted the prevailing methodology of observation and experiment on the back of which rode the new
mathematical sciences that seemed at the time Hume wrote to have attained an extraordinary degree of success, and
have gone on doing so. Yet no uncontroversially definitive answer has ever been forthcoming to Hume, and most
people have followed his own example of behaving as though nothing had happened. | find this extraordinary, and |
believe it is time to face up to the unpalatable possibility revealed by Hume that all our hard-won factual knowledge is
not secured by any process of demonstrably sound reasoning (and | mean sound reasoning in general, not merely
deductive) to an empirical base, and see whether that is true and, if so, what follows from it.

In the course of the investigation we shall be obliged to consider the respective claims of all the major ‘isms’ of
contemporary philosophy of science: reliabilism, realism, falsificationism, naturalism, and Bayesianism. We shall also
encounter the Anthropic Principle, significance tests, and miracles. Evaluating Hume's argument can therefore be made
into a stimulating way of acquainting students with a wider class of philosophical issues, at the same time challenging
them with a classic open problem which can be simply stated but not simply solved, if it can be solved at all. This book
grew out of a course of lectures in philosophy of science employing just such an approach. The first chapter sketches
the intellectual background to Hume's argument, presents that argument and then looks at some of the quicker
attempts to rebut it. The subsequent chapters examine the more sophisticated replies, touching as they proceed on
each of the ‘isms’ listed above.

My primary purpose in writing this book is not pedagogic, however. It is to support a claim that, despite its seeming
absurdity, Hume's argument is actually correct. | shall present the argument, in Chapter 1, in a way that | think best
reveals its quite extraordinary power, a power which, | believe, is still too little appreciated. The argument is
deservedly one of the great classics of philosophy: Hume, no mean wielder of crushing arguments, produced in this one
possibly the most crushing of them all. And not only crushing, but apparently attended by the gravest consequences
for our standards of justified belief. But just as the force of Hume's argument is usually underestimated, so the
devastation it is supposed to bring in its wake is usually exaggerated, and my supplementary thesis is that there is
none the less a positive solution to Hume's problem. Indeed, | will argue the apparently paradoxical claim that there
are nevertheless demonstrably sound inductive inferences! The resolution of the paradox is that inductive inference
arises as a necessary feature of consistent reasoning, given the sorts of initial plausibility assumptions scientists
habitually make. We are already familiar with and accept the idea that deductive soundness is a property of inferences
and not their conclusions; | believe that the correct analysis of Hume's problem, and Hume's own view of inductive
reasoning, forces us to view inductive soundness in the same way, a property of inferences rather than of what we
conclude from them. This may not sound the sort of conclusion to warrant fanfares, but in mitigation two things can be
said. First, Hume's argument gives us no reason to suppose that relying on our scientific knowledge is in any way
misguided; it does not tell us we are wrong to do so. It merely says that the attempt to show that there is any sound
inductive reasoning to that knowledge from observation alone will fail. But it may well be that we are fully justified, in
terms of its truth or nearness to the truth, in relying on it.

Secondly, | believe that Hume genuinely has solved the problem of induction. He solved it by showing, in general
terms, that a sound inductive inference must possess, in addition to whatever observational or experimental data is
specified, at least one independent assumption (an inductive assumption) that in effect weights some of the
possibilities consistent with that evidence more than others. | take this to be a great logical discovery, comparable to
that of deductive inference itself, and with consequences of as much practical as theoretical importance. For the
problem of induction, considered as



the problem of characterizing soundness for inductive inferences, has recently become hot (so to speak). People are
now for the first time in their chequered, too-frequently-bloody, history allocating substantial intellectual and material
resources to the design of intelligent machinery, and in particular machinery that will learn from data. At present these
systems fall into two main types, neural networks and rule-based systems. Functionally, in terms of mapping inputs to
outputs, they are less dissimilar than they appear, since any input—output map generated by the one can be mimicked
by the other. What is clear is that some logical basis for learning will certainly have to be built into any successful
system. Hume's problem implicitly posed two hundred and fifty years ago the question of how, if at all, logic enters
into inductive inference. Quite a lot of this book will be devoted to arguing that we now possess that logic, and that it
can be identified with so-called Bayesian probability.

This claim has been denied by two of this century's most influential writers on scientific methodology, K. R. Popper and

R. A. Fisher. Popper, to take a notable example, is well known for claiming that the ‘logic of discovery’ 2

2 ‘L ogik der Forschung'’ is the original title of Popper's most influential work. It was inspired by some informal comments of the historian
Lord Acton, which were developed by Popper into a systematic methodological system. It is worth quoting Acton: ‘It is they [scientists]
who hold the secret of the mysterious property of the mind by which error ministers to truth, and truth slowly but irrevocably prevails.
Theirs is the logic of discovery, the demonstration of the advance of knowledge . . . Remember Darwin taking note only of those
passages that raised difficulties in his way; the French philosopher complaining that his work stood still, because he found no
contradicting facts; Baer, who thinks error treated thoroughly nearly as remunerative as truth, by the discovery of new objections; for

. it is by considering objections that we often learn’ (1960: 35).

is only ever deductive logic, applied in the design of tests to falsify hypotheses. In a remarkable coincidence of ideas,
expressed in uncannily similar language, the great statistician R. A. Fisher at about the same time urged the same
view. Both these thinkers emphatically rejected the view, prevalent between the beginning of the eighteenth century
and the end of the nineteenth, that the evaluation of hypotheses in the light of evidence is in terms of probability.
Popper's rejection was motivated by a desire to avoid what he thought to be a corollary of it, that knowledge is
inductively based, Fisher's by what he saw as an inevitable subjectivism. Both were mistaken. In fact, though it is
often called the subjective Bayesian theory, it is not actually a subjectivistic

theory at all. On the contrary, its rules, those of mathematical probability, are wholly objective and indeed interpreted
as conditions of consistency. Nor can they justify induction, as we shall see.

But the Baconian ideal of a secure pathway from experience to truth dies hard, and the idea that there might be a
logic of induction which does not justify induction has yet to be recognized, even by Bayesians. Here | should make a
disclaimer. Though they may sound novel, the ideas in this book are really just elaborations of those of other people,
and two in particular: Hume and Ramsey. The first part of the book endorses what | take to be Hume's argument that
inductive conclusions are only soundly inferred from inductive pre- misses, and applies it, equally destructively |
believe, to more modern attempts to justify induction. The second re-develops Ramsey's argument that reasoning from
evidence is probabilistic reasoning and as such is nothing but the application of logical principles of consistency. My
main purpose in writing this book is to show how the work of these two people amounts to the best possible solution
of the problem of induction: there is a genuine logic of induction which exhibits inductive reasoning as logically quite
sound given suitable premisses, but does not justify those premisses.

Some who have read only this far might, however, feel that they have already read enough. Surely it can't really be
being suggested that current scientific knowledge lacks all foundation? Or that obedience to a set of rules that do not
guarantee, or even make probable, truth as an end-product is anything other than art for art's sake, which cannot
possibly explain why science has been so extraordinarily successful as compared with other goal-oriented human
endeav- ours. It is one thing to argue this sort of thing as an academic exercise, quite another to take it seriously.
Modern science is a vast, intricately interlocking system which has successfully predicted quite unexpected new facts—
electromagnetic waves propagating at the speed of light, the velocity-dependence of mass, spin, the existence of



antiparticles, etc.—uniting in the process what had formerly seemed quite disconnected domains and simultaneously
underwriting the advanced technology required to inspect them. It would clearly be quite impossible for it to make the
incredibly precise predictions it does make and for the theories on which it is based not to possess at least a very
substantial core of truth. QED.

That simple argument is called the No-Miracles argument. It is very convincing and probably the best argument for
believing in the

truth of science. It has also been enormously influential. And it is wrong. | hope that the sceptical reader's appetite is

now sufficiently whetted to continue a little further.
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1 Hume's Argument

Colin Howson

Introduction

It is a commonplace that our scientific knowledge far exceeds the observational basis on which it is grounded. It seems
equally commonplace that a good part of it is securely grounded on careful observation. The inferential process by
which observation, suitably controlled, is regarded as conferring an affidavit of reliability on what in a strict logical
sense extends beyond it philosophers have traditionally called induction. Note: this is not to be confused with the

mathematicians' principle of induction, which is simply a true statement about things called well-ordered sets.

1 Where the set is the non-negative whole, or ‘natural’, numbers, the principle in its best-known form is called the Principle of
Mathematical Induction (it says that if O has a property Q and if an arbitrary n's having Q implies that n + 1 has Q, then every natural
number has Q).
Induction in the philosophers' sense has nothing to do with mathematics, but with the process of reasoning that leads
people to conclude that observational data obtained in suitably rigorous ways confirm some general hypothesis. For

example,

consider the natural scientist who wishes to establish a universal law, for example, one relating to the
conductivity of copper. . . . How does [he] proceed? He attaches a piece of copper wire to a live electric
terminal and uses the ammeter to measure the flow of current through the wire. Having observed that copper
wire is a good conductor of electricity he is disposed to conclude right away that all pieces of copper are good
conductors of electricity. If he is cautious, he will seek to establish that the copper wire is pure copper; that the
observed effect is not due to an undetected alloy. He will undoubtedly go on to show that the maximal flow of
current through a copper wire is a function of the wire's diameter and of its temperature. (Machamara 1991:
28)

What exactly are the further enquiries he has to conduct to justifiably alleviate his caution and draw the desired
conclusion—that is, at what point the induction is deemed soundly enough based—is not specified. It is, after all, only
an example of the sort of reasoning that goes on all the time in research laboratories. What seems clear enough is
that enough suitably designed observations are taken to establish robust law-like generalizations and, conversely, that
generalizations acquire that status only by being experimentally established by such a procedure.

Francis Bacon and the Logic of Induction

If the standard of experimental proof sounds obvious today, it was novel enough to the intelligentsia of the early
seventeenth century when it was advanced, in a powerful and influential manifesto, the Novum Organum (1620), by
the lawyer-philosopher, James I's Lord Chancellor, Francis Bacon (1561-1626). As the Kneales point out (1962: 309),
the title Novum Organum is an implicit snub to Aristotle; the logic expounded in Aristotle's great work, the Organon,
Bacon famously dismissed as quite useless for deciding what are the sound inferences from observation. In other

. . . . . 2
words, Aristotle's logic was not a logic of induction,

2 What Bacon was dismissing was the logic of the syllogism. This logic is actually valid as far as it goes, but the conclusions sanctioned
by it contain no more factual content than the premisses jointly do. To this extent deductive inferences cannot ‘dis- cover’ facts not
already implicit in what is premissed. Such a feature is now recognized to be a necessary condition of the correctness of any deductive
inference, but it is clearly of no use to anyone who, like Bacon, wishes to conclude generalizations from premisses about particular
instances. Aristotle did recognize that there was a problem there to be solved, but did not contribute to a solution beyond some

perfunctory remarks.

and this Bacon set out to provide. And Bacon the lawyer had a professional advantage. He could see the analogy



between skilful questioning in courts of law and the careful posing of experimental questions: ‘For the subtlety of
experiments is far greater than that of sense itself . . . ; such experiments, | mean, as are skilfully and artificially
devised for the express purpose of determining the point in question’ (Works, iv. 26); and at a time when torture was
a legitimate forensic device he likened experiment to torturing nature to reveal her secrets: ‘For like as a man's
disposition is never well known or proved till he be crossed, nor Proteus ever

changed shapes till he was straitened and held fast, so nature exhibits herself more clearly under the trials and
vexations of art than when left to herself’ (De Dignitate, quoted in Montuschi 2001; Montuschi's very interesting paper
shows how Bacon's views on scientific method make implicit reference to the inquisitorial procedures of Roman law
rather than to the adversarial processes of common law).

Such parallels undoubtedly inspired Bacon's ‘third way’ between the still-dominant philosophical apriorism deriving from
Aristotle and the unstructured empiricism of the alchemists and others: s

3 In view of the fact that Bacon expressed nothing but contempt for the mere unsystematic amassing of data (‘puerile’), it is
astonishing that he should stand accused of promulgating just this view by Popper, who took great pains to contrast his own ‘severity’
approach to what he wrongly alleged was Bacon's (Popper 1959: 278-9). Peter Urbach's discussion (1987) sets the record straight, as

well as providing an excellent exposition of Bacon's philosophy.

that of systematic, carefully designed observation, designed to elicit the hidden causal springs underlying the
appearances. He was, in Hacking's words, ‘the first and almost last philosopher of experiments’ (1984: 159). Bacon
proposed an equally novel criterion for a sound principle of induction and thereby for a principle of good experimental
design: if the hypothesis (‘axiom’) is ‘larger and wider’ than the existing factual basis, in the sense of making a
prediction beyond it, then an experiment verifying the chancy prediction ‘confirms its wideness and largeness by
indicating new particulars, as a kind of collateral security’ (Novum Organum, I. 106). The intuitive justification for this
type of induction is that such an investigation is likely to reveal the falsity of a hypothesis if it is false; for there are
very many ways the prediction could have failed and only one—if it is precise—in which it could have succeeded. This
idea has become the foundation of a good deal of work in modern approaches to induction, and appears in different
guises in modern theories of inductive inference: it is canonized in statistics as the principle of minimizing a Type Il
error, and in the Bayesian theory it is important in determining the so-called Bayes factor. We shall explore its
fortunes in later chapters.

Bacon's contemporary, Galileo, was of course already actually employing the method of well-designed experiments with
brilliant success (at any rate in devising them if not actually performing them), and the great scientific revolution
generally regarded as commencing with the publication of Copernicus's De Revolutionibus (1543) and ending with
Newton's Principia was already under way by

the time Bacon wrote his great methodological treatise. But there has been an almost universal perception of Bacon as
its spiritual leader and chief propagandist. Most revolutions acquire a defining manifesto, then or later. Later
commentators have seen as the manifesto of this one the Novum Organum. The early members of the Royal Society
certainly did, and Sprat's History of the Society (1667) cites Bacon's work as ‘the best . . . that can be produced for
the defence of Experimental Philosophy; and the best directions, that are needful to promote it’. Cowley contributed an
Ode to that History which declared that ‘Bacon, like Moses, led us forth at last, | The barren wilderness he passed, |
etc.’; for Voltaire the Novum Organum was the scaffolding on which the ‘New Philosophy’ was erected (Lettres
Philosophiques, XI); and so on.

Bacon's programme, which he felt he only partially achieved in the Novum Organum, was to write down a complete set
of rules, which could be implemented mechanically (this was a fundamental consideration), by which nature could be

4
made to reveal her secrets.

4 In a tribute less to the particulars of Bacon's recommendations than to their spirit a computer program constructed to perform

inductions from data has been named BACON (Langley et al , 1987). BACON, a curve-fitting program, actually ‘discovered’ Kepler's



third law from Tycho's data.

Much criticized as scientifically useless in the nineteenth and twentieth centuries, and never seriously employed, the
Novum Organum was nevertheless the forerunner of a long line of attempts to specify a working logic for inductive

5
arguments.

5 A survey of views of inductive reasoning up to Hume's time is in Milton 1987.

Some pursued Bacon's own particular type of programme: Mill's Methods of Agreement and Disagreement (1891) were
a fairly direct nineteenth-century descendant of Bacon's ideas. Some didn't: the use of probability theory, initially
developed in the late seventeenth century to be the foundation of inductive inferences, was a radically different
approach (we shall review it later). The objective gradually became seen to be not so much performative, the
production of prescriptions (after all, anyone could do this), but explanatory, in much the sense in which the so- called
meta-theorems of modern formal logic are explanatory, of the soundness—or otherwise—of such prescriptions. In
short, what was lacking was a set of prescriptions accompanied by a convincing explanation of why they should be

regarded as sound.

Unfortunately progress in this direction failed to match that of the contemporary science itself, a success which,
ironically, the development of an inductive logic was supposed to facilitate. People went on cheerfully interrogating
nature, weighing the answers and forming judicious conclusions with outstanding success even if no one seemed to be
able to offer a convincing explanation why. What was wrong? For a start there was always perceived to be something
not quite right, if not seriously defective, with every candidate system for such an explanation. Worse was the fact that
not only were philosophers unable to do the decent thing and uncontroversially sanctify inductive practice (though not
for want of trying); they were not even able to counter an apparently absurd argument put forward two and a half
centuries ago by the philosopher David Hume, that there is no good reason to suppose that inductive practice should
have been successful at all. Thus the initial problem of how to justify induction—‘the problem of induction’—difficult
enough in itself as it began to turn out, became modulated into the far more serious Hume's Problem, the problem of
reconciling the continuing failure to rebut Hume's argument with the undoubted fact that induction not only seemed to
work but to work surpassingly well. The Cambridge philosopher C. D. Broad's famous aphorism that induction is ‘the
glory of science and the scandal of philosophy’ was both a tribute to Hume and a token of the exasperation that Broad

felt at the stubborn resistance of Hume's argument to refutation (1952: 143).

And so that argument has stood since it was first presented, a philosophical classic, not really believed but
withstanding all attempts to overturn it. The continuing failure suggests that it might actually be correct. | believe that,
for all its apparent absurdity, it is. In the following pages | shall explain why | think it is, look at the attempts to
counter it, explain why they don't work, and then see what can be salvaged from the wreck.

The Argument

Hume's argument was presented first in his great philosophical work (written while he was still in his twenties), the
Treatise of Human Nature, and then more pithily a decade later in the Treatise's abridgement, An Enquiry into Human

Understanding. It is very simple. Hume

commences by pointing out that such no inference from the observed to the as-yet unobserved is deductive:
That there are no demonstrative arguments in this case seems evident; since it implies no contradiction that

the course of nature may change. (Enquiry, section 4, part 2, p.35.) e

6 Throughout, most of the references will be to the Enquiry rather than to the Treatise because Hume's statements of his
position are clearest there; the brevity and sharpness of the Enquiry were specifically designed to make the public impact for

Hume's views that the Treatise failed to do: ‘falling’, in Hume's famous words, ‘dead- born from the Press’.

Nor can such an inference be justified, without circularity, as a ‘probable argument’, based on but not entailed by



observational data. For in the light of what considerations would such an argument be probable? That inferences ‘of the
same type’ (I put ‘of the same type’ in quotes because it will turn out to be surprisingly ambiguous) have been
successful in the past will not work, without circularity, for that evidence is itself merely a record of what has happened
in the past, and any conclusion based on it would therefore presuppose the validity of inferences from past to future,
the question at issue. So what could such an inference rest on? Since ‘the course of nature may change’, indeed
proceed from here in a virtually uncountable number of different ways, the inference that the future will proceed or
even probably proceed in any one of them must beg the question. Since also, as we shall see later, each of these
extrapolates the data under some true description of those data, and therefore according to that description
‘resembles’ the past in that way, we can conclude with Hume—his circularity thesis—that

all inferences from experience suppose, as their foundation, that the future will resemble the past
—in some way or other.

The argument can be put in a manner possibly more familiar to modern ears. Let P be the conjunction of all factual
statements known to be true. Suppose that the inference from P to a statement Q describing some event not known to
be true is not deductive (establishing that this is so where P stands for ‘past’ and Q for ‘future’ is the first part of

Hume's argument). It follows immediately from the definition of deductive validity !

7 An inference is defined to be deductively valid if there is no possible world or structure in which the premisses are true and the

conclusion false.

that in some subset W of all the possible worlds in which, like ours, P is true and Q is false. The

end p.11
second part of Hume's argument can be imagined as arising from trying to answer the question: what further
information could be appealed to which would make it more likely that our world is not in W? Well, the only world we
know is this one, so the information must presumably be about some aspect of this world. But the only information we
have about this world that is known to be true is already in P. In other words, there is no further information. All we
know is that in our world Q may be true or it may be false: nothing more. Hence any principle claiming to justify the
inference from P to the truth or even the probable truth of Q must beg the question:

It is evident that Adam, with all his science, would never have been able to demonstrate that the course of
nature must continue uniformly the same . . . Nay, | will go farther, and assert that he could not so much as

prove by any probable arguments that the future must be conformable to the past. (Hume 1740)

It is the ‘going farther’ that is the original, and if correct quite devastating, part of Hume's argument. That there is no
deductive link between statements about past and future had been known since antiquity. Where Hume goes beyond
the traditional sceptical position is in arguing the link cannot in principle justified even as a ‘probable inference’.

A frequently-voiced objection to any such claim is that Hume's argument is no more than an appeal to some familiar
facts about deductive logic, namely: (i) P’ does not deductively entail Q; (ii) the weakest assertion which when
conjoined with P* will yield Q as a deductive consequence is the conditional ‘If P* then Q' (we are assuming here that P’
can be represented as a long finite statement); (iii) any deductively sound link between P’ and Q can be achieved only
by appending an additional premise which will itself deductively imply ‘If P’ then Q’; (iv) since the truth of that
conditional is exactly what requires justification, any sound ‘inference from experience’ will necessarily beg the
question. Understood in this way Hume's own argument clearly begs the question, that the only authentic justification
of ‘inferences from experience’ must be deductive in character and could not be some type of sound non-deductive
inference: for example, a probabilistic one. Thus, when Hume concludes that not only is it

evident that Adam would never have been able to demonstrate that the course of nature must continue
uniformly the same

but also

end p.12



that he could not so much as prove by any probable arguments that the future must be conformable to the

past. (italics added)

it would seem that he is simply exceeding his logical mandate. Stove, one of the most forceful advocates of this view
(a group which includes Mackie (1980) and van Cleve (1984)), points out that since for Hume ‘probable reasoning’
means merely ‘reasoning concerning matters of fact and existence’, he could not consider the possibility that there
might be sound authentically probabilistic arguments from past to future, and more generally from the observed to the
unobserved. At any rate, whether he could or whether he couldn't, he didn't: ‘Reasonable but probabilistic inferences,
then, have not been excluded by Hume's argument, for the simple reason that Hume did not consider this possibility’
(Mackie 1980: 15).

But there are decisive historical and textual objections to this view. Hume certainly knew of the contemporary
mathematical theory of probability, and its rudiments, and knew that there was already a keen interest in trying to use
it as a logical basis for inductive arguments, according to the programme of the manifesto-like part V of James
Bernoulli's seminal Ars Conjectandi (1715), which Hume is known to have read. Bernoulli had written there that ‘the
art of conjecturing is the art of measuring as exactly as possible the probabilities of things’, using for this purpose the
mathematical theory he had developed in the earlier parts of his treatise. Bernoulli's own attempt to use it in the
context of a problem of statistical inference was not thought to be wholly successful, and how to improve on it was a
live issue in eighteenth-century European mathematics and philosophy, probably comparable to any of the famous
twelve problems that Hilbert set mathematicians in the early years of the twentieth century; indeed, it was the
problem that Bayes attempted to solve about the time that Hume was working on the Treatise. Hume was almost
certainly aware of these developments, even if he had no knowledge of Bayes's own work.

Not only does the intellectual context in which Hume wrote make it a more than reasonable presumption that
arguments from the formal theory of probability were included in Hume's ‘probable arguments’; the presumption is
borne out by the Treatise itself. Hume discusses explicitly what is achieved by a mathematical definition of probability,
which in the contemporary theory, the so-called doctrine of chances, was as the proportion of chances favouring an

event's occurrence:

end p.13

Should it be said, that though . . . it is impossible to determine with certainty on which side the event will fall,
yet we can pronounce with certainty, that it is more likely and probable it will be on that side where there is a
superior number of chances, than where there is an inferior: should this be said, | would ask, what is here
meant by likelihood and probability? The likelihood and probability of chances is a superior number of equal
chances; and consequently, when we say it is likely the event will fall on the side which is superior, rather than
on the inferior, we do no more than affirm, that where there is a superior number of chances there is actually a
superior, and where there is an inferior there is an inferior, which are identical propositions, and of no

consequence.
Indeed,

The question is, by what means a superior number of equal chances operates upon the mind, and produces
belief and assent, since it appears that it is neither by arguments derived from demonstration, nor from
probability. (1739: 1. I1l. xi; my italics)

We can flesh out the argument thus: mathematical, indeed any, definitions say nothing about matters of fact (‘It is
indeed evident, that we can never, by the comparison of mere ideas, make any discovery which can be of consequence
in this affair’ (ibid.)). In order for them to do so special assumptions are required. Not only will these beg the question
of their truth in general, but in view of the fact that ‘the course of nature may change’, and in very different ways, any
extrapolation sanctioned by a probabilistic argument will beg the question of why that particular way should be
regarded as a probable one. In fact, Hume's circularity thesis applies to arguments from mathematical probability as
much as it does to any sort of non-deductive ‘probable inference’, and we shall see later how inductive arguments

constructed within the mathematical theory of probability fully corroborate it.



If 1 am correct, Hume's argument does not presuppose that the only form of justification is deductive: his argument is
the very simple and effective one that any evidence that we take to indicate that our world is likely to be among those
in which some general assertion is true requires some additional assumption to the effect that it is indeed evidence.
The argument is so effective just because it makes no assumption about what exactly constitutes valid reasoning—
deductive, probabilistic, or whatever. Entirely simple and informal, Hume's argument is one of the most robust, if not
the most robust, in

the history of philosophy. 8

8 It is also a wonderful example of what Kreisel called ‘informal rigour’ (1969), achieving its goal despite not appealing to the sort of

technical apparatus a symbolism-conscious later age regarded as being—well, de rigueur.

David Miller (1994, ch. 6) has compared its impact with that of Godel's great limitative results this century in logic,
that put paid to Hilbert's Programme for so-called absolute proofs of consistency for mathematics. According to Miller,
Hume's argument has the same devastating force vis-a-vis Bacon's programme for founding the sciences inductively
on experiment that Godel's had on Hilbert's. But the consequences for the theory of knowledge of Hume's work seem
on the face of it considerably worse than the impact of Godel's results on mathematics, where the practical effects
appear to be very few, if any. If Hume is correct, then it seems to follow that we have no grounds for believing that
science is any more reliable than soothsaying as a predictor of the future behaviour of the systems it studies. Coming
on the heels of the greatest scientific revolution the world had yet seen, whose laws, according to the greatest actor in
that revolution, Sir Isaac Newton, are in all cases no less than deduced from the phenomena, such a conclusion seems
incredible. And indeed we do not see people assailed by Humean doubt, while science, based apparently on the sorts
of inferences from observation Hume's argument flatly declares without any validity, continues to flourish in defiance of
him. People have understandably preferred on the whole to regard the success of inductive practice as an intuitive
reductio of Hume's argument, and have sought either to refute it directly, or indirectly by constructing systems of
inductive reasoning that are proof against it. What follow now are some of the quicker attempts to dismiss it or evade
its force. In subsequent chapters we shall consider the more sophisticated responses.

Some Quick Responses

I list eight. °

9 This list overlaps a similar one given in Earman et al 1992: section 2.6

There are more but these are the best-known of the quick ones. (i)—(iii) attempt to show in different ways that Hume's
argument does not rule out the possibility of our having a justified belief that our hypotheses are reliable predictors of
the future. A more sustained defence along these lines will be presented in the next chapter.
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(i) Contrary to what Hume argues, we do have provably reliable hypotheses, in science. We prove their reliability by
following this recipe: Instantiate the appropriate experimental conditions and see what happens. We know that what
will happen, of course, is that the predicted effects will be observed and that any modern follower of David Hume
prepared to put their money where their mouth is will quickly go bankrupt. QED.

Answer. Hume is questioning whether we really do know that. Despite its rhetorical force the objection merely asserts
without argument the claim that Hume is attacking. Collect all the reports of such observations carried out according to
the recipe. Call them O. Now simply repeat Hume's reasoning: in O we always have a statement about what has
happened, and it is inferences from these which Hume claims are unjustified.

(ii) The fact that tests on these hypotheses have in the past always confirmed their predictions tell us that these
hypotheses are reliable: that is just what the word ‘reliable’ means.

Answer. No it isn't. ‘Reliable’ means that the tests will continue to have the outcomes predicted. Hume is arguing that

we have no reason to believe this.



(iii) A variant of (ii), due to Strawson. This is a nice example of ‘ordi- nary language’ philosophy. Strawson claims that
it is ‘analytic’, that is, true by definition, that induction is reasonable:

It is an analytic proposition that it is reasonable to have a degree of belief in a statement which is proportional
to the strength of the evidence in its favour; and it is an analytic proposition, though not a proposition of
mathematics, that, other things being equal, the evidence for a generalisation is strong in proportion as the
number of favourable instances, and the variety of circumstances in which they have been found, is great. So to
ask whether it is reasonable to place reliance on inductive procedures is like asking whether it is reasonable to
proportion the degree of one's convictions to the strength of the evidence. Doing this is what ‘being reasonable’
means in such a context. (Strawson 1952: ch. 9; italics in original)

Answer. This completely misses the point. Saying that by definition ‘being reasonable’ includes in its meaning an
acceptance of inductive reasoning implies nothing at all about the non-linguistic world, and in particular nothing about
its tendency to verify (or not) predictions based on such ‘good reasons’. Broad's comment is apt:

It is fashionable at present in some quarters to insist that the question: ‘How, if at all, can induction be
justified?’ is in some sense a meaningless or improper one, which can be asked only under a misapprehension
and therefore needs no answer. | take this opportunity of saying that | have seen no argument which seems to
me to establish this contention. (1952: p. ix)

Quite so. Let us move on.

(iv) This is a slightly more sophisticated version of Strawson's argument due to Goodman. It is that Hume mistakes
the nature of a justification of inductive inferences (Goodman 1946: 62-5): inferences are justified by whether or not
they conform with accepted canons as expressed in the judgements people actually make after the process of making
mutual adjustments between proposed rules and accepted inferences has settled to a stable conclusion (p. 64; Rawls
famously described such a procedure as the approach to ‘reflective equilibrium’). This, claims Goodman, is just as true
of inductive inference as it is [allegedly] of deductive: ‘Principles of deductive inference are justified by their conformity
with accepted deductive practice. Their validity depends upon accordance with the particular deductive inferences we
actually make and sanction. If a rule yields unacceptable inferences, we drop it as invalid . . . All this applies equally
well to induction’ (ibid.).

Answer. Goodman is mistaken about deductive logic. A rule of deductive inference is not judged valid according to the
standard of whether or not it conforms with practice; it is defined to be valid (‘sound’ in logicians' jargon) if no
counterexample exists, and it is judged valid if it can be shown that this condition is satisfied. In other words,
deductive rules are justified only if it can be shown that they satisfy appropriate semantic criteria. Pursuing the (now
accurate) analogy, inductive rules should be judged valid only if it can be shown that they meet their appropriate
semantic criteria. What are these? Suppose we take ‘reliably indicating the truth or probable truth of a specified
hypothesis’ (this seems a plausible candidate): Hume's argument shows, or seems to show, that no noncircular
demonstration can be provided. In the next chapter we shall assess a defence of the claim that circularity is not a
vitiator of justification. | shall postpone a fuller discussion of this unlikely claim till then.

(v) Hume's argument fails to acknowledge the possibility of a priori synthetic knowledge, a possibility that Kant
exploited so famously after having been ‘woken from his dogmatic slumbers’ by Hume.
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Kant saw the necessity imposed as a condition of thinking and of perception. Kant proposed in the Critique of Pure
Reason that a so- called transcendental argument can be used to establish that what seem to be very general factual
principles, like that which says that every event has a cause, and even more specific ones like the Newtonian laws of
mechanics and gravitation, are necessary because they are preconditions of knowledge, the inbuilt framework within

which we structure experience.

Answer. The problem with Kant's theory is the undeniable fact that we can sensibly and consistently conceive



alternatives to the principles Kant held to be ‘necessary’ conditions of cognizing—the ‘law’ of cause and effect,
Newtonian gravitational theory, and Euclidean geometry as the only possible geometry for space—all of which,
moreover, are now deemed false! In other words, the Kantian ‘transcendental deduction’ is unsound. Furthermore,
even if there were ever a sound deduction, it would have to employ some non- tautological premisses, and we should
then need to enquire how they were established (at this point Hume enters again). Either that or there is an infinite
regress of justification, and nothing is achieved.

The modern descendant of Kant's transcendental argument is the claim, supposedly based on Darwinian theory, that
the expectational structures we inherit are likely to be the product of evolutionary pressures. Assuming that they are, it
then seems to follow that as adaptive structures they are also likely to generate broadly successful cognitive

strategies. There is in principle nothing wrong with such a Darwinian explanation of why we might find it impossible not
to think or expect in certain ways, but turning it into a justification would be assuming science to justify science, a
palpably circular procedure, and one to which we shall return in Chapter 6.

(vi) Nature does not, as Hume claimed, give us only information about particulars. Nature's answer to a properly
conducted experiment is itself a universal statement (in fact, an AE one, that is to say one starting with a phrase of
the form ‘For all x there exists a y such that . . . [A stands for ‘all’, E for ‘exists’]; Hintikka 1992: 24). Thus we can

learn generalizations from Nature.

Answer. Nature's answer is nothing of the sort. Hintikka's objection is based on a notion of experiment as an already

richly structured affair in which the experimental outcome is regarded as discriminating
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between a very small finite number of theories (Hintikka cites Newton's ‘deductions from the phenomena’ as an
example). But, as we shall see in due course, the finiteness assumption is unjustified.

(vii) One of the commonest of responses to Hume is to concede the insolubility of the problem as it is stated, and say
that what it reveals is the need for an ‘inductive principle’, that is to say an additional pre- miss permitting the
passage, deductively, from appropriate observation-reports to conclusions asserting either the truth or the high
probability of some prediction of even general theory. Russell famously was the first to diagnose the problem in this
way (1971), followed by Keynes (1973). According to Russell, the principle should state that the more cases an event
of type A has been found to be associated with one of type B, the more probable it should become, tending to
certainty, that all A events will be associated with B events. Keynes's candidate principle specifies only a ‘Limited
Independent Variety’ in the ways things can behave (in effect, it would limit the number of possible laws to a small
finite number; the need to do so is brought out dramatically in his ch. 4). A recent advocate seems to be Maxwell
(1998), who calls it a ‘principle of the comprehensibility of the universe’. However it is precisely characterized, such an
inductive principle, according to these thinkers, enjoys the status of a postulate whose justification is its
indispensability for factual knowledge.

Answer. This is clearly not a critical response to Hume's argument, whose validity is the only question we are
concerned with here; the inductive-principle advocates explicitly or implicitly acknowledge the validity of the argument.

(viii) Hume's own argument that there is no justified procedure for showing that the future will resemble the past is
question-begging. ‘Past’ and ‘future’ are theoretical concepts meaningful only within some theory of the way the
universe behaves. Thus Hume's argument already presupposes the truth of some physical theory, namely that which
postulates the existence of an oriented universe.

Answer. Exercise!

Conclusion

None of these replies meets the challenge posed by Hume's argument. What did Hume himself think? His own

response is no less



famous than the argument itself and, like so much in Hume, it is two centuries before its time. It was to explain where
he could not justify, in this case the apparently universal psychological propensity to induce, and to explain it in terms
of inborn characteristics. Hume argued that humanity, like all the animal kingdom, has an inborn expectation that
factors observed to be constantly conjoined in the past will continue to be conjoined in the future. This belief may be
wrong for certain pairs of factors, and weaker and stronger for others, but the propensity to extrapolate such
conjunctions is always there. He called it, with remarkable prescience, Instinct:

the experimental reasoning itself, which we possess in common with beasts, and on which the whole conduct of
life depends, is nothing but a species of instinct or mechanical power, that acts in us unknown to ourselves; and
in its chief operations, is not directed by any such relations or comparisons of ideas, as are the proper objects of
our intellectual faculties. Though the instinct is different, yet still it is an instinct, which teaches a man to avoid
the fire; as much as that, which teaches a bird, with such exactness, the art of incubation, and the whole
economy and order of its nursery. (1748: 108. The invariable elegance of Hume's prose style is at its most
apparent in these final cadences.)

Both Hume's strategy, ‘explain where you can't justify’, and his explanation, an appeal to something non-rational and
innate, anticipates the current vogue for a ‘naturalized epistemology’ based on Darwin's theory of inherited adaptive
traits. Unlike ‘naturalized epistemology’, however, it keeps clear the distinction between explanation (by appeal to a
theory whose truth is for the purpose at hand simply assumed) and justification which, according to Hume, is
invariably wanting. We shall resume this discussion later; for now we leave the last word to Broad:

There is a skeleton in the cupboard of Inductive Logic, which Bacon never suspected and Hume first exposed to
view. Kant conducted the most elaborate funeral in history, and called Heaven and Earth and the Noumena
under the Earth to witness that the skeleton was finally disposed of. But when the dust of the funeral
procession had subsided and the last strains of the Transcendental Organ had died away, the coffin was found
to be empty and the skeleton still in its old place. Mill discreetly closed the door of the cupboard, and with
infinite tact turned the conversation into more cheerful channels. Mr Johnson and Lord Keynes may fairly be
said to have reduced the skeleton to the dimensions of a mere skull. But that obstinate caput
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mortuum still awaits the undertaker who will give it Christian burial. May we venture to hope that when Bacon's
next centenary is celebrated the great work which he set going will be completed; and that Inductive Reasoning,
which has long been the glory of Science, will have ceased to be the scandal of Philosophy? (1952: 143)
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2 Reliabilism

Colin Howson

Reliable Methods

Consider the following two ways in which a goal-directed procedure might be justified. There is the ‘internalist’ way,
which means looking at its structure and seeing whether that underwrites an ability to achieve the goal in question.
Thus deductive justification is internal- ist, since whether a putatively deductive inference is valid or not depends on
nothing but its internal logical structure. If the inference is valid this can, in principle at any rate, be proved by means
of a so- called soundness theorem. Hume's argument appears to rule out any similar internalist justification of
induction. But it could also plausibly be argued that a procedure, like induction, is justified if in fact it achieves the
goal sufficiently more often than not, even though it may have no intrinsic character that could provide a
demonstration that it is reliable: it just happens to be the case. This sort of justification, if it is a justification, is called
‘externalist’, indicating that its reliability depends on factors extrinsic to it. But since the bottom line is actually
achieving the goal, it might be wondered what better justification could exist. Whether one goes along with this view or
not, some sort of further insight into Hume's problem might be forthcoming by finding out for what sorts of worlds
reliable methods exist, and how robust they are.

A good deal of technical work has been done on this problem, work which forms the subject-matter of a new
mathematical discipline called formal learning theory. As its name partly suggests, this is an abstract formal model of
learning from experience. Its conceptual apparatus is, first, algorithms, that is, computable procedures, whose inputs
are finite segments of infinite data sequences and whose outputs are either hypotheses about the structure of the data
source or else conjectured truth-values of specified hypotheses, and, secondly, a variable set of data sequences whose
particular constitution

represents the constraints imposed by the relevant background information. ‘Learning the truth’ for a given data
sequence consistent with the specified background information is modelled by the convergence of the outputs on that
data sequence to the ‘correct’ hypothesis or class of hypotheses for that sequence. The condition that the procedure be
computable is supposed to reflect the fact that a methodology of evidential assessment is usually regarded as an
effective, rule-governed affair; were it not, it could hardly be humanly implemented. A famous thesis independently
advanced by the mathematicians Alonzo Church and Alan Turing in the 1930s, and called, appropriately, the Church—
Turing thesis, states that any effective procedure can be implemented on a suitable digital computer (somewhat
idealized); hence the equation of ‘methodology’ with ‘algorithm’.

A simple example of a hypothesis for which an algorithm exists which will reliably identify its truth across all possible
data sequences, if it is true, is a simple existential hypothesis H: ‘There exists some element of the data which has
property Q’, where Q is some decidable property of data elements: the algorithm consists of the instruction to examine
each data element to see if it has Q, and if it does to register ‘yes’ and keep registering ‘yes’ on all subsequent
elements (on the other hand, no algorithm will identify the falsity of H if H is false on an infinite data stream). This is
a rather trivial example; the most impressive technical results of formal learning theory concern the way imposing
various constraints—under the generic title of ‘background information’—on the possible data sequences determines a
corresponding logico-mathematical structure for the hypotheses which can be learned, or whose truth-values can be

learned, in the sense described above.

These results are presented in Kelly (1996), which also provides a general discussion of the aims and his own
assessment of the achievements of this programme. The results which relate to Hume's Problem are, as might have
been expected, almost wholly negative. For example, positive results for strictly universal hypotheses tend to be
forthcoming only when the background information, usually symbolized as K, is very strong indeed; and where general
extrapolations are ‘learned’, K must be of a strength where it already contains information of universal generality. If
any weaker prior restriction is placed by K on the class of possible data streams then, as might be expected, no
provably reliable method exists for determining the



truth-value of any universal hypothesis relative to arbitrary data sequences. | say ‘as might have been expected’, since
it is pretty well the starting-point for discussions of Hume's Problem that there can be no ‘internal’ demonstration of
the reliability of any method of assessing truth-values of general hypotheses relative to the class of all logically
possible data streams, that is, across all possible worlds (cf. Kelly 1996: 46). Suppose, for example, that H is a
hypothesis asserting that in specified circumstances an outcome A will always be observed. Suppose M is some
proposed method which is claimed will detect the truth-value of H, if H is true, on any sample data, in whichever
‘possible world’ that data might inhabit; that is, the sample is input to M, and the claim is that after some sufficient
amount of it M will output a T or an F, indicating the truth or falsity of H respectively, and this verdict will be correct
over all possible samples. Clearly, the claim is untenable: whatever the software and hardware driving M, a demon
able to select any from among all possible data streams can always confound M. For the demon, being a demon, knows
M's algorithm, and can therefore select a data stream which it also knows will cause M after some finite stage n to
output T, but which will contain a non-A at the (n + 1)th stage. Belief in a demon is of course not necessary to
appreciate the problem: as Kelly, who uses demons to great effect, points out, demonic selection of the future course
of events is merely a picturesque way of presenting Hume's argument for inductive scepticism (ibid.).

Being successful across all possible worlds is a very strong sense of the word ‘reliable’. After all, we only inhabit one
such world. This poses the question whether the extrapolation of observed data to the future is a reliable method in
this world. It is clearly possible that it is. Its reliability would mean that our world does not systematically generate
suitably induction-defying data sequences; it is a ‘normal world’, in the terminology of Goldman (1986). But now of
course we are back to the old problem. How could we know, or have grounds for believing, any such thing? Once more
we run up against Hume's Problem. We know there can be no method of evaluating predictive hypotheses that is

reliable across all possible worlds, so how could any claim that induction is reliable in this one possibly be backed up?
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Rule-Circularity

According to the so-called reliabilist doctrine, we can indeed know, or at least rationally believe, induction to be reliable
precisely because there is factual evidence for it: induction has been observed to be reliable sufficiently often in the
past. But what about Hume's charge that such reasoning is circular, for it in effect uses induction to justify induction?
Having pointed to the circularity, Hume presumably felt that his work was done, no doubt assuming as self- evident
that no procedure can be self-justifying; and the fact that his argument has been given the prominence it has is that
up to now virtually everybody else has concurred in this apparently reasonable view of the matter. One of the more
startling novelties of the reliabilist position is that it explicitly challenges this assumption. Ramsey, probably the first
reliabilist (‘We are all convinced by inductive arguments, and our conviction is reasonable because the world is so
constituted that inductive arguments lead on the whole to true opinions.’), averred that ‘An indispensable means for
investigating [induction] is induction itself, without which we should be helpless. In this circle lies nothing vicious’
(1931: 197), defending the position with a parallel with memory:

It is true that if any one has not got the habit of induction, we cannot prove to him that he is wrong. If a man
doubts his memory or his perception we cannot prove to him that they are not trustworthy; to ask for such a
thing to be proved is to cry for the moon, and the same is true for induction. It is one of the ultimate sources
of knowledge just as memory is . . . It is only through memory that we can determine the degree of accuracy
of memory; for if we make experiments to determine this effect, they will be useless unless we remember
them. (ibid.)

But this is not a good argument. Some people can test other people's memories, and even if their own memories are
involved there is nothing remotely circular in this, for it is not the general faculty of memory that is tested, but one

person's. Even a suitably programmed machine could in principle carry out such experiments and evaluate them. It is
true that computers have something called ‘memory’, but it is not any human memory, nor is there any evidence that

it operates in the same way; quite the contrary, in fact.



The response of the later reliabilists is again to deny that the circularity is vicious, but to argue the case more
systematically. Their
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ground is that the circularity involved is ‘rule-circularity’ rather than ‘premiss-circularity’, and that while ‘premiss-
circularity’ is undeniably vicious, ‘rule-circularity’ need not be. Van Cleve (1984), a prominent exponent of this view,
starts by considering the following putative justification for induction; call it A:

Most of the inductive inferences | have drawn in the past from true premises have had true conclusions.

Therefore the majority of all inductive inferences with true premises have true conclusions.

Suppose the ground-level inductive rules also have the form ‘Most observed x's have had the property y; therefore the
majority of x's have y’. Thus the justification A of the ground-level rule looks palpably rule-circular. Van Cleve proceeds
to argue that though it is rule-circular, it is quite possible none the less that A is an argument, van Cleve calls it a
‘probable argument’, which does as a matter of fact transfer a justified belief (if it is justified) in the premiss to a
justified belief in the conclusion, even though we may be unaware of the fact. He then uses this observation to argue
that, though the rule by which the conclusion is apparently drawn from the premiss in A appears to beg the question,
it actually need not. For if A is a probable argument then a justified belief in the conclusion given a justified belief in
the premiss would not depend on a justified belief in the soundness of the rule itself. Hence there are inductive
arguments which, though rule-circular, are not viciously circular: they can give you a justified belief in their conclusions
without requiring justified belief in their own soundness.

That is all very well, but to draw the conclusion of A with any confidence we presumably would need to be confident
both that the pre- miss is true—well, that's OK—and that the argument is sound, or, in van Cleve's sense of
soundness, a ‘probable argument’ from justified belief in the premiss to justified belief in the conclusion. Van Cleve
points out that on the externalist criterion of justification we do not need to know that A is a probable argument to be
justified in using it, because

our condition [that it is a probable argument] is an external condition, that is, one of which the inference-
drawing subject need not be cognizant. In a world in which inductive arguments were probable, persons who
used them would be able to acquire justified beliefs thereby, regardless of whether they knew inductive
arguments to be probable. (1984 : 558—9; italics in original)

This does not, though, as it stands, answer the question: Am | justified in drawing the conclusion, that is, is this a
probable argument? According to van Cleve the question can be answered, affirmatively, and again by appeal again to
the external standard of justification. For the conclusion of A tells us that induction is reliable, and according to the
externalist, reliabilist, criterion any process that reliably leads from true beliefs to true beliefs is a justified one. Hence
argument A is a probable one. QED.

But there is still an obvious objection. I may have proved by using that argument that the conclusion is justified, but
since the question at issue is the soundness of the argument itself surely | have not really proved anything. To do that
I would need to know not only that the premisses are justified, but also have good reason to believe that the
argument is sound (i.e. probable, in van Cleve's sense). If | do not have that information | have proved nothing. Van
Cleve's answer is to insist that | do have that information, because it is precisely the conclusion of the argument above
that A is a probable argument, and hence a sound one. Moreover, there seems also to be a decisive tu quoque (‘you
too’) counter to this type of objection, which is to invoke a damaging parallel with deductive logic, where, if an
argument from A to B is deductively sound, the truth of B can justifiably be inferred from the truth of A without
requiring as a further premiss the statement that the inference is sound. To suppose otherwise is both incorrect and
courts an obvious infinite regress, as Lewis Carroll pointed out a century ago in the dramatic persona of the tortoise in
his dialogue ‘What Achilles Said to the Tortoise’ (1895), between Achilles, who took the line above, and the more
sagacious tortoise who exposed the inevitable regress. But if this is the case in deductive theory why insist on stronger
conditions being satisfied by the theory of induction? As van Cleve remarks, ‘if this must be true in some cases, why



not inductive cases too?’ (1984: 560).

There is an answer to this question, however. In the deductive case there are proofs of the soundness of any
deductive rule or set of rules. Indeed, their use would not be authorized without them, evidenced by the fact that a
standard feature of good textbooks of deductive logic is that the introduction of a particular deductive system is usually
accompanied by a soundness theorem for that system. But that answer seems only to raise the rather obvious further
question of what premisses and rules these proofs themselves employ. Perhaps the tu quoque will succeed after all.
This is certainly what Goldman,
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who now takes up the running, intends. In Carroll's dialogue the particular example discussed was a modus ponens
inference (modus ponens is the rule that from A and ‘If A then B’ you may infer B). The doubters required that before
they could infer B's truth from that of A and ‘If A then B’ they had also to accept that the inference was deductively
sound, that is, they had to accept additionally the statement ‘If A and “If A then B” are true, so is B’. But to be
prepared to infer the truth of B from this and the truth of A you would be making a modus ponens inference. Therefore
the regress is stopped only by using the rule whose soundness was in question. Goldman proceeds to generalize what
he sees as the conclusion: ‘Would one say that a person could not be justified in believing in the validity of modus
ponens if he used modus ponens to arrive at this belief? . . . If a process deserves to be permitted, then its permission
should extend to all subject matter, including its own performance and its own permissibility’ (1986: 394).

But Goldman's conclusion, that modus ponens is justified deductively only at the cost of using modus ponens itself, is
easily shown to be incorrect. Suppose that some antecedent proof, using assumptions ¥, had established the
soundness of modus ponens. Then it is true that from premisses consisting of the statement that modus ponens is
sound, and the statement S that A and ‘If A then B’ are true, we can infer by modus ponens that B is true. However, a
general deductive principle called ‘Cut’ (Machover 1996: 121) tells us that there is a proof of the truth of B from X and
S alone. Moreover, this proof need not use modus ponens. In other words, there is a deductive justification for
detaching the conclusion of a modus ponens inference which, pace Goldman, need not employ modus ponens at all. In
fact, there are a number of familiar complete deductive systems, some of which have no rule in common (the
tableau/tree system has none in common with either natural deduction or sequent or Hilbert-style systems; see
Howson 1997c: ch. 10). Thus we can finally and successfully turn the tu quoque on its wielders: there are independent
arguments for the soundness of deductive rules; that is to say, there are rules which are not, as they are in the

inductive case, circular.

To sum up. The demand for a patent of trustworthiness—a soundness argument—for a putative rule, deductive or
inductive, is not an idle or pointless one. It is not pointless because without it you have no reason for confidence in
any reasoning which employs it, and this also goes for any ‘justification’ which employs that rule itself: if you
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can only argue for its soundness by appeal to the rule itself then you have shown nothing, or nothing worth having.
And the demand is not idle because such an argument, at any rate in the case of deductive rules, can be given which
is not circular: neither ‘premiss- circular’ or ‘rule-circular’. It might still be objected that any justification of any piece of
deductive reasoning itself will in its turn employ deductive reasoning: a demonstration of the joint soundness of a set
of deductive rules will be some chain of reasoning in its turn and hence rest upon the implicit claim that the links in
this chain are themselves sound. It will also employ some non-trivial mathematics, in the form of some set theory and
the principle of strong induction. So where, it might be asked, is the difference, in terms of the patent of security
allegedly conferred, between a proof of deductive validity and an inductive argument like A? Is there any difference in

principle?

Yes, there is. | am not in any way defending an absolutist position with regard to logic, that logical principles cannot
be doubted, etc.: for some time there has been a debate about the necessity attaching to the law of excluded middle,
and more recently there has been some questioning from another quarter, quantum physics, of the distributivity ‘laws’
and even modus ponens itself. But we have seen that in deductive logic there are independent arguments for any
given logical principle, while there seems to be only one for van Cleve's rule, that rule itself. And we have still seen no



convincing rebuttal of the simple yet compelling charge that self-authentication is no authentication. It may be, as
Ramsey claimed, ‘crying for the moon’ to ask for a way out of the circle of justification for inductive reasoning, but
that is beside the point. This, as another reliabilist reminds us, remains and will always remain ‘whether [an inductive
argument for induction] gives us a positive base for trusting induction’ (Papineau 1993: 158; italics in original). Quite
so. Papineau himself believes that it does, on the ground that since there is nothing obviously ‘problematic’ about
induction, we can conclude that an inductive justification of induction is perfectly acceptable (p.160). Alas, were it only
so. Papineau's remark brings us to the crux of the matter, for the inductive rule which extrapolates from a sample
containing a sufficiently large percentage of successes, far from being unproblematic as he claims, is actually
problematic in the worst possible way: it is inconsistent.

‘Grue’

The construction which shows this is extremely simple. Due to Goodman, it has become justly celebrated, and because
it is a touch- stone that a surprising number of apparently plausible methodologies of inference fail, it will play a
leading role in much of the subsequent discussion. Think of an emerald mine. Define the predicate ‘is grue’ of objects x
that might be dug up as follows: x is grue just in case (i) x is an emerald and (ii) x has been observed up to now and
is green, or x has not been observed up to now and is blue. It follows that any observed emerald is green if and only
if it is grue, and so all observed green emeralds are also grue emeralds and conversely. An inductive rule that tells us
that after observing a large number of As we can infer—either outright, or with justified belief, or with high probability,
or whatever—that the next object observed will be an A, or that all future objects in the reference class will be As,
clearly tells us (i) that after observing enough green emeralds we can infer that the next emerald to be observed will
be green, and (ii) that we can infer that the next emerald observed will be grue. In other words the rule tells us that
the next observed emerald will be both green and blue. Extrapolating past behaviour is therefore not just an unreliable
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procedure: it is maximally unreliable.

1 Goodman invented these ‘grue’ hypotheses (1946) as part of the process of testing a putative rule—in this case ‘Extrapolate the
observed data’—against actual inductive practices. We saw in Ch. 1 that Goodman believed that the same sort of validation procedure
is used to test and establish sound inferential procedures in deductive logic. In the Goodman view of things, the grue problem shows
that in practice we have means of distinguishing ‘projectible’ from ‘non-projectible’ predicates: the projectibility of a predicate depends
on its degree of ‘entrenchment’, i.e. the extent to which it is embedded in existing inductive practice. The circularity problem clearly
appears again here, but it is likely that Goodman would have taken the same line as Goldman, claiming that the circularity is of a type

both unavoidable and endemic.

Worse still, we can use the rule itself to ‘prove’ its own unreliability, just as, according to van Cleve, Goldman,
Papineau, et al., we can use it to ‘prove’ its own reliability. Call an inductive inference made by the rule ‘right’ if it
concludes to a true assertion, and ‘wrong’ if it concludes to a false one. Call an inductive inference ‘ring’ if it has been
checked and found to be right, or not been checked and is wrong. Suppose the majority of checked inductive
inferences have been found to be right. It follows that they are also ring. Using as the justified premiss ‘The majority
of checked inductive inferences are
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ring’ in van Cleve's argument A, we conclude from A that the majority of all inductive inferences are ring. But only a
finite number have been checked, leaving a potential infinity unchecked. It follows that the majority of all inductive
inferences are wrong, and hence that the rule is unreliable!

These easily manufactured counterexamples show dramatically the futility of circular justification, ‘rule-circular’ or not.
The favourite, but hopeless, defence against them is to claim that an inductive procedure should only apply to ‘natural
kinds’, and ‘green’ and ‘right’ denote natural kinds and ‘grue’ and ‘ring’ don't, and natural kinds are by nature more
‘projectible’ to the future. This is presumably the answer which van Cleve has in mind when he tells us that there is at
least a ‘partial answer to the “new riddle of induction”—which are the good inductive inferences, the ones that are
justified if any are?’ (1984: 556). But it doesn't work. On this understanding natural kinds are exactly as difficult to



identify as projectible kinds. And the problem of identifying projectible kinds is just the problem of induction. An appeal
to past evidence to show that what we intuitively understand as a natural kind is projectible begs the question, as
Goodman's grue problem so dramatically shows. Indeed, what that evidence does show is that being a natural kind as
that term might be intuitively understood is neither a necessary nor a sufficient condition for projectibility. Science is
full of successful theories whose subject-matter is increasingly anything but natural kinds like ‘green’. Time in the
classical sense of a parameter completely invariant across frames would presumably have been regarded a century ago
as a natural kind, but it was a natural kind that was displaced after 1905 by two distinct and very unnatural kinds of
time, an invariant ‘proper time’, not intuitively a time at all but a distance furnishing the metric structure of Minkowski
space- time, and a non-invariant frame-dependent time in which temporal orderings between spacelike-separated

. . 2
events can be reversed from one inertial frame to another.

2 O'Hear points out that post-1905 we do in fact generalize our observations of moving bodies in terms of these unnatural kinds (1997:

42), just as we might in principle choose to describe green emeralds as grue.

On a more banal level, the scientific concept of work is nothing like work as usually understood, nor that of energy like
that of energy as normally understood; and so on: the examples are too numerous to enumerate.

The notion of a natural kind is anyway a very difficult one to pin down. If ‘grue’ is not a natural kind because as a
parameter (time in this case) increases the possessor of that predicate changes discontinuously, then even such a
basic term as ‘water’ must plead guilty as well, since as the parameter ‘temperature’ increases water will at 0 and 100
degrees Celsius pass discontinuously from one phase to another, just as do grue emeralds at their characteristic time.
Why single out time for special treatment? The only recourse of the natural kinds defender is to define them in terms
of their use in stable, perduring theory. But then to say that natural kinds are projectible and other kinds are not is
empty, a mere tautology.

So much for natural kinds. A little reflection shows that the Goodman paradox arises because the number of
observations after which A-ness is extrapolated to the next observed individual is taken to be uniform across the class
of properties A. Consistency can be restored, but only by making that number be dependent on the property A itself.
Thus the point at which it is ‘safe’—according to the rule—to conclude that the next emerald will be green must come
before the point at which it is ‘safe’ to conclude that it will be grue, or vice versa. This observation may seem to offer
a way out of the Goodman paradox which does not appeal to the doctrine of natural kinds. But it brings with it the
problem of identifying the characteristic ‘projectibility- point’, the point at which it is safe to extrapolate, for each
property A. That can certainly not be a function of A's syntactical form, because, as Goodman further showed, the
difference in syntactic form between ‘green’ and ‘grue’ is conventional. If we define the predicate ‘bleen’ to hold of x
just in case x has been observed and is blue or is unobserved and green, the pairs {green, blue} and {grue, bleen}
are interdefinable: x is green just in case x has been observed and is grue or is unobserved and is bleen. But this
means that we have no independent means of telling at which stage in the accumulation of data it is ‘safe’ (the scare
quotes are meant to signify that there is no assumption that it ever is safe) to project A-ness, for each A. We shall
return to this point in the discussion of probabilistic induction in Chapter 4.

The ‘Pessimistic Meta-Induction’

Recall Popper's famous picture of the progress of science as conjecture followed by refutation. An inspection of the
history of science

certainly seems to support his view. Even the most entrenched theories have been eventually undermined. Here is a
rather ironical example: for Poincaré the Newtonian theory was so overwhelmingly probable as to be practically certain,
given the enormous variety and number of the observations which supported it (Poincaré 1952: 186); yet in the very
year that this opinion was published (1905) Einstein was to present the theory of special relativity, paving the way to
the general theory and the complete overthrow of classical mechanics and gravitational theory. But the principal



assumption on which the attempt to explicate a sound inductive method has always rested is that science exemplifies
a particularly rigorous standard of inductive acceptance. Recall Broad's words: induction is the glory of science. If that
is so, then it seems to have all the glory of a Pyrrhic victory. From a quite different quarter we appear to have
induction showing that induction is an unreliable belief-forming process: a ‘pessimistic meta-induction’ indeed.

By now we should not be particularly surprised at this. But the majority view remains that to accept that induction is
unreliable is to abandon any hope of a rational analysis of empirical knowledge and belief formation. Popper, usually
regarded as the principal opponent of this view, believed that the acceptance procedures of science are rational but not
inductive: his claim that induction plays no part in them rests, however, on a very narrow view of induction as the sort
of fairly uncritical extrapolation from experience that van Cleve's argument A exemplifies and Bacon himself
condemned. For those people for whom induction is what science is in practice and who also accept the ‘pessimistic
meta-induction’, the only way out of the looming paradox is to cut the link between induction and truth. This has duly
been done. Non-truth-based goals for science are of course the province of the anti-realist and pragmatist, but another
option that preserves the spirit if not the letter of truth-oriented induction is to regard not truth pure and simple, but
either of probable truth or near-truth as the goal of induction. Probable truth is quite consistent with all the members
of what is over all of time probably a small sample turning out false, and we shall look at the probabilist programme in
depth in Chapter 4. The near or approximate truth of theories which are strictly false is a notion employed by Popper
(who despite his professed anti-inductivism accepted the view that all scientific theories will eventually be falsified) in
proposing a Whiggish view of the history of science as an asymptotic progress to the ‘whole truth’

end p.33

of a temporal sequence of strictly false but nevertheless more truth- like, or ‘verisimilar’ (his terminology) theories.

The idea that the evidence justifies concluding to the approximate but not actual truth of theories tends also to be
combined with a view of inference from evidence as a quite different procedure from simple extrapolative inferences of
the ‘Most observed As are Bs. Therefore most As in the entire population are Bs’. This other view is often associated
with the name of Popper, but it was the idea of lawyer Bacon himself that reliable information comes only from asking
searching questions designed to make manifest the falsity of testimony where it is false. Suppose it is possible to
devise a test which, if a hypothesis is false, is almost certain on the occasion of test to detect its falsity. And now
suppose the test is performed and no negative outcome is revealed. If there are reliable procedures anywhere, surely
this is where they are. And there certainly seem to be such tests. In the next chapter we shall see whether this

approach to inductive inference lives up to its—apparently very considerable—promise.

Conclusion

Reliabilists have undoubtedly pointed out something of interest in the possibility of an external standard of justification.
On the other hand, the literature has provided no shortage of highly counterintuitive consequences of the view. Nor
does reliabilism assist you in telling, from the information that you have available to you, that you are on the right
track, even if as a matter of fact you are. The problem of induction is precisely what, if anything, you can legitimately
infer from the knowledge available to you. Hume's answer was nothing. The reliabilist appeal to the external standard
does not succeed in showing Hume to be wrong. In particular, the distinction between ‘premiss-circular’ and ‘rule-
circular’ arguments which is intended to cordon off a type of circular justification of an inductive rule from the obvious
—and correct—charge of proving nothing is as specious as the rule itself turns out to be. Nor does the tu quoque
charge of reliabilists against deductive justifications of deduction stick: there may be a potential regress of deductive
justifications of a deductive rule, but it does not have to loop back upon itself.

end p.34



3 Realism and the No-Miracles Argument

Colin Howson

Introduction

Sophisticated advocates of the claim that there are reliable procedures for acquiring factual knowledge do not usually
have the ‘Most observed As are Bs; therefore most As are Bs’ rule—often called ‘induction by enumeration’—in mind
when they make it, nor do they usually invoke ‘rule-circular’ justifications, at any rate consciously. They tend to echo
Bacon's condemnation of induction by enumeration as puerile, and endorse the other Baconian claim that the only
reliable inductive inferences are those from the confirmation of new predictions to, if not the truth then the
‘approximate’ or ‘essential’ truth (we shall come to what these scare-quoted qualifiers mean in a moment) of the
hypotheses which made them. Their argument, implicit in Bacon's remarks about the need to interrogate nature, has
come, for reasons which will soon be clear, to be called the No- Miracles argument. This is adduced in support of the
following cLaim: If a hypothesis H predicts independently a sufficiently large and precise body of data then on that

ground, we can reasonably infer H's ‘approximate’ truth.

A good deal of current scientific theory seems to satisfy the antecedent of cLaim. Given that, and cLav itself, we infer
that the experimental record is good enough evidence for the approximate truth of current science. This conclusion is
the doctrine of scientific realism. If the No-Miracles argument is valid, then, we can infer that scientific realism is
‘essentially’ true, and that thereby the problem of induction is, in effect, solved.

The No-Miracles Argument

Note that if the qualifiers ‘approximately’, ‘essentially’ etc. were not there cLaim would be flatly inconsistent. For ‘current

science’ is

indexical, and ‘current science’ in later epochs is in general inconsistent with ‘current science’ in earlier; this is the

premiss, recall, of the so-called pessimistic meta-induction. The scare quotes remind us that no one has yet been able

to give a very good, or at any rate uncontroversial, account of what ‘approximate truth’ means in the context of

scientific theories (for a recent survey of the attempts see Niiniluoto 1998). This does not greatly matter from the point

of the view of the No-Miracles argument itself, however, because the role—a crucial one, as we shall see—played in

that argument by ‘approxi- mate truth’ does not depend on any precise characterization. What that role is will become

quickly apparent from the argument itself, which proceeds in the following four steps:

(i) If a theory T independently predicts some observational data E and T is not approximately correct, then its
agreement with the facts recorded in E must be accidental, a chance occurrence.

(ii) The facts recorded in E are such that a chance agreement with them is exceedingly improbable. Here is just one
example. Quantum electrodynamics predicts the observed value of the magnetic moment of the electron to better

. - . . 1
than one part in a billion, in natural units.

1 The last calculated value up to 1987 was 1.00115965246 + 0.00000000020, and the observed value was 1.00115965221 #

0.00000000003.

The odds against a chance agreement are therefore truly stupendous just for this piece of data, let alone for the
total observational and experimental evidence that has been accumulated.

(iii) We can regard such small chances as being so extraordinarily unlikely that we can confidently reject the
hypothesis that they are just chance occurrences, at any rate if there is an alternative explanation which accounts
better for them.

(iv) Hence we can confidently infer that T is approximately true, the smallness of the chance in (iii) being an index of
the degree of confidence justified.

And so we have ciaiv. It all sounds very plausible. It has certainly sounded sufficiently plausible to others for the No-

Miracles argument to become the argument of choice for scientific realists. Here is a sample:



The positive argument for realism is that it is the only philosophy that doesn't make the success of science a
miracle. (Putnam 1975: 73)

It would be a miracle, a coincidence on a near-cosmic scale, if a theory made as many correct empirical
predictions as, say, the general theory of relativity or the photon theory of light without what the theory says
about the fundamental structure of the universe being correct or ‘essentially’ or ‘basically’ correct. But we
shouldn't accept miracles, not at any rate if there is a non- miraculous alternative . . . . So it is plausible to
conclude that presently accepted theories are indeed ‘essentially’ correct. (Worrall 1989: 140; note the scare
quotes)

it cannot be just due to an improbable accident if a hypothesis is again and again successful when tested in
different circumstances, and especially if it is successful in making previously unexpected predictions . . . If a
theory h has been well-corroborated, then it is highly probable that it is truth-like. (Popper 1983: 346; italics in
original)

We have spoken of the experiment as testing a certain null hypothesis, namely, in this case, that the subject
possesses no sensory discrimination whatever of the kind claimed; we have, too, assigned as appropriate to this
hypothesis a certain frequency distribution of occurrences . . . the frequency distribution appropriate to a
classification by pure chance. (Fisher 1935: 17)

Fisher is not usually included in the roll-call of No-Miracles workers. He is included here because he was the first to
see that a familiar chance model, on which the No-Miracles argument is based, could be turned into a methodological
tool of apparently very great power (though subject to an important qualification that we shall examine in due course).
The chance model is that of a simple guessing game. Suppose someone correctly predicts a sequence of apparently
random numbers. We tend to infer that the predictor must have some knowledge of how those numbers were selected,
because had they none their success at prediction would have been too great a coincidence to be due simply to
chance.

Mutatis mutandis, the No-Miracles argument appears to say just this. Steps (i) and (ii) say that if T is not some fairly
substantial approximation to the truth about the structure of the data source then its success is that merely of a lucky
guess, and a very lucky one indeed because the probability of it being true just as a guess, that is, by chance, is
minimal. Consider again the case of guessing correctly each of nine digits after the decimal point in the magnetic
moment of the electron. This has, or appears to have—the importance of the qualification will become apparent shortly

—a probability of 1079 on the chance hypothesis, which is very small indeed, so small that surely we can invoke (iii) to
dismiss the chance hypothesis and claim

with a commensurately high degree of confidence that the confirmed theories of current science are indeed
‘approximately’ true. And we can say this even without having any precise theory of approximate or ‘essential’ truth. In
cases like the amazing prediction by QED of the magnetic moment of the electron, and that is only the most extreme,
Nature is obviously trying to tell us that we are on the right track. To think otherwise is not ‘exercising the faculty of
reasonable doubt’. It is not even scepticism. It is paranoia.

The model of science as an ‘active’ game of guessing nature therefore seems to offer a very real hope of answering
Hume, whose totally negative view of the problem of induction seems now as if it might be the result merely of
presenting it in a falsely passive way. The analogy here is of setting someone the task of identifying an infinite
sequence of numbers from the knowledge of just a short initial segment. If that is the only information supplied, then
it offers no guidance at all in selecting the correct one from the infinity of possible continuations. Presented like this,
Hume's negative view of the problem does indeed seem unanswerable. But suppose that the data are the outcome of a
dynamic interaction between predictor and Nature, in which Nature is forced to confirm guesses which would be most
unlikely to be correct by chance; as in the example of someone correctly predicting the first n digits of the sequence
for n greater than, say, 10. In that case the ‘passive’ presentation omits highly relevant information, and when that



information is added Hume's Problem seems suddenly far less intractable—apparently, not intractable at all. Moreover,
the guessing-game model, Bacon's model in effect, seems a more realistic representation of the way the data that we

do feel we can ‘induce’ from are obtained.

‘Approximate Truth’

Or so it might seem. But now let us be a little more critical. First, what does it actually mean to say that current
science is approximately true? The answer given by the No-Miracles argument: ‘Because if it is not approximately true
then its enormous predictive success would be due to chance, and the chance is so small as to be not rationally
credible’, suggests that each accepted scientific theory has a sufficiently extensive core of truth, extended and refined
by its successors like a fruit shedding successive outer husks as it grows and

matures. The problem is to turn a suggestive metaphor into an adequately precise explication which will explain the
increasing accuracy with which physical magnitudes are successfully predicted.

There have been many attempts to define a precise notion of the approximate truth, or truthlikeness, or verisimiltude,
of theories; just how many and diverse can be gathered from Niiniluoto's survey (1998). But relatively few promise to
be able to explain how truth- likeness according to their account satisfies the additional explanatory constraint of
accounting for the increasingly accurate predictive success of science. One that does, and is not included in Niiniluoto's
list, is developed by Worrall (1996). It is that the core can be identified with the basic mathematical equations of the
theories, given that these do seem to be the components retained in the succession of theories, often as limiting cases
in the succeeding theories as a parameter approaches a fixed value: for example, classical kinematics and dynamics
are recovered from relativistic for sufficiently small values of v/c. This seems promising because we can see a link
between the stability but increasing refinement of the predictions made by the successive members of the theory-
chain, and the retention of their equations as special cases restricted to what the succeeding equations tell us is the
relevant domain of application:

Fresnel's equations are taken over completely intact into the superseding theory [Maxwell's]—reappearing there
reinterpreted but, as mathematical equations, entirely unchanged . . . the [Correspondence] principle applies
purely at the mathematical level, and hence is quite compatible with the new theory's basic theoretical
assumptions . . . being entirely at odds with those of the old. (Worrall 1996: 160)

For all its promise there are nevertheless two quite distinct reasons for doubting this account. First, the
Fresnel/Maxwell case is a very special one. It is stretching the notion of identity a good deal, and probably beyond
what it can bear, to claim identity even at the mathematical level between the corresponding equations, say, of
quantum and classical mechanics. There is almost a better case for talking of an identity of interpretation of different
mathematical formalisms. Quantum mechanics talks about observables in an apparently similar way to classical
physics, but in classical physics the observables are real-valued functions while in quantum mechanics they are types
of linear operator on a vector space over the field of complex numbers. As is frequently observed, the mathematical
apparatus of each
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couldn't be more different. It is true that the classical equation of motion of an observable, df/dt = f/ t+{H,f}, is
derived within quantum mechanics by ‘identifying’ the classical functions f and H with appropriate operators f and H,
and the Poisson bracket {H,f} with another linear operator, the commutator [H,f] of f and H (Landau and Lifschitz
1958: 27, 28). But there can clearly be no identification in the literal sense since f, H, and [H,f] are mathematically
quite distinct objects from f, H, and {H,f}. Moreover, states in classical mechanics are not closed under addition (a
formal property). In quantum mechanics they are.

‘Structural realists’ who take the view that there is continuity in the mathematics between successive theories might
claim to be defending a purely formal identity in the equations, but even this is very questionable. The claim cannot
rest on the fact that one can extract equations from one theory that, ignoring the differences between the



mathematical objects respectively denoted by them, look formally identical to those extracted from another. If the
mathematical- identity hypothesis is to explain how the predictive success of one theory is maintained and refined by
its successor there must be some element of interpretation present, otherwise we should have to start crediting physics
with the successful predictions of population genetics, and vice versa, because both use the same diffusion equations.
But even a minimal interpretation of the equations of quantum mechanics would mention the fact that they are not

identical to the classical ones for the reasons given above.

Counterexamples

All in all this particular ‘approximate truth’ account seems unlikely, for the reasons suggested, to live up to its promise.
This is one source of difficulty for the No-Miracles account. Another, more immediately threatening, is that it is not
difficult to show that cLam is false. Indeed, doing so is surprisingly easy, for there are recipes for producing simple
counterexamples. Here is one due to Harold Jeffreys (1961: 46). Suppose T(x) and T  (x) are two mutually
inconsistent law-like hypotheses about some class of physical objects, possibly just space-time points, x and let R(x)
mean that x is located in the observer's past. Then the hypothesis T': ‘For every x, if R(x) then T(x) and if not R(x)
then T'(x)’ agrees with T: ‘For every x, T(x)' on
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all points up to the present. Suppose also that up to now every x in the observer's past to have been examined
satisfies T(x). It follows that both T and T  agree with the observational data, and disagree on all future possible
observations. T' (x) can be chosen in infinitely many different ways. This is particularly obvious where T(x) says that x
satisfies some equation, which without loss of generality we can write f(x) = O (x can be multi-dimensional). If the
data specify values x1,X2, . . . ,X, satisfying this equation, they also satisfy the equation
Tr(xc):d(x) + d, (x)el, () ool (x)gl) = 0

E N ]

, where d,(x)=0 when u = x and dy(x) = 1 otherwise, and g(x) is any function

not identically equal to f(x) (Jeffreys uses Galileo's law of free fall as an illustration). There are more such functions
even than there are real numbers.

The other recipe is one we are already familiar with: Goodman's grue construction, which can be generalized to
produce infinitely many alternatives. The different choices of the function g in Jeffreys's recipe create a ‘horizontal’
infinity of alternatives, but we can create a ‘vertical’ infinity of alternatives by specifying different epochs t, other than
the ‘now’ characterizing grue, for some discontinuous change to occur. In the emerald example we should then have,
for discretely increasing values of t, an infinite sequence of hypotheses ‘All emeralds are grue t’, which agree with ‘All
emeralds are green’ for emeralds observed up to t but diverge after. Clearly, observational evidence gathered up to t
for ‘All emeralds are green’ at time t will be equally consistent not only with ‘All emeralds are grue¢’, but also with ‘All
emeralds are grue;” for all t’ } t. The extension to arbitrary hypotheses other than those about the colour of emeralds
is straightforward. All these hypotheses describe distinct types of logically possible world in which T is presumably not
even approximately true, for they disagree with T at all points past some epoch. Assuming that there are many more
epochs to come than have elapsed, each grue; hypothesis has much more disagreement with T than agreement. And

they all predict the data.
Hume himself had much earlier pointed the way to such possibilities:

Let the course of things be allowed hitherto ever so regular, that alone, without some new argument or
inference, proves not that the future will continue so. In vain do you pretend to have learned the nature of
bodies from your past experience. Their secret nature, and consequently all their effects and influence, may
change . . . This happens sometimes, and with regard to some

objects: Why may it not happen always, and with regard to all objects? What logic, what process of argument
secures you against this supposition? (1739: 1V)



None, of course. Nor even does the ‘course of things’ have to change: we might simply have misidentified it all along:
the hypotheses embodying the infinitely many distinct possibilities equally predict the existing data and equally
extrapolate it (‘All emeralds are grue’ is no less an extrapolation from a sample of grue emeralds than ‘All emeralds
are green’is an extrapolation from exactly the same sample—of green emeralds!). But they can't all be true, and they
can't all be ‘approximately true’ either: the grue; alternatives all diverge from T on a potentially infinite data segment

and agree only on a finite one. Unless some very non-standard meaning is being given to ‘approximately true’, this

cannot be correct. But cLav says it is. Therefore cLav is false.

It might be objected that these concocted alternatives did not predict the data independently, as did T. They are
parasitic on T: without its guidance they would never be thought of. Since, therefore, it is really T doing the predicting,
not them, it is T, not them, that should receive the credit. This might sound plausible, but on closer analysis the
objection collapses. It is true that the prediction of the data did as a matter of fact occur via T, but that means only
that, for whatever reason, T was considered seriously as an explanatory theory while the others were not (and were it
not for philosophers would probably never be considered at all): as Miller reminds us, ‘we all know that “All emeralds
are grue” is false’ (1994: 37). Any grue alternative to T, indexed to the current epoch, could have been proposed
before now, in which case it would have predicted exactly the same phenomena as T. The fact that nobody seriously
did so is because, as Miller's observation attests, they in effect assign it a prior plausibility weighting of 0. But that is
not the issue here: in every respect it would have been just as predictive of current evidence as T.

This answer seems only to raise another objection, however, and one moreover with a long and distinguished pedigree.
Suppose some hypothesis H is deliberately constructed from the current evidence to ‘predict’ it. In this case H clearly
did not independently predict the evidence. According to the argument above, though, it did: it too might have been
proposed before the fact; it just wasn't. So if that is the argument for claiming that a hypothesis independently
predicted data, the argument must be wrong. Furthermore, the structure of the

No-Miracles argument itself explains exactly why such a hypothesis is no counterexample to cLam: because, far from
agreement with the evidence being highly unlikely if it is false, agreement is certain, guaranteed by the fact that H
was constructed to deliver it. As Giere points out: ‘If the known facts were used in constructing the model and were
thus built into the resulting hypotheses . . . then the fit between these facts and the hypothesis [sic] provides no
evidence that the hypothesis is true [since] these facts had no chance of refuting the hypothesis’ (1984: 161; italics
added). In other words, step (i) of the No-Miracles argument is blocked.

Giere is only one of many, in a line going back to Peirce and Whewell if not before, who have advanced this argument
which, despite the concurrence of venerable opinion, is fallacious and rather obviously so. For E either conflicts with H
or it doesn't: there is no chance to the matter. Giere is confusing an experimental set-up, call it X, with one of its
possible outcomes, E. This is similar to identifying a random variable, like X a function on a possibility space, with one
of its values: thus, there may be a chance that the outcome of this flipped coin will be as predicted—heads, say—but it
makes no sense to talk of a tail (the actual outcome) being heads. We shall discuss the point further in Chapter 8, but
it should be clear that it is simply not true that the chance of X producing an outcome agreeing with H must be 100
per cent: the chance is the chance, whatever it might be (and we shall consider that shortly), of the facts turning out
other than they did. To sum up: the counterexample to cLav really is a counterexample, and cLaiv is really false.

The falsity of cLaim implies that the No-Miracles argument is fallacious. Arguably at least a suspicion to that effect
should anyway have been kindled by the claim that all the mutually inconsistent theories which in the past have made
successful predictions are ‘approximately true’. At any rate, there are now independent grounds for that conclusion and
it is time to look at each of the inferential steps (i)—(iii) to determine which is at fault. The result, perhaps surprisingly,
is that they all are.

Start with (i) and (ii), and consider once again the probability of predicting the digits in the magnetic moment of the
electron by chance. Describing a real number down to k significant figures after the decimal point determines not, of

course, a single number but an interval of length 10—K. The space of all possible values the quantity might logically

take is represented by the half-open interval
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consisting of the non-negative real line (or maybe even the entire line). There is a general procedure, adopted since
the time of Bayes himself, for computing chances where the possibilities can be represented as points in a measurable
region of Euclidean space of some finite number of dimensions. The whole-number ratios appropriate to discrete space
transform ‘naturally’ into ratios of Lebesgue measures (Lebesgue measure is basically the familiar measure of length,
area, and volume). In this case the space has one dimension and the regions are one-dimensional intervals. But there
is a problem: the length of the interval representing the space of possible values is infinity, and dividing by infinity is
not a defined operation. This might sound pedantic. After all, the usual rule of thumb when infinities appear in a

denominator and not in the numerator is to say that the quotient is zero. So why not say that the chance is zero?

There is more than one answer. One could start off by noting that according to that rule the chance of the true value
falling in any finite interval, however large, is still zero, which sounds odd. Not only does it sound odd: it also implies
the violation of a principle called countable additivity. Each finite interval gets zero probability, but the half- line or the
whole line, whichever is appropriate, can be represented as the ‘sum’ of as many such intervals as there are positive
whole numbers (this is what is meant by the term ‘countable’). But since this is all the possibilities, it has probability
one, while the sum of a countable number of zeros is zero. We shall discuss the status of the principle of countable
additivity later (it will turn out to be a principle that we shall actually want to endorse), but its violation suggests that
something may be wrong. Indeed it is. Here is another problem. If B is any finite interval and A any subinterval of B,
then by the definition of a conditional probability the chance of A conditional on B is undefined (for according to the
rules of probability that conditional chance is the chance A divided by that of B; see below p. 62), though intuitively it
would seem that it should be equal to the length of A divided by that of B.

There are, however, more decisive reasons against concluding that the chance is O, or even that it takes any
determinate value. First, there is the problem of transformations. By a suitable bicontinuous one—one transformation
the non-negative part of the real line can be mapped onto a finite interval, depending on the mapping function (for

example, the function tan—1(x), x = 0 maps it onto the interval [0, m/2); another, x/(1 + x), maps it onto the interval
[0,1); it is not difficult
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to see that there are infinitely many analytic functions which will map it onto some finite interval). Such a
transformation can be regarded merely as a relabelling of the outcomes, but under the relabelling the denominator of
the chance-ratio is no longer infinite but a finite number, and ‘the chance’ is now well-defined but no longer O! Indeed,
by varying the choices of transformation judiciously ‘the chance’ can be made to take almost any value one likes. This
non- invariance under transformations of the numerical coordinates gives rise to the so-called paradoxes of geometric
probability, of which Bertrand's chord problem is the most famous example (Kac and Ulam 1968: 37-9.); another well-
known example is the ‘water/wine paradox’, which we shall encounter in the next chapter.

And there is worse to come. So far we have been considering a possibility space consisting just of the possible values
of a single physical magnitude. But that is an entirely artificial restriction, since implicit in the discussion are in addition
all those possible states of affairs determined by the theories which make predictions about such magnitudes. Once we
do include these explicitly the relatively tidy picture we have viewed up till now becomes much less tidy; in fact, it
becomes ungovernably untidy. Let us see why. We want to know the chance of theory T agreeing with the data if T is
not approximately true. Suppose T is not approximately true, but agrees in its predictions about the data with another
hypothesis T’ (such a T’ can always be found, by Goodman's method). Therefore the chance of T agreeing with the
data were T’ true is 1. Similarly, if T agrees in its predictions on the data with T”, then the chance of T agreeing with
the data given the truth of T" is 1. And we know that we can always find infinitely many theories strongly disagreeing
with T outside the data but such that, given their truth, the chance of T agreeing with the data is 1 (the grue
alternatives will always furnish an infinite set). Theories correspond to classes of possible worlds (i.e. to each theory
corresponds the class of possible worlds which would make it true), and the chance of T agreeing with E and T not
being approximately true is the combined chance of all the infinitely many worlds in which E is true and T not

approximately true.



The simple guessing-game we started with is simple no more. From guessing finite numbers of integers we seem to be
faced with classes of possible universes, and the class of all these, to the extent that it is determinate at all (it is too
vast to be counted even by the infinite counting numbers, the transfinite ordinals), not only does not

have a metric structure like that of a Euclidean space, but it does not have a natural metric structure at all. Nor is it
clear that it can even be given one (though where the universes are of the type describable within the sorts of formal
language familiar to logicians it has a familiar topological structure, whence the compactness theorem for first-order
logic gets its name: see Bell and Slomson 1969: 157, 158). Any Laplacean computation of chances in such an
unstructured possibility-space seems out of the question.

The mention of Laplace brings us to possibly the most fundamental difficulty facing anyone trying to give an
unambiguous and meaningful value to ‘the chance’ of T agreeing with the data when T is not approximately true. This
difficulty is not mathematical at all but philosophical. So far it has simply been assumed that, where it makes
mathematical sense, the chance is measured by the Laplacean ratio of nhumber of favourable to number of possible
cases. But Laplace himself cautioned that the use of the ratio is valid only if each of the possibilities is equally a priori
possible (1915: 11). If they are not, ‘we will determine first their respective possibilities, whose exact appreciation is
one of the most delicate points of the theory of chance’ (ibid.; Laplace uses ‘possibility’ interchangeably with
‘probability’ at certain points of his essay). This is not just an arbitrary condition imposed by Laplace. According to the
mathematics of probability, the chance of any event is the sum of its chances given each possible world in which it
might occur, multiplied by the chance of that possible world being the true world. Where, and only where, all those a
priori chances are equal, is the Laplacean ratio the chance. But how could one possibly know a priori the chance of any
possible world being the true world, and whether they were equal or not? One would have to be God.

It might be asked why we should need to guess chances a priori. Why not a posteriori? And a posteriori, on the basis
of the scientific evidence itself, we know that most purely logical possibilities, for example those represented by the
grue hypotheses, are just that, mere logical possibilities, not possibilities that are to be seriously entertained. In
particular, the grue hypotheses are clearly mere philosophers' games. The possibilities that it is realistic and sensible to
entertain are those that current science, after evaluating the total evidence, actually does entertain (under the title of
‘Tempered Personalism’ such a view was proposed as the foundation of a Bayesian methodology by Shimony (1993:
202-26), developing an

idea of Harold Jeffreys). 2

2 “The theory [of how scientific theories are evaluated against data] must provide criteria for testing the chief types of scientific law that
have actually been suggested or asserted’ (1961: 10). ‘The theory’, for Jeffreys, would be the Bayesian theory equipped with a

Simplicity Postulate (see below, p. 204).

And these are very few indeed. It is, one is frequently reminded, a far from trivial matter to think of any alternative
that satisfies the sorts of powerful constraints (e.g. covariance, gauge invariance, other symmetry conditions,
Correspondence Principle, and so forth) that the evidence appears to indicate are those that a satisfactory theory
should satisfy, constraints which, when conjoined with the evidence itself, are very restrictive indeed.

We know how to answer this. If the constraints are sufficient to cut down the size of the class of alternatives in any
effective way then the content of those constraints must extend far beyond the evidence, since the evidence is
consistent with an uncountable infinity of alternatives to the theories of current science. They are implicitly, if not
explicitly, theories, or classes of theories (a constraint is extensionally equivalent to such a class), about the world,
and very strong theories at that. To say that the evidence justifies their adoption is to beg the very question that the
No-Miracles argument was intended to answer. Such an a posteriori defence of it makes that argument presuppose the
answer, nicely corroborating Hume's claim that any inductive argument will have either explicit or implicit inductive

pre- misses.

To sum up: it is very difficult not to believe that a theory T which predicts among other things a quantity correctly to



within one- billionth of its observed value should not be in some fairly intimate rapport with the truth. But it is equally
if not more difficult to justify this belief by appeal to the chance of this occurring should the theory predicting it not be
approximately true, for there seems to be no way to compute this chance without begging the very question that the
exercise of computing it is supposed to answer. The existence of an uncountably infinite number of alternative
possibilities which, while being in strong disagreement with T, would also explain that agreement, makes the
‘miraculousness’ of the agreement between T and the data at least questionable. And when these alternatives are
taken into account the computation of the chance of agreement with the data when the theory is not approximately
true is a far from straightforward or uncontroversial matter. There are the severe if not intractable mathematical
problems of determining Laplacean

chances in such enormous and metrically unstructured possibility spaces, and there is the even more intractable
philosophical problem of justifying in any non-question-begging way any assignment at all of probabilities to all these
alternative possibilities.

Fisher's Solution

Fisher was aware of the problems attending any simple-minded identification of what he called the null hypothesis (in
the No-Miracles argument the null hypothesis is that currently accepted science is not even approximately true) with a
determinate chance distribution. Indeed, he used the transformation problem with devastating effect against it. But the
work for which he is most celebrated in the field of scientific methodology was by no means merely destructive:
possibly his most influential contribution was to find what many people, including both he and for long the statistical
establishment, thought was a solution to the problem of alternatives while maintaining the essential form of No-
Miracles reasoning. He presented this solution in the illustrative context of a famous thought-experiment which
otherwise contains all the essential ingredients of the No-Miracles argument.

The thought-experiment is as follows. A lady claims to have the ability to detect by taste whether a cup of (milky) tea
had the milk added before or after the tea was put in the cup. To test this claim the following experiment is
performed. She is given eight cups, of which four had the milk added first and four the tea first. She has no knowledge
of the order in which the different cups are presented, and is asked to identify the four cups in which the milk was
added first. The null hypothesis in this experiment is that she has no appreciable faculty of sensory discrimination. A
significant test result is one which has a sufficiently small chance of occurring, if the null hypothesis is true, to warrant
rejection of it (this outcome will be the lady correctly identifying all four milk-first cups correctly). A significant result is
thus the analogue of the ‘miraculous outcome’ in the No-Miracles argument for realism that refutes, or is alleged to
refute, the hypothesis that current science is not even approximately true.

The additional constraint that Fisher believed needed to be satisfied to justify inferring a determinate chance
distribution from the null hypothesis was a systematic randomization of the order in which
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the different types of cup are presented. It remains true that after any performance of the randomized experiment
there will still be a potentially unlimited number of alternative explanations of any success the lady might have which
are consistent with the falsity of the null hypothesis: she might have been told the sequence of random numbers
determining the order in which the milk-first cups were presented; she might have guessed it; she might be using
some personal algorithm that happened in this case to give the correct order; and there might be more occult reasons.
All these things, and more, might be true. But now they pose no problem, for in the context of a properly randomized
experiment we are looking, not at the single case, but at the long run. Why the long run? Because Fisher's view of
chance was that it was a phenomenon that manifests itself only in the long run. This was a common view at the time,
and still is. It is what is called a frequency theory of chance. According to it, chances are properties of generic events,
like ‘landing heads up’ for tossed coins, and evaluated numerically as the relative frequency of occurrences of such
events in an indefinitely large number of repetitions of the random experiment—in the long run, in other words. Fisher,
with most working scientists, believed that the evidence supplied by very long sequences of observations pointed to



characteristic long-run frequencies as invariant physical properties of the sorts of random devices he had enumerated.
So telling was this evidence felt to be that Richard von Mises, author of the most worked-out and sophisticated
frequency theory of chance, accorded it law-like status, calling it the Empirical Law of Large Numbers. We shall look at
the frequency theory in more detail later, in Chapter 9; our concern here is limited to seeing what follows from
accepting it.

What follows, Fisher believed, is that the randomization, by means of ‘the actual manipulation of the physical
apparatus used in games of chance, cards, dice, roulettes etc., or, more expeditiously, from a published collection of

random sampling numbers’ (Fisher 1935: 11) will ensure that each of the 8C4 = 81/4!141 possible combinations of four

milk-first and four tea-first cups has the same chance of occurring, in the frequency-sense that it will occur with
approximately the same frequency in the long run. These random mechanisms, as far as Fisher was concerned, were
chosen just because they were ‘known’ to yield their outcomes with approximately equal frequency in the long run
(never mind how they were ‘known’ to do this; this is a problem we shall address in Chapter 9; for now let us simply

assume

it for the sake of argument). To sum up: only in the context of a properly randomized experiment is the identification
of the null hypothesis with a determinate chance distribution possible, Fisher believed, and then not only possible but
mandatory. The randomization ‘is the only point in the experimental procedure in which the laws of chance, which are
to be in exclusive control of our frequency distribution, have been explicitly introduced’ (1935: 19). A corollary, of
course, that there is no such chance distribution implied by the null hypothesis of No-Miracles argument for realism,
for the data were not obtained from experiments deliberately randomized to produce their outcomes with equal
frequencies; indeed, how could they be?

Suppose all this granted, and that the lady really has no discriminatory ability of the sort claimed. In a well-controlled
experiment, therefore, she should (I say ‘should’ for reason which will be apparent shortly) have no knowledge at all of
the order of milk-first, teafirst, cups. In that case the chance of her picking the correct one is simply equal to the
frequency with which that particular combination is selected by the randomizer, which will be, in the long run, 1/70.
The corresponding long-run frequency distribution for K correct identifications given the null hypothesis is then as
below:

K = 0 chance = 1/70

1 chance = 16/70

2 chance = 36/70

3 chance = 16/70

4 chance = 1/70
The task now is to identify a set R (for ‘reject’) of ‘significant’ values of K, that is, values which (a) are all in better
agreement than any outcome outside R with the hypothesis that the lady has some power of discrimination and (b)
are sufficiently ‘miraculous’, that is, have collectively a sufficiently small chance, say, given the null hypothesis, to
warrant rejecting it in accordance with step (iii). R = {4 cups correctly identified} has a suitably small a, and it is in

. . . .. 3
better agreement with the hypothesis of some discriminatory power than any other outcome.

3 Though it is hardly highly probable merely given some power of discrimination. More probable would be the set {4,3} but, as Fisher
pointed out, the probability of getting 3 correct by chance is too high to warrant dismissal of the null. A more sensitive test would be

obtained by increasing the number of cups.

The force of the inference to the falsity of the null hypothesis should K = 4 be observed, Fisher observes, is ‘logically
that of a simple disjunction: Either an exceptionally rare chance has

occurred, or the theory of random distribution is not true’ (Fisher 1956: 39; italics in the original).

We shall look again at that last step in due course. The question that we have to ask at this point is whether Fisher is
right that randomization secures the link between the null hypothesis and a determinate chance distribution. Despite



Fisher's genius it is not difficult to see that the answer is no, no more (surprisingly) than in the unrandomized
circumstances in which the No-Miracles argument is applied to conclude that current science is ‘approximately true’,
and for just the same sort of reason: there are too many alternative explanations of success other than that the lady
can discriminate by taste. For example, if a random number table is being used to randomize the combinations the
lady might know which part of the table of random numbers is being used to determine the positions of the milk- first
cups (Good 1983: 87, 88); she might have a stooge signalling the correct answers; she might be informed by a divine
source; she might be a seer; and so on. By the rules of chance the chance of a 100 per cent success-rate in repeated
experiments with the eight cups if the null hypothesis is true is the total chance of all these alternatives. And we are
back again to trying to calculate something that does not seem calculable. What we can say definitely, however, is
that, pace Fisher, it does not follow from the truth of the null hypothesis that the long- run frequency of successful
identifications is the same as the frequency of the corresponding combinations generated by the randomizer. Just as
the truth of the null hypothesis failed to determine any chance distribution without randomization, it continues to do so

with randomization.

It is, of course, the problem of alternative explanations all over again. Randomization does not solve it. Nothing does.
Some if not most of the possible causes of a high success rate unconnected with the lady's sense of taste would of
course be considered outlandish, but considerations of a priori plausibility were just what the No- Miracles argument
was intended to avoid, as unreliable and subjective. Steps (i) and (ii) of the No-Miracles argument, either in the grand
arena of testing physical theory or in the homely and circumscribed ambit of a lady tasting tea, remain unsecured.
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The Doctors' Dilemma

It is time to move on, for worse is to follow. The result of subjecting step (iii) to a similarly critical scrutiny will be,
perhaps surprisingly (but in view of the already impressive list of casualties perhaps not), that it does not survive it.
Let us take the story up from where we left it. Suppose that Fisher had been correct in believing that the chance
distribution 1/70, 16/70, 36/70, 16/70, 1/70 for K = 0, 1, 2, 3, 4, was implied by the truth of the null hypothesis. It
would then follow that if the null hypothesis were true it would be rejected incorrectly only very rarely: 1/70 of the
time. That sounds good. But if we could show that there are choices of R where, as in this one, the chance of an
incorrect rejection is very small, and yet where there is nevertheless a very large chance—say, close to 100 per cent—
of the null hypothesis being true given an outcome in R, the small frequency of incorrect rejections clearly could not
justify concluding that the null hypothesis is false; we should, in effect, have a counterexample to the claim that step

(iii) is sound.

It might sound impossible that counterexamples like that could exist, but in fact they can be produced to order. The
following, for which I am indebted to Korb (1991), is yet another celebrated fictional experiment which has become
almost as well known as Fisher's tea-tasting lady. It is known as ‘The Harvard Medical School test’: it was actually
performed on staff and students at Harvard Medical School to see how accurately they could reason from statistical
data which intuitively suggest a conclusion quite opposite to that which should be drawn. The result, presented and
discussed in Casscells, Schoenberger and Grayboys (1978), is of great interest to anyone concerned (justifiably, as it
turned out) about the ability of the present and future medical profession to understand elementary statistics. It is

very interesting from our somewhat different perspective too.

The problem was set to the subjects as follows. Suppose we consider a population of people, members of which are
tested for a spec- ified disease. The test has the following characteristics. The so-called false negative rate, that is, the
chance of a person having the disease testing negative, is zero, and the false-positive rate, that is, the chance of a
person not having the disease testing positive, is 5 per cent (recall the 5 per cent significance level in the tea-tasting

test; not having the
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disease is the null hypothesis). Note that the false-negative rate of O is equivalent to a true-positive rate of 100 per
cent. This combination of false-negative and false-positive rates means that a positive result has a very small chance
of occurrence when the null hypothesis is true, but is predicted with certainty when it is not. The conditions of step (iii)



are clearly met. Finally, suppose the chance of anyone having the disease is 1/1,000.

I should emphasize that the example is entirely hypothetical. We want only to see what follows from the assumptions;
how or even whether they could ever be established with any definiteness is not our concern here. What does follow is
something most people find quite surprising. There are standard formulas to elicit the consequences we want, which
we shall become familiar with later, but while they do their work very effectively they are less illuminating about what
is actually going on than a more heuristic method that has been used in illustrating these concepts for the last three
hundred years: drawing randomly from an urn. Urn drawing is another classical chance mechanism that Fisher might
well have listed with ‘cards, dice, roulettes etc.’; like them, it was also one which he believed generated corresponding

long-run frequencies.

In this particular urn we imagine black and white balls each of which carries just one of the numerals O or 1. The urn
models the population; a black ball is a person having the disease, and a white ball is a person not having the disease.
A ball numbered 1 is a person testing positive; a ball numbered O is a person testing negative. Suppose there are
1,000 balls in the urn, and a ball is drawn randomly. For the chance of the ball being black to be equal to 1/1000
there must be just one black ball in the urn. The false-negative rate implies that this same ball is numbered 1. We
have to approximate the false-positive rate but supposing that, of the 999 white balls, 50 must also be numbered 1 is
very close. Hence 51 balls are numbered 1, but of these one only is black. Hence the chance of the drawn ball being
black, conditional on it bearing a 1, is 1/51. In other words, the chance of a person having the disease conditional on
their testing positive is 1/51, less than 2 per cent. We can see easily from the urn model how this chance depends on
the base-rate, that is, the chance of anyone having the disease at all. If it had been 100 in 1,000 instead of 1, the
chance of a person having the disease given a positive test result is 100/150, or 2/3; if it had been 500 in 1,000, the
conditional chance would have been 500/550, or about 91 per cent. The message is clear:
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the lower the base-rate for a fixed false-positive rate, the smaller the chance that H is true given the data E. The
example tells us in a dramatic way that the respective sizes of the false-positive and false-negative rates do not
determine the chance of a rejection of the null hypothesis being incorrect. In particular, the condition that the null
hypothesis be incorrectly rejected only a very small proportion of the time is, surprisingly, entirely consistent with an
arbitrarily high proportion of those rejections being incorrect.

The majority of the respondents at Harvard Medical School, ignoring the base-rate, regarded the false-positive rate as
the chance of subjects not having the disease if they test positive, and accordingly gave the answer as 0.95. To reason
thus has accordingly become known as the base-rate fallacy. Not merely trainee and professional members of the
medical profession commit the base-rate fallacy. Even very eminent scientists do, as we have seen. And all the
philosophers who use the No-Miracles argument do so as well. It is committed anew in every generation. The central
methodological claims of a recent book on methodology (Mayo 1996) are based on committing it. In this book a
version of the argument very similar to Fisher's is proposed. As in the tea-tasting, there is a notion of outcomes
agreeing better or worse with some hypothesis H (though Mayo calls the relation that of ‘fitting’). Similarly, spelling out
explicitly what is implicit in Fisher's discussion, if E ‘fits’ H, while there is a very small chance that the test procedure
‘would yield so good a fit if H is false’, then ‘E should be taken as good grounds for H to the extent that H has passed
a severe test with E' (Mayo 1996: 177; my italics). In the Harvard Medical School test we have Mayo's formal criteria
for H ‘passing a severe test with E’ satisfied. It is of course true that a positive result in the Harvard test increases the
chance of the subject's having the disease from the base chance of .001 to (roughly) .02, an increase, in percentage
terms, of 2000 per cent. To that extent the test result enhances the support of the hypothesis that the subject has the
disease. But it leaves the overall, or posterior, chance still at only 2 per cent or so. If the chance were 50 per cent it
would mean, intuitively, that it is as likely on the evidence that the subject has the disease as not. It can only be in a

Pickwickian sense of ‘good’, therefore, that a 2 per cent chance constitutes ‘good grounds for H’. ¢

4 Mayo discusses the example in Mayo 1997, but | cannot see that she in any way mitigates its force.



A Sounder No-Miracles Argument

Acknowledging the unsoundness of the No-Miracles argument nevertheless raises the question why it frequently seems
to be sound to argue in that way (thus Worrall talks of the ‘intuitions’ underlying the No- Miracles argument; 1996:
151). It surely seems sound, for example, to infer from Fisher's lady getting all her answers right, on repeated
performances of the test, under the most scrupulous supervision to prevent cheating and foreknowledge in general,
that she almost certainly does have the discrimination she claims. It would surely be too fantastic a coincidence for all
those conditions to be satisfied and for her not to have the ability. Yet we also know that there are too many other
possibilities that would have the same observable manifestations for any such claim to be demonstrable. Nevertheless,
part of the reason we accept ‘No-Miracles’ reasoning in practice is because these myriad other possibilities are
reckoned to be just too remote from what we are disposed to entertain as being ‘really’ possible. Pigs might fly, but
they don't and won't (except in aeroplanes): not here, not in any even mildly similar world to ‘here’. There are possible
worlds where pigs will freely take wing and sing hosannas into the bargain, but our world has a zero chance of being
one of them—or so we believe.

These last observations bring us to a crux. The proponents of the No-Miracles argument regard it as sound reasoning
as it stands, without need of any further assumptions, and in particular not estimates, which by their nature must be
highly subjective, of how probable types of large-scale world are (C. S Peirce (1960: 117), who calls the argument
‘abduction’, actually regards it as a principle of logic). They are wrong. Such assumptions are precisely what it needs to
be a sound argument (I am using ‘sound’ now in a sense that will become increasingly familiar as our narrative
unwinds: namely, in the sense of an argument which contains no fallacious steps even though its questions may, and
in this case definitely should, be questioned). To see what these assumptions are we shall end this chapter by
reconstructing the No-Miracles argument as a sound argument in the sense above, in so doing exhibiting the
assumptions it requires clearly as estimates, necessarily subjective and a priori, of how likely certain types of world
are.

We already have all the ingredients for the reconstruction bar one. This is the fact, which will be proved later in this
book, that the laws
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of chance are formally identical to those of epistemic probability. The reconstruction of the No-Miracles argument
within epistemic probability will to a certain extent anticipate the developments in the next and later chapters, but no
matter: the more often we see this sort of thing, the more familiar we shall become with it. So let us start. Let T be
current theory, H the hypothesis that T is ‘approximately true’ and E the description of data that T independently
predicted. The ‘chance’ of getting E if T is true is rendered by the conditional probability P(E|T). Since E was predicted
by T, the rules of probability which we shall encounter in the next chapter tell us that P(E|T) is equal to 1. But we shall
want to know P(E|H) rather than P(E|T). Recall that it was a constraint on any acceptable account of approximate
truth, at any rate in the context of the No-Miracles argument, that the agreement with E should be expected if T is
approximately true. Since we are talking about ‘intuitions’ rather than facts, let us suppose that this constraint has

been satisfied, so that accordingly we can give some suitably substantial value to P(E|H).

An important part of the earlier discussion concluded that even in the context of suitably prepared statistical
experiments it is not possible to give any unambiguously objective sense to ‘the chance of E if the null hypothesis of
no effect is true’. But when people talk in that sort of way they arguably have quite another sense of chance in mind,
an informal folk-sense that Hume captured in his well-known remark that chance is nothing but ‘the absence of a
cause’ (1739: I. . xi). Even this should not be taken too literally, since we commonly attribute things to chance that
we do not thereby mean to consign to the realm of the uncaused: for example, a sequence of outcomes of successive
flips of a coin; few would seriously deny that to a great extent these outcomes are caused by such factors as the force
impressed by the flipper, the point on the surface of the coin where it is impressed, turbulence in the air, ambient air-
density, and so on. Hume's remark is better understood to mean not the absence of causes in general, but the
absence of a single systematic cause. Saying that the outcomes of the coin-toss are due to chance, understood in this
way, is simply to say that the pattern of outcomes has no systematic cause, a hypothesis confirmed by repeating the
flips and finding that a different sequence of heads and tails is generated.



Armed with this insight we can now resume our reconstruction. We saw earlier in the discussion that because of the
illimitable number and variety of alternative possible explanations of the agreement
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with the data no sensible numerical value could be attached to the value of the ‘chance’ of its occurrence should the
null hypothesis be true, even in principle. On the Humean understanding of what it means to happen by chance the
task is no longer in principle impossible: ‘happening by chance’ simply means that no other systematic cause of that
agreement exists if H is not true. While this is certainly not known to be the case, and indeed never could be known to
be the case, it is often felt to be a plausible assumption in the light of what we know, or think we know, about the
relevant circumstances. In terms of the epistemic probability calculus that by itself is sufficient. It means a negligible
but otherwise unspecified probability, called prior probability, assigned to the union of all the H; other than H which
might explain E compared to P(H), from which it can be shown to follow by the laws of probability that P(E|—H) is
itself very small. We are not in a position to perform the (approximate) calculation yet, but we can at least say in
general terms why it turns out that way. It does so because, as we shall see in Chapter 8, P(E|—H) is proportional to
the product of P(H;) and P(E|H;) summed over i. The second factor might be considerable, since these are candidate
explanations, but its effect is nullified by the extreme smallness of P(H;). So, subject to an orders-of-magnitude

assumption, we have step (ii).

Now for the final step. The quotient P(E|—H)/P(E|H) is called the Bayes factor (more elaborately, the Bayes factor in
favour of —=H against H), and since P(E|H) is assumed to be considerable we see that this factor is very small. We
know from the Harvard Medical School test that a small Bayes factor by itself tells us nothing (which is why step (iii)
failed), and that it is only informative when taken in combination with the base-rate, which now corresponds to P(H).
Given that this is not itself too small, those same laws of probability also tell us that, given these assumptions, P(H|E)

is large (the reader may peek ahead to p. 182 to see why).

Does this mean that the No-Miracles argument is valid after all? Absolutely not. We have a sound probabilistic
argument, but its conclusion, a large value for P(H|E), depends on the assumption that P(E|—H) was very small

compared with the prior probability P(H). °

5 This is the epistemic analogue of the base-rate.

We anyway need a not-too-small value for P(H); we have seen from the Harvard Medical School test how varying the

value of P(H) will

lead to concomitant variation in P(H|E) that we saw earlier. Here is another example. Suppose that person X's DNA
matches that found on a murder victim's clothing. The chance of a match if X is the murderer is very high, of course,

and very low indeed—of the order of 10~"—if the match is ‘due to chance’. But suppose there is highly reliable
evidence from a number of independent witnesses that X was far distant at the time of the murder. Given the usual
assumptions we make about the universe, it is extremely unlikely on this information that X was the murderer,
sufficiently unlikely that the smallness of the Bayes factor P(E|-H)/P(E|H) cannot dominate it.

To sum up: far from showing that we can ignore even possibly highly subjective estimates of prior probabilities, the
consideration of these quantities is indispensable if we are to avoid fallacious reasoning. Different streams converge at
this point. | remarked earlier that the various soundness theorems for deductive proof-systems are actually applied
mathematics, but that that did not affect Hume's argument. In fact, Hume was quite happy to accept all of what he
regarded as mathematics without a sceptical murmur, because for him mathematical reasoning merely displayed
internal logical ‘relationships between ideas’: Hume was an early logicist. Whether logicism is correct or not is beside
the point here. What is germane is that in the case of deductive logic a mathematical theory is used to give a precise
meaning to the deductive concepts of deductive consistency, logical consequence, etc. and thereby to establish their
properties and interrelationships. A more interesting search for parallels with deductive logic than the fruitless ‘rule-
circularity’ might therefore enquire whether there could be a similar way of identifying and investigating sound

inductive arguments.



For a long time it was widely thought that another mathematical theory might well be able to do just that. This
mathematical theory is the theory of probability, and for well over two hundred years many people believed that in
that theory they could define and justify a notion of sound induction that had the desired property of being able, and
without circularity, to establish the existence of sound inductive reasoning in the form of arguments from observed
data to conclusions of the form ‘it is more likely than not that the future will resemble [in certain specified ways] those
data’. From what we have seen so far it doesn't sound hopeful. Indeed, the conclusion of the systematic investigation
we shall conduct in the next chapter will reinforce Hume's argument that the only sound arguments
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of this type that can be constructed incorporate strong inductive premisses: so in effect they prove nothing inductive at
all. We have seen that this is certainly the case with the No-Miracles argument. As it is usually presented it is
fallacious, thoroughly fallacious, and we saw exactly how it can be transformed into a non-fallacious argument only at
the cost of making explicit its implicit inductive assumptions, assumptions which we shall see are typical, about prior

probabilities.

Exercise: The Anthropic Principle

‘Reasoning’ according to the fallacious logic of the No-Miracles argument is, sadly, widespread. One of the most
egregious examples is the so-called Anthropic Principle. ‘The’ Anthropic Principle suggests a perfected statement, but
the suggestion is belied, as so often, by a messier reality. In fact, there is a considerable variety of anthropic principles
on offer at the present moment. They nevertheless fall into two groups, the Weak and the Strong. The Weak Anthropic
Principle appears to say no more than that the existence of human beings imposes certain constraints on the way the
universe must have evolved. As such it is something of a truism. The Strong Anthropic Principle is more variegated, but
what its instances have in common is the following teleological argument: the restriction of certain fundamental
physical quantities within the very narrow bounds which permit an orderly universe, and in particular one permitting
the development of life, is too unlikely to have occurred by chance, and therefore points to the existence of some
purposive structuring whose ultimate goal is human existence. Perhaps ‘The Hubristic Principle’ would be a more
accurate name for this argument. Here are a couple of samples from the (extensive) literature, the first explicitly
theistic:

The basic constants of nature need to be exactly what they are to produce life. This . . . ‘may have the flavour
of a miracle’. Well, it is just what one would expect if an immensely wise God wished to produce a life-bearing
universe, if the whole thing was purposive. Whereas it is not at all what one would expect, if it was a matter of
chance. Every new scientific demonstration of the precision of the mathematical structure needed to produce
conscious life is evidence of design. Just to go on saying ‘But it could all be chance’ is to refuse to be swayed
by evidence. (Ward 1996: 51, 52; my italics)

and

A force strength or a particle mass often seems to need to be more or less exactly what it is not just for one
reason, but for two or three or five [sic] . . . So, you might think, mustn't it be inexplicable good fortune that
the requirements which have to be satisfied do not conflict? (Leslie 1989: 64; italics in original)

Do you think so?
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4 Probabilism

Colin Howson

Probable Reasoning

When Hume wrote the Treatise the contemporary mathematical theory of probability seemed to be restricted in its
applications to simple games of chance. It is true that James Bernoulli, the author of one of the most systematic
treatises up to that time (Ars Conjectandi), had attempted to transfer the mathematics of chance to the problem of
induction, in the course of which he proved his famous theorem about converging probabilities based on large numbers
of events (there is a brief discussion in Chapter 9). But though Bernoulli's theorem was highly suggestive it was also
widely regarded as being in the last analysis unsuccessful in providing a sound link from past observations to the
probabilities of future events. By a historical irony, it was Hume's almost exact contemporary Thomas Bayes, a
Nonconformist clergyman, who showed, in a mathematical tour de force, how to ‘invert’ Bernoulli's result so that
instead of being able to deduce the probability of obtaining some sample data, for example, seven heads in ten tosses
of a coin, given some specified parent distribution, one could deduce the probability that the true parent distribution is

. . 1
as conjectured, given the sample data.

1 This is set out in Bayes 1763, a posthumously published memoir communicated after Bayes's death to the Royal Society of London by
his friend and editor Richard Price, who thought that Bayes had refuted Hume. Bayes's famous calculation is too technical to go into

here, but for a clear account of it, together with a judicious appreciation of what it achieves, see Earman 1992: ch. 1.

At the time of writing the Treatise and Enquiry Hume was unaware of Bayes's work, and never referred to it
subsequently. It has been left to posterity to try to determine whether the application of the mathematical theory of
probability can in any way undermine Hume's argument that no ‘probable reasoning’ can justify inferences from past to

future. Impregnable though the argument seemed, it
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appeared to rest on a notion of probable reasoning—reasoning ‘concerning matter of fact and existence’—that is not
related by Hume to the formal rules of probability. It was noted, without endorsement, in Chapter 1 that some people
have seen this as revealing a hole in Hume's argument through which might escape a probabilistic justification of
induction. In the earlier discussion I gave Hume's own answer to this question: that probability theory is a piece of
mathematics which by itself conveys no information on any matter of empirical fact. 1 myself believe Hume's position
to be correct, but we must face the fact that there are people, from Bayes (somewhat hesitantly) in the eighteenth to
Carnap and others in the twentieth century, who nevertheless believe that there are valid probabilistic arguments for
induction. Nor is the position totally implausible, as we shall see. To adjudicate the issue we must, however, first get

acquainted with the basic principles of formal probability theory.

The Probability Axioms

These basic principles were actually first set out in anything like a modern form by Bayes himself. Let A, B, C, . . .
below be a class of factual propositions (about exactly what we shall settle as the book proceeds). The probability
axioms, in the now-standard form due to Kolmogorov (1933), are the following three conditions on a function P
defined on these propositions:
(1) P(A) O.

(1) If A and B are mutually inconsistent then P(A or B) = P( P(B).

(I1) Where T is a necessary truth then P(T) = 1.
Accompanying these axioms is a definition of a function P(A|B) of two arguments: If P(B) } 0 then P(A|B) is defined to
be P(A&B)/P(B). P(A|B) is undefined if P(B) = 0. P(A|B) is read ‘the probability of A conditional on B’.

Modern mathematical texts tend to identify A, B, C, etc. with sets, subsets of some set S, and in the axioms replace
the connective ‘or’ with set-theoretical union (the union of two sets is the set containing all the members of either)



and the necessary truth T with S. Why sets? Because sets are a convenient way of representing propositions when
these might not be expressible linguistically, at any rate in any non-formal
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language. S is to be thought of all the logically possible states of affairs in some universe of discourse, possibly subject
to constraints determined by some sort of background information. The sets identified with A, B, C, etc. can then be
regarded as the subsets of S making corresponding propositions true. Where the set-apparatus becomes almost
indispensable is in considering propositions for which there are no corresponding natural-language sentences. Later on
in the book we shall consider theories, bodies of hypotheses which make up a single cognitive unit, but which cannot
be represented as single statements within our standard systems. Examples are mainly theories in mathematics, one of
the simplest being the basic principles of ordinary whole-number arithmetic known as Peano's Axioms. At any rate, we
shall equivocate on the nature of propositions, regarding them as either ordinary statements or when necessary sets of

. 2
possibilities.
2 In earlier treatments it is not unusual to see, instead of P(A), etc. where A is a set, the notation P(X & A), i.e. the probability that X

is in A, making the propositional nature of what lies inside the scope of the P-operator explicit (see e.g. Khintchin 1949).

This may sound a little cryptic at this stage; it should get clearer as we go on.

Nearly all texts on mathematical probability also adopt a sort of Axiom O, usually stated as a preamble to I-Ill, saying
that if A and B are already in the domain of P, then so are ‘not A’, ‘not B’, ‘A&B’, and ‘A or B’. In technical jargon,
Axiom O says that the domain of the probability function is a field. It is useful for some specific applications, as we
shall see in Chapter 7, to require closure under these operations, as well as types of ‘infinite’ disjunction and
conjunction. But we shall let the applications dictate how much of the modern measure-theoretic mathematics of
probability is used. For most of what we do there will be none at all.

What Does It All Mean?

The axioms themselves will no doubt appear unmotivated and abstract. We can nevertheless give some preliminary
informal explanation of what they say, admittedly at this stage only in a very general way. But that is better than
nothing. Axiom Ill does not explicitly state that 1 is the upper limit, but that is the intention. The usual criterion
determining choice of axioms is that they should provide as concise as possible a set of assumptions from which you

can

derive everything you think is true about the area of study axiomatized, and merely stating that P(T) = 1 turns out to
be enough, in combination with the other axioms, to guarantee that the scale is the closed unit interval. In other
words, the axioms are implicitly telling us that P(A) is a normalized non-negative function. This suggests that P might
be a ratio of quantities with the numerator not exceeding the denominator. As we shall see, in one of the two main
interpretations of the axioms we shall consider P will be such a ratio.

The additivity principle Il is best thought of in terms of the associated subsets of possibilities from S corresponding to
the propositions A and B. To take a simple example, suppose S is the space of possibilities admitted by throwing a die
and observing the number of dots on the upmost face when it comes to rest. Then the subset corresponding to ‘an
even number occurs’ is the set {2,4,6}. Of course, S may be relatively unlimited—when we are considering
propositions which are general hypotheses about the structure of the physical universe, for example. However
extensive, though, we can always think of it as like a set of points in a plane, with the sets of possibilities
corresponding to A, B, etc. as regions in this subset of the plane. We can also imagine (here | follow van Fraassen's
nice metaphor: 1989: 161-2) that on these regions are spread amounts of mud, possibly not evenly, but with the
proportion of mud on any subregion equal to the probability distributed over it by P. Suppose we signify the region

corresponding to A by A. So the probability of A is the proportion of the total mass of mud on A. 3

3 This of course implies that P(A) = 0 (and < 1).



Where A and B are mutually exclusive propositions A and B have no point in common, and the amount of
mud/probability over the sum A + B of the ‘areas’ A and B is therefore equal to the sum of the amount of
mud/probability over each. Now notice that where A and B are mutually exclusive, A or B is just A + B. Putting these
observations together, we infer that for mutually exclusive A and B we should have that P(A or B) = P(A) + P(B), i.e.
axiom 1.

This little story is of course far from being a rigorous justification of Axiom Il. Such a justification would require that
the mud analogy be the appropriate one for the particular interpretation given to P. However, if we think of the
epistemic interpretation, it is certainly not unnatural to regard the amount of belief heaped on A as measurable in
principle by a proportional amount of mud heaped on A
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(this implies no disrespect to the quality of that belief!). Now let us look at the definition of the function P( . |B) where
P(B) ) 0. Again, it is helpful to think in mud-theoretic terms (nostalgie de la boue has its uses). The idea is that P( .
|B) will signify the restriction of P to the subdomain of possibilities admitted by B, i.e. for any proposition A, P(A|B) is
to mean ‘The probability of A assuming that the domain of possibility is curtailed to B’, i.e. assuming that B is true. So
now the new set of possibilities admitted by A is not A but only those points common to both A and B, which set-
theorists call the intersection Al B and which, it is easy to see, is the set of points represented by the conjunction
A&B. But we can't simply set P(A|B) equal to P(A&B), because the total mass of mud/probability left by excising the
points not in B is P(B), which if probability is to be equal to the proportion of mud-mass relative to the universe,
should now be 1. But the solution is obvious: we have to scale everything up by a factor of 1/P(B). Thus we must have
P(A|B) = P(A&B)/P(B), assuming P(B) } 0.

| repeat that this little exercise is not a rigorous justification of any of I-I1l, or anything near one; it is more of a
heuristic first approximation to one. A rigorous justification will depend on what exactly P is supposed to mean.
Unfortunately there is not a single answer to this question, for it turns out that there is more than one distinct way of
interpreting the formalism, two of which are regarded as principal. In one, which we shall call the epistemic, or from
now on more often the Bayesian interpretation (we shall see why shortly), A, B, etc. are factual propositions about
particular states of affairs whose truth- values are (normally) unknown and P(A), P(B), etc. are, roughly (we shall be
more specific later), the degrees of belief which some consistent individual might hold in A. The first reasonably
rigorous justification of I-11l from the point of view of this interpretation was given by Bayes himself, in his work cited.
Because of its historical interest, and because it is both easy to follow and, with certain qualifications (concerning
rather subtle utility considerations, whose discussion | shall postpone to Chapter 7), still regarded as essentially sound,
I give a slightly modified version of Bayes's derivation of the axioms in Appendix | to this chapter.

The other interpretation of I-111 has nothing to do with our beliefs or even with us at all. It is an interpretation of P(A)
as an objective property of an event-type described by A occurring in the context of some repeatable observation or
experiment. The great French
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mathematician and probabilist Poisson gave this property a much older name, chance. In his words, chance ‘pertains
only to things in themselves and independently of what knowledge we have of them’ (1823: 2). What | have called the

. . . . . . gz 4
epistemic or Bayesian interpretation Poisson called ‘probabilité’.

4 poisson's distinction between ‘chance’ and ‘probability’ as the names of quite different quantities was new in the history of

mathematical probability, and very quickly became established; they are just Carnap's well-known ‘probability,” and ‘probability,’

respectively (1950). Before Poisson the terms were regarded as synonymous; thus on the first page of his Memoir Bayes says that by

‘chance’ he means the same as ‘probability’ (1763).

I should emphasize that these two interpretations have since become more or less broad categories, with many
variants; for example, Popper has proposed a type of objective chance interpretation which he calls the propensity
theory of probability. To avoid terminological confusion | should also point out the notion of chance discussed in the
context of the No-Miracles argument in Chapter 3 is more akin to the older tradition in which it was usually intended to



denote something objective, but what that something was was never clearly defined except in the very special classes
of circumstances in which symmetries in the apparatus were held to justify assigning the same chance to each in the
space S of possible outcomes. If there was a finite number n of such outcomes then each individually was held to have

the same chance 1/n of occurring.

There is also a further distinct concept—perhaps ‘theory’ would be the better word—of probability which | shall mention
now but not dwell on, and whose status is anyway still controversial. That is quantum mechanical probability. It is not
just another interpretation of axioms I-Ill, but a quite different theory of the semantics and syntax of probability, with
the latter based not on the classical logic or ‘ordinary’ propositions but on a non-classical logic generated by the lattice
of closed subsets of an appropriate vector space, a Hilbert space of quantum states. This logic differs fundamentally
from the classical one in being non-Boolean (for a discussion of what this means see Hughes 1989: ch. 7). As a
consequence, the ‘quantum probability’ postulates differ fairly radically from I-111 above. The condition in the additivity
axiom 11l is no longer that the two propositions over which the probability adds are inconsistent with each other, but
that they are represented by orthogonal subspaces, while conditional probability is governed by a completely different
type of rule, the so-called L "ders rule (Hughes 1989: 224—6). Whether it is

necessary to transfer to such a non-classical logic and probability theory for the discussion of quantum phenomena is a
very controversial issue, though the majority view is probably that it is not; though we should note that even those
who deny that it is are nevertheless forced to concede that there is something rather strange about quantum-

mechanical probability. °

5 For example, while the so-called statistical algorithm of quantum mechanics delivers numerical probabilities for any finite number of
commuting observables being measured in any joint interval of their eigenvalues, it is impossible to define a joint probability
distribution over noncommuting observables.
It would be interesting to take the quantum-mechanical discussion further, but it would also take us away from our
current objective, which is to see how inductive inference has been modelled within the epistemic, Bayesian
interpretation. For this reason also a more detailed account of the chance interpretation will be postponed until the

stage at which its relationship with epistemic probability becomes an issue (in Chapter 9).

In the subsequent discussion it will be useful to have at hand a few fairly easy consequences of the axioms. | shall list
them below without proof (the interested reader can find proofs in Howson and Urbach 1993: ch. 2).
@) 0=PA) = 1.
(ii) If F is a necessary falsehood then P(F) = 0.
(iii) P(—A)=1- P(A) (read —A as ‘notA’, i.e. the negation, or denial, of A).
(iv) P(A&B) = P(A),P(B) = P(A or B).
(v) If A entails B then P(A) = P(B).
(vi) If A entails B and P(A) ) 0 then P(B|A) = 1 and P(—BJA) = 0.
(vii) Logically equivalent propositions receive the same probability.
(viii) If Aq, Ay, . . ., A, are all mutually inconsistent then P(Aq or Ay or . . . or Ap) = P(A1) + P(A))+ . . . +P(Ap).
This is known as the finite additivity principle (cf. Appendix 1, (111°)).
(ix) Where P(B) } 0, the function Q defined by Q( . ) = P( . |B) satisfies I-11l (this justifies the terminology
‘conditional probability”).

Epistemic Probability: Modelling Inductive Inference

That probability is a measure of uncertainty is familiar and has a long history—as long as that of probability itself. In
his Ars Conjectandi (‘Art of Conjecturing’) James Bernoulli had explicitly advanced the idea: ‘Probability is degree of
certainty, and differs from absolute certainty as a part differs from the whole’ (1713: 8). He also suggestively linked
this measure of uncertainty with the uncertainty of hypotheses (‘conjectures’) in the light of evidence: ‘To conjecture



about something is to measure its probability’ (ibid.). Nevertheless, the Great Step Forward which definitively linked
the mathematical theory of probability with the justification of inductive inferences was taken not by Bernoulli but by
Bayes over half a century later. Bayes made the crucial identification, which thereafter became canonical, of a
‘probable argument’ from data E with a conditional probability P( . |E) (it is assumed that P(E) ) 0). Thus a probable
argument tells you the probability, on the supposition that E is true, of any hypothesis plugged into the space marked
by the dot. Of course, strictly speaking, P(H|E) is a term and not an argument in the way an argument is usually
understood. But it seems to be transformable into an explicit argument-form by the following obvious rule: if you learn
E then you can infer that the credibility of H is equal to P(H|E). This principle is known as conditionalization. It sounds
reasonable enough, even obvious, given the interpretation of P(H|E) as the probability of H on the assumption that E
is true. But one qualification must immediately be made: E must be the logically strongest statement you learn. If you
learn a proposition A then arguably you learn some of (some strong idealizers say all) the consequences of A; but it
may be that P(H|A) and P(H|A ) differ, where A is a consequence of A. To condition on both A and A would be to
generate inconsistent evaluations; the qualification ensures that you condition only on one, the logically strongest, of
the propositions that you learn.

So things are not quite so absolutely straightforward after all. We shall see later (in Chapter 7) that this is not all that
is not straightforward about conditionalization, but the issue is not all that relevant here because the rule only acts on
P(H|E) to detach from the acceptance of E, provisional or otherwise, a conclusion about the probability of H, a
probability which will be formally equal to
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P(H|E) itself. The meat of the discussion of whether probabilistic induction is possible or not therefore depends directly
on the properties of P(H|E), and the Big Question, which has occupied people since the time of Bayes, is how to
evaluate P(H|E) for interesting cases of H and E. From the definition of conditional probability we can deduce that
P(HIE) = P(H&E)/P(E) if P(E) } 0. But the axioms seem to give little or no guidance on the evaluation of P(H&E) or
P(E). One interesting context from the point of view of the problem of induction is that in which H is a predictive
hypothesis which entails E, modulo some background conditions, whose satisfaction is assumed to be reflected in the
behaviour of P (so that P assigns them probability 1). Then modulo these same conditions H&E is logically equivalent to
H, and so by (vii) above P(H&E) = P(H). Then P(H|E) = P(H)/P(E). Even so, at this point we have as yet no way of
further determining the unconditional or prior probabilities P(H) and P(E), and most of the work done trying to model
induction probabilistically has been an attempt to use additional heuristic principles to try to determine values for
them; sometimes for special cases of H and E (as was the case with Bayes's famous essay), sometimes in a more
ambitiously global way (as in Carnap‘'s monumental Logical Foundations of Probability 1950).

In order not to get involved in a lot of technical work which might turn out to, and in fact mostly does, lead nowhere,
it will be better at the outset simply to regard the axioms as imposing constraints on any probability function P, and
then seeing whether, though they do not determine P anything like uniquely, they nevertheless force P to be inductive.
If it turns out that this is the case, then we can reasonably regard Hume as defeated without going further into the
issue of exactly how many probability functions are consistent with those constraints—an interesting question, perhaps,
but not our concern here. If, on the other hand, it turns out not to be true, then we have to look at further principles
which might be invoked.

The Case for

Remarkably, the following results appear to show that the axioms do force P to be an inductive measure in the sense
defined. Relatively simple to prove, some of these formal consequences of the probability axioms are so striking that
the mathematician and statistician

. J. Good even calls them induction theorems (1983: 164,165). First, though, some suggestive terminology will help to
point the way (whether the suggestion conveyed is wholly, or at all, accurate is something that will be carefully
questioned, but later). Call a probability function P dogmatic with respect to a contingent proposition H if P(H) = 0 or



P(H) = 1.°

6 The term ‘dogmatic’ was inspired by a passage in Jeffrey 1992: 45. Probability functions vary between the totally non-dogmatic, also
called strictly positive functions, which assign 0 only to logical falsehoods, and the totally dogmatic, which assign every proposition the

value 0 or 1 (such functions are formally identical to Boolean truth- valuations).

We call people dogmatic on a question if, whatever you tell them, you know they won't change their mind. Well,

similarly for dogmatic probability functions, as the following shows:

(a) Suppose that P(H) = 0. Let E be any information to which P awards some chance, however small, of being true;
i.e. P(E) } 0. According to the definition of conditional probability P(H|E) = P(H&E)/P(E), and by (iv) above, P(H&E)
= P(H) = 0. Hence P(H|E) = 0. In other words, there is no information, given only that it is minimally credible,
which P would regard as causing it to change its ‘mind’ about H were E true.

(b) Now suppose that P(H) = 1, and P(E) } 0 again as in (a). By (iii)), P(=H) = 0, and by (a) P(—H|E) = 0, whence by
(viii) and (ii), P(H|E) = 1. So learning E wouldn't cause P to change its ‘mind’ about H in this case either.

Dogmatic probability functions are also blind to the contingency of contingent statements, in the following sense: if

P(H) = 0 then H is assimilated by H to a necessary falsehood (by (ii) above), while if P(H) = 1 then H is assimilated by

P to a logical truth (by axiom Il1). In the light of these facts it seems an obvious desideratum for a ‘reasonable’

probability function that it should not be dogmatic with respect to any contingent hypothesis; if it is dogmatic then it

will not provide a faithful model of how a paradigmatically rational individual should measure uncertainty, since it will
irrevocably tell us to be certain either that a hypothesis is false which might be true, or that a hypothesis is true which
might be false.

These mild and apparently reasonable modelling assumptions appear to be all that is needed to refute Hume, since it
seems that we can now very easily prove that valid inductive arguments exist! Suppose that H is some simple
predictive hypothesis that says that if

observationally verifiable conditions C are met, E will be observed. To keep the discussion simple suppose that P is
relativized to C, that is, C is regarded as background information to which P has already assigned the value 1. Another
simple derivation from I-Ill establishes

Theorem 1 If 0 { P(E), P(H) { 1, and if H entails E, then P(H|E) } P(H).

The proof is extremely easy. For by the definition of conditional probability P(H|E) = P(H&E)/P(E) and since H entails E,
H&E is logically equivalent to H. Hence by (vii) above P(H|E) = P(H)/P(E), whence the theorem immediately follows.
Jeffrey, who calls it ‘Huygens's Rule’, gives a simple geometrical proof of it (in terms of corresponding regions in the
state space S) which makes it intuitively obvious (1992: 58).

Theorem 1 tells us that if P is not dogmatic with respect to H and E then any prediction that H gets right increases its
initial, or prior, probability. In other words, if P is not dogmatic for H and E and if H predicts E then the occurrence of
E inductively supports H. Not only that: it follows almost immediately that each succeeding prediction H gets right
increases its probability still further. For let Q( . ) be P( . |E) for fixed E. By (ix) above Q satisfies I-Ill. By Theorem 1,
therefore, if H entails E' then Q(H|E") } Q(H), whence it easily follows that P(H|E&E") } P(H|E) } P(H). Of course, there
is a considerable idealization involved in supposing that any hypothesis predicts observed values exactly. Generally
there will be some spread, due to ineliminable experimental errors, around predicted values even for so-called
deterministic hypotheses. This is true, but the issue here is one of principle, not of practice. Hume had argued that
there can be no probable argument from the data to anything beyond it. Subject to an idealizing assumption in which

such errors are ignored, Theorem 1 seems to be just such an argument.

Perhaps we can save Hume's position by interpreting it as saying that no evidence can raise the probability of a
prediction to the point where the prediction is more probable than not. A further consequence of I-I11 seems to knock
that on the head too. To see why, we shall look at a model that is widely used in these sorts of investigation. This is
an idealized form of a universal hypothesis which,
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whenever specified experimental conditions, call them C, are instantiated, and it is assumed that in principle there is
no limit to the number of times they can be, predicts outcomes of some determinately observable character. Let H be
such a hypothesis. The outcome space, that is, the set of all possible outcomes of an indefinite series of repetitions of
C, can be represented simply as the set of all infinite sequences of Es (the outcome predicted by H) and —Es (any
other type of outcome), and H itself can be represented by the single sequence consisting only of Es. Let E; mean that

E occurred at the ith repetition. The consequence in question of I-I1l, which | shall give without proof, is

Theorem 2 Suppose that P(H) } 0. Then for some i, P(Ej+1|E1& - - - &Ei)} 1, and indeed tends to 1 as i tends
to infinity.
In other words, an inductive principle of the sort Russell thought had to be postulated (Chapter 1, p. 19) actually

follows from the apparently natural requirement that P be not dogmatic with respect to at least one universal
hypothesis.

In fact, P(H) } 0 is a sufficient but not necessary condition for P(Ej+1|E1& - . . &Ej) tending to 1. It is known that this

limiting behaviour, even where the progress to the limit is monotone or even strict, is consistent with the hypothesis
that says it will always occur having prior probability 0. All the measures in Carnap's A-continuum are of this type, for
example, and de Finetti in a celebrated theorem showed that a very weak condition consistent with P(H) = 0O, so-called
exchangeability, will generate that behaviour (1964: 121). Suppose the outcomes of a repeatable observation are
classified in some way. They are said to be exchangeable if the probability of any sequence of them depends only on
the number of outcomes of each type in the sequence. Now suppose that the classification is merely in terms of
whether E occurs or not. De Finetti's theorem shows that if we consider infinite sequences of such binary exchangeable
events then the probability of getting r Es and s not-Es in the first n observations depends on how the prior probability
distributions over the different possible numbers nj of Es in the first j observations, j = 1, 2, 3, . . . behave as j grows
very large. If, for example, for each j all the possible numbers of Es, i.e. 0, 1, 2, . . ., j are judged equally probable
then we obtain the following special case of Laplace's Rule of Succession:
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P(Em+1|E1&E2& . . . &Ep)=m+1/m+2, m=1, 2,3, ...,
which clearly tends to 1 as m tends to infinity. In general, as long as none of those prior distributions over nj vanishes

anywhere, that conditional probability will still tend to 1.

Grue Again

By now any defender of Hume might well be feeling pretty bad. Worse is to come: we actually seem able to solve the
grue paradox! Within the simple formal model of an indefinitely repeated experiment we can represent the hypothesis

. . . - 7
space for H and its grue variants as the set of all infinite sequences of Es (green emeralds) and —Es (blue ones),

7 In this ‘universe’ emeralds are only either green or blue.
describing the potential output of a data source (sequentially observing an unlimited supply of emeralds). H, ‘All
emeralds are green’, corresponds to the single sequence consisting entirely of Es. Each of the ‘grue¢’ alternatives Hg,

where t is now an integer, corresponds to that sequence with Es up to the tth place and —Es at t and thereafter. H and
its grue variants constitute a denumerably infinite set (i.e. one which can be indexed by the positive integers). All the
members of a denumerably infinite set of mutually incompatible alternatives can be assigned positive prior probabilities
(for example, from the sequence 1/2, 1/4, 1/8, 1/16, etc.), and we shall assume that all these hypotheses are
assigned them. The consequence of I-I1l we now need is this:

Suppose that Hp, n ) 0, is an infinite family of hypotheses such that for each n, H, agrees with the predictions
of a hypothesis H for all individuals observed up to epoch n and disagrees after n. Let E; be the evidence
gathered up to i and suppose it is as predicted by H. Then for all n { i, Hp is inconsistent with E(jy, and for all n
Z i Hp predicts E(jy. Given that P(H) ) 0 and for all n, P(Hp) } 0, it follows that there is a k such that for all n }
K, P(HhlEk)) { P(HIE()), and that this inequality will persist for all k' } k (for a proof see Appendix 4 to this



chapter).

We can gloss this complicated-looking result in a simple way as follows. Suppose P is not dogmatic with respect to H
(‘All emeralds are
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green’) or all the gruep-alternatives to it (assumption (i)). Then as data of the form ‘All emeralds observed up to i are
green’ (E(j)) accumulates, H will eventually be left as the most probable hypothesis despite the fact that infinitely
many gruey alternatives remain unfalsified. We seem to have shown that we can generate, in a familiar, concrete

example, a probable argument that extrapolates past experience into the future in just the way our intuitions tell us is

correct.

Those who remember the cautionary remarks about inductive rules in Chapter 2 will recall that the grue problem
showed that on pain of inconsistency no such rule can say that after some number n of positive instances of any
property A we are justified in predicting an A at the next occurrence of the appropriate conditions, where n is
independent of A. On the contrary; we saw that consistency demands that the point at which the evidence is sufficient,
according to the rule, to justify extrapolating to a future occurrence of A must be highly non-uniform across the class
of properties A. It is not difficult to see that any rule based on a probability function, like the conditionalization rule,
has this property, since it is a straightforward consequence of the additivity principle Il that it is impossible for both A
and —A to have probabilities greater than 1/2. To see what else is implied, recall that, subject to P(H) } 0, P(Ej+1lE1&

. . . &Ej) must exceed Y2 for some i. Hence if P(Hy) is also positive, as we assumed above, we must also have
P(Ej+1.klEj1& . . . &Ej ) ¥2 for some j, where we define Ep, i to be Ep if n < k and —Ej, if n ) k (if the domain is
emeralds sampled over discrete time and E is the predicate ‘is green’ then E, says that the nth emerald is green, and

En, k says that the nth emerald is gruey; Hy says that all emeralds sampled will be gruey). This does not imply that for
some r, both P(Er+1|E1& . . . &E;) ) ¥ and P(~E;+1]|E1& . . . E)) %, °
8 popper thought it did, and that it showed that P(H) and P(Hy) for every k must be zero (1959: 370-1)!

since the first n for which E,  becomes more probable than not given a uniform run of previous E; ks must exceed k.

So ‘grue’ is no problem in principle for probable arguments; it just shows that a type of convergence cannot be
uniform. °

9 Mathematically speaking this is exactly what is shown: that the functions fk(n) = P(En+q,klE1 k& - - - &E, i) converge pointwise to 1

over the set {k:k ) 0} but not uniformly.
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The Case Against

Suspicion that perhaps these results, despite their knock-down, drag- out character, do not provide the non-circular
‘probable reasoning’ for induction that Hume denied possible, is aroused by the realization that non-dogmatism is for
mathematico-logical reasons not possible as a uniform policy. We return to the fact that there are infinitely many
mutually exclusive possible laws over infinite domains. It was pointed out that those we can actually refer to in
ordinary language are the least infinity in number, denumerable infinity, and hence that it is possible in principle to
assign all of them positive initial probabilities. But that is not by any means the end of the story. It is because natural
language is not ideally suited for mathematical representation that it was superseded in the seventeenth century by a
dedicated mathematical language, which most certainly does have resources for referring not just to the members of
denumerably infinite collections, but to those of larger ones as well. Indeed, we shall consider later a set of hypotheses

- . . P 10
of the form {X: X € I}, where | is a non-degenerate interval of real numbers and hence uncountably infinite.

10 Nobody knows how large, in the sense of where exactly in the hierarchy of alephs it lies, this infinite cardinality is, except that it is

somewhere above the least, RO. That it is Rl is Cantor's famous continuum hypothesis, known since 1963 to be logically independent

of the standardly accepted axioms of set theory.



Nor need we stop there: when we consider all the possible smooth functional relationships that specified real or
complex variables have to each other we ascend to a yet higher infinity, which again we can denote in a standard
mathematical notation.

So we are neither conceptually nor notationally restricted to the countable. It is not very difficult to see that the
additivity principle implies that there at most n elements of any possibility-space with probability at least 1/n, from
which it follows that at most denumerably many members can have positive prior probability. Since the difference
between an uncountable and a countable set can itself be shown to be uncountable, this implies that uncountably many
possibilities in an uncountable possibility space must have probability 0. This puts the notion of dogmatism, as we
defined it earlier for probability functions, in a quite different perspective. For it shows that with a large enough
hypothesis space any probability function will

necessarily be dogmatic for the vast majority of the hypotheses in that space. In other words, the desideratum on p.
70 above that ‘reasonable’ probability functions are not dogmatic with respect to any contingent proposition must fail
in big enough possibility- spaces. But we definitely need to consider as big spaces as we can conceive if we are really
to face up to the problem of induction, and indeed even in practical contexts such large spaces are routinely
considered, for example in mathematical statistics: all the continuous distributions studied there actually assign
probability O to every point of the possibility-space.

Armed with this information, we can now get a clearer idea of what is going on in the ‘solution’ of the grue paradox.
Recall that in the solution of the grue paradox we assigned positive probabilities to all the grue variants of H; we could
do so because that set was only denumerably infinite. But the set £ of all possible infinite sequences of Es and —Es is
actually uncountably infinite. To see this, just replace E by 1 and —E by 0. It is a mathematical fact that every real

number x such that 0 = x = 1 has a binary representation: x can be expressed as a sum a;/2+ay/4+az/8+. . .+ai/2i
+ ..., where aj = 0 or 1, and x is represented in binary by the sequence a;, a», . . . . The representation is not as it

stands unique because of recurring digits (e.g. 1.000000 . . . is the same number as .1111111 . . . ) but this tells us
that there is at least the same number of things in £ as there are real numbers in the unit interval (in fact, it can
easily be shown that there are exactly as many in the sense of infinite cardinality). The real numbers in any
nondegenerate interval are known to be uncountably infinite. Hence any probability measure must be dogmatic with
respect to almost all the hypotheses in £l. Had we let H be one of these the ‘solution’ to the grue problem obviously
wouldn't have worked. In other words, the grue paradox was ‘solved’ probabilistically only by a prior decision to give
positive prior probability to the ‘correct’ hypothesis! The decision cannot be justified on the ground that otherwise the
probability measure would be dogmatic with respect to that hypothesis, for as we have seen it will necessarily be
dogmatic with respect to uncountably many other hypotheses any one of which might, a priori, be the true one. Thus H
ended up being the best confirmed only because a prior decision was taken to allow it to be ‘confirmed’ at all.
Similarly, Theorem 1 shows that such an assignment in the form of a positive probability assignment to H is a
necessary and sufficient condition for H to be confirmed by its positive instances. It is beginning
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to sound as if we have here the probabilistic version of the inductive postulate Hume declared would be present in any
inductive argument. Indeed it is, and we shall come to that presently. In the restriction of a positive prior probability
to at most denumerably many incompatible hypotheses we also have something akin to Keynes's principle of limited
independent variety (1973: 289), not as a separate postulate as he imagined it would have to be, but as a condition
implicit in the very laws of probability themselves.

It might be objected that most of the hypotheses in £l can't be named because they are infinite random sequences
(this is true). At most a denumerably infinite number of possible sequences can be named explicitly, and these
correspond to those which are generated by some algorithm (there are only denumerably many algorithms, in the
sense of computer programs which generate infinite sequences of binary digits). Surely, the objection continues, only
these should, indeed can, be the bearers of probabilities, since only these represent genuine discussable hypotheses.
And if this is granted then the problem is solved, at any rate in principle. For then as we have seen all these



hypotheses can be assigned positive prior probabilities. Not only that; a solution in practice also beckons. For these
hypotheses have a natural probability ordering in terms of simplicity: the simpler any is, the more a priori probable it
is. Harold Jeffreys, an eminent mathematical physicist and geophysicist, adopted such a principle, which he called the
simplicity postulate, in his pioneering work advocating probabilistic methods in inference in the sciences, though he
talked of the simplicity of mathematical equations, and proposed to measure it in terms of the number of their
independent adjustable parameters (1961: 47).

We shall look at Jeffreys's idea later (in Chapter 8), but it is to no avail in solving this problem. For it is just not true
that we can only consider denumerably many hypotheses. We have seen that in the language of ordinary analysis
hypothesis spaces of uncountably many elements are dealt with as a matter of course. The fact is that these are all
possibilities and they cannot be ignored at the behest of an arbitrary restriction on language. They cannot all be
assigned non-zero probabilities, and consequently any assignment of a positive probability is not something that can
be justified by appeal to considerations of non-dogmatism. We have to be dogmatic, or so it appears, whether we like
it or not.
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Non-Additivity ?

It might seem that the root of the problem lies in classical probability theory itself: the combination of the additivity
principle with a finite upper bound on probabilities implies that certainty, represented as a finite upper bound (1, in
fact), is the sum of (the measures of) a finite or at most countably infinite number of exclusive alternatives. One option
that might be considered is to abandon the assumption of the finiteness of the measure of certainty, allowing it to
become infinite. Harold Jeffreys, in all other senses a standard epistemic probabilist, himself suggested this as a
possibility (1961: 21). Indeed, there is a very familiar measure of uncertainty which has this property, the odds
measure: the odds on certainty are necessarily infinite (odds are related to probability p by the equation w = p/1—p).
But odds are too close to probabilities to give the desired result, since it is also a mathematical fact (look at the
equation in the preceding parentheses) that only a countable number of hypotheses can have positive prior odds. That
aside, introducing infinity as the value of anything is not anyway a particularly good idea, since ‘infinity’ does not really
stand for anything at all. To say that a function takes the value infinity at a given argument is just an elaborate way of
saying that it is undefined at that argument. In fact, the suggestion is something of a red herring, because all that is
desired (at any rate by some) is to disengage the ‘probability’ assigned to A from the ‘probability’ assigned to any
proposition inconsistent with A. So why not just stipulate that these may be independent of each other?

Uncertainty functions having this property have actually been proposed. For obvious reasons they are called non-
additive functions. The most prominent developments in this area have been Glen Shafer's theory of belief functions
(Shafer 1976) and Zadeh's fuzzy logic and probability theory (see the survey in Dubois and Prade 1988). | shall not
describe these in any detail, because | think that though non-additivity seems to offer a way out of the seeming
impasse it is not an acceptable one, precisely because it uncouples P(A) from P(—A). For if anything should be taken as
fundamental to the measurement of belief, surely it is that as your belief in a proposition's being true increases, so
your belief in its falsity correspondingly decreases. To deny this would be like denying that the positive integers are
obtained by successive additions of 1 to O.

Granted it, and here | am simply going to take author's prerogative and assume it is granted, non-additive functions
do not solve the problem.

Infinitesimal Probabilities

An alternative diagnosis of the problem is that the ‘dogmatic’ priors inevitably accompanying uncountable possibility
spaces are merely an artefact of the structure of standard probability-values, that is, of the real numbers. Here the
suggestion is that the real numbers do not permit a fine enough resolution of possibility-space: the system of reals
simply gives up at a certain level, so to speak, and assigns measure O to things that should have a positive measure.



In other words, the problem arises not because there are too many possibilities, but because there are too few
numbers to measure them with. On this view, the various number systems—the integers, the rationals, the real and
complex numbers—are to be seen as a continued attempt at increasing resolution that has prematurely stopped short.
The integers are the coarsest numerical measure, with big gaps. The rationals, that is, fractions, are finer, since they
are dense: between any two rationals there is another. Yet they also have gaps, as the discoverers of the irrationality
of ¥ 2 found out over two thousand years ago; indeed, there are ‘only’ denumerably many rationals. So we get to the
reals, which are a continuum. But even the reals have a sort of discreteness property, in that they obey the so-called
Archimedean axiom: this says that however small a real number x is, so long as it is not 0, there is a finite number of
times x can be added to itself such that the resulting sum will exceed any finite number specified. In other words, the
objection continues, the reals, despite forming a continuum, are still too coarse: they can't measure down to truly
infinitesimal magnitudes, for that would be to deny Archimedes' axiom.

This defence, though noble, fails. The Archimedean property of the real numbers isn't really the root of the problem
posed by the failure of probabilistic induction over uncountable sets. There is now a consistent theory of non-
Archimedean, infinitesimal and reciprocally infinite, quasi-real numbers occupying the ‘spaces’ between the genuine
reals. If we set P(H) = x where x is infinitesimal, then by Corollary 1 we still have P(H|E) } P(H) if H entails E. But we
have
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also P(H|E) = P(H)/P(E), and, since P(E) is real, it follows that y = 1/P(E) is also real, and so yx, i.e. P(H|E), remains
infinitesimal. But precisely because this enlarged number system is non- Archimedean there is no finite number y such
that xy is noninfinitesimal if x is infinitesimal (we would need an infinite y for that). Nor can we go to
superinfinitesimals, because these are just infinitesimals. The problem really is that the space of possibilities
represented by the uncountable set of all infinite sequences of Os and 1s is just too immense. So resistant is it to any
normal standard of measurement that even the fundamental axioms of set theory, our only theory in which infinite
magnitudes are assigned explicit numerical values (infinite ones, of course) which can be manipulated according to
definite arithmetical rules, are insufficient to determine its size!

Popper's Arguments

We have seen that we cannot be non-dogmatic in our probability assignments across the board, in the sense of
universally assigning non-zero prior probabilities to the members of big enough possibility- spaces. But it has also
become less clear that such assignments really are non-dogmatic, for, as we have seen in Theorems 1 and 2 above,
they bring in their train what appear to be very strong inductive principles. In a puzzling way, being non-dogmatic in
one sense seems to entail a type of dogmatism in another. The status of non-zero priors thus looks somewhat
confused and unsatisfactory. A more settled view, and one very congenial to our Humean stance, will emerge in the
course of examining the arguments of Popper claiming to show that any reasonable prior probability for a universal
hypothesis must be dogmatic. To these we now turn.

Must General Hypotheses Have Zero Probability?

These arguments are presented in Popper (1959: app. *viii). They in their turn are criticized in Howson (1973), and
Howson and Urbach (1993: ch. 15). The technical arguments are, | believe it is fair to say, now recognized to be
fallacious (we saw one of them in footnote 7 above). But there is a more philosophical argument which seems more
robust. This employs a principle which we, following Keynes (1973: ch. 4), shall call the principle of indifference. In
fact, it can be
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traced back to the dawn of mathematical probability; it was called the principle of insufficient reason by James
Bernoulli, and was employed in Bayes's seminal memoir where it appears as a special postulate (called Bayes's
Postulate in subsequent discussions of Bayes's work). The Principle makes the following apparently tautological



statement: if {H;} is some family of hypotheses about which you have no relevant information other than that they

are mutually exclusive, their initial probabilities relative to that (null) information should be equal. For finite possibility
spaces the Principle has as an almost immediate corollary (using the additivity axiom) Laplace's famous ‘definition’ of
epistemic probability, since then often called the classical definition of probability (whose acquaintance we have already
made in Chapter 3): the probability of an event ‘is thus simply a fraction whose numerator is the nhumber of favourable
cases and whose denominator is the number of all the cases possible’, where by ‘cases equally possible’ is meant ‘such
as we may be equally undecided about in regard to their existence [this is a standard translation; the last word would
be better rendered by ‘occurrence’]’ (1951: 6-7).

Popper's contention follows very quickly from the principle of indifference. For we have already noted that over an
infinite domain the class of mutually exclusive hypotheses is infinite. With ‘All emeralds are green’ and the infinitely
many grue; alternatives, for example, we have a denumerably infinite family representing the various ways in which an
unbounded sequence of possible observations can ‘flip over’ from being homogeneous in one way to being
homogeneous in another. By the principle of indifference, the initial probabilities of all these a priori ‘equally possible’
hypotheses must all be equal, and there is clearly only one value that that common probability can consistently have,

namely 0. QED. 11

11 This is very similar to the example that Popper uses, except that his infinite space is uncountable and this is countable (1959: app.

*Viii).

Let us consider this argument critically. First, far from being the tautology it appears at first sight to be, the principle
of indifference is in fact a highly non-trivial assumption. It says that you should regard alternatives as equally likely
because you have no information about them. In fact, this assertion is highly non-trivial—it is certainly not a logical
truth; indeed, so non-trivial is it that it generates ‘paradoxes’ with great ease. Consider the following (adapted from
the ‘book paradox’ in Keynes 1973: ch. 4). | have a book with a cover

end p.81
which is coloured with a primary colour. I do not know what the colour is. Well, it is either green or not green. Both
possibilities receive probability ¥2 by the principle of indifference. Similarly, the colour is either red or not red; again
the probabilities are 2 each. Do the same for violet/not violet. Now we have a contradiction because by the additivity
principle the probability that the book is green or red or violet is 4, contradicting consequence (i) of I-IlI.

But is this a real paradox? Isn't it rather that an elementary mistake has been made? There are three primary colours,
green, red, and violet. ‘Not red’ (similarly ‘not green’ and ‘not violet’) is a disjunction of two of them. Therefore the
principle of indifference does not really assign ‘not red’ (ditto ‘not green’ and ‘not violet’) the probability of %2, but 3/2.
This objection might sound very plausible, but on closer inspection it becomes less so. Why, for instance, must the
principle of indifference be applied to the set {red, green, violet} rather than to each of the sets {red, not red},
{green, not green}, {violet, not violet}? All of these are sets of exhaustive and exclusive possibilities: why pick out
one rather than any other(s) for special attention or privilege? Of course, you get the contradiction back if you do, but
we are looking for a principled reason. It might be replied that one such reason is that the set of primitive possibilities
implicitly specified in the original problem is the set of the primary colours, whereas {blue, not blue}, etc. are sets
each consisting of one primary colour and one implicit disjunction of primary colours. But so what? The principle of
indifference merely assumes as the condition of its application that there is no relevant knowledge discriminating
between the possibilities. If we know nothing that relevantly discriminates between ‘red’ and ‘green’ and ‘violet’, then
we presumably also know nothing that relevantly discriminates between ‘red’ and ‘not red’, ‘green’ and ‘not green’, etc.
except that ‘not red’ (not green, etc.) is equivalent to a disjunction of the other two primary colours, and is therefore
capable of being realized in more ways in the space {red, green, violet} than is ‘red’ (green, etc.). But to say that that
is relevant knowledge is to presuppose that each of these ‘ways’ is in some sense equally weighted, which is just
another way of saying that the bigger space is the one to which the principle is to be applied, and which, of course,
simply begs the question. Hume, ever quick to see questions begged, identified this one with his usual unerring
accuracy:

The question is, by what means a superior number of equal chances operates upon the mind, and produces



belief and assent, since it appears that it is

neither by arguments derived from demonstration, nor from probability. (1739: I. . xi; my italics)

Indeed so. This is a beautiful example of what | pointed to in Chapter 1 as the strategy Hume would employ to refute
the pretensions of mathematical probability to solve the induction problem: where it is pure mathematics, it can give
no indication of how we ought to adjust our beliefs to evidence; where it does attempt to give such an indication, it
ceases to be pure mathematics and will employ synthetic assumptions which effectively beg the question.

In addition, we have seen that the number of ways in which an event can be instantiated is not an invariant but
dependent on the language, or the coordinate system, or the ultimate partition as probabilists say, in which the event
is described. Generally speaking, if A can be realized in more ways than B in one reference system, another can be
found in which that ordering is reversed. It should now be clear that the idea of a null information state cannot be
used as the basis of an equal distribution of probabilities, since, as we have seen, it would apply to different families of
related possibility-spaces over which uniform distributions cannot consistently be assigned. The lesson is driven home
even more brutally when we consider certain types of infinite possibility-space. As such spaces constitute one of the
principal applications of inductive probability (Bayes himself discussed one such space), the discussion has a good deal
of practical interest. Suppose that we know only that some measurable magnitude X lies in a bounded interval | of real
numbers. The principle of indifference applied to quantities like X would seem to assert that equal subintervals of I,
being equally sized extensions of the possibility- space, should therefore have equal probabilities (technically,
probability should be proportional to what is called Lebesgue measure). Thus, suppose X can take any real-number
value between a and b, where we shall suppose for simplicity that a is positive. The principle of indifference now
implies that if we divide up the interval into k (k a whole number) equal subintervals, all these subintervals will receive
the same probability; and since probabilities must sum to 1, this implies that the probability of each is 1/k. Since k is
arbitrary, we can apply an intuitively obvious principle of continuity to obtain the flat probability density, where the
density is obtained by dividing the probability by the length of the interval and letting the latter tend to O. The
probability that the outcome will be in one of the subintervals of length k is 1/k, and the length of the subintervals is
(b—a)/k.
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Dividing the probability by the length we get 1/(b—a), which is independent of k and the subinterval, giving a constant
density of 1/(b—a) through the interval (a,b). This extension to ‘geometrical’ outcome spaces sounds very plausible,
and indeed, ever since the work of Bayes, it has been regarded as the canonical way the principle of indifference is to
apply to them.

But now consider a famous problem, discussed by von Mises (1957: 77). All we know about a mixture of wine and
water in a glass is that the proportion X of water to wine is somewhere between equal amounts of each, and twice as
much water as wine. This unknown proportion X therefore lies in the interval (1,2), and hence, by the principle of
indifference, the probability that X is between 3/2 and 2 is the same as the probability that X lies between 1 and 3/2,
namely 2. But now consider the reciprocal ratio W = 1/X, of wine to water. Clearly, W must lie between %2 and 1, and
the probability that X lies between 3/2 and 2 is equal (by consequence (vii) of I-I11) to the probability that W lies
between Y2 and :7 and this probability we know to be Y. But suppose we had first applied the principle of indifference
to W. We would then have found that the probability that W lies between %2 and % was %2. These probabilities are
compatible only if the probability that W lies between ?); and %4 is zero. But this interval has length 1/12, and dividing
the range of W into twelfths, the principle of indifference asserts that the probability that W lies between 3*? and % is
not O but 1/12. So we have a contradiction, and a contradiction unlike the earlier one, involving the colour of the
book, in that in the present case both possibility spaces 1 = X = 2, and 2 = W = 1, are equally ‘elementary’. Such
contradictions involving continuously distributed quantities began to be noticed in the nineteenth century: they were

called ‘paradoxes of geometrical probability’, and considered merely puzzling at first 12

12 consider also this one, mentioned by Edwards (1972: 61). Suppose E,, E,, and Ej are three events about which nothing is known



except that they occur in that order (in some frame of reference), they are independent of each other and that the time- intervals T,
and T, between the first two and the last two are bounded above by spec- ified values. Then a simple argument shows that if the
probability distributions of T, and T, are uniform as required by the Principle of Indifference, the probability- density at the point V = v
of the sum V = T, +T, cannot be uniform but must be proportional to v. Edwards remarks that ‘If a uniform distribution expresses

complete ignorance, the distribution [proportional to v] evidently conveys information, so that we have achieved the remarkable feat of
learning about the sum of two times, about each of which we know nothing, without making any experiment’. Edwards's point is sound,

notwithstanding the initial non sequitur.

; only later was it acknowledged what a
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serious, if not fatal, objection they posed to the principle of indifference.

It is sometimes objected that in reality there are no continuous magnitudes: these, it is alleged, are a fiction employed
merely to facilitate a smooth mathematical treatment. In the ‘water—wine’ case, for example, it is not true that the
possible real proportions of water to wine are represented by all the real numbers in a non-degenerate interval, since
proportions by definition are ratios n/m of whole numbers: in this example, whole numbers of molecules. The objection
is both question-begging, as a general thesis about the values of physical magnitudes, and beside the point: the
contradiction is there implicitly in discrete cases as well as continuous. It is there as soon as we try to define the idea
of null information in terms of uniform distributions of probability.

The inconsistencies resulting from applying the principle of indifference in the context of continuous probability are real
enough, but we should be careful about what they truly show. For example, it is often claimed that problems like the
wine—water ‘paradox’ show that you cannot represent pure ignorance probabilistically. Shafer, who is one of those who
claim this, uses the alleged fact to argue for a non- probabilistic theory of uncertain reasoning (1976; and see above,
p. 78). But there is absolutely nothing inconsistent about using a uniform distribution over a bounded interval to
represent your indecision. Obviously you must not try to do the same over an unbounded interval; such a distribution
would correspond to an infinite probability. But then it is entirely reasonable to see the mathematical block as merely
demonstrating that on pain of inconsistency ignorance cannot work like that over infinite spaces. Equally, the wine—
water example shows that if | believe myself indifferent between all equal subintervals in the range of a variable X in
its scale [a,b], then I cannot, again on pain of inconsistency, believe myself indifferent between all equal subintervals
in the range of Y = 1/X in its scale [1/b,1/a], and similarly for any other non-linear transformation of X. But | am not
likely to in any case. There is always some background knowledge for any parameter in nature or science (where after
all do the end-points of the interval come from?), and it is hardly plausible that if my ignorance about, say, a
temperature spreads equally over a positive range of degrees Celsius then it also should over the corresponding range

of logt or t*.

The principle of indifference, however, is genuinely hit by the paradoxes, for its role in the traditional Bayesian theory
of Bayes
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and Laplace was as a fundamental methodological principle for determining neutral prior distributions. The idea was
that anything other than a uniform (or in suitable circumstances log uniform) distribution over ultimate possibilities
would not be epistemically neutral; it would import human prejudice into an objective evaluation of the data, thereby
preventing Nature from speaking through the evidence alone. ‘Objective Bayesians’ today hold just the same view that

anything other than a uniform a priori distribution adds to and thereby distorts the data of observation. 1

13 see e.g. Rosenkrantz 1977: 54.

The inconsistencies strike home against this methodology because according to it there can be no justification for
discriminating a priori between logt and t and in consequence adopting a uniform distribution over both, which is, of
course, impossible. It is, in other words, the methodology of a priori neutrality, of which the principle of indifference is
the probabilistic expression, that the paradoxes show to be untenable. And its conclusions, like Popper's that P(H) = O



for universal H, based on applications of the same principle, must be judged not only unproven but suspect.

In one sense Popper's claim is definitely false. A theorem of Horn and Tarski (1948: theorem 2.5) implies that there is
a strictly positive countably additive probability measure on the sentences of a language whose vocabulary is countably
infinite, even where the logical axioms are supplemented by an ‘axiom of infinity’, that is, a set of sentences which can
be jointly true only in infinite domains (Howson 1973: 153). This means that a probability measure exists on such a
language which assigns positive values to every contingent general statement, including those which imply that they
have infinitely many distinct instantiations. So there is certainly nothing in mathematics and logic to rule out
probability functions not satisfying Popper's claim, and Popper even tells us that he regards the probability axioms as
determining all the rules of what he calls logical probability (1968: 286). Having zero prior probability is admittedly a
property of all the measures in Carnap's so-called A-continuum (Carnap 1952), for } 0, that they assign universal
hypotheses zero probability, but these measures are subject to so many additional, and as far as most commentators
have been concerned unjustifiable, constraints that little significance can be attached to this feature of them.
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Independence

In the process of developing his first attack Popper also produced a quite different argument for P(H) = O which,
despite being fallacious, is very interesting in that it embodies reasoning of a type that seems, on the face of it at
least, thoroughly Humean and which, correctly followed, leads to a resolution of the problem of how correct
assignments of prior probability should be made. The resolution is that, outside trivial cases, there are no correct
assignments. To see why, we need to start with a rather obvious reflection on the nature of inference. Canons of
inference are generally regarded as within the province of logic, and we can plausibly assume that in so far as
probability theory furnishes a theory of non-deductive inference it must thereby constitute some sort of logic in its own
right. Indeed, Popper himself regards the formal calculus of probability as possessing, among others, a definite logical
interpretation (1968). Can this logic also be a logic of inductive inference? Popper believes that it cannot, and for a
reason which itself appears at first sight to be a very Humean one. It is that an inequality P(Ej+1]|E1& . . . &Ej) )

P(Ej+1). or, with the sign reversed, would have ‘the character of a synthetic a priori principle of induction, rather than
of a . . . logical assertion’ (1959: 370); indeed, ‘we must consider [the Ej] as mutually independent of one another . . .
if we are concerned with absolute logical probabilities then p(aj.aj) = p(aj)p(a;); every other assumption would amount

to postulating ad hoc a kind of after-effect’ (1959: 367).

It is not difficult, however, to see that there is something self- defeating about Popper's argument for the probabilistic
independence of all the E;. If a probabilistic inequality expresses a synthetic principle, as according to Popper it does,
then why should not an equality equally do so? If an inequality expresses ‘a synthetic a priori principle’, then why not
an equality also? These simple questions seem quite fatal to Popper's case. The more natural inference would be that
within a truly logical theory no categorical assertion, apart from trivial ones, should be provable, and that would
include both probabilistic equalities and inequalities alike (strangely enough, this is a position that Popper claimed
himself to be committed to; 1968: 286). That would of course mean that both Popper's independence condition and his
claim that P(H) = O for universal hypotheses H were not theorems of such a logical calculus.
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But it would also follow that P(H) ) 0 is not a principle of logic either. We can note that to assign a finite prior
probability to H is to judge (by Theorem 1) that the quantity of uncertain information in H can be reduced by acquiring
appropriate finite data. It is not easy to see this, any more than P(H) = 0, as an a priori truth. Following on the
reflections above, any ascription of a definite probability to a contingent statement is a claim that exceeds pure logic,
and therefore if adopted as an assumption, like either P(H) = O or P(H) } 0, is at least as questionable as what is
proved thereby. So, ironically, we can regard Hume's position as strengthened by the failure of Popper's attempted
defence of it.

More than that. According to Hume's circularity thesis, every inductive argument has a concealed or explicit circularity.
In the case of probabilistic arguments we argued there that this would manifest itself on analysis in some sort of prior



loading in favour of the sorts of ‘resemblance’ between past and future we thought desirable. Well, of course, we have
seen exactly that: the prior loading is supplied by the prior probabilities. What gets supported empirically and what
does not will be determined by these: just how we shall see in Chapter 8.

Conclusion

Despite initially promising appearances the conclusion seems to be that probability theory does not supply a framework
for making sound inductive inferences without the assistance of additional assumptions: in particular, about what is to
be assigned positive prior probability. In the extensive universe of possibilities implicitly contemplated in discussing the
problem of induction, a very large number of these will necessarily be assigned zero prior probability, with the corollary
that what is even allowed to be inductively supported by observational data is our decision. To that extent the positive
assignments seem to be Humean inductive assumptions, and this also seems to be true for whatever actual value is
assigned to a hypothesis. We have seen that in certain circumstances P(H|E) depends on P(H), and we shall see later—
it is a simple consequence of the probability axioms—that in general P(H|E) is an increasing function of P(H). That
prior probability assignments appear to be tantamount to substantive assumptions, as they seem to be, vindicates

Hume's circularity thesis, at any rate for probable arguments framed in the mathematical theory of probability. We
shall have to wait until Chapter 7 for a final verdict, but it will bear out fully what has been said here.

Appendix 1

In section 1 of Bayes (1763), Bayes defines the probability (the epistemic, knowledge-based interpretation of

probability) of an event A to be

the ratio between the value at which an expectation depending on the happening of the event ought to be
computed, and the value of the thing expected upon its happening (Definition 5).

We should bear in mind that Bayes construed the term ‘event’ very broadly, to include items which we would today call
propositions. For example, one of the ‘events’ he considered was the ‘event’ that the true value of a chance probability
is such and such. There is a similarity of structure, in technical language an isomorphism, between the algebra of
events and that of propositions, and so formally speaking it does not substantially matter whether we regard the
domain of a Bayesian probability function as a set of propositions or a set of events. It is usual these days, when
discussing the Bayesian interpretation of probability, to regard the probabilities as probabilities of propositions. In what
follows | shall let A stand either for ‘event A occurs’ or ‘the proposition that A occurs is true’. Bayes always talks about
events occurring, whereas here we are primarily concerned with the truth of propositions. | trust that no confusion will
be caused by this harmless equivocation.

Bayes's definition is to be understood as follows. Suppose a promise to pay a sum of N units of currency is made on
condition that an uncertain proposition A is true. The uncertainty of A means that you should pay a price in general
less than N units for that promise, and Bayes is saying that we can use the ratio of the discounted value to N as a
measure of the uncertainty of A (the ratio rather than the discounted value itself is chosen because only the former
gives a common standard for the comparison of different probabilities). Such a contract is familiar, as it is essentially
nothing but a bet on the truth of A, with odds given by the ratio p/(1-p), where p is the Bayesian probability of A.

Bayes talks of the probability as the value at which N ought to be discounted, divided by N. This raises the question:
‘ought’ according to which criteria? Another feature of Bayes's definition which also calls for comment is that it
assumes that the ratio of the value of N, discounted by the uncertainty of A, to N itself is independent of N. This

assumption is often taken to conflict with the accepted view that money has diminishing marginal utility.
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And there are other questionable aspects of the definition besides these: it seems to assume that the truth-value of A
can always be veridically decided, and that there is a unique value of a which, through the ratio a/N, measures the



uncertainty of A. | shall postpone till later (Chapter 7) a fuller discussion of these issues (Bayes himself would have
been quite aware of them), and merely assume for now that they can be resolved in some more or less satisfactory
way. The important thing here is to see what properties of Bayesian probabilities follow from his definition, and we
shall do so in the order of Bayes's own exposition. Henceforward P(A) will signify the probability of A.
() P(A) = 0.

Proof. Immediate.

(1) P(T) = 1 if T represents a necessary truth.
Proof. Also immediate.

(111) If A and B are mutually exclusive then
P(A or B) = P(A) + P(B).

Proof (a slight modification of Bayes, Proposition 1). Suppose P(A) = a/N, P(B) = b/N. Suppose you were to buy the
two options ‘N if A’ and ‘N if B’ for what you take to be their true values a and b. Thus if A or B is true you receive N,
since given that they are mutually exclusive only one of the statements ‘A [B] is true’ can be true, as the table shows
(T is ‘true’ and F ‘false’):

A B Payoff

TFN

FTN

FFO
So if ‘A or B’ is true you receive N, and you have paid out the sum a + b. In other words, you have in effect bought
the option ‘Receive N if A or B is true’, for the price a + b. If you are consistent in your pricing of options you should
therefore regard a + b as the value of the combined option. Hence consistency requires P(A or B) = P(A) + P(B). QED.
The proof extends straightforwardly to the case of any n exclusive events (see if you can say why).

These results were elaborated and refined by de Finetti and Ramsey in the twentieth century, but Bayes's central idea
proved seminal and has become the foundation of nearly all work in what is now officially called Bayesian probability.
No less seminal was his treatment of conditional probabilities. In the partial interpretation of the axioms given at the
beginning of this chapter P(B|A), the probability of B conditional on A, was glossed as the probability of B given the
assumption, which may be false, that A is true. Given the way Bayes proposed to operationally evaluate unconditional
probabilities, the natural evaluation of a conditional probability P(B|A) is as the fair price for the option of receiving N if

B is true (and of course nothing if not) just in the circumstance that A is true, that is, with the understanding

that no contract exists if that condition is not satisfied. Granted that in proposition 3 of his paper Bayes proceeds to
show that if P(A) } 0 then to be consistent you must set P(B]A) = P(A&B)/P(A); in other words, P(B]JA) must be
numerically determined according to the standard definition. | give a slight modification of Bayes's own proof.

Proof (essentially Bayes, Propositions 2 and 3). Let P(A&B) = p/N, P(A) = a/N where a } 0, and P(BJA) = b/N, and
suppose that you were to
(i) pay the fair price p for the option ‘Receive N if both A and B occur’, and
(ii) receive the fair price b for the conditional option ‘Receive N if B occurs, conditionally on A occurring’.
The payoff table below sets out your net gains from (i) and (ii), for each of the three exclusive and exhaustive cases
A&B true, A true and B false, and A false:

A B gain from (i)+ gain from (ii)

TTN-p-N+Db

TF-pb

F-pO
Hence if A occurs you gain b—p, while if A does not occur you lose p. In other words, you have implicitly contracted to
pay p to receive b if A occurs. Where b } 0 consistency requires p/b = a/N and where b = 0, p must therefore be 0. In
both cases ab = Np, giving a/N . b/N = p/N. Hence P(B|A) = P(A&B)/P(A). QED.

Axioms I-Ill together with the principle P(B]|A) = P(B&A)/P(A) express what Bayes regarded as the general principles
of the probability calculus. They are actually a complete set, in the sense that every proposition regarded as true of
probability in general is known to follow from them (they are also complete in a much more precise sense which will be



related in Chapter 7). Bayes at any rate seems to have recognized this, which is remarkable in the light of the fact
that no other attempt to derive such general principles seemed to have been made at that time, as Bayes is reported
to have remarked to his friend and editor Richard Price.

Appendix 2

Using a form of the rule of conditionalization (above, p. 68) together with the ‘deliverances of experience’, we can
obtain a particularly strong dynamic model of learning from experience. This form of conditionalization states that on
learning the experiential data E (and no more) one must proceed to a new, or updated, probability function Q( . )
equal for all arguments in the dot place to P( . |E). From Q we can form new conditional probabilities Q( . |E")
according to axiom 1V, and on learning E we proceed by
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conditionalization to a new function Q (. ) = Q( . |E") = P( . |E&E") (by (ix) above). Within this model, learning from
experience is represented by a progression of sequentially updated probability functions, each member of which is
obtained from the preceding one by conditionalization when one learns the appropriate conditioning propositions.

This model bespeaks a fairly radical empiricism, in which experience successively modifies some original, or prior
probability function P, representing something like the ideal reasoner before the reception of any information whatever
from ‘experience’ (a sort of Lockean tabula rasa). This picture of learning raises questions which seem impossible to
answer sensibly, however. For example, if you have no experience, then it is doubtful that you could have any
language within which to frame your conjectures, or the evidence that you will subsequently acquire, in which case it
is also doubtful, to say the least, that any sense can be given to the expression P(H|E). Even if this problem is solved,
it merely raises another, which is that the model makes no concessions to what most people now accept as the
fallibility of even the most observational of observational evidence. For suppose you conditionalize on E, proceeding
from P to Q in the manner described. Then by the definition of Q, Q(E) = 1, since Q(E) = P(E|E). It is not difficult to
see that all later functions Q, Q, etc. will assign E the same probability 1: once accepted as evidence to condition on,
in other words, there can be no going back on the decision. Finally, there is the problem of deciding in some non-
arbitrary way how the tabula rasa's original, ur-probability function P is to be defined. Nearly everybody who has
experimented with this model has tried to use the principle of indifference over some sufficiently large space of
possibilities. Apart from the probably insuperable difficulties with that principle itself, discussed earlier, there is the
equally insoluble problem of specifying all the possible hypotheses that science will ever consider. This model seems
therefore a hopelessly unrealistic one, which indeed it is, and which is why most of the exponents of probabilism have
either given it up after becoming acquainted with its more objectionable features, or refused to adopt it in the first

place.

Appendix 3

The result is a simple application of the result popularly known as Bayes's theorem, though it was actually first proved
by Laplace. Bayes's theorem has several versions, all of which are fairly simple consequences of the axioms: the one
we use here is stated as follows (for a proof see Howson and Urbach 1993: 28):

. P(B| A)P(A)
Fk.“\ | BJ = - — - -
| P(B | A)P(A) + X P(B| A P(A))
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where {A, Ail i =1, 2, 3, ...} is a set of exclusive and exhaustive alternatives. Now let Hi predict 1s up to and

including the ith trial, and Os thereafter. Let Ek say that only 1s have been observed up to and including the kth trial.
Clearly, P(EK|H) = 1 for all i, P(Ek|Hi) = O for i £ k, and P(Ek|Hi) = 1 for all i } k. Let P(H) = r. Suppose for simplicity
that we give all other hypotheses about the evolution of the data sequence zero prior probability. This does not in fact
affect the conclusion but it makes the application of the equation above more straightforward. It now tells us that



v

P(H | El=—o-—
o ! r+ I P(H)

By the additivity principle, Lj= | P(Hj) —* 1 as k — @2, and hence Ei( k P(Hj) — 0 as k — @2, Hence P(H|EK) — 1, so

that eventually H will be overwhelmingly better supported than any of the still infinitely many surviving grue;

alternatives to H.

end p.93



5 Deductivism

Colin Howson
This chapter is titled ‘Deductivism’ because, according to the views of the protagonists discussed herein, assessments

of the merits of competing hypotheses in the light of evidence require no dedicated inferential machinery other than
deductive logic, together with a clear statement of the aims which the assessments are intended to achieve. These
authors firmly repudiate the idea that there is any specifically inductive logic, and in particular any probabilistic
inductive logic, underwriting inductive inferences.

Popper

In the preceding chapter we became acquainted with Popper the scourge of probabilistic induction. Popper believed
that there is no such thing as valid inductive inference, and certainly not probabilistic inductive inference. The problem
—Hume's Problem as we called it—remains to justify any sort of ‘forward-looking’ claim to predictive success or even
to truth (the truth of a general hypothesis implies continued predictive success), for hypotheses that have passed all
the tests to which they have been exposed. Popper's novel suggestion is that Hume's Problem can be solved in a
positive way without invoking any inference procedures other than those of deductive logic. To achieve this goal,
Popper tried to drive a wedge between (a) having a good reason for preferring a hypothesis if one's aim is truth, and
(b) having a good reason to suppose that some specified hypothesis is true or more likely to be true in the light of the
available evidence; (b) is induction, which Popper repudiated. He tried instead to show that there can be a reason of
type (a) for a rational preference for hypotheses in the light of evidence, which does not appeal to any (b)-type

reason.

Popper's claim, indeed the whole of his celebrated philosophy of falsificationism, rests on an elementary consequence
of the usual definition
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of deductively valid inferences. According to that definition, deductively valid inferences are just the truth-preserving
inferences under all interpretations of premisses and conclusion (see Howson 1997c: ch. 1). The consequence Popper
invokes is known traditionally as modus tollens: if a deductive consequence of a statement A is false, then so is A. The
methodological significance of modus tollens is that if we discover a false consequence of a hypothesis then we know
that the hypothesis is false (I shall ignore the fallibilistic objection, and one pressed by Popper himself, that we can
never know with rigorous certainty the truth of any factual assertion, even an ‘observation statement’; there are more
fundamental objections). Hence, in a comparison between a hypothesis that has passed a test and one that has failed,
we have a good reason of type (a) for preferring the former if our aim is truth. Hume's problem is ‘essentially’ solved,
according to Popper, because such an argument demonstrates that we can have good, non-inductive, grounds for
choosing between competing universal theories: ‘For it may happen that our test statements may refute some—but not
all—of the competing theories; and since we are searching for a true theory, we shall prefer those whose falsity has
not been established’ (1970: 8; my italics). It follows, according to Popper, that science does not need induction at all:
deduction alone serves the purpose of discriminating between competing hypotheses even when our aim is truth.

As a solution of Hume's Problem this has been treated with a good deal of scepticism by most commentators; and with
good reason. The catch to it is signalled by Popper himself in the phrase ‘but not all’ in the quotation above. ‘Not all’
indeed—for what about ‘grue’ and the underdetermination problem? The response: Test H against any grue; alternative
H¢ and see which one survives, certainly will not work, since, as we have seen, there are infinitely many gruey, ¢, t.

. alternatives to H, and there is no single test or even finite number of tests which will eliminate all but a finite
number: any finite set of tests will still leave an infinity of alternatives unrefuted. Hence binary evaluations of the (a)
sort cannot discriminate between H and its gruet variants, and hence cannot justify the knowledge-claims that Popper
wishes to make on behalf of the currently accepted theories in science.

However, Popper has also developed a method of evaluating hypotheses which does not issue verdicts merely of the

sort ‘H has passed the test T and H has not’, and which does seem, in principle



at any rate, to provide a means of evaluating any single hypothesis H against the reports of experimental tests to
which H has been subjected. This apparently more powerful method of evaluation involves measuring what Popper calls
the degree of corroboration of H by the report of the test's outcome (or tests' outcomes). The underlying idea is that
corroboration reflects the severity of the test or tests passed: the more severe and rigorous the tests, the greater is
H's degree of corroboration by successful outcomes. Moreover, according to Popper, we have a natural measure of the
severity of a test T, whose outcome E is as predicted by H, in the smallness of ‘the’ probability P(E) of E (what ‘the’
probability is | shall come to shortly). So corroboration should increase with decreasing P(E). Popper's choice for the
function C(H, E) taken to be the formal measure of the corroboration of H by E is, he tells us, a suitably increasing
function of the arithmetical difference P(E|H)—P(E) (1959: app. *ix), where P is suitably relativized to some stock of
background information. Indeed, Popper tells us that we can regard P(E|H)—P(E) itself as an admissible measure of
corroboration.

Those with a good memory for the probability axioms will notice that, given Popper's view that the prior probability of
any strictly universal hypothesis H is zero, then according to the definition of conditional probability P(E|H) is undefined
even when H entails, that is, predicts, E. But such hypotheses are par excellence the hypotheses science deals with.
Because of this difficulty with the standard axiomatization of probability, due to Kolmogorov, Popper felt that a
different axiomatization of probability is called for in which P(E|H) is always well defined, and is equal to 1 when H
entails E. Such an axiomatization is presented in Popper (1959, app. *iv). This is not the place for a discussion of the
competing merits of the standard axiomatization of probability and Popper's. For the sake of argument we shall just
assume that P(E|H) is well defined whether P(H) = 0 or not.

The probability function P in Popper's account determines what he calls ‘logical’ probability. Popper's idea of ‘logical’
probability is a function defined on sentences which reflects just the purely logical relations subsisting between them.
The trouble with this suggestion is that there seems to be an infinity of such functions, as many indeed as there are
functions satisfying the probability axioms (for a longer discussion of this point see Howson 1973). But question marks
over the nature of P are secondary to a much bigger one over corroboration itself. First, Popper insists that C(H, E) is

not to be regarded as
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having any inductive significance. But in that case it is difficult to see what positive role it plays, and why such care
should be taken to stress that it reflects the severity of tests passed. And what about this remarkable statement: ‘If a
theory h has been well-corroborated, then it is highly probable that it is truth-like’ (1983: 346)? Popper even proposes
an argument for this supposedly ‘non-inductive’ position, namely

the valid but misinterpreted intuitive idea that it cannot be just due to an improbable accident if a hypothesis is
again and again successful when tested in different circumstances, and especially if it is successful in making

previously unexpected predictions. (ibid.; italics in original)

The No-Miracles argument now has to support Popper's theory of corroboration. But we know that it cannot even
sustain itself. The rider that the hypothesis in question has made ‘previously unexpected predictions’ will not save it,
for we know from Chapter 3 that the same is true of all its grue variants. This brings us to the second problem.
Inspection of C(H, E) shows that it is immediately vulnerable to the grue problem for the same reason: it cannot
discriminate between them. C(H, E) has the same value for all hypotheses predicting E, for C(H, E) depends on H only
through P(E|H), whose value is 1 for every hypothesis entailing E (note that C(H, E) cannot depend on the priors since
by assumption all these are uniformly O in Poppers' theory). C(H, E) can't tell grue from green! Popper's quantitative
theory of corroboration is therefore no advance on his earlier ‘solution’ of the problem of induction in terms of crucial
tests among pairs of competing hypotheses.

While Popper never explicitly attempted to answer the objection that Goodman's ‘Paradox’ poses to his theory, other
Popperians have. David Miller has recently tried to answer it, by first conceding that there is nothing in terms of a
difference in empirical support to distinguish the ‘grue’ alternatives from ‘All emeralds are green’, but then denying that



that is even an important consideration:

The difficulty entirely disappears once we discard the mistaken idea that empirical support is significant, and
that it is empirical support that makes a hypothesis eligible for admission into the body of science . . . It is
whether our hypotheses are true or false that matters, not whether they are empirically supported; and we all
know that ‘All emeralds are grue’ is false. (Miller 1994: 37; my italics)

How do we know? No answer.

By contrast, Deutsch (who places Popper in a highly exclusive pantheon of twentieth-century thinkers) does give
reasons which he thinks justify the ‘summary rejection’ of such theories (1997: 151). He lists two: (i) that they have
not been subjected to criticism, including that of experimental test, and (ii) that they ‘spoil’ the explanations provided
by existing accepted science; these latter explanatory properties ‘justif[y] our relying on the prevailing theory’ (ibid.).
Now (i) does sound plausible, for a necessary condition for an experiment to decide between competing theories is
surely that it be in their area of disagreement. Yet no such test has been performed to test between existing theory
and any grue alternative to it; by construction all the existing data is in their area of agreement. It would seem,
therefore, that Deutsch is quite correct in saying that none of the grue theories has never been subject to a proper
test, and hence that the data do not favour them against existing theory. But that observation does not help his case,
for the situation is quite symmetrical: just as no test has pronounced in favour of a grue variant and against existing
theory, so no test has pronounced in favour of existing theory against a grue theory, and the data therefore provide no

warrant for making the choice in either way. We must look elsewhere for a criterion.

Does consideration (ii) provide it? Deutsch considers a rather special grue variant to gravitational theory, in which a
single exception is made to the rule that all bodies fall when unsupported (1997: 151), but his argument applies to the
more general form we have been considering as well. The argument is that such ‘theories’ are not explanatory because
they postulate unexplained exceptions to a rule. To the objection that they can be made syntactically universal by
introducing appropriate predicates, like ‘grue’, Deutsch replies that these merely conceal the fact that unexplained
anomalies are being postulated, a fact which ordinary English, which evolved to express faithfully what is genuinely
problematic and what is not, makes clear (p.153). Thus there is, claims Deutsch, a relevant asymmetry: currently
accepted theory is explanatory in a way that the grue variants to it are not. It is strange to find the authority of
Popper of all people, a thinker vehemently opposed to ‘ordinary-language’ arguments, being enlisted in such an
enterprise. But Deutsch is really doing no more than restate the Goodman criterion of projectability based on what is
entrenched in common concepts, and the same objection applies that we brought against that: science introduces
unconventional concepts, a fact that Deutsch, himself something of a scientific
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revolutionary, should be the first to appreciate. So while it is undeniable that we do not regard Goodmanized theories
as explanatory, that is not to say that they are not, nor that they will never be thought so. And we do not regard them
as explanatory because, as Miller correctly pointed out, we ‘know’ that they are false.

Another Popperian, Musgrave, claims that a rational preference for ‘All emeralds are green’ over ‘All emeralds are grue’
can be grounded on the alleged facts that the former is simpler than the latter, containing as it does implicitly the
reference-point ‘now’, and if the simpler hypothesis is false then it will be easier to show that it is false (1993: 292).
Neither of these claims stands up. As Goodman himself pointed out, ‘All emeralds are green’ is simpler than ‘All
emeralds are blue’ relative to the {green, blue} language, but more complex relative to the {grue, bleen} language.
True, Popper himself proposes a notion of simplicity—in fact, one proposed earlier by Jeffreys (1961: 47)—
characterized by the number of free parameters occurring essentially in a hypothesis, a notion which is not language-
relative. But on that criterion, both ‘All emeralds are green’ and ‘All emeralds are grue’ are equally simple since neither
has any free parameter. Musgrave's second claim is false because ease of falsification is related only to the paucity-of-
parameters notion; and the reader can easily verify that ‘All emeralds are green’ is exactly as easy, or difficult, to
falsify as ‘All emeralds are grue’: both hypotheses make equally definite statements about the colour-characteristics of
observed emeralds. But even were Musgrave's claims about differential ease of falsification true, he still faces what is,



to put it mildly, an uphill task explaining why the more falsifiable theory should be preferable to the less. Ease of
falsification and actual falsity are logically independent. If I am 99 per cent certain that H is false, and it is easy to
establish that H is false whereas testing H may prove costly and difficult, why should | prefer H to H which | think
stands a much better chance of being true than H? Such a preference would be absurd. Yet that is what Musgrave asks
us to accept.

Falsifiability and ease of falsification are red herrings. They led Popper to give undue prominence to universal
hypotheses, because these, in the simple world where observation statements are genuinely observation statements,
are modus-tollens-falsifiable by a single counterinstance. Since the date of the first publication of Popper's principal
methodological work, Logik der Forschung (best- known in the English-speaking world as The Logic of Scientific
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Discovery), a class of statements not falsifiable in this way has assumed a growing importance in science, especially in
particle physics and cosmology: these statements are pure existence statements, and some of the currently most
important hypotheses are of this type (‘Does the Higgs particle exist?’). To claim, as Popper does, that these are not
scientific because they are unfalsifiable, is clearly to beg the question. Modus tollens is a false god. No purely deductive
rule can solve the problem of induction. Jeffreys sums up the position with his usual succinctness:

the tendency to claim that scientific method can be reduced in some way to deductive logic . . . is the most
fundamental fallacy of all: it can be done only by rejecting its chief feature, induction. (1961: 2)

The discussion has nevertheless been advanced. In more or less conceding that the empirical data cannot discriminate
between a hypothesis and any of the myriad alternatives which stand in the same logical relation to it, Deutsch has
pointed to a fact of fundamental importance, but one recognized explicitly only by the Bayesian model of the logic of
scientific reasoning, in which posterior probability is shown to depend in general on prior probability. But that model, at
any rate as it will be presented in Chapter 8, does not in any way propose to justify any distribution of prior
probabilities, and therefore is not really an inductivist model. By contrast Popper, in conceding that evidence might
justify a preference for a small finite subset of hypotheses over the literally uncountable remainder, did advance a view
inductivist in everything but name. And in so doing he ran sharply up against the Humean argument. To his credit, and
unlike other philosophers (Hempel 1945 is a notable example) who construct ‘confirmation theories’ without attempting
to answer or even recoghize the Humean objections, Popper did recognize the gravity of Hume's Problem. But the
verdict must be that he has not solved it.

Fisher

The similarities between Fisher's and Popper's methodological views are quite remarkable, passing as they do right
down to the details. Thus, both Popper and Fisher believed that probabilities of hypotheses are at best psychological
indicators having no place in objective

science (Popper 1959: 255 and 1960: 29; Fisher 1935: 6-7); both stated that the function of experiment is not
confirmation but attempted refutation (Popper 1962: 197; Fisher 1935: 16); both stressed that a, if not the, crucial
feature of their own measures of evidential import (for Fisher, so-called likelihood, for Popper, degree of corroboration,
i.e. likelihood minus prior probability of E) is that they do not satisfy the probability axioms (Popper 1959: 394; Fisher
1925: 10); and both expressed the view that to show that a ‘signifi- cant’ result in statistics is not merely the
coincidental ‘chance in a million’, repeatability of the result is required (Popper 1959: 203; Fisher 1935: 142).

Above all, both Fisher and Popper were revolutionary falsificationists. Both repudiated the fundamental Bayesian
principle that experiments are well designed to the extent that they bring the posterior probabilities as close to the
extreme value of 1 as possible. But Fisher was the deeper thinker (he was, after all, a great scientist). He realized that
failing to be falsified even in the most searching and stringent of tests cannot not furnish a positive reason for
adopting any theory, for there are too many alternatives also satisfying that condition. As we saw in Chapter 3, to



disarm this problem Fisher had the ingenious idea of opposing a hypothesis asserting some degree of causal effect to
its negation, the null hypothesis of no effect, and identifying the latter with chance agreement with the data. He
thereby introduced the No-Miracles argument, on which in effect he based the decision to reject the null hypothesis
and thereby accept a causal hypothesis, into official scientific methodology. But as we also saw, not only there is no
legitimate way of identifying the null hypothesis with any determinate chance distribution, but to infer that the null
hypothesis is false when a test outcome falls in the rejection class in a significance test can be, and in easily
reproducible circumstances is, wildly wrong. The No-Miracles argument, if not as full of holes as a sieve, still has too
many to hold water.

Neyman and Pearson

Just as Fisher seemed to have given falsificationism a relevance for ordinary scientific enquiry by finding what appeared
to be a way of turning a falsification—of the null hypothesis—into a confirmation of the real hypothesis of interest, so
Neyman and Pearson seemed in
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their turn to have found a way of rescuing the essence of Fisher's position by transposing it into a purely decision-
theoretic problem. In an analysis of what it means to make an erroneous decision to accept or reject a hypothesis on
the basis of test-outcomes, Neyman and Pearson seemed to come up with a rigorous justification of doing in many
cases of practical interest pretty much as Fisher had been recommending.

The analysis proceeds in stages. First, it is assumed that on the basis of a suitable type of observational evidence we
make a decision to accept or not a hypothesis H. More precisely, we have an experimental procedure X for which there
is a space S of mutually exclusive and exhaustive possible outcomes. If the observed outcome is in a suitably defined
subclass C of S, we accept H, and if it is not we reject it. Incidentally, the word ‘accept’ should not be taken too
literally. The idea is to partition S into two classes, one of which, often practically the more important, is the rejection
region. Tests based on such a partition are called bivalent tests, and in these ‘accept’ might mean little more than ‘not
reject’.

Let us resume the narrative. Neyman and Pearson next argue that their own novel analysis of reliability imposes
sufficiently strong constraints on C to allow it to be uniquely determined. They point out that our decision, to accept or
not, may be erroneous in one of two ways:

1 We may reject H, that is, the outcome does not fall in C, though H is in fact true.

2 We may accept H, that is, the outcome falls in C, though H is in fact false.

Neyman and Pearson argue that a decision procedure, namely the choice of C, is more reliable the more it jointly
reduces the chance of error, that is, of a type 1 or a type 2 error above (the usual presentation focuses on the class of
outcomes which reject H, that is, on the complement C* of C, and defines the errors in terms of C*; the reader who is
more used to doing things that way round can make the necessary adjustments).

At this point a short digression on the nature of the hypothesis H is in order. There are two broad kinds of scientific
hypothesis, generally called deterministic and statistical. A deterministic hypothesis predicts that in a suitable context a
specified quantity will take a particular determinate value (hence the name ‘deterministic’). A statistical
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hypothesis specifies a range of possible values of a quantity and a chance probability distribution over them. In
practice, of course, as we observed in the previous chapter, there are inevitably smaller or larger small disturbances in
recording observed values, which collectively fall under the heading of experimental error (not to be confused with the
type 1 and type 2 errors defined above). These errors themselves are usually supposed to be subject to some chance
distribution (often one such that the mean of the observed values is presumed to be the true value of the quantity),
which can be estimated from previous observations of similar quantities with similar instruments. This means that when
it comes to comparing observed and predicted values, even a deterministic hypothesis becomes in effect a statistical
one. Again we shall freely idealize for the sake of simplicity, and forget about errors when it comes to evaluating



deterministic hypotheses, assuming that they make exact observational predictions. The point at issue is an ‘in
principle’ one: whether even in these admittedly idealized circumstances inductive inference is possible. If it is, then
the practical complications can presumably be taken care of by suitably approximative methods.

There is one last preliminary. Much of what Neyman and Pearson say concerns chances, which they understood in a
very similar if not identical way to Fisher: chances are registered in long-run frequencies of occurrence. Later (in
Chapter 9) the issue of what chances ‘really’ are will be discussed in more detail. For now it is sufficient to know what
Fisher, Neyman, and Pearson thought they are. We now resume the narrative. With all these considerations in mind,
suppose that H predicts (correctly or incorrectly) the proportion of outcomes of the experiment which will fall in C,
either because H is deterministic and says they all will, or all won't, or because H specifies a chance probability
distribution over all the outcomes of the experiment, and so predicts the proportion of times the outcome will fall in C
in the long run. Either way, we have a prediction by H of the proportion (relative frequency) of times the outcome will
be in C: O or 1 if H is deterministic, and some intermediate value if not. In either case we shall call this predicted
proportion the chance according to H of the outcome falling in C, and symbolize it Py4(C). Finally, suppose (we shall
return to this later) that H is false just in case some rival, equally specific, H is true. The chance of a type 2 error is Py

" (C), and again we shall usually know how to evaluate this.

And now the final stage. Finding a C which maximizes Py(C) jointly with minimizing Py (C) presents technical

problems—there may be no such C. However, suppose that a maximum admissible value q for the chance of the type
1 error is first chosen. The problem is now reduced to that of finding a C such that Py (C) is minimal among all the

possible classes C’ of outcomes for which Py(C’ *){q. This problem is soluble and was in fact solved by Neyman and

Pearson themselves. They proved, in their ‘Fundamental Lemma’ (for a simple proof see Hoel 1971), that C is the set
of outcomes E such that Py’ (E)/Py(E) ( t, where t is a constant whose value is determined by g. One minus Py’ (C),

i.e. Py (C*®), is called the power of the test with rejection region C*. It may be that there is some other experimental
procedure X' such that the Cy  selected by the same criterion in the outcome space of X has greater power, i.e. Py’
(CX){ Ph (C). Such an experimental procedure would plausibly be preferable because it has a smaller chance of a type

2 error. In other words, we have a clear and precise direction for obtaining a best, that is, most reliable, test of H:
choose that experimental design with the best power characteristics.

Neyman and Pearson seem to have kept their promise of exhibiting a procedure which provably produces the most
reliable decisions that can in principle be obtained (though they may not actually be very reliable, they will be the most
reliable), and without any consideration of prior probabilities. However, on closer inspection the picture is much less
clear-cut. The argument so far has depended on H being such that there is only one predictive alternative H'. But we
know now very well that in general this will not be the case. Suppose then that H has more than one such alternative
(remember grue!). How are we going to define the chance of a type 2 error? Without introducing Bayesian prior
probabilities the expression ‘the chance of C specified by —H’ is meaningless, since —H, being the proposition merely
that H is not true, will not in general itself specify a definite chance distribution. However, the following suggestion
might seem to offer a reasonable way round this problem: select a C which minimizes Py  (C) for every alternative H’

to H. In other words, select C such that for every alternative hypothesis H', and any other C* with no greater type |
error probability, Py’ (C) = Py’ (C): in Neyman—Pearson terminology, the test with rejection region C* is uniformly

most powerful (standardly abbreviated to UMP).

It is instructive to look at this suggestion in the context of Fisher's

tea-tasting experiment. The test that Fisher recommended possesses a rejection region for the null hypothesis (the
lady lacks any authentic ability to discriminate on the basis of taste) consisting of the one outcome of her guessing
correctly all the cups. The chance distribution given the null hypothesis is symmetrical about the mean value of two
correct selections. ldentifying no cups correctly and four cups correctly each has the same probability given the null,
1/70. Only the latter justified rejection because Fisher imposed the condition that the significant outcome must be one



in some sort of agreement with the hypothesis of effect; and identifying more cups correctly rather than fewer is more
in accord with the truth of the alternative hypothesis. In Neyman—Pearson terms, Fisher is implicitly appealing to power
considerations. Modern treatments based on Neyman—Pearson theory do indeed present the tea-tasting experiment as
a most powerful test of the null hypothesis against the alternative of having some discriminatory ability. In these
treatments the experiment is usually described in the slightly more tractable form of a standard binomial experiment,
where in a sequence of n trials a coin is tossed to determine whether at that trial the milk-first or the teafirst cup is
presented. In this experiment the null hypothesis says that the chance p of the lady guessing correctly is a constant
equal to %2 at each trial and that the trials are probabilistically independent. The right ‘tail’ of the binomial chance
distribution is uniquely determined by the Neyman—Pearson Lemma as the most powerful test of the null against the
class of alternatives represented by all the values of p greater than %%; the ‘significant’ (rejecting) outcomes are those
in which the number of correct identifications exceeds some number related to n through the significance level required
(see e.g. Bailey 1971: 283-326).

But p ) Y% does not, of course, represent all the alternatives to p = Y2, even restricting them just to alternative values
of the parameter p (this is actually quite a restriction, since it includes only binomial models). The complete class of
alternatives, given that constraint, is of course the set of all values of p other than %: those that correspond not just
to some degree of positive discrimination, so to speak, but also those that correspond to some degree of negative
discrimination as well. But against even this class it is easy to see that there is no uniformly most powerful test. The
problem is a quite general one for the Neyman—Pearson theory. It is even more revealing to consider it in the context
of deterministic hypotheses, for there we shall encounter
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again an old friend (or enemy, depending on one's perspective). Consider a sequence of experiments consisting of
examining first one, then two, . . . , then i, . . . emeralds, recording the outcomes as green/not-green. There are
events common to all the outcome spaces generated after any given value of i, e.g. ‘emerald 1 is green & . . . &
emerald i is green’. We want to fix appropriate acceptance and rejection regions in the infinite outcome space Sco
extending all the finite subspaces. Since these must support corresponding decisions to accept and reject they must
contain only outcomes in principle observable, which means that they must be restricted to the sets of outcome-
sequences determined by finitely many observations. Without loss of generality we can restrict these to be subsets S;
of St generated by i-fold sequences of the sort above. Can any such region be uniformly most powerful? The answer
is easily seen to be ‘no’. For any given i the optimal acceptance region C; for H: ‘All emeralds are green’ is the set of
those sequences in S@@ generated by the single conjunction above; C;* will therefore contain all the sequences
generated by those i-fold conjunctions with at least one conjunct negated. Now consider the grue; alternatives Hj to H,
which specify a change of colour at index j. For any i there will always be a k such that C* has probability 1 relative
to one of these which gives C;* probability O; e.g. Cj+1™ has probability 1 relative to Hj+1 and C;* probability O. It
follows that there is no i such that C;* is uniformly most powerful against all the H;j. It is no answer to say that the
fault is with the experiment because it cannot discriminate between H and some alternative to H. The problem is that
no experiment, according to the Neyman—Pearson criteria, can do this: the grue possibilities show that every
experimental design will have zero power relative to some alternative to H. Thus grue strikes at the Neyman—Pearson
theory too. Appeals to ‘optimal’ power functions f;(1)=P;(C*) will not help, as there is no C such that f. (i) dominates

all other power functions f; (i). So in the sorts of case which Popper and most scientists would find interesting, the

analysis by Neyman and Pearson is simply inapplicable.

Actually, the situation is even worse. Applicability is one thing, the correctness of the inferences recommended even
where the theory is applicable is another; and the underlying logic of inference recommended by Neyman and Pearson
is fallacious. Neyman—Pearson theory, and variants and extensions of it like that of Mayo (1996) which we encountered
earlier, are based on the principle that if the
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chance of getting a certain class of outcomes given the truth of some hypothesis is sufficiently less than the chance
according to an alternative to it, then that by itself is sufficient for a sound rejection of the hypothesis. But we know



that this principle is wrong. The Harvard Medical School test shows why it is wrong: depending on the magnitude of
P(H) even a very small value of the ratio P(C|-H)/P(C|H) are consistent with a very small value of P(H|C). It is
sometimes objected that in the more general context where H is some sort of theory it makes no sense to speak of
the chance of H being correct, since there is no frequency with which H is true: it either is true or it is not. There are
two things to be said to this. First, a fallacious inference does not cease to be fallacious because an additional term
that needs to be there as input to render it not fallacious cannot always be calculated. Secondly, it is how confident we
are entitled to be in H in the light of E that is really what we want to know. This consideration places the problem
where it always should have been, in the context of sound reasoning about uncertainty. And that shows explicitly
where the Neyman—Pearson criteria are insufficient: we know from Chapter 3 that P(H|C) will depend not just on the
ratio P(C|-H)/P(C|H), but also on P(H).

It might be objected that Neyman and Pearson repudiated epistemic probability (as indeed they did, especially
Neyman) as a foundation for inductive inference, and that Neyman provided an influential decision-theoretic rationale
for the Neyman—Pearson criteria: that in a long-enough run of repetitions of the test you will reject hypotheses when
they are true a very small proportion of the time and simultaneously minimize the frequency of acceptances of a
hypothesis when it is false. But this will not save the position, for we know how to construct scenarios, like the
Harvard Medical School test, where if you were to make your decision based on Neyman—Pearson criteria, you would
be incorrect nearly all the time. This sounds odd, but only because, as numerous pieces of research have shown,
people sometimes find it difficult to interpret probabilities, particularly conditional probabilities. Indeed, the Neyman—
Pearson criteria are a classic instance. The informal statement of a type 2 error, as a small chance of the test passing
a false hypothesis, could equally easily be read as a small chance of a false hypothesis passing the test. The two
descriptions are virtually equivalent in ordinary English, which gives no firm guide as to whether to represent the
chance of the test passing a false hypothesis as either (i) the chance of

passing given that the hypothesis is false, or (ii) the chance of the hypothesis being false given that the test passed it.
But these are quite different chances, and indeed they are independent of each other: as we saw, a small type 2 error
chance puts almost no limit on how large the chance (ii) can be, and therefore how large what we might call the ‘real’
type 2 error can be. The Neyman—Pearson theory, aided and abetted by the equivocal nature of informal language,
gives something that in ordinary English sounds like the right thing, but is not.



6 The Naturalistic Fallacy

Colin Howson
No one has been able to knock Hume's argument down. But if the argument is valid, as | believe it is, there is a

paradox that comes in its train. In this chapter we shall take time out to look at this paradox, and at one fashionable
solution to it. Hume pronounced the paradox himself when he confessed of his sceptical arguments that they ‘admit of
no answer and produce no conviction’. A consequence of the argument that induction is invalid is that we do not seem
justified in betting that the future will be as science predicts at shorter odds than that it will be as some mad
soothsayer predicts. But we are convinced that anyone who didn't bet in this way would be quickly bankrupted or
suffer some other calamity. If Hume's argument is valid, why are we so certain that the mere follower of whim will
eventually, and probably quickly, do much worse than the prudent person guided by scientific research?

Put like that, however, as a request for explanation and not necessarily justification, the question may well have an
answer. Nor, even though it is not the question we initially wanted answered, is answering it a waste of time. There is
a good, non-question-begging reason why any consistent explanation of an apparently paradoxical result like this one
has value quite independent of whether it is actually true. A paradox suggests an inconsistency in our reasoning:
indeed, the word ‘paradox’ is used by logicians synonymously with ‘inconsistency’. So if we can find a clearly consistent
way of explaining how an apparently paradoxical situation might be true, that is, is true in some possible world, then
we have shown at least that we have not unwittingly run into genuine inconsistency, which is true in no world. And
there is an explanation of how it is possible to be convinced both that there are no sound inductive arguments from
observation alone and also that a potentially enormous penalty would be exacted for not heeding the ones we accept.
First pronounced by Hume and then elaborated in terms of Darwinian theory, it is that we are

moderately efficient deductive reasoners but hard-wired, as it were, to be inductivists.

In other words we just can't help it. One of the more interesting developments in late twentieth-century science and
philosophy is the realization of the possibilities Darwinian theory holds out, or seems to hold out (the issue is
contested), for the explanation of all sorts of things. One of the more tempting possibilities which the Hume—Darwin
hypothesis seems to offer is turning—the naturalistic turn—an explanation into a sort of justification. The temptation
has proved irresistible, as we shall see.

Hume-Darwin

Hume believed that in common with the rest of the animal kingdom we inherit an instinctive expectation that the
apparent stabilities revealed by the accumulation of data—how much depending on the particular situation—will be

maintained in the future:

This belief is the necessary result of placing the mind in such circumstances. It is an operation of the soul,
when we are so situated, as unavoidable as to feel the passion of love, when we receive benefits; or hatred,
when we meet with injuries. All these operations are a species of natural instincts, which no reasoning or
process of the thought and understanding is able either to produce or to prevent. (1748: 46-7)

The expectations that ‘the future will resemble the past’ in the appropriate ways are on the level of feelings in Hume's
system, classified under the head of ‘passions’, or emotions. But we also inherit a reasoning faculty which may, and in
this case does, inform us that there is no rational ground for the expectations. No matter: reason in itself, as Hume
points out, is inert and powerless; the emotions provide the dynamic for action. Thus we inherit powerful expectations,
and also the power to reason, but in the nature of things reason is doomed to play no active role: ‘reason is and
ought only to be the slave of the passions, and can never pretend to any other office than to serve and obey them’
(1739: 415).

It is a nice explanation, and anticipates, in its disconnection of passive reason and active emotion, the classification of
brain functions into the reasoning but unemotional frontal cortex, and the more ancient and highly active limbic



system, the seat of the primal drives.

Hume's theory of a pre-established harmony between our beliefs on the one hand and Nature on the other also seems
an uncanny anticipation of Darwin. In fact, it is not so uncanny. Hume's ideas are known to have been a powerful
influence on Darwin's grandfather, Erasmus Darwin, who was himself a seminal influence in the genesis of his
grandson's theory. And Darwin's theory is now often taken to complement Hume's by explaining in very general terms
(i.e. with a lot of free parameters; some suspect far too many) why we should have these inbuilt expectations and why
they seem to be successful. The explanation is that they are adaptively attuned to the way things really are; had they
not been those organisms possessing them would have died out and the genes responsible with them. Our presence
reflects expectational structures roughly harmonizing with the way things behave, on the macro level and at small to
medium velocities:

a world in which intelligence emerges by anything like standard evolutionary processes has to be pervaded by
regularities and periodicities in the organ- ism—nature interaction that produces and perpetuates organic
species. And this means that nature must be cooperative in a certain very particular way; it must be stable
enough and regular enough for there to be appropriate responses to natural events that can be ‘learned’ by
creatures. If such ‘appropriate responses’ are to develop, nature must provide suitable stimuli in a duly
structured way. An organically viable environment—to say nothing of a knowable one—must incorporate
experientiable structures. (Rescher 1990: 64; italics in original)

and in the same vein:

Nonetheless, because of how we are in fact constructed biologically and socially, we do not start inquiry utterly
ignorant. We have evolved to favor certain behaviors and to organize our sensations in particular ways. Unless
hindered in some serious way, infants rapidly learn to identify and reidentify objects, and they learn that objects
continue to exist when unobserved; infants have available almost from birth some simple facts about size,
distance and perspective. (Glymour 1992: 120-1)

And of course there was Ramsey himself:

If we actually . . . found out . . . on what a priori probabilities his present opinions could be based, we should
obviously find them to be ones determined by natural selection (1931: 192)

All these people are or were quite aware that there is an infinity of distinct possible explanations of any observational

data, and that despite its entrenched status Darwinian theory is a theory and no

. 1
exception to that rule.

1 see e.g. Hauptli's discussion (1994) of Rescher.

But weighing against this is the fact, which they feel it would be perverse to ignore, that we are reliable cognizers,
possessing in our current science an incredibly rich body of highly reliable knowledge. Given that unaided reason, as
Hume should take the credit for pointing out, could not have led us to this epistemic cornucopia, our achieving it is
either an incredible accident, or there is some systematic and reliable guidance at work. The religious explanation quite
properly no longer commands wide assent, and Darwinism supplies the explanatory deficit with the only account which
it is scientifically respectable to accept. Equally perverse, on this view, is to impugn this explanation because it does
not satisfy the most rigorous standards of proof. For those standards, it is claimed, are unrealistically high because, as
Hume showed, virtually nothing satisfies them. Go the way they point and we should all die of inanition. It cannot be
rational to do that. And since there is no evidence at all that adopting any other method of forming of beliefs will be as
reliable, we are fully entitled to accept the standards of scientific proof, and with them good scientific explanations

where they exist.

Doing so affords the opportunity for some creative bootstrapping. Since on Darwinian grounds we can expect our
expectational structures to reflect in important respects the way the world actually is, we obtain corroborating evidence



that the world is approximately the way we believe it is: it does indeed support ‘past-to-future’ inferences in a stable
way, at any rate for ‘entrenched’ properties like ‘green’ rather than contrived and unnatural ones like ‘grue’. And there
is a further bonus. Accepting as our only warrantable standards those of science seems to solve an old philosophical
problem about science, the problem of why anyone should be a scientific realist. Now the answer is simple: science
itself tells us. Inference to the best explanation, also known as abduction, is the inferential method of science, and
realism is the best, because the only scientifically acceptable, explanation of why the methods of science are
successful:

the only scientifically plausible explanation for the reliability of a scientific methodology that is so theory-
dependent . . . Scientific methodology . . . is reliable at producing further knowledge precisely because, and to
the extent that, currently accepted theories are approximately true. . . . It is not possible . . . to explain even
the instrumental reliability of actual recent scientific practice

without invoking this explanation. (Boyd 1990: 223; italics in the original)

Starting only from the consideration that we must accept some beliefs or perish, and that there is no ‘first philosophy’
supplying indubitable first principles, not only do we seem to have arrived at some sort of solution of Goodman's
paradox, but we have also implicitly turned the traditional philosophical programme on its head. For if there is only
science, then it would seem that epistemology should be treated, not as the domain of ‘first philosophical’ a priori
theorizing, but as the subject of empirical-scientific investigation, with a view to identifying successful cognitive
strategies, and improving and extending them wherever possible. And so, building on the foundation supplied by what
we know about our evolved cognitive apparatus, we are led to the empirical study of epistemology as a scientific
subject in its own right: we are led to naturalized epistemology.

We are led, or possibly we have simply been carried away. For something must be wrong with an epistemic ascent
which starts by accepting Hume's sceptical argument and ends by denying it. Something is wrong. In fact, several
things are wrong. One thing that is wrong with it is systematic question-begging. Another is bad logic. Take the
question-begging. The quasi-dominance argument, that concludes that we can't do better than less than impossibly
high standards of evidence, begs the question that the evidence for current scientific explanations, let alone being
incomplete according to ‘the highest standards’, is evidence at all. And there is also more than a suggestion of the No-
Miracles argument in the wording of Boyd's ‘abductive’ argument for realism as the best explanation of the success of
current science (Peirce invented the term ‘abduction’, and presented it explicitly as a No-Miracles argument (1960:
117)). From our earlier discussion we know that any claim that the only explanation of the success of current science
is that it is approximately true is incorrect. There is a horde of possible explanations. Boyd, and following him Leplin
(1997), try to preclude these from consideration by placing sufficiently stringent conditions on ‘being an explanation’
that it neatly turns out that the only explanations of what we observe are those of current science. While the
conclusion is hardly surprising if it is accepted that science supplies the standard of explanatoriness, this strategy also
rather obviously begs a question. Indeed, it is exactly as question-begging as the claim that you are justified in

believing any part of current science to be ‘approximately true’.

Nor will appeal to what is, scientifically or otherwise, plausible help. What is plausible and what is not is likely to be a
highly context-dependent affair, if not an outright subjective one, unless it is tied to some objective standard. That of
probability naturally comes to mind. There is nothing in principle wrong with combining the standard of inference to
the best explanation with an explicitly probabilistic criterion of ‘best’: you simply ‘abduce’ to the most probable among
a pre-assigned set of alternative explanatory hypotheses, if there is a uniquely a posteriori most probable one (cf. Pearl
1991: 181-2). The problem with this idea is, as we saw in Chapter 4, that a posteriori probability depends on a priori
probability, and a priori probability assignments seem to be irretrievably dependent on either an arbitrary or a
subjective decision which again begs the question. All this Hume said long ago, if not in as many words. It is
remarkable that two hundred and fifty years after the Treatise and fifty years after Goodman's ‘New Riddle of



Induction’ (1946) we can find in a leading philosophy of science journal remarks like ‘the novel success of theories

requires some kind of realism’ (Ladyman 1999: 183).

But modern abductionists do know the Humean arguments; they even exploit them, as we have seen, in claiming that
to seek an ultimate justification is futile because there isn't one. But they point out that there are nevertheless
perfectly good achievable standards of justification which have in fact been achieved. The game, in other words, simply
has to change from that of foundationalist justification to the less utopian appeal to the standards we, a successfully
adapted cognizing species, have actually evolved as best practice. For it is indeed a fact that we are successful
cognizers. That is the ‘paradox’ we started with, but a paradox, according to this point of view, only because the
standards of justification were set unrealistically high. Lower them to the more realistic level exhibited in existing best
practice, science, and the paradox becomes merely a fact calling for explanation, scientific explanation. And so we
return again, to the Hume—Darwin theory as the explanation. Unfortunately, we also return to the observation that the
Hume—Darwin theory is just one among an infinity of alternative possibilities consistent with the data, and that no
amount of wordplay will alter that stark logical fact. We may have in the Hume—Darwin hypothesis an explanation but,

pace Boyd, Leplin et al., explanations are not in short supply. Good reasons for accepting them are.

end p.114
Naturalism is a development akin to the phenomenon psychotherapists call ‘denial’. Hume's powerful case that our
reliance on induction is, in the last analysis, simply unfounded is often conceded by naturalists, but the concession is
usually no sooner made than modulated into a positive programme for acquiring knowledge about the way we learn, or
think we learn. Thus for Quine, who first introduced the term, ‘naturalized epistemology’ is no more than the natural
response to accepting Hume's claim that we know nothing beyond what we sense: ‘The stimulation of his sensory
receptors is all the evidence anyone has had to go on, ultimately, in arriving at his picture of the world. Why not just

see how this construction really proceeds?’ (1969: 75-6). 2

2 Knowingly or not, Quine is merely echoing Ramsey: ‘all that philosophy can do is to analyse [induction], determine the degree of its

utility, and find on what characteristics of nature this depends’ (1931: 198)

Ramsey, the first modern reliabilist, was also the first epistemological naturalist.
Seeing ‘how this construction really proceeds’, for Quine, means identifying epistemology with empirical psychology.
But empirical psychology deals in general hypotheses: it certainly involves generalizing from particular experiments on
particular subjects. But if we are limited to what we perceive then what right have we to generalize in any way at all?
If we are not justified in proceeding beyond the evidence of our senses (whatever that may amount to) then we are
no more justified in accepting the hypotheses of empirical psychology than we are their Goodmanized analogues. Quine
seems to be telling us not that we can have our cake and eat it, but something altogether more dramatic: that we

cannot have our cake and we can nevertheless still eat it!
Glymour also nods, but only nods, in the direction of scepticism:

Naturalized epistemology is a program for snatching victory from defeat. Metaphysical skepticism wins, true
enough, but in practice we are not and could not be in the circumstance of trying to learn from pure ignorance.
Assuming the circumstances we cannot help but believe we are in, the powers of science to expand our

knowledge are increased. (1992: 123; my italics)

This is a remarkable passage. How is conceding the day to metaphysical scepticism in any sense snatching victory from
defeat? If metaphysical scepticism wins then, unless we are giving a very unfamiliar meaning to familiar words, we
have no knowledge to expand. Of course, practically speaking, no one really does doubt that science has expanded and
will continue to expand knowledge. But that wasn't quite the point. The point was to justify that conviction. The
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problem is not solved, or even partially solved, by sanguine remarks. Perhaps the most apt response to the type of
argument that commences from some alleged matter of fact, in this case that ‘we cannot help but believe in’ the
reliability of our cognitive procedures, to conclusions about what we are justified in believing in is contained in these

much-quoted and justly celebrated lines by an eighteenth- century philosopher:



| cannot forbear adding to these reasonings an observation which may perhaps be found to be of some
importance. In every system of morality which | have hitherto met with | have always remarked that the author
proceeds for some time in the ordinary way of reasoning, and establishes the being of a God, or makes
observations concerning human affairs; when of a sudden | am surprised to find, that instead of the usual
copulations of propositions, is and is not, I meet with no proposition that is not connected with an ought, or an
ought not. This change is imperceptible; but is, however, of the last consequence. For as this ought or ought
not expresses some new relation or affirmation, it is necessary that it should be observed and explained; and at
the same time that a reason should be given for what seems altogether inconceivable, how this new relation can
be a deduction from others that are entirely different from it.

The philosopher was David Hume (1739: Il1. I. i). Nowell-Smith aptly describes Hume's observation, an objection to
eighteenth- century versions of naturalism, as ‘crushing’ (1961: 36—7), and G. E. Moore, more presciently than he
knew, famously described the reasoning that Hume indicts as the ‘Naturalistic Fallacy’. And so it is.

For all that naturalism represents a dead-end as an attempt to salvage something from the programme of justifying, in
however weak a sense, the general constructions we impose on experience, it has had profound effects in other ways.
Most notably, it has encouraged a closer study of what scientists actually do, the way they make decisions, switch
horses, and so on. Quine may have cited psychology as the appropriate empirical study of science, because Quine still
felt that the main element in scientific activity was cerebral and ratioci- native, in a word, reasoning. Since then,
inspired by Kuhn's justly celebrated work (1962) on the structure of scientific revolutions, reasoning has been demoted
to a relatively negligible factor in the decisions of scientists compared with the social and other forces to which they
are subject. The focus has shifted, and the more recent studies, such as those of Shapin and Shaffer (1985), Galison
(1987), and Latour and Woolgar (1986), have turned to anthropology, economics,
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sociology, and linguistics, the precise mix depending on who is writing, as the appropriate empirico-theoretical milieu
within which to model scientific activity.

Ironically, however, the laudable intention to find out empirically what goes on in science, particularly institutional
science, has tended to issue in generalizations as speculative as those of the more speculative parts of science itself,
and sometimes stranger, like the increasingly frequently voiced denial that any objective world of people-independent
fact exists, and the contrary affirmation that what we take to be such a world is actually constructed by us, out of our
linguistic and social practices (there is a greater or lesser amount of qualification, depending on the author). It should
be clear by now that such inferences are no more warranted than the inference of scientific realists to the existence of
an external world accessible in principle to scientific investigation. Both views, realism and anti-realism, go equally far
beyond the data of observation. In particular, the impulse to generalize far beyond the limits of the data remains
unquenched however anti-realistic the philosophical faith. Realism versus anti-realism seems in that light more a
matter of opposing ideologies than anything else, at the extremes naively accepting the scientific establishment's view
of what it is going on the one hand, and on the other seeing in that account nothing more than the propaganda of a
privileged élite. More moderate versions are of course available. You pay your money and you take your choice.

Where Do We Go from Here?

Even conceding the force of Hume's arguments, it is admittedly difficult, if not impossible, to avoid the feeling that
there must be something to science and scientific reasoning that is not entirely arbitrary (unfortunately remarks like
that excite the ire of scientists at what they understandably see only as the hubris of philosophers). But ‘naturalized
epistemology’ and ‘abduction’ are not the way to explain what that something is: the appeal to empirical science,
admissible perhaps as an explanation—but only one among many—is not permissible as a justification. So let us look
away from empirical science to the science of justification itself, to logic (though not, | hasten to add, ‘abductive

logic’).



Deductive logic was the residue Hume felt untainted by Humean doubt (though not our ability to follow logical
arguments). Some brave spirits have felt free to doubt it, and not all frivolously. For example Intuitionists, followers of
the Dutch mathematician L. E. J. Brouwer who believe that mathematical entities, including proofs, are literally
constructions of the mind, query the full classical deductive logic, and they are not easily shown to be wrong or even
incoherent in doing so. If there is an answer to them, it is not a trivial one. On the other hand, it is objective, factual
truth that is the topic here and even the Intuitionists have not denied that there is a logic for this, and that that logic
is classical; so we can ignore, in this context, the Intuitionistic challenge. There remain others, however. There is for
example Quine's famous objection (1953: 43) that no statement, whether a statement of fact or a statement even of
logic, is in principle immune to revision. Early in the twentieth century the philosopher and physicist Duhem had
argued that, because scientific hypotheses in general are able to make predictions about observables only in
conjunction with a more or less large number of auxiliary hypotheses, including hypotheses about the normal
functioning of experimental apparatus, the failure of any given prediction cannot, logically, unequivocally point to the
falsity of the hypothesis under test; equally, one or more of the auxiliaries might be false (Duhem 1906). Quine (1953)
took Duhem's arguments further, proposing the view, since called the ‘epistemological holism’, that any part of the
currently accepted body of science might in principle be revised in the process of establishing a harmonious agreement
with experience. Quine's statement of this position was very influential, and as a result even the (classical) logic of
factual truth is now regarded by many as in principle revisable. Indeed, some people argue that quantum mechanics
demands the revision of classical logic (e.g. Putnam 1965); and so-called quantum logic has become a flourishing
research programme (quantum logic, of whatever specific flavour, rejects the Boolean structure of classical
propositional logic for a non-Boolean one whose ‘propositions’ are represented by the closed subspaces of a Hilbert
space of quantum states).

Only a dogmatist would deny that a different logic might one day be adopted in preference to the current classical one.
If so, it might well be some version of quantum logic, at any rate for the physics of the very small. This is not the
place to investigate these issues, and any conclusion would certainly be premature. But even if we feel free

to follow Hume and accept classical logic (this is anachronistic, of course: Hume knew nothing of quantum theory and
anyway would not have understood the distinction between classical and non- classical logic; but never mind) as the
logic of factual truth, there remains a problem with classical logic which has been familiar since Bacon famously
animadverted on it four hundred years ago. The problem—the notorious problem—is that classical logic does not seem
to get us very far; indeed, anywhere. Hume himself foreclosed its use in any positive way, saying that it merely
described ‘relations between ideas’. Bacon admittedly declared only syllogistic reasoning barren of useful progeny, but
it has since become a commonplace that deductive inference in general is not (factual) content-increasing, merely the
elicitation of what is implicit in any set of premisses, an opinion that is unlikely to change: indeed, it is more likely to
act as a constraint on what will be allowed to call itself a logic (we shall have more to say on this point in Chapter 7).
But Bacon, Hume, and just about everybody else, went on to draw the—apparently obvious—inference from the non-
ampliative nature of logic that, far from promising anything in the way of underwriting the reasoning procedures of
science, logic must therefore be hopelessly impotent on that score. This conclusion has been so generally accepted that
it may come as a shock to find it denied. Yet that is what | intend to do. The remainder of this book will be taken up
with arguing that, even conceding the soundness of Hume's argument, something of inestimable value nevertheless

remains safe from his attack, and that is nothing less than the logic of science itself.

But what about Hume's argument? An assumption of the induction debate, sometimes tacit, sometimes not, and
certainly one that Bacon and all his successors accepted, is that the endorsement of scientific procedure must also
extend to the endorsement of truth-claims made on behalf of the appropriate scientific theories: that for the principles
of scientific reasoning to be correct means that they should lead in some guaranteed way to truth, or to some
surrogate, like ‘approximate truth’ or probable truth. Hume's reasoning is therefore usually taken as showing, if correct,
that the procedures of science are without foundation. My claim is that it can equally be seen as a reductio ad
absurdum of the assumption that sound inductive reasoning will point us the way to truth, or at any rate to justified
beliefs about truth. Indeed, | shall try to show that the commonly accepted rules of scientific method are not truth- or
probability-oriented in this way, which | shall
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do by showing that the rules of method are just rules of logic. It will follow that they are demonstrably sound, for they
are only logic, and that they do not tell us which theories are true, for, being only logic, they cannot. | shall then
proceed to show that, despite just being logic, these rules are nevertheless indispensable in the search for truth

because, as rules of logic, they prevent us making fallacious inferences. That is the programme. In the next two
chapters | shall try to deliver it.

end p.120
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7 ‘A New Species of Logic’

Colin Howson
Recall from Chapter 4 the two broad interpretations of probability, one as objective chance, and the other epistemic, as

a measure of the uncertainty of conjectures. It is now time to pursue the second further. The goal will be to show that
Bayes's own derivation of the probability axioms leads naturally, indeed almost inescapably, to a view of those axioms
as laws of logic: to be precise, as consistency constraints on quantified partial beliefs. That is the programme for this
chapter.

We start with a problem, however. As we have seen (Chapter 4, Appendix 1), Bayes defined the probability (qua
measure of uncertainty) of an event to be

the ratio between the value at which an expectation depending on the happening of the event ought to be
computed, and the value of the thing expected upon its happening. (Definition 5).

But how do you determine ‘the value at which an expectation depending on the happening of the event ought to be
computed’ in any given case? How ‘ought’ Bayes's probabilities to be evaluated?

It is not clear that there is a determinate answer to the question. The probability axioms, as we know, by themselves
fail to determine values for particular probabilities except in special circumstances, as when the proposition A is a
necessary truth or falsehood, or where deductive entailment relations hold between the As and Bs in the conditional
probabilities P(A|B) (recall that if B entails A then P(A|B) = 1, while if B is inconsistent with A then P(A|B) = 0; all
supposing P(B) ) 0, of course). Otherwise the axioms are silent. As we saw in the earlier discussion of prior
probabilities, many people have appealed to the principle of indifference for computing probabilities where the axioms
themselves provide no guide as to ‘correct’ values. But as we also saw, the principle is both arbitrary and inconsistent.

Carnap, in his monumental Logical Foundations (1950; and then

again in Carnap 1952, 1970, and 1982), attempted a systematic grounding of a priori probabilities in alleged logical
principles, but the general consensus is that where these principles were strong enough to generate determinate
probability values, they were dubiously logical; indeed, they were mostly variants of the principle of indifference. The
general view now is that Carnap's work in this field amounted to no more than a heroic failure (for a more detailed
discussion see Howson and Urbach 1993: ch. 4).

There have been a number of other attempts to supplement the probability axioms with additional principles, like
invariance principles, ‘informationless’ prior measures, the use of maximum entropy, and others, but all are question-
begging in one way or another (there is a longer discussion in Howson 1997a). At any rate, there is a growing feeling
that the probability axioms may be necessarily incomplete in one sense, namely that a large class of probability values,
like the unconditional, or prior, probabilities for example, cannot be determined a priori, except in the extreme cases
cited. Perhaps surprisingly, such a view can be supported by stating that the probability axioms are actually complete
in some different but important sense. Those familiar with deductive logic will understand how a set of axioms and/or
rules can be incomplete (in one way) and complete (in another): the logical axioms and rules of inference of the
relevant formalizations of deductive (first-order) logic, like the probability axioms (mutatis mutandis), do not determine
truth-values except in extreme cases; but they are nevertheless complete in the sense that all universally valid
sentences are formally deducible from them. Perhaps the probability axioms can be shown to possess the analogous
property, that all generally valid probability statements are already derivable from them.

Indeed they can (in just what sense of ‘valid’ we must wait and see), but that still leaves the problem of how to
evaluate particular sentences in particular contexts. One possibility is to bite the bullet, and say that where there is an
objective chance distribution we should set the probability value equal to the chance, and where there is no such
distribution, concede that the corresponding probability simply has no value. If there is no chance then, the argument
runs, there is no objective way uncertainty can be discussed, let alone measured, and we should not try. Indeed, if
there is no objective value that the probability ‘should be’, why worry about it? But if there is, that is what the
probability should be.



This sounds plausible, but it faces some difficult problems, three in particular. First, chances, in the way we shall
choose to understand them and the way Fisher understood them, are defined in terms of long-run frequencies. But
why should we base our probability that a particular event will occur on what happens in the indefinitely long run (this
is a problem we shall return to later, in Chapter 9)? Secondly, how do we actually know what the chance distribution
over an outcome space is? We can certainly conjecture one but, when it is considered that the conjecture involves
speculating about frequency in an arbitrarily long sequence of trials, its evaluation itself would seem to be of a serious
order of uncertainty. It would seem that a satisfactory account of objective chance presupposes the development of a
satisfactory theory of epistemic uncertainty rather than vice versa. The question is whether such a theory can ever be
developed if the route via objective probabilities is initially blocked, as it seems to be. Finally, there are more or less
uncertain events about which we should intuitively have epistemic probabilities but which don't seem to be in the
domain of objective chance. For example, | may be more or less uncertain whether a theory, General Relativity say, is

true, though it makes no sense to talk of the long- run frequency with which it is true.

But there is an alternative way of determining how Bayes's ‘expectation depending on the happening of the event
ought to be computed’. This is simply to compute it in the way you, given your current state of information, would
estimate it, bypassing completely the issue of whether that belief is in any way secured by any objective feature of the
world. In other words, you just nominate as Bayes's (or rather yours now) ‘expectation’ what you believe to be its fair
price, meaning by ‘fair price’ merely the price which you think leaves neither side with a calculable advantage. People
certainly can and do seem to make such estimates, at any rate to within certain spreads of values (we shall come to
that later), quite independently of whether there is any objective way they can be grounded. Having taken the
decision, however, that that question is no longer a profitable or constructive one to ask, we can focus instead on
what constraints degrees of belief so measured should satisfy. Are there any, and if so what?

The answer, perhaps surprisingly (though not so much for those who have read Appendix 1 to Chapter 4) is that there
are: the probability axioms themselves. So much already out of so little. This goes some way to explaining why,

though adopting a subjective, or as

Savage called it personal, view of Bayesian probability might seem rather like throwing the baby out with the
bathwater, the move will prove, as we shall see, a highly successful one. Reculer pour mieux sauter indeed. Of course,
there still remains the problem of how a purely subjective basis for the theory of uncertainty can be at all useful,
especially in the evaluation of scientific hypotheses. Many people still believe it cannot. They are wrong, though we
shall postpone the discussion of exactly why to the next chapter. The programme for the remainder of this one is to
show that the laws of subjective uncertainty are laws of logic. Bayes's derivation of the probability axioms shows in
effect that they are indeed laws of subjective probability, regulating the consistent assignment of personal probabilities
to propositions. The next stage will be to show that the probability axioms are themselves laws of logic. Onward ho.

‘A New Species of Logic’

For the pioneers of epistemic probability there was little doubt that its rules were rules of logic; Leibniz called the new
theory of formal probability ‘une nouvelle espece de logique’. The idea runs like a thread through the history of the
subject, sometimes visible, sometimes not. It largely disappears in the phases of rapid technical development, where
the richness of the results tends to move philosophical considerations into second place, and it never amounted to
anything very much before the twentieth century because, in default of a better formal and philosophical development
of deductive logic, there was no clear standard of exactly what it meant to be a logic against which to compare the
theory. In the twentieth century it re-emerged clearly in the work of Ramsey, who saw in the axioms of probability an
extension of what he called the logic of consistency (1931: 184). But then the idea languished yet again. Partly it was
because Ramsey was writing in a good deal of ignorance of the revolutionary developments in formal deductive logic
taking place in the early twentieth century, and partly because he himself also managed to steer epistemic probability
into an apparently different course where its rules seemed to become rules, or a subset of the rules, for making



rational choices. De Finetti, writing at about the same time, seemed just as equivocal about the way the laws of
probability were to be classified, on the one hand claiming that they were rules for maintaining coherence

in one's beliefs, thereby reflecting Ramsey's view of them as consistency constraints, but on the other justifying them
in terms apparently of rules for making prudent bets. The approach to justifying probabilistic principles as rationality
constraints, though not the way | believe that their true significance is best appreciated, is historically important; and
because it will also introduce the apparatus of betting-quotients, odds, stakes, and bets which will come in handy a
little later, a brief look at de Finetti's result will be useful.

The Dutch Book Argument

De Finetti gave an explicit proof of what has come to be called a Dutch Book argument for the probability axioms. This
is a proof that any infringement of them could be penalized by making the violator vulnerable to a forced loss in a
suitable system of bets (1964: section 1). Not that this property could have been completely unknown before de
Finetti's proof appeared: Ramsey's remark that a book- maker failing to observe the rules of the probability calculus
‘could have a book made against him by a cunning bettor and would stand to lose in any event’ (1931: 3) shows that
he knew it even if he never publicly proved it. What neither of them seemed to realize, however, was that the first
proof should be substantially credited to Bayes himself, for Bayes's own derivation of the probability axioms is a
version of the Dutch Book argument. To see this requires a couple of easy steps. First, we note that bets just are the
sorts of uncertain options Bayes discusses. For a bet is the option to receive (or give, depending on the standpoint) a
specified positive amount S (the stake) in the event of an event A being true, sold by the bookie for the price Q. In
betting terminology the ratio Q/(S—Q) are the odds, and Q/S the betting quotient (betting quotients are therefore really
just odds normalized so that they lie within the half-open interval [0, 1); this is extended to the closed-unit interval [O,
1] by allowing the odds to take the ‘value’ o).

In the notation that was introduced by de Finetti (1964) and has become canonical for discussions of this topic, a bet
on A with nonzero stake S and betting quotient p is represented as a random quantity whose value is S(1 — p) if Ais
true, —pS if A is false (this is just setting Q = pS). Note that changing the sign of the stake S from positive to

negative or vice versa merely reverses the role of the partners
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in the betting-contract. The odds are clearly p/(1 — p). If these are deemed fair, in the sense above of equalizing
advantage, by any person X, then p will be X's evaluation of the probability of A according to Bayes's definition. P is of
course the constant of proportionality by which the value of N is reduced in Bayes's definition of the probability of A as
the just price pN of the option ‘N if A is true, O if not’. Betting quotients you consider fair are therefore your Bayesian
probabilities. Bayes and de Finetti are discussing the same thing: the evaluation of uncertain options as a route to the

numerical evaluation of uncertainty itself.

Bayes's derivation of the additivity principle exploits the fact that certain bets or combinations of them determine
others. His proof, recall, shows that bets with the same stake on two mutually exclusive propositions A and B at
betting rates p and q respectively determine a bet on the disjunction ‘AvB’ with betting rate p + q. A slightly improved
notation, which will also come in useful later, shows this very simply. A bet on A at betting quotient p and stake S is a
random variable of the form X5 = S(Iao — p), where I, the so-called indicator function of A, takes the value 1 on those

possible ‘worlds’ determined by A and O on the others. Noting that Ia,g =la +lp, a little arithmetic shows that S(l
—p) + S(Ig —q) = S(avg — (P + Q)). So if your fair betting rate on AvB is r # p + q and you were to bet indifferently

on or against A, B and AvB at betting rates p, q and r respectively you could in principle be Dutch Booked: if r { p+q
an opponent only has to have you betting on A and B and against AvB (if r}p+ q reverse all the bets). t

1 similarly, Bayes's proof (ch. 4, app. 1) that P(A|B) = P(A&B)/P(B), where P(B) } 0 and P(A|B) is your fair price for a conditional bet

on A, i.e. one called off if B is false, exploits the fact that there are non-zero k, m, n such that k(Ipgg —p)+m(lg —q)= Ign(lp = p/q):

i.e. for suitable stakes a sum of bets on A&B, B with betting quotients p, q 0, determines a conditional bet on A given B with betting



quotient p/q (e.g- k=g, m = —p, n = Q).

It is easy to see how violating the other axioms makes you Dutch Bookable (see Howson and Urbach 1993: ch. 5).

But to see those axioms merely as assurances of financial safety in betting is to miss their real significance. Something
deeper is going on. To see what it is it will be helpful to make a short digression into the nature of logic itself.
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And So to Logic

A popular introductory text in formal deductive logic tells us that ‘Logic is about consistency’ (Hodges 1974 : blurb).
Should this just mean ‘deductive consistency’, or might there be other species of consistency closely kindred to the
deductive variety entitling their ambient theories to the status of logic or logics? It may well be the case that logic is
about consistency without foreclosing the possibility of there being logics other than deductive. To answer these

questions we seem first to need an answer to the question ‘What is logic?’

My own belief is that there is no fact of the matter about what entitles a theory of reasoning to logical status, and one
has to proceed as one does in extending common law to new cases, by appeal to precedent and common sense. Here
again, of course, one must be selective, but with modern deductive logic in mind | propose the following as necessary
and sufficient conditions for a discipline to have the status of logic:

(a) It involves statements and relations between them.

(b) It adjudicates some mode of non-domain-specific reasoning.

(c) It is ‘about consistency’. More specifically, it should incorporate a semantic notion of consistency which can be
shown to be extensionally equivalent to one characterizable purely syntactically; this equivalence is the content of
what are called soundness and completeness theorems for the corresponding system. First-order logic famously has a
soundness and completeness theorem.

It may sound dogmatic to set out necessary and sufficient conditions in this way, and even more so to limit them to
just three, but it must be remembered that if there really is no fact of the matter then we are only bestowing a title.
That said, with a title come responsibilities (‘noblesse oblige’), and one of them, especially where the title is already
bestowed elsewhere, is that some explanatory purpose is served thereby: significant analogies with the other discipline
already so honoured should cast light on things that are otherwise problematic and puzzling. And so it will turn out.

First, let us see how Bayesian probability copes with (a)—(c).

Well, (a) and (b) are certainly satisfied: any proposition whatever can be in the domain of a probability function; even,

as we shall see, statements assigning probabilities themselves. Less obviously, (c) is
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satisfied as well: it just needs to be spelled out. Being deductively inconsistent is usually taken to be manifested in the
derivability of a contradiction of the form A& — A for some statement A. But inferring A& — A is tantamount to
assigning A different truth values: it is implictly saying that A is both true and false. We can extend this idea to that of
an inconsistent assignment of truth-values to an arbitrary set of statements, and tableau/tree systems of deduction, in
particular trees whose initial sentences are ‘signed’ with truth-values (Howson 1997c: 18, 19), show explicitly how an
inconsistent assignment of truth-values to a set of statements results in some statement, not necessarily a member of

that set, being assigned the values both ‘true’ and ‘false’ simultaneously. Consider for example the assignment

A T
A—=B T
B F

Appending beneath this the signed form of the tree rule for [A — B T]

I\
FABT

we see that on both available branches we have incompatible assignments: on the left branch we have A both true



and false, and on the right B both true and false. Thus the original assignment is an inconsistent one (for further
information about these systems see Howson 1997: 18-21). The exhibition of deductive consistency for some
assignment T to a subset X of the sentences in a language L by this or indeed any suitable method consists in showing
that there exists a single-valued distribution of truth-values which extends t to all the sentences of L, subject to the
general rules of truth supplied by the standard Tarskian truth-definition, and which coincides with T on X. In other
words, T is consistent if there is a (propositional) model, which we can call a model of T itself.

We define a consistent assignment Q of fair betting quotients similarly, as one which can be extended to a single-
valued function on all the propositions of L (probabilities tend to get assigned to propositions, that is, to equivalence
classes of sentences rather than directly to the sentences themselves for historical reasons). But clearly, the extension
must be subject to some constraints, just as in the truth- value case the extension was subject to the truth-table and
other rules of truth-in-general. By analogy, these should it seems be the rules of

end p.128
fairness-in-general, that is, of the general criteria for assigning fair betting quotients. Call these (F). Pursuing the
deductive analogy, an extension of Q to all the propositions in L which satisfies (F) will be called a model of Q.

What is the formal content of (F)? (F) says that fair betting quotients determine fair bets, that is, bets such that
neither side has an advantage given the knowledge-state of the agent. This seems to subsume the following rules.
Firstly, if p is a fair betting quotient then 0 = p = 1, since it is easy to see that otherwise one side of the bet could
make a certain gain come what may. Two others are that if A is a logical truth then P(A), the fair betting quotient for
A, is 1, and that if A is a logical falsehood P(A) = O, for the same reason. Secondly, fair bets must obviously be
invariant under change of sign of the stake: if the bet on A has no advantage over the bet against A, the converse
must hold too.

There is something else too, which will turn out to play a very important role. It is a closure principle of a type that is
applied in deductive logic without any particular attention being drawn to it. Nevertheless it is there. Let me give an
example. The truth-table rules give truth-conditions for a compound sentence in terms of the truth or falsity of its
components. But the truth-conditions for atomic sentences are given by corresponding features of, or facts about, the
interpretative structure itself (these are described in the basis clause in a standard inductive truth-definition). There
seem therefore to be two quite distinct types of truth involved here: a substantive one, for the atomic sentences, and
a formal one for the compounds. This is not a mythical story; even in this century philosophers have worried about the
existence of negative facts. What of course happened was that the notion of ‘real’ truth simply got extended to a
unitary notion of truth for all sentences, atomic and compound: it got closed off under truth-functional compounding.
And as | said, the procedure is so natural that it passes without mention.

There is also a natural closure principle for fair betting quotients under compounding, this time compounding of bets. It
is as follows: if a fair bet on some proposition A, or a sum of fair bets on some subset of propositions, determines a
bet on some proposition B with stake S and betting quotient g, then it is natural, just as it was mutatis mutandis in
the deductive case, to close off and call p the fair betting quotient on B.

We have now extracted the specific constraints implicit in (F), and
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are in a position to state the result that will form the basis of the claim that Bayesian probability is just logic:

Theorem: An assignment Q of betting quotients to a subset X of the propositions in L is consistent, in the sense
defined above, if and only if Q satisfies the constraints of the (countably additive) probability calculus.

Proof

(i) (only if). Whatever L is we can minimally take it that it is closed under the operations ‘and’, ‘or’ and ‘not’; in other
words, the propositions determined by L form a Boolean algebra. Suppose that Q| is a single-valued function which

satisfies (F) and coincides on X with Q. We have seen that all the values assigned by Q_ must by (F) be in the closed



unit interval, and that Q_ (A) = 1 if A is a logical truth and O if A is a logical falsehood. Now suppose that A and B are

mutually inconsistent, and that p and g are fair betting quotients on each respectively. As we saw above, given the
inconsistency of A and B, Ip + Ig = Iayg, from which it follows that S(Ip = p) + S(Ig = q) = S(layg — (P + q)). By the

closure principle, therefore, Q| (A) + Q. (B) = Q_(AvB) if A and B are inconsistent with each other. In other words, we

have the binary additivity principle of probability. A simple extension of the argument shows that we must also have
countable additivity. For suppose {A;} is a denumerable family of mutally exclusive propositions with fair betting

quotients pj. It follows from finite additivity and the Bolzano-Weierstrass Theorem that Zp exists and does not exceed

1. We also have I A; ‘I-\; , where V is the generalized disjunction operator (never mind that this disjunction is not in
a standard language; in the present case it will be true when exactly one of the A; is true). Thus

ST, — ) =81, —5p L . . . . .
Z5(1 AP S A~ 2P , and by the closure principle L pj is the fair betting quotient on VA;. In addition, it follows

from the closure rule and the preceding footnote that if p is the fair betting quotient on A&B and q the fair betting
quotient on B, where g } 0, then p/q is the fair betting quotient in a conditional bet on A given B, justifying the usual
‘definition’ of conditional probability.

Thus the assignments given by Q; must satisfy the usual probability axioms, including countable additivity and the

‘definition’ of conditional probability. Hence they must satisfy all the deductive consequences of those axioms. Hence so

must Q.

(ii) (if). Suppose all the rules of the countably additive probability calculus are obeyed by an assignment Q on some
subset X of the propositions of L, whatever L is. Firstly, we need to show that this implies the existence of a single-
valued assignment to all the propositions in L. We take this in two stages. First, suppose the language is a
propositional language, with the propositions represented by equivalence classes of tautologically equivalent sentences.
Then a well-known result about normal forms (Paris 1994: 13—15) shows that if Q satisfies all the constraints of the
probability calculus then there is a probability function Q whose domain is all the propositions in L and which agrees

with Q on X.

There are, of course, other ways of composing assertions out of less complex items than just by using the connectives
(that is, Boolean operations on the corresponding propositions). For example, there are statements in ordinary
discourse whose linguistic expression requires the universal quantifier ‘For all individuals x’, which when applied to the
indefinite form ‘x has property T’ yields the definite true-or-false proposition ‘For all x, x has T’, symbolised ¥xTx, or
‘Everything has T’; and dually there are existentially quantified assertions: ‘there is an x such that x has T’, symbolised
dxTx, or ‘Something has T’. Note also that consideration of quantified assertions establishes a relation with types of
infinite Boolean operation, namely conjunction and disjunction existential quantification over a denumerably infinite set
is ‘equivalent’ to a denumerably infinite disjunctions, and universal quantification over such sets is ‘equivalent’ to
denumerable conjunctions.

Suppose that L contains not only the Boolean operations but also quantification. Assume that it contains also an

infinite set of constants a;j, i.e. terms corresponding to names of individuals. Factoring logically equivalent sentences of

L into corresponding equivalence classes generates a Boolean algebra |L|, the so-called Lindenbaum sentence algebra
of L, of which the quantifier-free sentences form a propositional subalgebra. As before the equivalence class |A| of a
sentence A in L will be regarded as the proposition that A. In |L| existentially and universally quantified propositions
correspond directly to denumerable disjunctions and conjunctions of instantiations of those propositions with a distinct
constant, independently of the domain L is interpreted in: |dxQx| is the least upper bound of all finite disjunctions
IQ(&@)v . . . vQ(apl (ordering by entailment; the universally quantified proposition is a greatest lower bound of the
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corresponding conjunctions). If the natural continuity condition that probabilities preserve suprema, called the Gaifman
condition after Haim Gaifman who proved the result | am about to state, is imposed it can be shown that any
probability function on the propositional subalgebra consisting of the quantifier-free sentences has a (unique)
extension, again call it Q , to all the propositions of L (Paris 1994: 171).



The final stage is to show that Q satisfies (F). Trivially, 0 = Q_(A) = 1 and Q_(A) = 1 where A is a logical truth and 0
where A is a logical falsehood. What about closure? Where q = Q| (A) the expected value, relative to Q, of any bet
S(la — q), is easily seen to be O, as is the expected value of any countable sum of such bets, since expectations are
linear functionals. Suppose that a sum of bets whose betting quotients are given by Q is equal to a bet on B with

betting quotient p. Taking expectations, it follows that p must be equal to Q (B) and closure is satisfied. QED.

We have in effect proved a soundness and completeness theorem. If Q is consistent, that is, has a model as defined
earlier, then Q must satisfy the probability axioms including that of countable additivity, which is a purely syntactic
criterion (the probability calculus is just a recursively enumerable theory which assigns numbers to elements of a
Boolean algebra). Analogously with the deductive case, that is a soundness theorem. Conversely (completeness), if Q
satisfies the probability axioms, including countable additivity, then Q is consistent (has a model).

Given that later we shall want to be able to consider probabilities of hypotheses which are denumerably infinite axiom
systems not always reducible to any finite set and hence to a single statement (the conjunction of that set), we want
to be able to consider probabilities defined on such sets and not simply on single sentences. For this purpose we move
to the -algebra (in mathematical probability theory called a Borel field) obtained from |L| by closing under denumerably
infinite disjunctions and conjunctions. It turns out that this algebra is isomorphic to, and hence only notationally
distinct from, the algebra generated by the algebra of sets of ‘possible worlds’ which make the corresponding
sentences true, and which are just the things we called propositions in Chapter 4. We can now appeal again to the
extension theorem mentioned above, which tells us that there is a countably additive probability on the Borel field
generated by that algebra. It follows that if the probability axioms, including that of
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countable additivity, are satisfied then probabilities are uniquely determined not only on all propositions determined by
L but all denumerably infinite sets as well. Such propositions can be expressed as single sentences in the infinitary
languages which are like L except that denumerably infinite disjunctions and conjunctions are permitted, and the
Lindenbaum algebras of these are isomorphic to the Borel fields generated by the sentences of the corresponding
finitary languages (for a detailed study of probabilities defined on these languages see Scott and Krauss 1966).

‘Soundness’ and ‘completeness’ in the context of assignments of subjective probability are not just words. Just as in
deductive logic, we see that a semantic property, consistency, is extensionally equivalent to a syntactic one, in this
case the formal representation of P as a probability in the sense of the probability axioms, and according to the
criteria (a)—(c) above, the Bayesian theory qualifies as a genuine logic (of consistent belief). However, the recent
history of subjective probability has tended to neglect the logical aspect identified by Ramsey, favouring instead a
rationality interpretation of the constraints as prudential criteria of one type or another. The trouble with adopting this
line is that it is very difficult to demonstrate in any uncontroversial and non-question-begging way that violation of any
of the constraints is positively irrational. The logical view, on the other hand, need not in principle be troubled by links
with rationality of only doubtful strength, since logic is not about rational belief or action as such. Thus, deductive logic
is about the conditions which sets of sentences must satisfy to be capable of being simultaneously true (deductive
consistency), and the conditions in which the simultaneous truth of some set of sentences necessitates the truth of
some given sentence (deductive consequence): in other words, it specifies the conditions regulating what might be
called consistent truth-value assignments. This objectivism is nicely paralleled in the interpretation of the probability

axioms as the conditions regulating the assignment of consistent fair betting quotients.

A logical interpretation of subjective probability casts illumination elsewhere too. Under the aspect of logic the
probability axioms are as they stand complete: they are, with a qualification we shall discuss in Chapter 9, a complete
set of constraints for consistency. Hence any extension of them—as in principles for determining ‘objective’ prior
probabilities—goes beyond pure logic. This should

end p.133

come as something of a relief: the principles canvassed at one time or another for determining ‘objective’ priors have



been the principle of indifference, symmetry principles including principles of invariance under various groups of
transformations, simplicity, maximum entropy, and many others. We have discussed the principle of indifference and
we shall discuss simplicity, but all these ideas have turned out to be more or less problematic: at one extreme
inconsistent, at the other, empty. It is nice not to have to recommend any. Remarkably also, the logical view of the
principles of subjective probability exhibits an extension of deductive logic which still manages to remain non-
ampliative. It therefore also respects Hume's argument that there is no sound inductive argument from experiential
data that does not incorporate an inductive premise, and it also tells us what the inductive premise will look like: it will

be a probability assignment that is not deducible from the probability axioms.

Coherence Versus Strict Coherence

Hume's argument has finally come home. Now we begin the constructive phase. | remarked earlier that bestowing the
title of ‘logic’ should bring with it corresponding explanatory rewards. So it will turn out, and the remainder of the
discussion in this chapter will present them, starting with a hitherto puzzling question posed first by Shimony (1955)
and then repeated by Carnap (1971: 111-15), but easily answered once it is recognized that the probability axioms
are laws of consistency. Consider a set of bets on n propositions A1, . . ., A, with corresponding betting quotients p;j.
The classic Dutch Book argument shows that a necessary and sufficient condition for there being, for every set of
stakes Sj, a distribution of truth-values over the A; such that for that distribution there is a non-negative gain to the

bettor (or loss: reverse the signs of the stakes), is obedience to the probability axioms. However, if we substitute
‘positive’ for ‘non- negative’ we also get an interesting result: the necessary and sufficient condition now becomes that
the probability function is in addition strictly positive, that is, it takes the value O only on logical falsehoods. Which of
these two Dutch Book arguments should we take to be the truly normative one: that we should always have the
possibility of a positive gain, or that we should always have the possibility of a nonnegative gain? It might seem that

the second is the more worthwhile
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objective: what is the point of going to a lot of trouble computing and checking probability values just to break even?
On the other hand, strictly positive probability functions are very restrictive. There can be no continuous distributions,
for example, so a whole swathe of standard statistics seems to go out of the window. There does not seem to be a
determinately correct or incorrect answer to the question of what to do, which is why it is a relief to learn that the
problem is purely an artefact of the classic Dutch Book argument. Give up the idea that the probability laws are
justified in terms of the pragmatic criterion of financial prudence and the problem vanishes. Instead, we now have a
decisive objection to adding the condition of strict positivity of the measure: the laws of probability as they stand are

complete.

Updating Rules

Nowhere is the illumination cast by the logical view more revealing, however, than in its clarification of the status, still
subject to controversy, of the updating rule known as (Bayesian) Conditionalization whose passing acquaintance we
have already made (Chapter 4, p. 68). An updating rule is a rule which tells you how you ought, if you ought, to
change your belief function on receipt of new information. Discussion of updating rules has tended to dominate the
Bayesian literature recently, not only because of the intrinsic interest and controversial nature of the topic, but also
because of the keen interest in computer-implementable rules for use in machine- learning programs, the study of
which has emerged as a fast-growing discipline in its own right. At any rate, several such candidate-rules have been
proposed, of which conditionalization is the best known, and indeed is generally, but | shall argue wrongly, regarded as

a core principle if the Bayesian theory.

Recall that conditionalization says that if your current belief function is the probability function P, and you learn that a
proposition A is true, but no more, then you should update P to a new probability function Q according to the rule

QL =P | A) = P(.&A)/P(A)



A is called the conditioning proposition, and Q said to be obtained by

conditionalization on A. We have already noted (Chapter 4, p. 67) that Q is automatically also a probability function. It
is implicit that P(A) ) 0, for otherwise Q is not defined by this rule. We observed (Chapter 4, Appendix 3) that adopting
a theory of learning from experience based on this rule leads to very serious problems; | refer the reader back to that
discussion; on the other hand, it is known that not adopting the rule can result in a Dutch Book (Teller 1973, who,
however, attributed it to David Lewis). Admittedly it is not a proof that anyone who infringes conditionalization at the
time the new data are acquired (and who is willing to bet at their fair betting odds, etc.) can be Dutch Booked; it is
not difficult to see that there can be no Dutch Book against such a person. It is a proof that there exists a Dutch Book
against those who announce in advance that they will follow an updating rule different from conditionalization.
Essentially the same Dutch Book argument for conditionalization is also alleged to establish the following identity,
called by van Fraassen the ‘Reflection Principle’ (1984):

) PB|QB)=r)=rforall r0<r=<1

The Lewis—Teller Dutch Book argument for (1) (and (2)) is widely supposed to show that the only consistent updating
strategy is that of conditionalization. This is not true, and demonstrably not true: on the contrary, there are
circumstances where conditionalization is an inconsistent strategy. Here is a simple example. Suppose B is a
proposition, e.g. ‘2 + 2 = 4’, of whose truth you are P-certain; i.e. P(B) = 1. Suppose also that for whatever reason—
you believe you may be visited by Descartes's Demon, for example—you think it distinctly P- possible that Q(B) will
take some value q less than 1; i.e. P(Q(B) = q) } 0. Given the circumstances, it follows by the probability calculus that
P(B|Q(B) = g) = 1. But suppose at the appropriate time you learn Q(B) = r by introspection; then Q(B) = q. But if you
conditionalize on this information then you must set Q(B) = (B|Q(B)=q) = 1. By a nice parallel, though not a surprising
one once it is realized that (2) is conditionalization in disguise (see Howson 1997a: 198), the counterexample to
conditionalization is also a counterexample to this, for we know that P(B|Q(B) = r) = 1 by the probability calculus
alone. It follows that conditionalization and its close relative (2) are not sound rules (though as the continued
production of ‘proofs’ of conditionalization testifies, this conclusion is still implicitly resisted
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by some; see, for example, van Fraassen 1988: 183—96, and the discussion in Howson 1997b).

One objection that we can immediately foreclose is that ‘second- order’ probabilities, that is, probabilities like Q that
appear as an argument of the function P, have not been and possibly cannot be formally justified. The objection fails
because there is nothing formally second-order about Q, nor is there any need to provide a formal justification for
allowing Q(B) = q as an argument. The justification already exists in the standard (Kolmogorov) mathematics, for Q is
simply a random variable, with parameter B. defined in the possibility space generating the propositions/ events in the
domain of P (it is assumed that these possibilities include information about the agent's future beliefs). It might be
technically more accurate to write ‘Q(B)’ as ‘Qg’, that is, explicitly as a random variable, but because it renders the

discussion more easily intelligible 1 shall persist with the sloppier notation. I am assuming that Q(B) is limited to
finitely many values; these, however, can determine a partition of [0, 1] as fine as desired.

A natural enough question is how there could be a Dutch Book argument for an unsound principle. This certainly wasn't
the case with the ‘synchronic’ probability axioms. Taking the logical view of Bayesian probability suggests that we
should be able to use the deductive parallel to find the answer, and so we can. It is very simple. Consider two truth-
valuations T and @, such that T(A) = T and o(A) = F. Is this an inconsistent assignment of truth-values? Certainly not.
ag(A) = T and o(A) = F would be, but that is not what was presented. Mutatis mutandis, the situation is the same in
the conditionalization case. The derivation, in Appendix 1 of Chapter 4, of the equation P(B|A) = P(B&A)/P(A) where
P(A) ) 0, which we have taken as a definition of P(B|A), is based on interpeting P(B|A) as, in effect, a betting quotient
in a bet that is called off if A is (discovered to be) false, but goes ahead with the betting quotient P(BJA) on B if A is
true. This is an assignment based on the function P. The updating rule Pp(B) is clearly obtained from a different

probability function. These two functions correspond to the two different valuations and, and as we see there is no



question of these being inconsistent. Similarly for the assignments P(B|A) = r and Pg(A) = s where r and s are

unequal.

We can put these rather spare logical points in a more informal context. If | accept a set of statements which is known
to be deductively inconsistent, then the inconsistency becomes in an entirely
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natural way extendable to my belief state as well. But if that set is the union of two consistent sets, one of which
represented my beliefs yesterday and the other my beliefs today, then it is not my state of belief at any time which is
inconsistent. Indeed, | have in effect merely changed my mind about what | accept as true. Similar considerations
apply in the probabilistic situation. The Lewis—Teller Dutch Book shows that a set of betting quotients can be penalized
with sure loss (or equivalently rewarded with sure gain), but the betting quotients refer to both current and future
belief states. Therein is no inconsistency.

lHlustration: ‘Dynamic Modus Ponens’

For dramatic emphasis of the rather trivial points above consider a parallel proposal of a deductive ‘rule’ which we shall
call ‘dynamic modus ponens’, by analogy with what has come to be called (usually approvingly) the ‘dynamic’ rule of
conditionalization. Dynamic modus ponens is the deductive ‘updating rule’ that if at time t | accept as true A—B
(material conditional) and at time t’ } t | increase my knowledge stock by just (the truth of) A then I should accept B
as true at time t’ also. This ‘dynamic rule’ is unsound for just the same reasons the dynamic rule of conditionalization
is. Consider the following example. At time t | accept the material conditional A—*B. But suppose that A is actually
equivalent to the negation of B, and note that in this case A—>B is equivalent to B. My acceptance of A—>B might even
be just a pedantic way of saying | accept B. But at time t + 1, for whatever reason, | decide to accept A as true.
Clearly, it would result in inconsistency in my accepted beliefs at t + 1 if | were to invoke ‘dynamic modus ponens’ and
accept B. To put it another way, deductive consistency requires you cannot simultaneously regard both A and A—B as
true; decide to accept A and you must, to remain consistent, jettison A—*B.

That is not all there is to be said about the spurious rule of conditionalization, however. Recall from our initial
discussion (Chapter 4, p. 65) that a conditional probability function P( . |D) is the restriction of P to the sub-universe
D; in other words, for any given C, P(C|D) measures your degree of belief in C on the additional supposition that D is
true. As Ramsey pointed out, this does not have the implication that P(C|D) is what your degree of belief in C would be
were
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you to learn D. Actually learning D might, as Ramsey observed, cause you to change your conditional degree of belief
in C given D, just as learning A in the ‘dynamic modus ponens’ example positively demands the removal of A—*B from
the stock of things you accept as true. The reason why conditionalization sounds plausible is because it is implicitly
assumed that learning D causes no change in your probability of C conditional on D. But then conditionalization would
not only be plausible, but mandatory. For suppose that if, after learning D, and hence exogenously changing your old
probability P(D) to a new one, Q(D) = 1, you still maintain the same conditional probability P(C|D). Consistency, in the
form of the syntactical constraint of the probability axioms themselves, requires that your probability Q(C) of C is
equal to P(C|D)! From the assumptions Q(D) = 1 and P(C|D) = Q(C|D) it is an easy exercise in the probability calculus
to show that Q(C) = P(C|D). In other words, the conditions under which conditionalization is provably sound are just
those under which modus ponens is provably sound: the acquisition of the new information does not change your

judgements conditional on that information.

But we have seen that there are circumstances in which these conditional judgements cannot be maintained
consistently, for example where D is the proposition Q(B) = q above, q ( 1, and where P(Q(B) = q) } 0 and P(B) = 1.
As we saw, consistency entails that P(B|Q(B) = gq) = 1. And it is easy to see also that consistency requires that
Q(B|Q(B) = g) be equal to q. For a conditional bet on B given Q(B) = q has the payoff table



B Q(B)=q gan

T T 1—q

F T —q
F 0

Q is now of course your current betting rate. The payoff table is clearly that of a conditional bet on B given Q(B) = g at

the betting rate q.

Conditionalization and Modus Ponens

We have pointed to some analogies between modus ponens and a sound, synchronic, form of conditionalization. It is

interesting to see
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how far the analogy can be pushed. We shall now digress from the main discussion to look into this; the reader who
isn't interested can just skip the next couple of sections.

It has sometimes been claimed that probabilistic reasoning permits no rule of detachment similar to modus ponens.
This is incorrect. As we shall see, the rules are formally very similar, so similar that it is tempting to see one as merely
a special case of the other. Unfortunately, that is not possible: though the logical distance between them diminishes, it

never quite vanishes.
We saw in the previous section that a probabilistic rule of the form

QA)=1 QB|A) =1
3) Q(B)=r

is demonstrably sound. Substituting P(BIA) for r, we obtain sound instances of the principle of conditionalization:

QA)=1  QB|A)=PB|A)
Q(B)=P(B|A)

4

It might be objected that (3), and hence (4), is trivial, since once you learn A then Q(BJ]A) just is Q(B). The objection
is without merit. A parallel charge would be that the standard expression of modus ponens

A A—D
(5) B

is likewise trivial because, given that the truth-value of A is T, the truth-value of A-—=*B is identical to that of B, that is,
where = symbolizes semantic entailment A = B+*(A—B). This suggests that either both (3) and (4) are trivial or
neither are (A and B here can be taken to refer to propositions or to sentences of a formal language; since the former
can be regarded as equivalence classes of the latter the equivocation is harmless).

In fact, neither (3) nor (4) are trivial. Both are inference rules whose soundness is demonstrable by appeal to
corresponding semantic criteria. Modus ponens is usually the sole inference rule in Hilbert-style axiomatizations of the

propositional calculus, where

its role is to generate the complete set of identically true sentences from a given proper subset of such sentences, the
logical axioms. (3) generates the complete set of values of the new probability function Q from the set of identities
Q(BJA) = P(BJA), as in (4). These identities characterize the classic applications of the Bayesian theory where the
learning of the conditioning proposition A is assumed not to change any of the probabilities conditional on A. For a long
time these applications were regarded as so typical that conditionalization was not identified explicitly as an updating
rule, being simply taken for granted. Only recently has it come to be appreciated that there are anomalous cases,
typically involving conditioning propositions of a reflexive character like the example above, leading in effect to



diagonal arguments somewhat analogous to those used by Goédel, Church, and Tarski to demonstrate various types of
inbuilt limitation in deductive theories. The capacity for generating diagonalizable assertions is guaranteed once
propositions like ‘Q(C) = r’ are included in the domain of P: substituting B for C in ‘P(B|Q(C) = r)’, where P(B) = 1,
P(Q(C) =) } 0,and r { 1, is a diagonalization implicitly asserting that Q cannot be obtained by conditionalizing on
‘QEC) =r.

(5) is of course sound relative to the semantic criterion of truth- transmission: if the two upper sentences are both
satisfiable by a valuation T, then so is the lower sentence. (3) is sound relative to the semantic criterion of coherence:
that the value of Q(B) is equal to the value of Q(B|A) given Q(A) = 1 is a consequence of the probability axioms
together with Q(A) = 1, a fact brought out clearly in the meta-rule which has an obvious formal similarity to (3):

A =1 TA—=DB)=r
(6) r(B)=r

where r is either 1 (true) or O (false). Observe that when r = 1 in the probabilistic rule of conditionalization (3) and in
the general form (6) of modus ponens, we seem to have two models for reasoning about conditionals when both the
conditional ‘assertion’ and its ‘antecedent’ are accepted (I use scare quotes because, as we shall see, it is is far from
trivial that we are dealing with assertions qua elements of a propositional algebra).

The obvious formal similarity between (3) and (6) suggests, however, a systematic relationship between probabilities
and
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truth-valuations on conditionals, a suggestion reinforced by the facts that t in (6) is formally a probability function
taking only the two extreme values O and 1 (clearly, T adds over disjunctions of mutually inconsistent sentences), and
that if the arrow is that of the material conditional then Q(B]A) can be replaced by Q(A—*B) in (4), since if Q(A) = 1
then Q(BJA) = Q(A—*B). On the other hand, where — is material implication, Q(A—*B) = Q(B]A) only in exceptional

circumstances even where the latter is defined, since
QB|A)=QA —B) - Q(—A).Q(-B|A)

giving equality between Q(B]A) and Q(A—*B) only where Q(A) = 1 or Q(BJA) = 1 (these are of course Lewis's
assertibility conditions for the material conditional (1973: 306)). The force of this objection is reduced by the
observations that (i) the material conditional is not the only or indeed necessarily the best representation of an
indicative conditional, and indeed it is widely regarded as seriously defective in that role, and (ii), (6) should arguably
be robust over any satisfactory account of a conditional assertion, since if the antecedent of such an assertion is true
then intuitively the conditional, of whatever hue, is true or false according to whether its conclusion is true or false.

The two models of conditional reasoning, the probabilistic, expressed in the rule of conditionalization and the deductive,
expressed in modus ponens, formally coincide when P(BJA) is equal to 1 or 0. This is pleasing, but it is also
suggestive. What it suggests is that conditionalization is a generalization of modus ponens with the term ‘B|A’ denoting
some form of conditional assertion. The suggestion runs up sharply against Lewis's so-called trivialization theorems,
which imply that it is not true that for each A, B in the domain of any probability function P there is a ‘conditional’ W
such that P(W) = P(B]A) (the proof, a fairly elementary exercise in the probability calculus, is given in Lewis 1973).
The assertion so denied is usually referred to as Adams's thesis or Adams's principle (after Ernest Adams who proposed
it in Adams 1975). Admittedly, and as Lewis himself was the first to point out, his theorems assume that the
probability function satisfies the usual axioms and is defined on a Boolean algebra of events/propositions. There have
been attempts to circumvent these assumptions consistently with maintaining Adams's principle. De Finetti himself
proposed a three-valued logic of conditional assertions, which are suggestively written in the form B|A, with values
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‘true’, ‘false’, and ‘void’, incorporating arbitrary composition with conjunction, disjunction, and negation. According to
this alleged logic B|A is evaluated as true if A and B are both true, false if A is true and B false, and as void in all
other cases. The Strong Kleene three-valued truth tables evaluate conjunctions, disjunctions, and negations (these



rules are identical to tukasiewicz's tables for those connectives). Though classical two-valued logic can be obtained by
identifying sentences A not containing | with A|T, where T is a classical tautology, the full three-valued logic is not
Boolean. Factored by truth-table equivalence it is a distributive lattice, with uniqgue maximal element T|T and minimal
element L|T, where L is a classical contradiction (so neither contains the connective |). But it is not a complemented
lattice: —(B|A) is equivalent to —B|]A and is an involution only.

In a recent discussion of de Finetti's conditional logic Milne (1997) argues that the Kleene Strong rules are justified in
the context of a conditional logic in terms of the notions of a complementary conditional bet (negation), and of infima
and supreme relative to an ordering of bets according to which if the lesser is won so is the greater, and if the greater
is lost so is the lesser. In effect, the truth-values of compounds are being identified with the notions of a compound
bet's being won, lost, or called off, and this same identification underlies the ‘truth-conditions’ for the conditional
events B|A themselves: ‘A bet on B conditional on A is in effect a bet on the conditional assertion B|A, won when it is
true, lost when it is false, called off when it is void’ (Milne, 1997: 213). Thus it looks as if we have coherence again
acting as a semantic underpinning for a logic, this time a non- Boolean logic of conditionals trivially satisfying Adams's
principle when any probability function is defined on its sentences.

| think this view of what has been achieved should be resisted. First, it is gratuitous to identify the conditions for a
conditional bet on B given A to be won, lost, or called off with corresponding truth- values for a conditional assertion
BJA. Secondly, the identification has consequences that to my mind effectively deny these postulated assertions the
status of conditionals in any legitimate sense. The most telling is this: even when A does not contain |, A]A is not
always true. For if A is false then AJA is void. But the sentence ‘If Bloggs is guilty then Bloggs is guilty’ is surely true
independently of whether Bloggs is in fact guilty. The principle of ‘conditional introduction’ in deductive logic is rightly
regarded as fundamental: it tells us that if B is
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deducible from A then the conditional ‘If A then B’ must be true. Well, A is certainly deducible from A even in this
strange logic, yet as we see we are precluded from assuming that the associated conditional is always true. A closely
related objection is that these alleged conditionals violate the principle that conditional assertions should be genuinely
conditional, that is, they should have no categorical implication. Yet the truth of B|A actually entails the truth of the
antecedent A. Admittedly, the ordinary two-valued material conditional A—B has some anomalous properties too, but
in contrast to B|A the truth of A—B has no categorical implication, while the universal truth of A—A is guaranteed.
Moreover, some of the most counterintuitive properties of A—>B are shared by B|A (Milne 1997: 224). Be all that as it
may, reasoning with | is certainly not conditional reasoning as anybody would normally understand it. While it is true
that a three-valued binary connective can consistently be introduced which satisfies Adams's principle, that connective
is not a conditional operator in any ordinary sense of the word: it is just something that obeys Adams's principle.

Since the alternative conditional logics satisfying Adams's principle appear to be even less acceptable than this one
(see Milne 1997 for a description of their salient features), Lewis's result seems reasonably robust. What then are
conditional (Bayesian) probabilities P(B|A) probabilities of? This way of posing the question is mislead- ing—literally,
since it leads into the cul-de-sac of conditional assertions. It is better to ask simply what is the best way of
interpreting Bayesian conditional probabilities. Well, we know how they are to be interpreted: P(B|A) is your probability
of B on the supposition that A is true, without any parallel commitment to degrees of belief in the truth of conditional
assertions. Indeed, on this understanding the expression ‘B|A’ is a term of the metalanguage of A and B as opposed to
an object-language sentence (or equivalence class of sentences). We are in effect in the situation, familiar from
discussions of modelling truth and the modal ‘necessary’, of deciding whether a type of reasoning is best modelled by
an expansion of an object language, or by a restriction to a metalanguage. In all cases there is a loss entailed by going
object-linguistically. In the case of ‘is true’ and ‘is necessary’, a simple Liar-type argument shows that the intuitively
obvious conditions TA—A" and NA—A" cannot consistently be maintained if truth (T) and necessity (N) are modelled as

object-linguistically definable predicates. In the case of truth this bullet is bitten and truth
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is now standardly taken to be an irreduceably metalinguistic predicate, whereas in modal logic necessity becomes a



unary object- language operator, foreclosing the formulation of reflexive sentences like ‘This sentence is necessary’ (for
an extended discussion, see McGee 1988: ch. 1). In the present context, expanding the object language by
incorporating B|A as a sentence satisfying Adams's principle merely results in the failure of B|A to behave like an
acceptable conditional.

Ramsey's Views

| have mentioned that Ramsey's views on how conditional probabilities are interpreted do not support a view of
conditionalization as a uniformly sound rule. But inspection of the relevant passages in Ramsey's paper also reveals the
following remarks:

Obviously if p is the fact observed, my degree of belief in q after the observation should be equal to my degree
of belief in g given p before, or by the multiplication rule to the quotient of my degree of belief in pq by my
degree of belief in p. When my degrees of belief change in this way we can say that they have been changed
consistently by my observation. (1931: 192; italics added)

Contrast this with the remark earlier in the same paper:

‘the degree of belief in p given q’ . . . does not mean the degree of belief . . . which the subject would have in
p if he knew g (p.180)

These two statements taken together appear to contradict each other. But Ramsey also has an answer why they do
not:

for knowledge of g might for psychological reasons profoundly alter his whole system of beliefs. (ibid.)

That as a matter of psychological fact knowledge of g might act as an external shock disrupting one's conditional
degrees of belief given q does not conflict with Ramsey's view that the result is still an inconsistent belief-change.
What, however, in a rare slip, he fails to appreciate is that knowledge of g might, not merely for psychological but for
logical reasons, for reasons of consistency itself, force the rescission of the relevant conditional probabilities. In our
counterexample of the mind-changing drug the agent had a non-zero degree of belief in the proposition g that their
degree of belief in p would change, and prior to learning g was certain, to degree 1, that p was
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true. Consistency, in the form of the rules of the probability calculus itself, demands that the degree of belief in p
given q is also 1. But learning g means knowing that the degree of belief in p is now less than 1; to equate that new
degree of belief with that in p given q before learning g is therefore to be inconsistent.

‘Probability Kinematics’

The objections to the rule of dynamic conditionalization are necessarily objections also to a generalization of it known
variously as Jeffrey's rule, Jeffrey conditionalization, and probability kinematics. Jeffrey introduced this rule to cope
with what he saw as an undue restrictiveness on the part of ‘standard’ conditionalization, which we shall henceforward
call Bayesian conditionalization, namely that it could accommodate only the learning of the truth of a proposition, the
conditioning proposition, with probability one. Jeffrey's rule is a rule for redistributing probability over the entire
domain of your (consistent) belief function after an exogenous shift in the probability of one or (subject to a
qualification | shall mention) more propositions, maybe due to some unarticulated and possible inarticulable sense
impression, like forming successive impressions of the colour of some fabric seen at first in dim and then in stronger
light (Jeffrey's own example). Suppose that A is the unique proposition on which such a shift occurs, from p to g. Let
your redistributed probability be given by the function Q, where your old function is P. Then Jeffrey's rule is this:

QL) =P(|A)a+P(| —A)(1-q)
Clearly Jeffrey's rule tends continuously to Bayesian conditionalization as q tends to 1 or O.

A technical problem with Jeffrey's rule is that it can only deal with exogenous shifts on partitions, that is, exclusive and



exhaustive sets of propositions. Above we see it applied to the partition {A, —A}, and the generalization to any
countable partition Aq, Ay, . . . is clear. What is not clear, and indeed appears not to be tractable, is how to amend it

to the case where some arbitrary set of propositions suffers an exogenous shift. But technical problems are not the
principal issue. Dynamic rules are not sound. In fact, there is a dynamic Dutch

Book for Jeffrey's rule, which proceeds from noting that a necessary and sufficient condition for Jeffrey's rule is that P(
L JA) =Q( . |JA)and P(. | — A) = Q( .| —A), and then showing that anyone who announced any departure from these
equations as a planned mode of updating can be dynamically Dutch Booked (Armendt 1980). And there are other
‘proofs’ besides (see Howson 1997a: for a discussion). But because Jeffrey's rule is a generalization of Bayesian
conditionalization the sorts of counterexample we have looked at in connection with Bayesian conditionalization are
counterexamples also to Jeffrey's rule. According to the view argued for here the two families of equations P( . |A) =
Q(. 1A and P(. | —A) =Q(.]—A) are to be viewed, as is the single family Q( . |A) = P( . |A) in Bayesian
conditionalization, not as unconditionally valid principles but merely as conditions of the (synchronic) validity of
Jeffrey's rule. Jeffrey's rule itself is therefore like Bayesian conditionalization a rule of only conditional validity, valid
just when those pairs of equations are satisfied—which, of course, they may not be. It is time to move on.

Mathematics and Logic

Deductive logic, as we know, is capable of adjudicating a much greater class of inferences than those merely involving
empirical- factual statements. One of its most conspicuous successes is its application to mathematics and even logic
itself, where very deep results have been obtained (in the work of Gédel, Church, Tarski, Skolem, Cohen, and others).
The principal application of Bayesian logic has been to the problem of induction in empirical science, but its scope
certainly exceeds that and is in fact no less wide than that of deductive logic itself. For example, in the discussion of
conditionalization we have seen that propositions about the agent's probabilities can appear in the argument-place of
his or her own probability function. Any well-formed assertion can have a probability predicated of it, even the
propositions of mathematics and of meta-logic, like the statement that such and such a statement is a truth of logic.
All that consistency requires is that such statements obey the probability axioms.

And thereby hangs a problem, or so it seems. In presenting the probability calculus in Chapter 4 we did so in the
conceptual context of a state-space S and a class of propositions defined in that space: in other words, to each such
proposition A there corresponded a

determinate class of possibilities in S which ‘made’ A true. But suppose A is a statement of mathematics. Then,
according to a hallowed tradition in analytic philosophy A is necessarily true or necessarily false, and hence should
presumably be true in all possible states of affairs or in none. Hence A is representable as one of only two subsets of
S: the empty set @ or S itself. It is thereby to all intents and purposes equivalent to a logical truth or a logical
falsehood. Hence by the probability calculus the probability assigned to A must be O or 1. At least A does get assigned
a probability, but a trivial one, rendering the Bayesian logic completely useless as an account of how ordinary
sublunary mortals can have consistent non-trivial degrees of belief in the propositions of mathematics or logic—hence
the frequent charge that the Bayesian theory presupposes that agents are logically and mathematically omniscient.

Perhaps surprisingly, none of this is true. For the last seventy or so years, and for reasons which are widely held to be
very good ones, mathematics has not been thought to be a system of logical truths. Even set theory, the most abstract
mathematical theory to date, which is still also regarded as a more or less acceptable foundation for all mathematics,
does not consist of logical truths. On the contrary, in its standard formalization (known as ZFC, Zermelo- Fraenkel set
theory with the Axiom of Choice) there is an uncountable infinity of possible structures interpreting the same formal
language in which the axioms of ZFC are not all jointly true; and none of the so-called proper axioms of ZFC is a
logical truth. In other words, the state-space of mathematical statements is a class of mathematical structures, in
some of which, if it is not a contradiction, such a statement will not be true. Formally, the situation is no different from
the one we have been facing for so-called factual statements.



Nor is that all. Even if A is a logical truth, the statement that A is a logical truth is not itself in general a logical truth.
If true, that statement is a synthetic consequence of ZFC and also, by the completeness theorem for first-order logic,
and after a suitable coding a la Gédel of formulas into the natural numbers, of a suitable subtheory of the standard
axioms of number theory, Peano's axioms (‘Being a logical truth’ is coded as an arithmetical formula defining what is

i . . .
called a ~1 property of numbers; these are certainly not logical truths). In other words, statements of meta-logic,
statements like ‘A is a logical truth’, ‘A is a consequence of the set Il of assumptions’,
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and so on, are synthetic mathematical statements, true or false in the standard model of the appropriate mathematical
theory.

It might be queried whether merely having the form of fact-stating assertions—which all that has been shown—is
enough to permit the assimilation of mathematical assertions to empirical-factual ones. After all, it is a contingent
matter whether a statement of empirical fact is true or not, but it is not presumably a contingent matter whether ‘there
is an infinite number of twin-primes’ is true. Even Kant, who agreed that mathematics is synthetic, still denied that it
was contingent. But contingency in any real sense (whatever that might be) is beside the point. We are not talking
here of chances of things being as they are in some presumed indeterministic context; and anyway, as we shall see
later, it is quite possible to have chance distributions where there is no such presumption. We are talking of the
possibility of consistently being able to entertain doubt about the truth of a proposition that is not logically true. The
natural fear is that in trying to distribute degrees of belief with the same freedom that you would over empirical
statements, inconsistency might arise because logical relations already constrain the distribution of probabilities
according to the probability axioms. For example, the probability axioms tell us that if any proposition A is a deductive
consequence of another B, and P(B) } 0, then P(A|B) must be equal to 1. Can we consistently assign a probability less
than 1 to the statement that B entails A, even when it does? The answer is ‘yes’: there is no more danger of
inconsistency than in assigning a probability less than one to any statement which is factually true. Similarly, the
statement ‘A is a logical truth’ may be true, but we can consistently assign a probability less than 1 to it nevertheless.
For it is false as a matter of fact, not empirical fact, to be sure, but fact for all that, for there are certainly ‘worlds’ or
structures in which it is true.

And that is really the fundamental point. The probability axioms do not discriminate between different sorts of non-
logical truth and falsity, and because they do not no inconsistency can arise through treating meta-logical and
mathematical statements generally no differently from statements of empirical fact. Indeed, it is probably better, at
any rate for our purposes, to regard the distinction between mathematical and ‘ordinary’ factual truth as wholly
artificial. From the point of view of being able consistently to assign non-trivial probabilities, they amount to the same

thing. This is not to endorse a view that mathematics by itself ‘says anything’ about matters of empirical

fact. It does not. When interpreted in the terms of a physical theory it is of course a different matter. Indeed, in
apportioning credit for the empirical success of theories in the mathematical empirical sciences it has turned out to be
very difficult to factor out the contribution of the mathematics itself. The problem is obviously not trivial, since the
fundamental principles of such theories are actually mathematical equations. Attempts like that of Field (1980) to show
that the pure mathematics is a conservative extension of the real empirical theory have foundered on the way that
mathematics, and rather refined mathematics to boot, is employed to deliver the theorems (so- called representation
theorems) that he thinks establish the case. It may well be that we shall eventually come to believe that mathematics
is not conservative at all in this way: for what it is worth I myself think this not at all improbable.

But this is to digress. Allowing intermediate probabilities to mathematical hypotheses brings with it some interesting
possibilities. For example, if we don't know that B entails A, and assign a correspondingly non-unit probability to the
proposition ‘B entails A’, then we might also be inclined to set P(A|B) at less than 1. Since we have not so far made it
a condition that P is a total function on a field of propositions, merely that it is extendable to one, we do not have to
assign any value to the conditional probability: we have the luxury of being able to be agnostic occasionally. Actually
to assign a value to the conditional probability of A given B less than 1 would be inconsistent, of course; but the



possibility of inconsistency is like that of death, a condition of life, an omni-present hazard. We have to live with it.
When we find that we are in peril we adjust our behaviour accordingly. So when we discover that B entails A we adjust
P(A|B) to 1. At any rate, there is no reason to believe that we cannot have a Bayesian theory of mathematical and
logical discovery just as much as we can have one of scientific discovery. We shall return to this point in the next
chapter.

A formal theory of Bayesian logical learning was proposed in 1983 by Garber, and subsequently excited a great deal of
discussion (a great deal of the interest in Garber's theory arose because it seemed to offer a solution to the problem of
‘old evidence’, a problem—or alleged problem—which we shall discuss in Chapter 8). In Garber's theory a probability
function P is defined on a formal logical language containing sentences like ‘A deductively entails B’, ‘A is a logical
truth’, etc., in addition to a set of sentential ‘atoms’ A, B, C, etc.,

and certain constraints are imposed on P additionally to those of the probability axioms, while one of the latter is
dropped. The principal additional constraint is a representation of the deductive rule of modus ponens: P(‘A entails
B'&A) = P(‘A entails B'&A&B), and the discarded probability axiom is that if A is a logical truth then P(A) = 1. The
reason for discarding this axiom is precisely to accommodate the possibility of an agent's remaining a rational reasoner
and failing to assign A the maximal probability even when A is a logical truth, because he or she simply does not know
that logical fact; and ditto, when A is a logical falsehood.

Rational or not, I do not think that such an abridgement serves any useful purpose, or is even permissible, in a theory
of consistent reasoning. Nor do | think that the additions are justified either. As we have seen, meta-logic is
mathematics, and according to the view adopted not only here but by most logicians, mathematics is synthetic, not
itself logic. On the other hand, it might still be thought that there should be some systematic relation, to be registered
in an explicit constraint, between P(A) and the agent believing that A is/is not a logical truth: if you are far from
certain that A is a logical truth then surely consistency in a broad sense requires that you should set P(A) at less than
1. But to grant that clearly runs the risk, actually a near-certainty, of a conflict with the condition that P(A) = 1 if Ais
a logical truth. It would seem that dropping that condition really is the only way to obtain a realistic, ‘humanized
Bayesianism’ (Earman 1992: 124): the condition of logical omniscience implicit in that probability axiom is neither
‘humanized’ nor realistic, and the axiom must go.

No. This line of criticism (it informs Earman's own otherwise excellent discussion) rests on a mistaken view of the
nature of formal models of reasoning. Nobody presumably charges formal deductive logic with assuming that agents
are logically omniscient. So why do so with a theory of sound probabilistic reasoning? A set of constraints determining
consistency does not by itself assume that anyone does or even can satisfy them in every instance. To weaken them so
that they are all humanly achievable is a misguided enterprise, rather like weakening the deductive principle that a
contradiction implies everything to one stating merely that known contradictions imply everything.

There is one final objection to treating the hypotheses of mathematics as just like ordinary factual hypotheses. When

we conjecture
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that a mathematical statement is true—the objection proceeds—we are not really conjecturing that it is true; what we
are really conjecturing is that it is a deductive consequence of the appropriate mathematical theory, or axiom system,
that is taken to characterize that particular field of investigation. We might even be conjecturing that it follows from
ZFC itself, the foundational theory, as it is still often regarded, for all mathematics.

This is badly wrong. For a start, as we have seen asking whether A follows from B is asking a factual question: we are
asking whether it is true that A follows from B, and that is a mathematical question. But there is even more wrong
than that. Godel showed that no axiom system for any interesting class of mathematical statements is complete if it is
consistent, and one of the most interesting questions is whether our current systems, like Peano arithmetic or ZFC
itself, are consistent. It is certainly a question that has preoccupied many mathematicians (including, of course, Hilbert:
to prove consistency in some absolute way was one of his famous list of outstanding unsolved problems). But as we



know, the question of consistency can be formulated as a strictly mathematical question. Goédel showed that it is even
a question that has a purely arithmetical formulation, and that it could not be proved in any system for which the
enquiry is made if that system is consistent. But this fact does not prevent people asking the question. They want to
know the answer, even for ZFC, but they do not, or should not, want to know if ZFC can prove that ZFC is consistent.
If it can, then by Gddel's second incompleteness theorem ZFC is inconsistent. Might it be the case that they are looking
for some acceptable extension of ZFC in which it can be proved that ZFC is consistent? Possibly, but that would also
not prevent them from wondering whether that extension itself was consistent. It is simply not realistic to say that
they are looking for a sequence of extensions of ZFC in which each can be proved consistent by all its successors. They
want to know whether in fact ZFC is consistent. And once it is allowed that some mathematical statements are factual,
the objection is fatally undermined. For why should they not all be? After all, that is what (most) people think. But that
is enough on this topic for now. In Chapter 8 we shall look at some of the applications of the Bayesian logic in logical,
or rather meta-logical, contexts.

Utility: Ramsey and Others

Nothing worthwhile is gained without some cost (this could be the (—1)th law of thermodynamics), and to do its job
satisfactorily Bayes's definition must be accompanied by some qualifications. To the most important of these | now
turn. Let us go back to that definition again. Suitably modulated into a measure of subjective probability Bayes's
‘definition’ makes your (personal) probability of A your personal estimate of the fair amount by which the value of an
option ‘N if A’ should be discounted to compensate for the uncertainty of A; the ‘fair amount’ we can take to mean ‘the
quantity which you believe would give no calculable advantage to either side of the transaction’. | have put ‘definition’
in quotes because the fact is that we have some informal idea of probability; Bayes's definition is a definition only for
the purposes of developing a mathematical theory of uncertainty based on a formally precise notion. As we saw from
Appendix 1 to Chapter 4, Bayes is able to show that, subject to some simple consistency constraints, probability so
defined is formally a probability in the sense of the probability axioms.

As a way of eliciting your degree of belief in A Bayes's definition will only be successful if the proportional amount of
the discount reflects only your estimate of A's uncertainty. This discounted value should therefore not depend on the
reference currency used, and in particular p must not depend on the quantity N. But here we have to confront the
familiar phenomenon of the ‘diminishing marginal utility of money’, that is, the fact that the value of an amount N of
currency is not proportional to N but such that its marginal value (rate of increase) decreases with increasing N, a fact
first noted by another member of the famous Bernoulli family, Daniel Bernoulli, writing shortly before Hume, who
employed a marginally diminishing function of N as the ‘utility’ of N to solve the notorious St Petersburg problem (see
below, p. 157).

A way often suggested out of this alleged difficulty (to what extent it is a difficulty will be assessed later) is to restrict
consideration to the interval of values of N in which N is roughly proportional to utility. That is all very well, but what
is utility and how is it measured? Until those questions are answered the proposal seems too vague, if not actually
question-begging, to be acted on. So at any rate it seemed to Ramsey, whose response in his seminal paper (1931)
was to develop from as unexceptionable postulates as possible a general theory of

utility within which the problem of the value of uncertain options could be attacked systematically. In so doing he set a
trend for the foundations of Bayesian probability that flourishes to the present. In view of both this and the inherent
interest and importance of Ramsey's and his successors' achievements, a brief account of their work over the last half-
decade is in order.

Ramsey did not give a detailed presentation of his theory; only proof-sketches of his main results accompany the
principal definitions and postulates. The postulates, apart from those there for purely mathematical reasons, provided
the model for all later work, imposing consistency constraints on a binary preference relation, defined on possible
states of affairs, or ‘worlds’ as Ramsey called them, and also on options whose payoffs are such ‘worlds’ (it is also
implicitly assumed by Ramsey that the domain of the preference relation is closed under the formation of binary



options whose payoffs are already in it). These ‘worlds’ are to be thought of as the various possible states of affairs
that have value in some sense to an agent; namely that the agent conceives as more or less desirable. Ramsey
showed that his postulates implied three main results. The first is the existence of a family F of functions, now usually
called utility functions, defined on a domain including the class G of possible worlds, such that for all u in F, and all X,
Y in G, X is preferred to Y if and only if u(X) ) u(Y), and for any u, u” in F and Z in G, there are real numbers a and b,
a } 0, such that u(z) = au’ (Z) + b. This implies that for all V, W, X, Y in G

uY) —ulV) B WY —u(V)
(W) —u(X) wi W) —uiX)

that is, ratios of utility differences are the same whichever utility function is used to measure them. The most
significant feature of this result is that utility is not a primitive notion, but ‘emerges’ as an epiphenomenal property of
the preference relation itself, giving an ‘almost unique’ numerical representation of the preference ordering.

Ramsey's second result follows immediately from the invariance of ratios of utility differences. It is that we can define a
unique probability function P in the manner of Bayes's own definition but where the options are measured in utility
units. Ramsey's actual procedure is as follows. If you are indifferent between Z for sure and the option
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‘W if A, X if not’, then your probability P(A) of A is defined to be the ratio

u(Z) — u(X)

ul W) —ulx)
(it is simply assumed by Ramsey that this will be independent of the reference quantities W, X, Z). Note that since we
can always find a u in F such that u(X) = 0, we have here in effect Bayes's definition with u(Z) the discounted price of
‘W if A'. It is straightforward to show from Ramsey's postulates for a consistent preference ordering that, so defined, P
satisfies the probability axioms I-11l. Thus one's preferences if consistent determine a unique probability function

according to the ratio above. In other words, not only is an almost unique utility function an epiphenomenon of a
consistent preference ordering: so too is a unique probability function.

Ramsey's final result extends the way in which utility is merely a numerical reflection of the preference ordering. He
supposed that this ordering was not merely over states of affairs in G, but also over options of the form ‘X if A, Y if —
A’, for any proposition A. Ramsey's third result follows almost immediately from the way in which P( . ) is defined.
Suppose that you are indifferent between Z for certain and the option ‘W if A, X if not’. Then from the definition of p =
P(A) we have after some simplification

nZ) = pu(W) +u(X)(1l —pl.
But we also have

u(Z) =u[W if A, X if not].
Hence

%) u[Wif A, X if not] = pu(W) + (1 — pju(X);

that is, the utility of a binary option is its expected utility. By considering suitably compounded binary options this

result can be generalized to the case of options involving n exclusive and exhaustive propositions Aq, . . . , Ay, with

respective payoffs X1, . . ., Xy, and we obtain

UG A XK H A, L X A | =puy + pona + .+ p,u
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where p;j = P(Aj) and u; = u(X;j). It follows that one such n-fold option is preferred to another if and only if the

expected utility of the first is greater than that of the second. It can also be shown that if such an inequality holds for
one utility function in F then it holds for all. This result is perhaps less remarkable when it is realized that the expected



utility principle (7) is equivalent to defining P(A) in the way Ramsey does; it is easy to see that that definition is
implied by it. So to some extent the principle is covertly being assumed in the definition of P(A).

To appreciate the significance of these results we have to go back to the very beginnings of the mathematical theory
of probability itself. For some time after the initial developments, in the second half of the seventeenth century, there
were two notions, probability and expectation, which, though not independent of each other, seemed equally
fundamental. The expectation of an uncertain option was regarded as the fair price to pay for it, and probability was
often defined in terms of this fair price, in the manner of Bayes's own definition which explicitly calls the price the
expectation of the option. Alternatively, the expectation, or expected value, of an option of the form ‘N if A, M if not’
was also regarded as definable in terms of probability, equal by definition to the quantity NP(A) + M[1-P(A)]. More
general options, of the form ‘Nq if Ay, No if Ay, . . ., N if A, . . ., where the A;j are a set of mutually inconsistent
and exhaustive propositions, possibly infinite in number, were also considered, whose expectations were, by extension,
equal to £ NjP(A;) (in contemporary terminology any such option is called a random variable taking the value N; for all
outcomes making A; true). Clearly, the probability P(A) of a proposition A can be recovered from the knowledge of the

expectation of ‘N if A’, that is, of ‘M if A, O if not’, defined in this way, since the expected value is just NP(A), and
hence P(A) is the ratio of this expectation divided by N, a la Bayes.

Gradually through the eighteenth century probability began to be identified as the more basic concept, and expectation
as the derivative one, with expectations still retaining their earlier interpretation as fair prices for uncertain options,
expressed in the appropriate units. This procedure implicitly posed two questions: (i) what are the appropriate units?
and (ii), exactly why is the fair price equal to the expected value defined as the sum of the products of the
probabilities with the respective payoffs in these ‘appropriate’ units? Is this an
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independent axiom or is it derivable from more fundamental assumptions?

We have mentioned the St Petersburg paradox. It was this that suggested to Daniel Bernoulli that the units in question
(i) must be utility, or ‘value’, units and not currency (Bernoulli's paper, (1738) is in Latin; Martin-L6f (1985) provides a
critical modern commentary). The ‘paradox’ concerns the following gambling game. A fair coin is repeatedly tossed

until a head occurs, when the game stops. The payoff is 2" ducats if the head occurs at the nth toss. That the coin is

fair means that the ‘correct’ view of the probability of a head at the nth toss is 27" (you can justify this by regarding
the probabilities as implicitly conditional on the coin being fair; | shall discuss this procedure in more detail in the next
chapter). Assume that the fair price for receiving this payoff is the expected cash value of the option, ‘2 ducats if the

first toss is a head, 4 ducats if the second is a head, . . . , 2" ducats if the nth toss is a head, . . .. This expectation is
equalto1 +1 +1 + 1+ ..., i.e.to infinitely many, ducats. But (so it seemed to Daniel Bernoulli, and indeed to
virtually everyone else) no rational person would ever contemplate paying more than a finite amount, and not even an

especially large one, for the option.

Bernoulli's solution to the problem was not to dispense with the idea that expectations determine fair prices, but to
claim that expected utility not expected cash-value was the relevant expectation, where the utility u(x) of an additional
X ducats (or any other currency) over an additional fortune of a ducats increases increasingly slowly compared with x.
Bernoulli's suggestion was that the rate of increase of u(x) was actually proportional to 1/(x + a), which implies that
u(x) is itself proportional to log(x + a). It is actually a linear function of log(x + a) but the constant can be taken to be
0, and so by adjusting the base of the logarithm we can take u(x) to be just log(x + a). This seems to solve the St
Petersburg problem. To make the calculation simple suppose a = 0. Substituting log(x) for x in the expected value

calculation (assuming a zero initial fortune) yields not infinity but a finite quantity of the order of & i/21 (= 2).
An obvious problem with Daniel Bernoulli's solution, which, however, he did not seem to have noticed, is that suitably
readjusting the payoffs brings the problem back again, even with the payoffs measured in his utility units. Thus,

instead of paying 21 ducats on the appearance of the first head at the ith toss (if a head appears at all),
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now pay 2 itself raised to the power of 2: using Bernoulli's logarithmic utility function the problem now reappears in
virtually its original form (exactly its original form if the logarithms are to the base 2), with an expected utility of
infinity. The problem with logarithmic measures of utility is that they are unbounded above, and the St Petersburg
problem shows that this should not be a feature of any account which is to explain how individuals rank their
preferences for gambles with large enough payoffs. So Bernoulli's theory did not satisfactorily answer question (i). It
did not answer (ii) at all: Bernoulli simply took over the expected utility principle, but completely failed to explain why
it should be adopted.

However, these questions seem at any rate to some extent answered with Ramsey's demonstration that utility itself is
merely the projection onto a suitable numerical scale of one's qualitative preference ordering, and that, so long as they
satisfy minimal consistency constraints, the subject's preferences among uncertain options are reflected on the utility
scale in terms of the corresponding numerical ordering of their expected utilities. Ramsey's work was not fully
recognized in the wider mathematical community until much later, and before it did the American statistician L. J.
Savage had more or less independently proved Ramsey's results, giving systematic proofs where Ramsey had only
given proof-sketches, and in a mathematical setting both more general and more closely related to the formal
development of probability theory that by that time had become standard (Savage 1954). Also, Ramsey's system
depends crucially on the existence of what he called an ‘ethically neutral’ proposition, that is, one whose truth-value is
not regarded as having independent value in itself, and, as we noted, his explicit definition of probability is merely a
reformulation of the expected utility principle. Savage's system does not need an ethically neutral proposition to exist,
and it generates in a more organic way both the expected utility principle and a unique probability function that is
shown to be determined implicitly by the agent's preference relation (this, like the existence of a utility function unique
up to positive affine transformations, is proved by means of a so-called representation theorem).

As a result, it was Savage's axiomatization of subjective utility and probability that became canonical. These results
were not the end of the story about utility, however: that is still far from over. Savage's theory has itself come in for a
good deal of criticism. Empirical work seems to show fairly entrenched violations of one in particular of
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Savage's postulates, the so-called Sure Thing principle, 2

2 This states that if one act is preferred to another on the assumption some proposition B is true, and they have the same

consequences if B is false, then the same preference ranking holds overall, whether B is true or false.

while the conceptual distinction between acts and states independent of those acts, which underlies Savage's theory,
has also been sharply questioned. Jeffrey (1965), Anscombe and Aumann (1963), and others have developed
alternative accounts, and the work still goes on to develop a theory that answers all objections. Discussion of these
developments, interesting though they are, is beyond the scope of this book, and for further information the reader is
advised to consult the collection of Gardenfors and Sahlin (1988).

Despite the fact that a wholly satisfactory account of utility has yet to be given, many continue to prefer to develop
subjective probability entirely within a utility framework. On the other hand, it is easy to exaggerate the force of the
objections, diminishing marginal utility of money etc., to a non-utility based account like the one | have given, in terms
of betting odds fair in the sense of giving neither side an advantage. To evade the standard objections one only has to
think of a notion of advantage that does not fall prey to them, and there is more than one. For example, there is long
run gain. It is perfectly sensible to consider whether you believe that at the given odds one party would be likely to
enjoy a long run gain were the bet to be repeated over and over again in the same circumstances. That may not be
physically possible but there is nothing to stop you considering the counterfactual possibility, just as you can consider
the possibility of the coin which just landed heads having instead landed tails. Indeed, were there an appropriate
probability distribution, for the sort of two-valued bet considered here with a finite stake, the expected value is not
infinite. Neither is the variance. That being the case, there is a very high chance that in uncorrelated repetitions with
the same probability eventually the long-run net gain of both bettors would approach its expected value zero. Of
course there can be no presumption that these conditions are met with in the general case of an arbitrary bet, but that
doesn't really matter. If one analyses the way one does in fact prescribe fair odds, and people do this all the time
without worrying about the sorts of objections above, it is nearly always in such pseudo-objective terms.



As Hellman has pointed out, we can make the divorce between value and your fair odds complete by making the stake
any quantity
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which has no connotation of value whatever, just so long as there is a natural quantitative measure of it which is
suitably divisible: sand or manure, he suggests, would do just as well as money (1997: 195) if we construe null
advantage simply as a zero expected gain. Here | shall just assume that people are accustomed to registering
uncertainties as fair odds in bets, whatever the stake or its constitution, and take these odds to be indicators of their

degrees of belief.

Undecidable Truth-Values

There are a few other loose ends to be tied. One is the way the Bayesian theory is to apply to the general hypotheses
of science, particularly physics. Since we are developing this theory with the problem of induction ultimately in mind,
one of the most important applications of this machinery from our point of view is going to be to such hypotheses. But
now we have a problem. For the truth of general scientific hypotheses will typically transcend any finite set of
observations; yet if the proposition A is such a hypothesis, how can we meaningfully speak of a probability for A
determined by Bayes's discounting method? If A is true its truth will never be known, and so the promise to receive N
units of currency, or utility, on A's truth becoming known is an empty one, for which nobody in their right mind would
pay anything at all. On the other hand, your degree of belief in a general scientific hypothesis is not necessarily zero:
such hypotheses are not contradictions, and any theory proposing to measure actual uncertainty should be able to
accommodate non-zero degrees of belief in them. But this seems to imply that Bayes's definition of probability will not,
as it was intended to, reveal your true estimate of the probability of such a hypothesis.

Some people have seen in this a fundamental if not insuperable obstacle to the application of Bayes's machinery to the
evaluation of scientific hypotheses (e.g. Gillies 1998: 154); perhaps surprisingly, there is no problem at all. To see
why, or rather why not, bear in mind that the betting scenario is merely what is called an elicitation procedure, a
convenient imaginary exercise whose function is to calibrate a scale for uncertainty in the unit interval, one which will
be useful for subsequently testing the consistency of its degrees so measured. | should stress that you yourself are not
being asked to engage in any such transaction, or indeed perform any action at all. It is

actually rather important that you are not an actor in this drama, since we do not want to confuse your evaluations
with irrelevant considerations of how much you can afford to lose, whether you have some principled objection to
betting, or whatever. The price-dis- counting scenario, in other words, is merely a thought-experiment with which to

. 3
measure your uncertainty.

3 It is a thought-experiment which there is a great deal of anecdotal and documentary evidence that scientists themselves engage in;
compare, for example, Haldane's comment that while he did not believe in the absolute truth of Marxism, ‘I only believe that it is near
enough to the truth to make it worth while betting my life on it as against any rival theories’ (1939). Nor were these empty words:
Haldane had distinguished himself as an officer in the Black Watch in the 1914-18 war by feats of conspicuous bravery, and later in his

life he frequently performed dangerous scientific experiments on himself.

Obviously possibilities which by their nature may remain forever undecided do not fit well in this model. What can be
done about them? There are a number of possibilities. One is just to add a mythical Decider to the dramatis personae.
There is nothing in principle wrong in doing this, since the whole exercise is imaginary anyway. Another is to compare
your degree of belief in such an undecidable hypothesis to your degrees of belief in a suitable comparison set of
decidable possibilities, for example in those of drawing a white ball from an urn containing black and white balls in
various different proportions. And there are other methods as well.

Diffuse Probabilities



There seems to be yet another problematic feature of any procedure for eliciting subjective probabilities, one
mentioned earlier in passing and not dwelt on. It is time to dwell on it a little now. In reality, as we noted earlier
(Appendix 1, Chapter 4), we seldom if ever have personal probabilities, defined by Bayes's procedure of evaluating
uncertain options, which can be expressed by an exact real number. My value for the probability that it will rain some
time today is rather vague, and the value 0.7, say, is no more than a very rough approximation. In the Bayesian
model the probability function takes real-number values. But if we are trying to use the model to understand agents'
actual cognitive decisions, it would seem useful if not mandatory to assume that they have more or less diffuse
probabilities—because they mostly if not invariably do in the real world.
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A parallel objection can be brought, equally successfully (how successfully is something the reader can ponder after
reading the rest of this section), against current models of deductive reasoning. This chapter is principally an attempt
to show that probabilistic and deductive models are intimately related, suggesting if successful that considerations
which prove illuminating in one can be profitably transferred, mutatis mutandis, to the other. So ask: what corresponds
in deductive models to consistent probability-values? Answer: truth- values. Well, deductive models, or at any rate the
standard ones, equally fail to be realistic through incorporating ‘sharp’ truth-values, or what comes to the same thing,
predicates having sharp ‘yes’/‘no’ boundaries. Thus, it is assumed in standard deductive logic that for each predicate Q
and individual a in the domain, a definitely has Q or it definitely does not. An equivalent way of stating the assumption
is in terms of characteristic functions: the characteristic function of Q is a function fg on the domain of individuals such

that for each a, fg(a) = 1 (i.e. a has Q) or fgo(a)=0 (a does not have Q). No intermediate values are permitted. And

this apparatus is used to model reasoning in natural languages which by nature are highly unsharp, except in the very
special circumstances when technical vocabularies are employed. There are actually good functional reasons why
natural predicates are not sharp: their flexibility in extending beyond known cases is an indispensable feature of their
adaptive success. Not surprisingly the modelling of these languages by artificially sharp ones results in ‘paradoxes’ of
the Sorites type (whose classic exemplar is the paradox of the Heap: one grain of sand does not constitute a heap,
and if any given number of grains do not constitute a heap then neither would the addition of one more grain; hence
by mathematical induction no finite number of grains of sand can ever form a heap, which is absurd since there
certainly are heaps of sand and all of them contain only finitely many grains).

Such unpalatable results have prompted the investigation of more accurate methods of modelling informal deductive
reasoning by means of ‘vague’ predicates, and in particular the use of so-called fuzzy ones, where {0, 1}-valued
characteristic functions are replaced by continuous functions, with appropriate rules for their use (for a comprehensive
survey see Dubois and Prade 1989). The analogue for humanizing (so to speak) ‘sharp’ probability values is to replace
them with unsharp, interval-valued ones. It is at first sight not obvious that the point-valued model can be weakened
to an interval-valued

one without losing all its structure. For example: the Dutch Book argument for the probability axioms presupposes that
the agent has point-valued degrees of belief. If instead it is merely supposed that the agent's estimate is an interval
which only in special cases degenerates into a point, then it may not seem obvious what sort of constraints should
apply, if any should at all.

That question was convincingly and comprehensively answered in a paper by the statistician C. A. B. Smith (1961).
Suppose the agent specifies only the end-points of an interval for their fair betting quotient. Denote the upper end-
point by P* and the lower by P*; these respectively are called the agent's upper and lower probabilities for the
proposition in question. Smith showed by a natural modification of de Finetti's original Dutch Book argument that,
where only such intervals are specified, the condition for invulnerability to a Dutch Book is that among others the
following constraints must be satisfied:

If P* = P* then the function is an ordinary probability function.

0 = P*(A) = P*(A) = 1.

P*(A)=1-P*(-A).

If A and B are mutually inconsistent then



P*(A)+P*(B) = P*(AvB) = P*(AvB) = P*(A) + P*(B).
So we get a formal theory which reduces naturally to the Bayesian one when the end-points of the intervals coincide.

Walley (1991) gives a detailed and comprehensive discussion.

To proceed further let us consider the probabilistic and deductive cases in tandem. In each, given that there is a
respectable formal theory closer to the reality to be modelled, are there grounds for adopting a more distant theory
when the facts do not seem to warrant one? The answer is one familiar from scientific modelling: getting closer to the
reality can lead to a loss of useful information (it is then called overfitting). In the probabilistic case the stronger
theory can tell us something interesting which the weak theory cannot, namely what the impact of evidence would be
on a particular prior probability. And this is important because, as | hope the reader will recall, the problem we have
been facing all the way through is whether and how evidence in the form of reports of observations should affect
estimates of the credibility of hypotheses. In the context of a probabilistic model of uncertain reasoning it is very
difficult to answer this and questions like it without using a theory that can say
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things like ‘Suppose the prior value of the probability is x’, and then use the machinery of the point-valued probability
calculus (in particular Bayes's theorem, as we shall see in the next chapter) to calculate that the posterior value is y.
Also one often wants to see just how sensitive y is to x where the data are particularly numerous or varied or both. So
we need a fairly strong theory which will tell us things like this; and in the standard mathematical theory of probability
we have a very rich theory indeed. At the same time, the model is not too distant from reality; it is quite possible to
regard it as a not-unreasonable approximation in many applications, for example where the results obtained are robust
across a considerable range of variation in the probability parameters. Many of the limiting theorems, in particular
those just mentioned, have this property, as do the sorts of applications we shall consider, in Chapter 8, in the
application of the model to informal patterns of scientific reasoning where almost by definition no sharp results would
anyway be appropriate or expected.

Very similar considerations apply to the usual formal models of deductive reasoning. There are non-sharp models,
considerably investigated, but it is partly the sharpness itself of the more familiar models that explains why they still
dominate logical investigations: nearly all the deep results of modern logic, like the completeness theorem for the
various formulations of first-order logic, and the limitative theorems of Church, Gédel, Tarski, etc, are derived within
‘sharp’ models. Much more could be written on this subject, but space and time are limited and enough has, | hope,
now been said to convey why sharp models are not the unacceptable departures from a more equivocal reality that at
first sight they might seem to be.

Bounded Rationality

Consideration of significant parallels with deductive logic is, the reader has probably gathered by now, one of the
Leitmotive, if not the Leitmotiv, of this book. So many of the allegedly unrealistic features of the Bayesian model which
have provoked critical comment are features also possessed by the familiar deductive models, but there they are not
thought to merit such a similarly critical response. And that of course is because the deductive models are recognized
to depict a formal structure, and not, at any rate straightforwardly, to
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be descriptive of any empirical reality. So too the Bayesian model depicts another formal structure, that of sound
probabilistic reasoning, and equally is not intended to describe in any straightforward way what agents actually do.

Another much criticized alleged piece of unrealism in the Bayesian model of uncertain logical reasoning is the fact that
the application of some of its rules, like the additivity principle and the axiom that logical truths have probability 1,
depend on certain deductive conditions being satisfied. But, so the objection runs, real-world individuals are not
logically omniscient. Nor are they all good enough computers to perform all the calculations, which may be very
complex, completely or even fairly accurately. Indeed, in principle there is no upper bound to the complexity of the
arithmetical calculations that may have to be made in any derivation of a final probability. If this is supposed to be a



model of rational behaviour then on the face of it it is a model of perfect logico-mathematical reasoners rather than of
us limited sublunary beings. At any rate, we can assume that, if people are rational agents at all, they are only
boundedly rational; and they frequently make mistakes. So why develop a theory that seems to implicitly deny this?

The answer should need little prompting. To see in the fact that people are only boundedly rational while the model is
not a defect of the latter is to misunderstand the function of formal theories like this one. Deductive models are not,
for example, charged with assuming infinite memory, though they incorporate a principle of infinite composition: they
all assume a class of sentences closed under composition by truth-functional operations and quantification. Or take
another formal discipline that also has something to do with correct reasoning: mathematics. When people add and
multiply and perform other operations on numbers they do not always do so correctly (nor is this just a human failing:
Church's Theorem implies that not even the most superhuman computer can answer every arithmetical question). Nor,
for example, can ordinary people usually multiply multi- digit numbers by each other, at any rate correctly. But of
course none of this undermines mathematics as a discipline. And logic is a discipline very like mathematics, where by
logic I mean both deductive logic and the probabilistic variety of deductive logic we have developed here. These
disciplines are simply not intended to model human behaviour in any purely descriptive sense, any more than
mathematics is. On the other hand, they can and do appear in explanations of

human behaviour, just as it is a reasonable assumption that people are using mathematics, at a higher or lower level,
when they make calculations involving numbers. It is logically possible that they might not be, of course: they might be
doing something completely different. But it's a good bet that they are using mathematics, or trying to. And there is an
additional and very important reason to suppose this over and above noting that the assumption broadly seems to fit
the facts: mathematics supplies a canon of correct reasoning about numbers, and these agents know it. We shall return
to this point in Chapter 8.

Similarly, deductive and probabilistic logic supply canons of correct deductive and uncertain reasoning. Human beings
do not and indeed in principle cannot reproduce all sound deductive or probabilistic reasoning. Human reason, like the
human physique, is frail. But human frailty, at any rate in its reasoning faculty, far from invalidating the development
of theories of correct reasoning, makes them all the more necessary, as props for the infirm; to err, after all, is
human. Perfect reasoners don't need theories of correct reasoning, any more than perfect mathematicians would
develop theories of mathematics, except as a recreation.

Conclusion

The rules of Bayesian probability are rules of logic. The idea that there is a logical way of looking at probability is of
course hardly new; we saw that Leibniz called the nascent mathematical theory of probability ‘a new species of logic’.
The work of Ramsey and de Finetti has, | believe, finally brought the programme to fruition. The delay can largely be
attributed to the principle of indifference and its gradual discrediting. But there were other reasons. Prominent among
these was what turned out to be a fairly long—in time terms—blind alley, involving a quite different logical
interpretation of probability initiated by J. M. Keynes (1973), elaborately developed by Carnap (1950, 1952, 1971),
and endorsed by Popper (1970), according to which there is some probability function, specifically a conditional
probability function P, such that where A and B are propositions P(A|B) measures the ‘degree to which B entails A’.
Despite Carnap's best efforts over twenty or more years, however, no such function could be uncontroversially
identified, nor does it seem

likely that one ever will. At any rate, the programme has now been largely abandoned, leaving by default chances and
subjective probabilities as the only internally coherent and systematic notions which are formally (classical)
probabilities.



8 The Logic of Scientific Discovery

Colin Howson

Introduction

In 1935 R. A. Fisher published one of his most influential works on scientific methodology, The Design of Experiments,
intended to inaugurate a revolution—and succeeding—in which the Bayesian ideas which had until recently provided

the orthodox account of scientific inference would be finally swept away and replaced with his own falsificationist theory
of randomization and significance tests. It was in that book that the tea-tasting lady made her appearance. Fisher's
revolution was successful because the Bayesian theory seemed either inconsistent, if it incorporated the principle of
indifference, or merely subjective if it didn't, while Fisher's own theory seemed by contrast objective, logical, and
widely and straightforwardly applicable. The tea-tasting lady became the Marianne of the Fisher revolution, another
emblematic female personifying the austerer virtues of the new regime against the decadence of the old (the greatest
spokesman of Bayesianism up to the turn of the nineteenth century was, appropriately, a French nobleman, the

Marquis de Laplace *

1 His noble pedigree was not ancien régime though; it was created by Napoleon.
)-

A year earlier than the publication of Fisher's tract there had appeared another book, Logik der Forschung, published
by a young Austrian philosopher, Karl Popper, proposing the same sort of methodology, and in very much the same
terms (see Chapter 5, pp. 94-100), as had Fisher, though Fisher implicitly restricted his proposals to statistics,
whereas Popper's were applied principally to deterministic science. Popper is usually credited as the sole author of the
doctrine of falsificationism, but Fisher, as we noted earlier, deserves equality of status on this point (we can also note
that falsificationism outside statistics never achieved the monolithic authority it achieved within).

Like Fisher, Popper was also a scourge of inductive probability, namely nineteenth-century Bayesianism. They had an
easy target. However, Bayesianism has since been shorn of the particular feature—the principle of indifference—which
had made it such a fertile producer of paradox, and reborn as a theory of consistent reasoning equipped, as any good
logic should be, with its own soundness and completeness theorems. And the falsificationist revolution has not
withstood destructive criticism: even its stronghold in statistics finally seems to be crumbling. The main concern of this
book is less to promote the counter-revolution, however, than to see how the New Bayesianism established by Ramsey
and de Finetti bears on Hume's Problem. Hume's Problem at bottom is that of evaluating uncertainty in a sound way.
In Bayesian probability we now have at least the machinery for doing this: it supplies the logic of consistent reasoning
involving a numerical measure of uncertainty—but no more. The rider is of the utmost importance. If the part of
Hume's argument about the limitations of ‘probable reasoning’ is correct, then any satisfactory theory of uncertainty
must satisfy an important weakness constraint (a weakness constraint sounds odd but there it is): it must not tell us
what the uncertainties of contingent propositions are. And indeed this one does not: unconditional probability
distributions are exogenous to the theory. For so long seen as a problem for the Bayesian theory, this indeterminacy
can now be seen as natural and inevitable, entirely appropriate in a theory of uncertainty which respects Hume's

sceptical argument. Matthews puts the point nicely:

the axioms of probability, via Bayes's Theorem, show that subjectivity cannot be wrung out of the scientific
process for the simple reason that it is mathematically ineluctable. Much as we might want to, it is impossible
to obtain the value of Prob(theory|data) without having some value for the prior probability Prob(theory).
(1998: 19; italics in original)

That's the bad news. The good news is that we are not deluding ourselves when we think we can still make sound
inductive inferences. This is a solution of the problem of induction which is analogous to—in their different forms—
Kant's and Hume's revolutionary solutions of the problem of causation: both proceed by taking causation out of
objects, so to speak, and putting it into people: in Kant's theory it is a condition of coherent thought and in Hume's it



reflects a propensity to form expectations. In the theory | shall propose here,

sound induction has nothing to do with coming to a correct understanding of the way the world is structured, but is
merely the result of applying a constraint on beliefs which maintains their internal consistency. But in so doing it
supplies the foundation for inductive reasoning in science.

It might be objected (and indeed it has been) that science is not about people's beliefs. It is about truth; so a theory
of consistent belief cannot in principle provide an account of scientific inference. Powerful and highly influential
advocacy for this view was supplied by Fisher himself: ‘advocates of inverse probability [Bayesian probability] seem
forced to regard mathematical probability . . . as measuring merely psychological tendencies, theorems respecting
which are useless for scientific purposes’ (Fisher 1947: 6—7). But Fisher's inference is a non sequitur: Bayesian
probabilities might be subjective objects, but the rules they must obey to be consistent are anything but subjective;
and so far from being ‘useless for scientific purposes’ these supply a wholly objective theory of inductive inference; so
objective, indeed, that they are infringed on pain of making genuine and possibly costly mistakes. The sanction is not
just the (usually remote) theoretical possibility of being Dutch Booked were you to bet indiscriminately at your fair
betting quotients (there is no presumption in the earlier discussion that you will and certainly not that you ought to do
this), but those arising in general from accepting fallacious arguments with probabilities: we have only to look at the
Harvard Medical School test to see what these might be. Moreover, probabilistic inconsistency is as self-stultifying as
deductive: as we saw in the previous chapter, inconsistency means that you differ from yourself in the uncertainty
value you attach to propositions, just as deductive inconsistency means that you differ from yourself in the truth-
values you attach to them.

These considerations answer an objection of Max Albert. Commenting on the attempt by some (including myself) to
find instructive parallels with deductive logic, Albert finds what he thinks is a telling disanalogy, precisely on this

question of sanctions:

Logical [deductive] consistency serves a purpose: theories cannot possibly be true if they are inconsistent . . . ;
thus, if one wants truth, logical consistency is necessary (but not, of course, sufficient). An analogous argument
in favor of Bayesianism would have to point out some advantage of Bayesianism unavailable to those relying on
non-probabilistic beliefs and deductive logic alone. Such an argument is missing. (Albert 1997: 29)
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This is fairly thoroughly wrong. The two principal assertions here are both incorrect. First, logical consistency is not
necessary for truth. False statements are well known to have true consequences, lots of them, and inconsistent
statements the most of all since every statement follows from a contradiction. Current science may well be inconsistent
(many distinguished scientists think it is), but it has nevertheless provided a rich bounty of truths. So much for
deductive inconsistency. Secondly, arguments for trying to maintain probabilistic inconsistency have been produced
many times (and not just by me here). But mine, | think, will do.

It is conceivable (anything consistent is conceivable) that even these considerations still may not be enough to change
attitudes formed in ways which find it difficult to stomach an account of scientific method founded on anything at all to
do with mere belief. But those attitudes are misinformed. For ultimately we are talking about credibility, the credibility
of accounts of what there is in the universe and how it behaves, and how and according to what criteria observational
evidence increases or decreases that credibility. It is no good saying that it is not credibility that is the goal of science
but truth (as does Miller 1994). That is true but beside the point, for it does not argue that considerations of credibility
are redundant. Indeed, on the contrary, they are indispensable. Only if truth-values were revealed unequivocally would
criteria of credibility be redundant. But truth- values are seldom if ever revealed unequivocally: we can generally only
conjecture them. We therefore need to know how credible our various conjectures are, and for that we need a theory
of credibility.

This is where we came in. Hume showed that such a theory could not without circularity hope to make justified
assertions of the form ‘this conjecture has such and such credibility given the observational data’, where the conjecture



is consistent with but transcends the data. Hume has shown us that a successful theory of credibility should not be
strong enough to make such categorical assertions without equally strong assumptions. It is a situation we should
anyway be familiar with in a theory that purports to be a theory of sound reasoning, for there is already an extant
well-known such theory, one of ancient pedigree, whose failure to deliver categorical assertions we are familiar and
even happy with: deductive logic. By general agreement arrived at long ago, the valid arguments of deductive logic are

all representable in the conditional form ‘if such and such statements are true then necessarily so is this’. As Ramsey,
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emphasizing the similarly conditional nature of probabilistic inferences, clearly puts it: ‘This is simply bringing
probability into line with ordinary formal logic, which does not criticize premisses but merely declares that certain
conclusions are the only ones consistent with them’ (1926: 91).

It might be replied that deduction has not for a long time pretended to be a theory of discovery. Science does
discover, and yet we are told (by me) that the inferences it makes, and which have yielded such a rich harvest of
empirical knowledge, are inferences made according to a logic whose only criterion of soundness is the purely internal
one of consistency. We come back to Miller's question: Where does, for that matter can, truth come into this? And if it
doesn't, what is the point of such a logic of science: doesn't it, indeed, miss the point of science? One is reminded (to
be precise an anonymous referee was reminded who reminded me) of the following celebrated passage from Hume's
Treatise:

Let us chase our imagination to the heavens, or to the utmost limits of the universe; we never really advance a
step beyond ourselves, nor can conceive any kind of existence, but those perceptions, which have appear'd in
that narrow compass. This is the universe of the imagination, nor have we any idea but what is there produc'd.
(1. 11, vi)

This is, however, Humean metaphysics, certainly not licensed by the position which elsewhere he advances with such
dexterity. It is quite possible that we do ‘advance a step beyond ourselves’, even many steps, merely that we shall
never have warrant to claim that we do. More generally, it doesn't follow that because the logic of inductive reasoning
is bound by internal criteria of consistency anyone who applies it is doomed to remain in a Wittgensteinian fly-bottle of
his or her own construction. Probabilities may be, and usually will be in these applications, probabilities of truth. So
there you are: truth has reassuringly got back in (though it was never really out). Hume's other point was that
inductive inferences require inductive assumptions, and it is quite possible that the ones we habitually employ are
reliable assumptions. Darwin's theory, whose possible truth is not in any way impugned by Hume's argument, suggests
that in the main they are.

The justification for obedience to an essentially non-ampliative logic for scientific inference is one we have already
made. It prevents inconsistency, and we know—from a page or so back—why that is to

be avoided. It is now high time to see how this particular logic bears on inductive reasoning.

A Model of Inductive Reasoning

The Bayesian theory supplies a model of inductive reasoning. When we want to theorize about a domain we often do
so by constructing suitable models of it. There seems no good reason to prohibit sound reasoning itself from being the
subject of this activity. Indeed, there are already such models, and familiar ones. Systems of deductive logic are
models of sound deductive reasoning. This does not mean that they are models of deductive reasoning as people
actually do it, soundly or not, but of sound deductive reasoning in itself. What is that? It is what all deductively valid
inferences have in common by virtue of being deductively valid, whether anybody ever made or could make them. It is
also what all deductively consistent sets of sentences, sets thought of and sets not thought of, and sets that in
principle never could be thought of, have in common by virtue of being deductively consistent. What makes the
theories we have of these things models is that they are constructed in a mathematically rather idealized way, over
‘languages’ that people would not generally think of as languages in any ordinary way. In the previous chapter | have



tried to construct, or possibly reconstruct, the Bayesian theory as a model of sound uncertain reasoning in a similar
way, and in this chapter shall try to show that that model also provides a good model of sound inductive reasoning,
that is, a model of how the credibility of conjectures is enhanced, diminished, or unaffected by evidence, good both in
the sense of providing an illuminating explanatory model of scientific reasoning, and in showing how it is possible to
make sound inductive inferences.

In fact, we should strictly be talking of Bayesian models in the plural, since for different purposes there are different
ways of specifying the model. In some cases, where the mathematics is more subtle (as in the convergence-of-opinion
theorems we shall talk about later), the precise mathematical specification is important; in others, we can safely take
the rather rough-and-ready approach to the mathematics taken in Chapter 4. There are also large-scale and small-
scale models, the latter corresponding to what economists call ‘small worlds’, and analogous to what physicists call
closed systems: in
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these, attention is confined to a class of possibilities describable within some restricted vocabulary, for example that
describing the possible outcomes of an experiment, which in the extreme case can be just the labels ‘1’ and ‘0O’
(standing for ‘as predicted’ and ‘other than as predicted’), or sequences, possibly infinite sequences of these,
corresponding to sequences of repetitions of such an experiment (we have already looked at restricted state-spaces of
this form in Chapter 4, and shall look at some more later). There is no assumption in such restrictions that the
situation modelled is completely independent of features external to it (as it is never assumed that closed systems are
ever truly closed), merely that it is independent enough according to whatever background information is being
assumed; and in general some non-empty background information is assumed. For convenience | shall nevertheless
continue to talk of the Bayesian model; this can be regarded as defined in context.

These remarks might seem to add up to an endorsement of the view about the nature of scientific theories called the
semantic view. According to this, scientific theories are best not looked at as sets of statements, but as collections of
models (Suppe 1989, van Fraassen 1980: ch. 3) are extended defences of the semantic view). Fortunately, we need
not enter into a discussion of the often tortuous byways of this controversy, since the observations above are entirely
neutral on the issue. | have merely described the collection of all Bayesian models as collectively the Bayesian model,
and that is simply a matter of terminology. | do not myself subscribe to the semantic view, preferring to believe
instead that, to adapt Kant's famous aphorism, theories without models are empty and models without theories are
blind: that is to say, the constitution of the class of models tends to be constrained, though not of course determined,
by the theory, and not vice versa, though there are cases where the model may well suggest an extension of the
theory.

The present case is a good example. The theory/models distinction roughly corresponds to the intension/extension one.
The Bayesian theory is—again, roughly—the intension whose corresponding extension is the class of Bayesian models.
The latter are no more than a certain class of real-valued functions on suitably extensive classes of propositions. The
theory can be identified with the entire process of reasoning that proposes a notion of consistency for evaluations of
uncertainty, at any rate when these are measured in an appropriate scale, and proceeds to explain why these

evaluations must obey the

axioms of probability, and why these axioms are complete in an important sense. The class of Bayesian models is this
theory in extenso, and includes those which no person's belief-system even in principle could ever exemplify, for they
would have to be able to decide purely deductive problems that are known to be beyond the capacity of any digital
computer, even one equipped with infinite memory and with no upper bound on the time given it to complete any
task.

Nevertheless these caveats do not prevent the models functioning, in some interesting and useful way, in explanatory
contexts. Again we turn for enlightenment to the deductive analogy. The formal languages of deductive logic are
usually infinite (false for any natural language); they allow composition to an arbitrary degree (false for any natural
language); they obey universally strict bivalence (false for any natural language); they assume truth-functional



definitions of all the connectives (false for any natural language); and so on. Perhaps paradoxically in view of all this,
often these models were the result of observing some form of ‘best practice’. For example, the German mathematician
and logician Gentzen arrived at one very influential such model, natural deduction, now a standard feature of textbooks
of formal logic, by analysing the structure of Euclid's reasoning in the Elements. But there is only the appearance of
paradox, for many of these features arise merely through following the fruitful methodological rule of striving for
generality. The cases arising in practice are then merely suitable restrictions of the model. Other departures from the
limitations of practical reality are permitted for not dissimilar reasons: extreme precision, for example, on the ground
that practice is akin to seeing ‘through a glass darkly’, as the Platonizing apostle Paul put it via the translators of the
King James Bible, the attempt by imperfect minds to mimic something more perfect. The fact that the model embodies
additional structure that the field of application doesn't, or doesn't embody some of the structure that it does, is
excused on the ground that the features the model attempts to capture—for both deductive and probabilistic models
this is some underlying criterion of soundness—are broadly invariant under their addition or subtraction: the additions
or subtractions are there (or not) to facilitate a theoretical treatment.

Given the disclaimers, the target of Bayesian explanations is emphatically not what goes on in people's heads when
they are doing what they might call inductive reasoning. Having said that, however,

we do want the model to explain, if it can, why appropriate samples of human reasoning are, or are approximately,
samples of sound inductive reasoning. If a piece of actual reasoning is representable in the model as consistent, that
is, sound probabilistic reasoning, then it is explained as such in much the same way that we can sometimes explain as
sound deductive reasoning samples of allegedly deductive reasoning when we can represent them in a corresponding
model, like that of first-order logic. This of course means that the model has to be applicable, which correspondingly
means that it has to have a suitable amount of representative capacity—it has to be able to represent the sorts of
things that human beings reason about, like data, hypotheses, etc. This we know it can do. It can also do other things,
in particular one thing we have been concerned about: given suitable initial conditions (I shall specify what these are
shortly), not only can inductive reasoning be represented as sound reasoning, but the model(s) tells us that to reason
soundly in those circumstances is necessarily to reason inductively.

Since the previous chapters of this book have in their various ways been a defence of Humean inductive scepticism,
and in particular Chapter 4 was an extended denial that there is any probabilistic solution of the traditional problem of
induction, this pronouncement might sound somewhat strange if not downright paradoxical. How can Humean inductive
scepticism be maintained simultaneously with the claim not only that there are sound inductive inferences, but that to
reason soundly in a wide variety of circumstances one must reason inductively? It all sounds very puzzling, at best. It
may come as a surprise therefore to learn that we are already in possession of all the pieces required to construct an
answer to the conundrum; all that remains is to assemble them correctly.

We can make a start right now. Recall Theorem 1, in Chapter 4, that if 1 ) P(H) ) 0,0 ( P(E) { 1 and H entails E
modulo some initial conditions assigned probability 1 by P then P(H|E) ) P(H), i.e. H is inductively confirmed by E. And
recall Theorem 2 from the same chapter. These theorems state that, given suitable initial conditions, in this case
distributions of prior belief, the Bayesian model explains inductive reasoning as a condition of maintaining the internal
consistency of an agent's beliefs. Consistency with Humean inductive scepticism is maintained by noting that the
inferences are sound, but also that they depend on a premisses describing suitable belief-distributions. The situation is,
mutatis mutandis, the same as that in deductive

logic: you only get out some transformation of what you put in. Bacon notoriously castigated the contemporary version
of deductive logic, Aristotelian syllogistic, for what he perceived as a crucial failing: deductive inference does not
enlarge the stock of factual knowledge. But Bacon's condemnation has with the passage of centuries become
modulated into a recognition of what is now regarded as a if not the fundamental property of logically sound inferences
which, as we see, probabilistic reasoning shares, and in virtue of which it is an authentic logic: sound inference does
not beget new factual content.



This is by no means all there is to inductive reasoning in the Bayesian model: fortunately, since there is a rich variety
of inferential principles and strategies usually regarded as falling under that heading. We shall see in very general
terms how these are modelled, and where any problematic issues are located. More detailed treatments exist in what
has grown over the last quarter-century into a very extensive literature (consisting of legion discussions and articles in
statistics and philosophy of science journals, together with extended book-length discussions, for example Good 1950,
Horwich 1982, Howson and Urbach 1993, Jeffrey 1992, Maher 1993). In addition, a variety of results has been proved
which both extend the scope of the model (for example, building on earlier work by Levi, Maher 1993 constructs a
theory of expected epistemic utility on the basis of which he defines a notion of the verisimilitude of a false theory)
and advance our understanding of the phenomena the theory deals with. Needless to say, this is reassuring both from
the point of view of endorsing intuitively compelling strategies and from that of giving some indirect support to the
model itself.

A noteworthy feature of all these model-explanations is that the assumptions which have to be made to generate the
results figure explicitly in the reasoning. In Bayesian, that is, probabilistic, logic assumptions which figure in an
inference are signified somewhat differently than in the deductive case. There they simply figure as undis- charged
lines in a proof. The canonical form of an inductive assumption, on the other hand, is the assignment of an initial
probability to a corresponding proposition or propositions, which will characteristically be employed with other such
assumptions in the computation of some target probability. For example, the decision to consider just a few
explanatory accounts as serious contenders figures in the Bayesian model as the decision, which must be made if the
answers are to be forthcoming, to assign just these appreciable prior
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probability. Readers of non-Bayesian methodological texts will appreciate characteristic transitions from the statement
that some reasonably abstract hypotheses are to be tested, to model-assumptions whose adoption is usually defended
in a more or less hand-waving way, leaving the questioning reader puzzled about the epistemic status of results
obtained on their basis. This seems especially noticeable in statistics, where statistical models, and data distributions
based on them, are frequently introduced with the minimum of justification—or none at all:

Where do probability-models come from? To judge by the resounding silence over this question on the part of
most statisticians, it seems highly embarrassing. In general the theoretician is happy to accept that his abstract
probability triple (S, «, P( . )) was found under a gooseberry bush, while the applied statistician's model ‘just
growed’. (Dawid 1982)

In a Bayesian inference there is, of course, also plenty of scope for hand-waving: the difference is that, since the
inferences drawn appear in the form of calculations, crucial assumptions tend to appear explicitly, and, most
importantly, in a way that makes it evident exactly how the final probability depends on these: Bayesian inferences are
epistemically transparent. But that is enough by way of general preamble. We should now look at the principal features
of the Bayesian model of inductive reasoning, usually called Bayesian confirmation theory.

A Beginner's Guide to Bayesian Confirmation Theory

According to the Bayesian theory the probability axioms express a complete logic of credibility judgements. They
become a model of inductive inference in so far as they determine in what conditions the credibility of H is affected by
the assumption that E is true. As we saw in Chapter 4, in a probabilistic theory the credibility of H on the assumption
that E is true is rendered by the conditional probability P(H|E), where H can in principle be any meaningful hypothesis;
it might, for example, even be a hypothesis saying that some scientific theory T is true only within certain limits, or for
a certain time, or that T will continue to be empirically adequate, etc. In the model P is not any particular person's
personal probability: it is a generic, consistent degree-of-belief function. In fact, for the reasons we have noted above,
it will not be any person's belief function.

Nevertheless the model must be able to represent in some adequate way a notion of evidence and the way evidence



can support or undermine a hypothesis. To the extent that any factual report is evidence for or against a hypothesis
depends on the informational context in which it is situated.

2 This is rather analogous to Frege's well-known context principle: a word has meaning only in the context of a sentence.

A large book found in a street is by itself not evidence that Jones killed Smith, but given the further information that
Smith was killed by a blow to the head with a large object, in that particular street, and that the book was damaged
and had Smith's blood and Jones's fingerprints on it, it is. Evidence issues in the enhancement or diminution of the

credibility of a hypothesis, °

3 This is not intended to be a definition of ‘evidence’; drugs can do the same thing.

and this capacity will be determined only in the context of some specified ambient body of information. This rather
trivial observation will nevertheless turn out to be very important, for it contains the solution to a problem that has
adorned the literature for some time: the so-called ‘problem of old evidence’, which we shall discuss in due course.

Independently of particular context, the model also of course incorporates a set of general, logical, laws—that is to
say, the probability axioms—governing the behaviour of the function P(H|E); indeed, Bayesian confirmation theory is
little more than the examination of its properties for various ‘interesting’ instances of H and E. The most famous tool
for analysing its behaviour of is contained in the eponymous consequence of the probability axioms, Bayes's theorem,
whose acquaintance we have already made. Here we shall be more interested in a particular rewriting of that theorem
which displays P(H|E) explicitly as a function of P(H) and a term P(E| — H)/P(E|H) depending on E, H and —H, the so-

called Bayes Factor in favour of —H against H, *

4 Good (1950) tells us that this quantity was called ‘the factor in favour of —H’ by the eminent logician, mathematician, and code-

breaker of the Second World War, Alan Turing. ‘Bayes factor’ seems to have been Good's own contribution.

call it f:

- P(H)
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(see Chapter 3, p. 57). P(—H) of course is equal to 1 — P(H).

The evident dependence of P(H|E) on the prior factor P(H), though a simple and elementary property of the Bayesian

model, is
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one whose importance cannot be exaggerated, since it implies that evidential data cannot alone determine the
credibility of a hypothesis. This feature distinguishes the Bayesian account from practically every other model of
scientific reasoning—to the detriment of the latter. Because these accounts fail to take the prior factor explicitly into
account, concentrating instead only on functions of the likelihoods P(E|H) and P(E|] — H), they cannot cope even with
such a simple problems as the grue problem, which is why | laid such stress on it in the earlier chapters.

Now we shall turn up the resolution a little. (1) shows that as long as P(H) is greater than zero, the posterior
probability of H is sensitive to the evidence E through the Bayes factor, and will in general change with changing E. Of
course, as we saw earlier, in the discussion of ‘dogmatic’ versus ‘non-dogmatic’ prior probabilities (Chapter 4, p. 70), if
P(H) is zero then P(H|E) will not be sensitive to f at all, for P(H|E) itself will be zero if P(E) is non-zero. Nevertheless,
just so long as P(H) is non-zero (1) asserts that, as a condition of consistency, the evidence be allowed some weight
in determining H's credibility. How it does so depends on the Bayes factor, f. This is non-negative but unbounded
above. A little experimentation shows that P(H|E) increases as P(H) increases and as f decreases. This implies that,
other things being equal, you will be more confident about H the more confident you were initially—which seems like
common sense (the great Laplace remarked that the Bayesian theory—though he did not call it that—was just ‘good
sense reduced to a calculus’, le bon sens réduit au calcul. Also, other things being equal, the less likely E would have
been if H were false, the smaller f is and the larger the posterior probability, while the larger P(E|H) is, and, other

things being equal, the smaller f is, and the larger the posterior probability.

To get a better grasp of the significance of all this, suppose E would have been just as likely to be observed had H



been false as had it been true. Does the occurrence of E in those circumstances tell us anything about H? Intuitively
nothing at all: if H is neutral on the subject of E then E's occurrence tells us nothing about H. This is just what (1)
tells us too: if P(E| — H) = P(E|H) then f = 1, and since P(H) + P(—H) = 1, we infer from (1) that P(H|E) = P(H), that
is, E has not changed the credibility of H from what it was before. Now suppose that the probability of E's truth if H is
false is zero but that E has some non-zero probability of being true if H is true. Intuitively, in
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this case the truth of H must be certain given the truth of E (assuming, as before, that its and E's prior probability are
non-zero). Going over to formal probabilities this means that P(E|] — H) = 0 and P(E|H) } 0, and so f = 0. It
immediately follows from (1) that P(H|E) = 1.

The case where the Bayes factor f is not zero or one or infinity is the most interesting, and the one most likely to arise
in practice (all that is meant by this is that it is this case that most closely mirrors the situations in working science),
and it is now the relative magnitudes of the two factors, Bayes factor and prior, that will determine P(H|E). A very
small Bayes factor can be dominated by a sufficiently small prior to leave the posterior probability small; we have
already seen evidence of this in the Harvard Medical School test where the criteria of small f were admirably fulfilled
but nevertheless H (‘the subject has the disease’) was still most unlikely to be true, because its prior probability was
so extremely small that the smallness of f was insufficient to raise the posterior probability to anything appreciable. All
this is not to say that the Bayes factor is unimportant, however. Quite the contrary: other things being equal, the
farther from unity f is, the more informative is E. In particular, if f is infinite then, supposing P(H) } 0, P(HIE) = 0 and
H is in effect refuted by E, while if f is zero then P(H|E) = 1. In other words, a principle of good experimental design
means creating conditions in which these extremes can be best approached, if they can be approached at all. To a
great extent that will depend on the hypothesis H and also on what we take as acceptable background information, but
we can use the model to give some general indications that correspond with our intuitive criteria. One rather obvious
consideration is that if H is deterministic we could make a useful start by looking for experimental situations in which
there is a possible outcome E such that P(E|H) is fairly close to 1, that is, where H makes more or less definite
predictions. Such an outcome should not be too a priori unlikely either, but this is automatically taken care of by the
fact that we have assumed that P(H) is not too small, for if H entails E we know that P(E) = P(H).

Suppose we want to construct the experiment in such a way that we can be sure beforehand that P(E|] — H) will be
small, that is that, in the terminology of diagnostic tests, the likelihood of getting a false- positive result is minimized.
How do we do this? To look at the matter informally at first, we try to see whether we can translate the informal
reasoning into constraints we can build into the model. To conclude that E is very unlikely to be true if H is false
intuitively means that
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every possible factor that might cause E to be true other than H is eliminated in advance by the experimental design.
Well, we can't set out to eliminate every possible factor, since we may not and generally will not know how to identify
all of them. But we can set out to try to minimize the influence of the ones we either do know about, or suspect. So,
looking at these known or suspected factors unrelated to the truth of H, call them {C;}, we want the design to be such

that if H; says that the positive E of the experiment would also have been expected as a consequence of factor Cj,
then the probability of H; being true is to be as small as possible. So, if P(E|H;) is itself fairly considerable, we want
P(H;), the probability that C; could have caused the outcome, to be very small. Equivalently, the experiment should be
such that the product P(E|H;)P(H;) is very small for all H; other than H. Now a little juggling with the probability
axioms shows that P(E| — H) is equal to a constant times the sum of the factors P(E|H;)P(H;) over all the mutually
exclusive H; such that P(H;) } 0; i.e. P(E| — H) is proportional to just that same sum of products P(E|H;)P(H;)! Hence

we have shown that, given the body of background information we have accepted which describes the class of
plausible alternative explanations of a positive result, designing a test so that the result if it occurs cannot plausibly be
attributed to any of them just is to design a test with as small a P(E|] — H) as possible. Recall from Chapter 3 that this
is the intuition behind the No-Miracles argument, and from Chapter 5 that it is the principle which the Neyman-Pearson
theory of powerful tests attempted to embody—but unsuccessfully.



We can summarize these observations in an elegant formula. The Bayes factor in favour of —H against H is P(E| —
H)/P(E|H), which we can write as f(—H); the reason for omitting explicit reference to H will become apparent shortly.
We know from the foregoing discussion that we can also write the posterior probability as

Pi(H)
P(H | E|= —
! P[HHZ::-];|||I|i-.lp'iHi]

where {H;} is some exclusive and exhaustive set of alternatives to H. If we now take H itself to be some Hj, the set
{H;} is what is called a partition, that is to say a decomposition of the space of possibilities into cells determined by
the Hj. Noting that P(H) = P(Hj)P(E|H;)/P(E[Hj), we can write
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. P(H)
FkH | E| = f
| YLP(H;)
where f; = P(E|H;)/P(E|H;). But Z fjP(H;) is the expected value E(F|g), relative to the partition {H;}, of the random
variable F|g which takes the constant value fj on those possibilities consistent with Hj. So we can write P(H|E)

compactly as

i P(H)
Pu\H|E]= m——

| E(F )
In words, the posterior probability of H is the prior probability of H is inversely proportional to the expected value of
Bayes factors against H, with P(H) as the constant of proportionality. It is now immediately apparent that P(H|E) is
large if this expected value is small, and that the expected value will be small if and only if, for each alternative H; to

H of non-negligible prior probability, P(E|H;) is small compared with P(E|H).

That completes the outline structure of the Bayesian model. More detail can be obtained by using principles of the
probability calculus to adapt the model to specific problems, and in what follows we shall see what happens when it is
applied to some. Before we do so we must exorcize an old demon, though rather less of a demon now than a nuisance:
degree of confirmation.

Degree of Confirmation

A question that much exercised some people forty or so years ago, and which we have already briefly touched on, was
how to provide a numerical definition of degree of confirmation, using some ‘appropriate’ probability function. Out of
this arose disputes some of which generated a good deal of heat if not light. In the 1960s Carnap and Popper were
engaged in a particularly acrimonious dispute about whether any of Carnap's allegedly ‘logical’ probability functions c(h,
e) (Carnap's notation; c is formally a conditional probability) could be identified with the degree to which e confirms h.
Carnap had after all called c(h, e€) a formal explication of degree of confirmation. Popper claimed that various
considerations showed that degree of confirmation, or in his terminology degree of corroboration (see
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above, p. 96), is not a probability at all (Carnap 1950; Popper 1959: 394). Carnap pointed out that c(h, e) was
primarily an explication of ‘rational degree of belief’, and that what Popper was talking about was incremental
confirmation. Carnap also believed that the latter was not a probability, but a function of probabilities, and proposed
the difference between the posterior and prior probability c(h, e) — c(h, t) where t is a tautology. In our notation here
the latter is P(H|E) — P(H). Popper's degree of corroboration function is essentially P(E|H) — P(E), which is not identical
to Carnap's function. The situation was further confused by the appearance of alternative explications, notably by Good
and Cohen. Good himself considered various possible definitions, all in terms of some suitable probability function
(1968).



So which is the ‘correct’ measure out of these three, or is perhaps some other measure the correct one? It is difficult
to say, because there are few transparently essential properties that degree of confirmation should have, though
Popper's measure seems immediately ruled out nevertheless because of its incapacity to handle the grue problem. It
might be a better strategy to try to fix on some clear desiderata first, and see if these determine the resulting notion
anything like uniquely. Good himself employs this strategy, as does Milne (1997) and Howson (1983), all of these
people however choosing rather different basic desiderata: perhaps surprisingly, the same function log[P(E|H)/P(E)] =
log[P(H|E)/P(H)] is uniquely determined by each (unique up to the choice of base of the logarithm). Note that this
function is superficially similar to both Popper's and Carnap's simple difference functions, obtained from each or either
of them by taking logarithms of the terms in the respective differences.

Does the uniqueness mean that this function is the correct one? That is still far from clear. It might, for example, be
regarded as a plausible principle that ‘independent’ chunks of evidence should be additive in their contribution to the
confirmation of H. This condition is not satisfied by log[P(E|H)/P(E)], but it is by so-called Shafer—-Dempster belief
functions, which are not even functions of probabilities (Shafer—Dempster functions are based on Shafer's non- additive

. . 5
belief-functions,

5 See above, p. 78.

to which are adjoined Dempster's rule for combining independent pieces of evidence), and also by Turing's ‘weight of
evidence which E provides for H’, which is. This is the

function W(H, E) = log[P(E|H)/P(E] — H)], where again the base of the logarithm is inessential. It is not difficult to
show that pieces of data probabilistically independent of both H and of —H do contribute additively to W; i.e. if P(E1&

. .. &Ek|H) = P(E1|H) . . . P(EkIH), and ditto for —H, then W(H, E1 & . . . & Ex) = W(H, E7)+ . . . + W(H, Ey) (Good
1950: 64). In addition, W(H, E) is just the logarithm of the Bayes factor in favour of H (the reciprocal of what earlier
we simply called the Bayes factor, which is the Bayes factor in favour of —H). This means that weight of evidence
relates very directly to the evidential component in Bayes's theorem; in a sense, since it is a strictly increasing function
of it, it just is that component. Thus W itself might look a promising candidate to explicate ‘degree of confirmation’.

The trouble is that there are too many candidate explications, satisfying too many distinct sets of criteria all of which
sound ‘sensible’. | think that the most we can conclude is that ‘degree of confirmation’ is a highly underdetermined
concept. The real problem is that as far as the Bayesian or indeed any other probabilistic model, even Carnap's, is
concerned, degree of confirmation plays no obvious role. There is an obvious function for the probabilities themselves,
since they are interpreted as degrees of belief and thus fit directly and centrally into a model of uncertain reasoning.

In addition, in the decision-theoretic extension of the Bayesian model (caveat: for some Bayesians the Bayesian model
is from the outset decision-theoretic) they combine in a direct manner (multiplicatively) with utilities in the computation
of best decisions, that is, those with the largest expected utility. Regrettably for those with a nostalgia for some of the
fiercest intellectual battles of not-so-long ago, it seems that ‘degrees of confirmation’ can simply be dispensed with
without loss of model function.

Popper—Miller

If degree of confirmation as such has no significant role to play, that evidence confirms a hypothesis as it increases its
probability most certainly does, and indeed is fundamental to the Bayesian theory of evidence. It is that very idea that
is attacked by one of the protagonists of the degree of confirmation debate, Popper, assisted by David Miller. In several
joint papers (see particularly 1983, 1987), Popper
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and Miller claim to be able to demonstrate that any increase in the probability of H by E merely reflects the verification
of that part of H's content deductively entailed by E, and represents no evidence for the content of H net of E. On the
contrary, they claim to show that the probability of the excess content of H over E is not merely not increased but



actually decreased given the truth of E.

At first sight this seems obviously wrong. Theorem 2 of Chapter 4 tells us, for example, that the probability of future
predictions of H is enhanced, to the point eventually of unity, given the truth of sufficiently many past predictions (and
given a non-zero prior probability for H). And future predictions are surely in the excess content of H over E. Or are
they? It is a consequence of Popper's and Miller's view of what an inequality P(A|B) } P(A) conveys that they can deny
this. For them the inequality merely reflects the deductive verification of the common content of A and B. In the
context of Theorem 2, this means that the enhancement in probability of Ej;+1 given by the truth of E = E1& . . . &Ej is

no enhancement in the probability of the content of E;;1 additional to its common content with E. All probabilistic

confirmation, they claim, is merely disguised deductive confirmation.

These claims clearly depend on there actually being some well- defined thing signified by ‘excess content’, and,
granted that, on Popper and Miller's having correctly identified it. According to them, the excess content of H over E is
exactly represented by a single sentence, —EvH (for simplicity we shall use the logician's symbols v, — and —* for ‘or’,
‘not’ and ‘if . . . then __’ respectively; to see how they are defined logically, see Howson 1997c: 7-13). They base
their identification on the ground that —EvH is the logically weakest sentence which conjoined with E yields H as a
consequence. This last claim is true. For suppose B is any sentence which together with E implies H. Then by the so-
called rule of —-introduction (also known as the deduction theorem) B implies ‘E — H’, which is equivalent to —EvH.
They then show that although P(H|E) may exceed P(H), P(—EVH|E) is necessarily less than P(—EvH), that is, the
excess content of H over E is actually decreased if we are assuming E to be true.

Few commentators have pointed out that it is strange that two avowed anti-inductivists should happily accept that the
content of H going beyond E could be countersupported by E. Nevertheless, it is as anomalous as if they had shown
that it was supported by E, for neither possibility seems to square with the sceptical tenet that E only

informs us about E and nothing beyond it, and suggests that Popper's and Miller's result is merely an artefact of an
incorrect way of characterizing excess content. And so it turns out. For their choice of =EvH to represent the excess
content of H over E is driven by a self- imposed requirement that the excess content must itself be expressed by a
sentence (for the background to this requirement in Tarski's ‘calculus of deductive systems’ see Howson and Urbach
1993: 396-8). Given that requirement, the choice of —EvH is virtually inescapable. But the requirement is a gratuitous
one. Intuitively, the excess content is the set C of all the consequences of H not implied by E, and it is not difficult to
see that C in general exceeds the class of consequences of —EvH. Characterising the excess content by C also clearly
endorses the intuitive idea that Ej+4 is in the content of H going beyond E (and note that E,41 is not a consequence of

—EvH).

Popper's and Miller's analysis of what information can be conveyed by one quantity, E, about another, H, is faulty. It is
interesting to see what mathematical information theory itself tells us; in addition it will also cast light on why a
numerical measure of excess content that Popper and Miller also deploy is also faulty. First, a little background.
Shannon in his pioneering work (1948) proved that a small set of intuitively plausible constraints on an acceptable
measure U(X) of the uncertainty attaching to a random variable X, taking n different values with probability P(X =
Xj)=pj, determines U(X) to be L —pjlogpj, where the base of the logarithm is arbitrary (the base 2 gives the ‘bit’, or
binary digit, unit). The definition can be extended to the joint uncertainty of any number of random variables (though
the extension to the case of continuous variables, joint or single, is more problematic; but this is not the place to go
into that). This leads naturally to a definition of quantity of information in terms of the uncertainty eliminated by
information about the value of a random variable. Since U(X) is the expected value of the quantity —logpj, —log(X =
Xj) can be plausibly identified with the information obtained in learning that X = x;. Let us accordingly denote —logP(X

= Xxj) by Inf(X = x;).

We can relate Shannon's measure to the present discussion by noting that, given a probability distribution over its
truth-values, a hypothesis H is a two-valued random variable taking the value ‘true’ with probability p and ‘false’ with
probability 1 — p. Continuing as before to write H as shorthand for ‘H is true’, Inf(H) is the information contained in the
statement that H is true. Because of the



fundamental property of logarithms that they transform products into sums, Inf is additive over probabilistically
independent propositions: if A and B are probabilistically independent, that is, P(A&B) = P(A)P(B), then the information
contained in A&B is the sum of the uncertainties of A and B. The quantity of residual uncertain information in H once E
is assumed true, where we assume that H entails E, is equal to Inf(H) — Inf(E), i.e. —logP(H) + logP(E), which is equal
to —log[P(H)/P(E)], which is also equal to —logP(H|E) (since H entails E) which we can write Inf(H|E). Note that
Inf(H|E) is not equal to the information contained in the proposition —EvH, as Popper and Miller maintain, and is not
equal in general to the information contained in any proposition.

Popper and Miller themselves employ a measure Ct(H) of the content of H which, like Inf(H), is a function of P(H). But
they define Ct(H) to be a linear function of P(H), and a particularly simple one, 1 — P(H); i.e. P(—H). it is easy to prove
that Ct(E) + Ct(—EvH) = Ct(H). Thus according to Ct, —EvH is the excess content in H over E, as Popper and Miller
claimed. However, it is also easy to verify that for any two propositions A and B, Ct(A&B) is never greater than Ct(A)
+ Ct(B), and is equal only where P(AvB) = 1. Conversely, it is possible to show that any mathematical structure in
which contents can be added and subtracted (minimally, it must be what algebraists call a monoid, that is, a semigroup
with an identity element) and which identifies —EvH as the excess content of H over E must have this property
(Howson and Franklin 1985: 427). But intuitively the measure of the information conveyed by conjoining two
propositions should in certain circumstances exceed the sum of their separate informational contents, for example when
the truth of B indicates that A is very unlikely to be true. On the other hand, if A entails B then we should not be
surprised if the information conveyed by conjoining them is less than the sum of their informational contents
separately. It is not difficult to see that both these considerations are faithfully reflected by the measure Inf, since
logP(A&B) = logP(A|B) + logP(B). Thus if P(A|B) { P(A) then Inf(A&B) } Inf(A) + Inf(B), while if B entails A and the
probabilities of A and B are both between 0 and 1 exclusive, then it follows immediately from Theorem 1 that Inf(A&B)
{ Inf(A) + Inf(B) (for a more extended discussion of Ct and Inf see Howson and Franklin 1986).

Note that P(H) = O if and only if Inf(H) is infinite: the information you would obtain on learning the truth of a
statement you have

assimilated in probability to a contradiction is infinite. This should mean that learning the truth of any statement
containing a finite amount of information will not be capable of reducing the overall information in H. The implication is
proved formally by the fact that P(H|E) remains O for all E such that P(E) } 0, i.e. Inf(H|E) remains infinite. This gives
us another way to appreciate just what is involved in assigning a ‘dogmatic’ prior. It means that the amount of
uncertain information conveyed in H is so immeasurably large that no amount of finite data can achieve any reduction
in it. It is difficult to see how such a judgement about any hypothesis could be proved a priori. It is certainly not
enough to note that where H is a universal hypothesis it makes in principle infinitely many distinct predictions. This
does not entail that Inf(H) = infinity, as we have seen. Nor is it even intuitively correct: ‘Every natural number has a
successor’ is a universal hypothesis which is not a logical truth yet most people take as being certain. Indeed, nearly
all the axioms used to generate currently accepted mathematics are universal propositions, and are not logical truths.

Let us come back again to the problem which started this discussion, namely what is going on when successful
prediction raises the prior probability of a hypothesis, as in Theorem 1. The answer is actually very simple and
unremarkable. By the definition of conditional probability P(H|E) = P(H&E)/P(E) = P(H)/P(E) since H entails E. Recall
the remarks about the intended meaning of P(H|E) at the beginning of this chapter: conditioning on E means
restricting the universe of discourse to the space of possibilities making E true. Since H entails E by assumption, the
possibilities making H true in this new space are just those making H true in the original space; but their original
probability now has to be renormalized, that is, proportionately increased by a factor of 1/P(E). That is all that the
equation P(H|E) = P(H)/P(E) says. But the increment of probability is spread over all the possibilities consistent with H:
there is nothing whatever implied in this account about the augmented probability reflecting a ‘purely deductive
confirmation’ of the E-part of H's content. Indeed, as Cussens points out (1996: 7-9), that claim is rather trivially
refuted by the fact that there are (infinitely many pairs of) probability functions P and P such that the quantity P(H|E)
— P(H) differs from P (H|E) — P’ (H) by an arbitrary amount subject to the constraint that both differences must lie in



the interval [—1, 1].

Accommodation and Prediction

I believe that we can safely conclude that Popper and Miller have not been able to refute the idea that an increase in
probability due to the acceptance of the truth of E reflects on the whole of what H says and not just that part of it
which is entailed by E. In most of the remainder of this chapter we shall apply the Bayesian model to some issues in
the philosophy of science, starting with a very old problem. Bacon asserted that the power to anticipate the outcomes
of experiments that had never before been made is a telling sign in favour of a hypothesis's truth. Recall from Chapter
1 his remark in Novum Organum that ‘we must look to see whether it confirms its largeness and wideness by
indicating new particulars, as a kind of collateral security’ (1994: 1, 106). Bacon calls hypotheses that do this
‘interpretations of nature’, reserving the term ‘anticipatio’, oddly enough to our ears, for just the sort of hypotheses
that are modified always to agree with the data; see Bacon 1994, pp. Xvi—xvii).

In the nineteenth century, the same view was strongly endorsed by Pierce and Whewell. A further, apparently even
more compelling, converse has recently been added by Giere, Worrall, and others: any hypothesis constructed after the
facts to explain them will not only not do so, but those facts will have no evidential value vis-a-vis the hypothesis:

If the known facts were used in constructing the model and were thus built into the resulting hypotheses . . .
then the fit between these facts and the hypothesis [sic] provides no evidence that the hypothesis is true
[since] these facts had no chance of refuting the hypothesis. (Giere 1984: 161; my italics)

Perhaps surprisingly, Giere, a non-Bayesian, seems to be expounding a Bayesian criterion: that if the Bayes factor is
unity then E is not evidence for H. For if E is predicted by H (there is agreement between the data—here E—and the
hypothesis H) then P(E|H) = 1 or is close to 1. But if H was deliberately engineered to agree then we know that there
is no chance of disagreement even if H should in fact be false. Thus we appear to have P(—E|—H) = 0 and hence
P(E|=H) = 1. Hence we have a Bayes factor of unity, which as we know implies that P(H|E) = P(H). So it appears that
the Bayesian model explains the depreciation of merely accommodating theories.

Unfortunately that explanation cannot be correct. Here is a simple counterexample. | happen to know that this barrel
contains some

apples, but | do not know how many. | plan a simple but effective experiment to find out how many: | look in the
barrel and count the apples. There are ten. Having performed my experiment | employ its data to advance the
hypothesis H(10) that there are ten apples in the barrel. This explains the data perfectly well and indeed the data are
the best possible evidence that the hypothesis is true. So the thesis that data explained post hoc have no evidential
value is simply wrong. The Bayesian model immediately endorses this judgement too, for P(H(10)|E) = 1, whereas the
probability of H(10) was not unity before | performed the experiment. Is the model inconsistent? No. Can you see
what has gone wrong? If you can't, here is the answer. The wrong move was to infer that if the agreement between E
and H was engineered deliberately then this means that P(—E|—H) = 0. This may seem surprising but a little reflection
will show that it really is a mistake. For if P(—E|—H) = O then as we saw P(E|—H) = 1. But if P(E|H) is also 1 then it
follows from the probability calculus that P(E) = 1; i.e. E is true with probability 1. But the observation(s) did not have
to produce the outcome E. They did as a matter of contingent fact, but the facts could have been otherwise. The
fallacy, then, is in the inference that because H was engineered to agree with the data, the data stood no chance of
refuting H. As we saw earlier in Chapter 3, this is simply not true: the data had every chance of disagreeing with H.

So the inference to P(—E|—H) = 0 must be wrong. To complete the discussion we need to explain why it is wrong. The
explanation is that it is obtained by performing an illicit substitution. Just about everybody who writes on this subject
makes the same mistake, so it is worth taking a little time to explain why it is a mistake. Suppose we have a physical
experiment EXP. Depending on how exactly the world is structured EXP could in principle generate different possible
outcomes. For example, in the world as it is, or as we believe it is, dropping a brick results in accelerated downward
motion. But if gravity decided to act in the reverse direction the brick would move upwards (and a lot more would be



different besides, but never mind that). Let X stand for ‘the outcome generated by EXP’. X is, with inessential
qualifications that need not concern us, what is called a random variable: something that takes different ‘values’ in
different possible worlds. Now let f(X) be the result of applying some strategy to X which, whatever X in fact is, will
yield a hypothesis guaranteed to agree with X. For example, f(X) might be obtained by waiting
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until the value of X is known and constructing the hypothesis in a way that depends on this knowledge to agree with
that value, as in using data to evaluate free parameters. At any rate, we can certainly say that the chance of f(X)
disagreeing with X is zero; that is, P(X agrees with f(X)) = 1. That is entirely in order. But what we cannot do is
substitute joint values for X and f(X), like E and H, inside the scope of the probability operator P.

Different disciplines have different names for the fallacy. A mathematician sees it as substituting a scalar (a fixed
object) for a function. A logician can show that it involves substituting a variable into a context in which it becomes
bound (Howson and Oddie 1979: 257). Philosophers call it ‘substitution into opaque contexts’. Whatever you call it, it's
wrong, and will lead to contradictions. A fuller discussion is contained in Howson and Oddie (1979), but here is a
simple counterexample. Suppose that the probability that the outcome of the next toss of this coin is heads is Y.
Letting the random variable Y signify ‘the outcome of the next toss’ we can write the probability in the standard
formula as P(Y = heads) = %. Suppose that the outcome of the next toss of this coin is in fact tails. Well, we
obviously cannot use the factually true identity ‘the outcome of the next toss of this coin is tails’ to substitute ‘tails’ for
Y in the formula. Apart from anything else it would give the absurd result that the probability that tails is heads is Y.
Giere's fallacious inference arises from such a substitution. That is why we are not entitled to conclude P(—E|—H) = 0
from a premiss stating that, given the way the data are employed to generate a corresponding hypothesis, the chance
of the hypothesis agreeing with the data is unity. No valid Bayesian explanation can proceed from such an inference;
which is just as well, for as we saw it would explain something that is not in general true.

What the Bayesian model does truly explain is why the prediction of highly novel facts is evidentially meritorious, and
the explanation is a very straightforward application of the earlier formulas: if the data E are predicted by H and by no
other plausible hypothesis we should expect P(E|—H) to be correspondingly small while P(E|H) is close to 1. In that
case, of course, the Bayes factor is small and if P(H) is not too small, E will raise the probability of H considerably.
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Old Evidence

| said that P(E) = 1 does not follow from the fact, if it is a fact, that H is engineered to fit E. On the other hand, since
E was by assumption known before H was constructed—to fit E or not as the case may be—then surely P(E) must be
1, since we know E and P measures degree of belief. Yet this appears to entail (as was noted first in Glymour 1980:
86) that no already-known evidence can confirm any hypothesis according to the Bayesian model, since if P(E) = 1
then P(E|H) and P(E|—H) are also both equal to 1, and as we observed above the Bayes factor is therefore 1 and so
P(H|E) = P(H). But this seems to imply that the Bayesian model must necessarily fail to fit well-established inductive
practice, and practice that seems intuitively well-justified. For it is sometimes the case that empirical data which have
been known for some time are very strongly thought to support a newly developed hypothesis: a much-discussed
example is the discovery (by Adams and Leverrier) that Mercury's perihelion precesses, a fact that Newtonian
gravitational theory could not explain in any very successful way, but which was a straightforward, and justly
celebrated, consequence of General Relativity. Even Earman, an otherwise sympathetic commentator on the Bayesian
theory, regards this as a profound difficulty for it (a ‘black eye’; 1992: 135) in so far as it claims to provide a model
for scientific inference.

And the discussion continues, with a consensus that the problem is at the very least a serious one for the Bayesian
model, with no obvious solution. It may come as a surprise, therefore, to be told that there is a very simple solution,
or, rather more accurately, that there is no problem. For that is indeed the case. Recall the observation earlier that the
extent to which a body of data counts as evidence relative to a hypothesis, that is, its power to enhance or otherwise
the credibility (probability) of the hypothesis, depends on the informational context in which it is situated: of other
factual reports, of background theory, the extent to which other plausible hypotheses exist, etc. This apparently



obvious remark is enough to dissolve the old- evidence problem. To prepare the mind, go back again to the Mercury-
perihelion problem. The differential evidential impact of the known value for the precession of Mercury's perihelion on
the two rival theories, classical gravitational theory and Einstein's solution to the field equations of General Relativity
(GR hence-forth),

is assessed by the posterior probability relative to what was, say in 1916, regarded as the available credible
background information about the structure of the solar system, that is, about the larger massive bodies, including
known dust clouds etc., and the distances between them. By assumption that background information obviously does
not contain the data for the perihelion-precession itself, for it is those very data which are being assessed against the
background of whatever else is known.

The old-evidence problem is now dissolved. For what these otherwise-trite points tell us is that the evidential value of
any item E is assessed relative to the remainder of the contemporary body of background information, should E be
already known, for the very notion of being evidence just means being assessed against the background provided by
that residual body. All this carries over smoothly to the model. Let E be the data for the precession of Mercury's
perihelion, let H be GR and H Newtonian gravitational theory. Simplifying greatly, suppose that the prior probabilities of
both H and H are equal, and for the sake of argument 1/2. Relative to the residual known or likely information about
the disposition of masses in the solar system, we have P(E|H) = 1 (again, approximately) and P(E|H") very small;
again for the sake of argument 1/100. These figures are supposed to be only what a contemporary might conceivably
assign; whether they are accurate even in this we can ignore. But they enable us to compute P(H|E) and P(H' |E), as
approximately 1 and 1 per cent respectively. Also, since P(H) = P(H") = 1/2 P(E) = P(E|H)P(H) + P(E|H)P(H"), they
determine P(E), and determine it moreover to be a number less than one even though we ‘know’ E: approximately one
half.

A quite different Bayesian analysis of the role of old evidence has been developed by Garber, following a suggestion of
Glymour. Glymour (1980) remarked that possibly the power of old evidence E to give inductive support to a new
hypothesis H predicting E was due not to any increase of the probability of H in the light of E itself, but an increase in
the probability of H in the light of the knowledge that H was found to predict E. Thus the idea that old evidence cannot
directly confirm is sustained in this theory; according to it what confirms is the new evidence that H predicts E. The
other novel twist to standard Bayesian theory is that this new evidence is not empirical: it is the report of the
discovery of a logical fact. We saw in Chapter 7 that Garber developed a theory in which the domain of the probability

function is extended to include statements of the form ‘H deductively entails E’. In fact, Garber developed this theory
explicitly to develop Glymour's suggestion into a systematic theory of the confirmation of factual hypotheses by
evidence about logical relations.

As we saw, Garber's theory is also a radical break with classical Bayesianism, in that it relaxes at least one of the
probability axioms, that logical truths are uniformly assigned unit probability. Whether that is desirable or not (and |
argued that it is not), there are cases of hypotheses constructed precisely to explain the data which show that,
however adequate in itself, Garber's theory cannot be an adequate explanation of the role of old evidence. For as we
have seen, at least some of these hypotheses, like H(10) in the earlier discussion, contrived to fit the data would on
any sensible view be regarded as maximally supported by it, since they are virtually entailed by it. Here the logical
relation between E and H is known, indeed exploited, but E none the less confirms H. These considerations show that
it is not the discovery of the deductive relation that is doing the confirming, but the content of E itself. Concede that
and you are back with the classical Bayesian theory. But that doesn't matter, because as we know there is no problem
of old evidence for classical Bayesianism.

Diverse Data

Here is another short exercise in the use of Bayes factors. We are frequently told that experiments should be not only



repeatable, but that when repeated they should give the same result if they are to be regarded as conveying reliable
information. The reason is intuitively clear: the first result might have been a fluke, the result of some malfunction in
the apparatus or its interpretation rather than the record of a genuine effect. In other words, the observed outcome E,
predicted by H, may be caused by some cause other than that described in H. Suppose H¢ is the hypothesis that the
observed outcome is due to some cause C other than that described in H. If the experiment is well designed, then a

repeat of it under tight control will make it unlikely that there is any plausible H¢ playing this role a second time.
Hence, if E; and E, are the two outcomes and they record the same event, and Hc 1 and Hc, o are the statements

that Eq and E; respectively

are due to C, then P(E;&Ex|Hc, 1&Hc, 2) will still be large but the factor P(Hc, 1 & Hc, 2) will not. This means that the
priors multiplying the Bayes factor for Hc 1 & Hc, 2 will be small. Hence the posterior probability of H with respect to

the joint outcome will be higher than for a single one.

We can generalize this reasoning in the following interesting way. A repeated experiment is never exactly the same in
all details as the first; apart from anything else the time at which it was performed will have changed. So what we
have seen above is an instance of the more general phenomenon of the value of diverse evidence. And now another
factor comes into play. Suppose a hypothesis makes a variety of experimental predictions. These will be perfectly
positively correlated if H is true, but in the absence of any other plausible unifying hypothesis not particularly well-

correlated if not. In other words, if E; and E, are predictions in hitherto remote domains, then we should put
P(E2|E1&H) = 1 and P(E2|E1&-H) much less than one. A little manipulation of the Bayes factor shows that in such a
case f = P(Ex|E1& — H)P(E1] — H). Hence the smaller the correlation between E, and E; were H not true, the greater
the confirming power of E>&Eq with respect to H. So the ability to characterize diverse evidence as effects predicted by

a single explanatory hypothesis in general tells in favour of that hypothesis.

Once May Be Enough

We have seen that we can model a variety of ‘classic’ inductive inferences in a way that seems both faithful and
immune to Humean objections in the sense that the inductive premisses are explicit. Commonly these premisses take
the form of delimiting a class of ‘seriously considered’ hypotheses, modelled as those with appreciable prior probability.
As we know, in suitable circumstances (generally meaning the absence of plausible alternatives that can equally well
explain the data), such theories can attain probabilities close to 1 with suitable evidence in well-designed experiments.
If the ambient circumstances are propitious very little evidence may suffice, a fact that has been noted by many
commentators but which has equally resisted their attempts to explain. One such was Hume himself, whose own
attempt was perfunctory:
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the mind, having form'd another observation concerning the connexion of causes and effects, gives new force to
its reasoning from that observation; and by means of it can build an argument on one single experiment, when

duly prepar'd and examin'd. (1739: I. Ill. xii)
The explanation famously eluded Mill:

Why is a single instance, in some cases, sufficient for a complete induction, while, in others, myriads of
concurring instances, without a single exception known or presumed, go such a very little way toward
establishing a universal proposition? Whoever can answer this question knows more of the philosophy of logic
than the wisest of the ancients and has solved the problem of induction. (1891, bk. Ill, ch. Ill, section 3)

There's a challenge. The doctrine of natural kinds is frequently invoked to answer it: we feel confident in generalizing
from the ‘single instance’ when we observe that the property in question belongs to an otherwise ‘arbitrary’ member of
a natural kind. Since the observed exemplar was ‘arbitrary’, then, if the property belongs to it, it must belong to every



member of that kind. But this explanation is entirely question-begging (see the discussion in Chapter 2, pp. 31-2) and
does nothing to illuminate the inferential processes involved. It is also often claimed that these cannot be probabilistic
in nature, precisely because of the readiness in appropriate circumstances to generalize immediately:

It is a matter of historical fact that many of the fundamental principles classical mechanics, electricity,
magnetism, chemistry, biology and physiology were discovered without recourse to probability theory. The
scientists who made these discoveries proceeded from a small nhumber of observations to a general conclusion.
Of course, the conclusion sometimes proved wrong or incomplete. Nevertheless, from the standard position of
the philosophy of science, the physicist who establishes a figure for the conductivity of copper is like a man who
draws one marble from a bag and, finding it to be red, stakes his all that all marbles are red. This indicates that
the model of the marble-drawer is not appropriate to large areas of scientific reasoning. This point has been
made forcefully by Popper. (Machamara 1991: 22)

The marble-drawing model certainly isn't appropriate, but then it has not been the basis of the probabilistic theory of
evidence for a long time—certainly not since the advent of the neo-Bayesian theory, identified as a logic rather than a
body of substantive truths, founded by Ramsey and de Finetti. Also, whether agents actually engage in formal
probabilistic reasoning is, as | warned earlier, quite beside the

point in judging the adequacy of the model of reasoning the Bayesian logic does provide, as beside the point as
observing that people do not formalize inferences in first-order languages when they argue deductively.

And as it happens, of course, there is nothing essentially unprobabilistic about generalizing from a small sample in
appropriate circumstances. On the contrary, to see such an inference as probabilistic solves the problem completely: as
we can easily see, it has a natural probabilistic interpretation as one from a small Bayes factor to a high posterior
probability. That is the solution: we believe we have a minuscule Bayes factor combined with a non-negligible prior.
Suppose, for example, we have a causal hypothesis, H, attributing the phenomenon, E, to some causal property of the
object or objects under investigation. We are confident that H is the true explanation because the experiment, ‘duly
prepar'd and examin'd’, is so constructed that it would be highly implausible to hold any adventitious factor
responsible. In terms of the equations above, this simply means that all the explanations Hj which might in principle
attribute the result to alternative causal factors (i.e. such that P(|H;) is considerable) are such that the experimental
design makes them highly unlikely if not impossible (P(H;) is very small). In that case, as we saw, the Bayes factor (of
H against —H) will be very small and, given a non-negligible prior (assumed), P(H|E) will be close to 1. In the case
where we do not feel confident in extrapolating beyond what we have observed it will be because we have feel that we
have observed merely some accidental collocation of properties; that is, it is not at all implausible that some
extraneous factor is responsible. But this means that for some alternative H;, both P(H;) and P(E|H;) are considerable.
This is of course, not ‘solving the problem of induction’: it is just what the model describes as consistent behaviour
subject to the initial constraints. It does not tell us, nor should it, that these are correct.

A Sounder Argument for Realism °

6 The argument of this section with minor changes follows Dorling 1992.

We saw earlier that attempts to found scientific realism (hencefor- ward simply ‘realism’) on the No-Miracles argument
fail because
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that argument is unsound. Moreover, if Hume is correct then there can be no argument for realism that does not
somewhere beg the question. | shall simply assume that this is the case. But scientists markedly tend to be realists:
virtually all the texts on particle physics start by classifying these particles and describing their properties. Moreover, it
seems intuitively right that any empirical support for the empirical adequacy of a general theory T, whose content
vastly transends current observational data, must be support to some extent also for the realistic claims made by the



theory.

This is an almost trivial consequence of the Bayesian model. Let TR assert the truth of the fully realistic version of T,
and TE merely assert T's empirical adequacy. We can assume that TE follows from TR. It follows immediately from the
very simple but very important Theorem 1, Chapter 4, p. 71, that if E is a consequence of TE and P(TR) } 0 and P(E) {
1, then P(TR|E) } P(TR). Hence, given that the realistic version had some positive prior probability, that probability will
be positively augmented by any successful prediction. We are of course making some assumptions here. One is that
(as seems always assumed in the instrumentalism vs. realism debate) some method can be employed to discriminate
observational from nonobservational consequences. This is not of course a distinction that can be made sharply or
considered as once-for-all; what are observational consequences of a theory today might well not have been three
hundred years ago. Not just the empirical content but the total content of a theory depends very much on its ambient
theoretical environment as well as on the development of suitable technology. So we must certainly take the empirical
content of any theory as time- indexed. Granted that, another assumption is that TE is actually a determinate
hypothesis to which probabilities can be assigned. But that is all right: TE is a denumerable set of sentences and can
be represented as a single proposition within the possibility-space (it is a denumerable intersection, and we have
allowed for the set of propositions to be a -algebra of subsets of this space).

Finally, we are assuming a non-zero prior for TR, and it may be objected that this is the very point at issue. Of course,
from the Humean point of view any non-zero prior is already an inductive premiss, but we are not really in that sort of
discussion now: we are talking about the adequacy of a model of inference in which it is assumed as an initial
condition that people do various things whether justified or not according to the austerer Humean canon. In the

Bayesian theory a non-zero prior is intended to model a state of mind that is prepared, even minimally, to be changed
with the reception of suitable information, and we know from Chapter 4 that a zero prior will not model such a state of
mind. Practically everything in the Bayesian model is premissed on the assumption that scientific theories are taken
minimally seriously in this way. If they are not, it is not science that is being modelled but some dogmatic faith. It is
no accident that instrumentalism initially arose as the response of the Catholic Church to the threat of a secular
explanation of the universe, and that two of its most prominent advocates, Berkeley and Duhem, were devout
believers. It is true that there may also be theories that appear to resist any consistent realistic interpretation. The
prominent feature of modern science that has reopened what is a very old debate is, of course, the difficulty of
regarding quantum mechanics as anything other than a superb black-box predicting machine. Attempts to embed the
theory into one in which quantum systems can be said to possess real properties in any intelligible way continue, of
course, and with interesting consequences for the way we regard the ‘fundamental’ notions of logic and probability in

the context of physical theory.

The next question is by how much the probability of the realistic version of T can be increased. We can answer this
too, at least up to an interesting inequality. It is a consequence of the model that the ratio of the posterior
probabilities of a weaker and a stronger version of a theory that each predict the data is proportional to the ratio of
their priors (the reader might like to try this as a simple exercise). It follows that being a ‘pure’ instrumentalist is as
difficult in principle as it is in practice. To see this, let us assume that both TR and Tl are assigned positive prior
probabilities (the usual Bayesian explanatory initial condition), and let these be p and g respectively. By construction,

the predictions deducible from TR are identical to those deducible from TI. It follows by the result mentioned that

P(TR | E:I_I."IPI:T'E| E) = ]’.-";‘]-

It follows that if P(TE|E) increases, then so too must P(TR|E) in proportion to P(TE|E). Whether TR ever becomes more
probable than not a posteriori will, of course, depend on its prior probability. For a positivist, which in this context we
shall take to mean one who denies the realist claims of a theory, this will be small, but Dorling

provides an example in which the prior is 0.2 but is nevertheless sufficiently dominated by E that ‘conversion’ to
realism occurs, in the sense of the agent determining that TR is more probable than not (1992: 368-9).



Evaluating Logico-Mathematical Hypotheses

It was remarked in Chapter 7 that there is nothing in principle against considering the posterior probability of logico-
mathematical hypotheses. Consider the problem of (deductive) consistency which we also discussed there. Every
mathematician believes that Peano arithmetic, a set of axioms for natural number arithmetic attributed to Peano but
actually due to Dedekind, is consistent. But it is a consequence of Godel's second incompleteness theorem that any
proof of this fact, if it is a fact, requires a stronger system, thereby rendering the epistemological value of the proof
doubtful if not entirely nugatory. Similar remarks are valid for any axiomatized theory. So proof is a luxury denied us.
Can we nevertheless justify a belief in the consistency of Peano arithmetic—henceforward we shall call it PA—falling
short of that corresponding to deductive certainty? The reader should by now be aware that justified belief is not
something in the gift of Bayesian—or any other—Ilogic. But what that logic can do is represent consistent reasoning
about consistency. Well, let us see. There is, first of all, for most people aware of the problem, a very high degree of
belief in the consistency of PA. It arises from a variety of sources: from the fact that we seem to clearly discern as a
structure visualizable clearly in the mind's eye the intended model, the natural number system itself; from the fact
that a vast number of deductions using those axioms, even if informally, has failed to reveal a contradiction; and from
the fact that we can prove the consistency of PA in a variety of systems which, while admittedly stronger, have each
an independent, and very high, plausibility. For example, there is an almost trivial proof of consistency within ZFC,
where the so-called finite von Neumann ordinals are provably—provably within ZFC, that is—a model of PA; and Gdodel
himself and Gentzen gave proofs within weaker systems than ZFC. For these reasons, and perhaps others, we feel that
it is almost certain that PA is consistent. But how do we represent that reasoning within the Bayesian model?

Part of the answer is very straightforward. The consistency of PA follows deductively from each of the following: the
consistency of ZFC; the consistency of the weaker systems used by Gddel and Gentzen; and (trivially) the assertion
that PA has a model. Assuming that we assign to each a large probability (an assumption that functions here merely as
an initial condition in the reasoning; we just do think this way), the probability of the consistency of PA must be at
least as great. So far so good, though we have of course unearthed nothing new. In effect that fixes the prior
probability. But what about the ‘inductive’ evidence, that no contradiction has so far been forthcoming? Now we can
reason more in the spirit of Bayes's theorem. Here we are in effect appealing to a large variety of data (‘no
contradiction discovered in this application’, ‘no contradiction discovered in that application’, etc.) all predicted by the
hypothesis of the consistency of PA. There is of course the possibility that there might have been errors in these
deductions, but it is very unlikely that there have been in the vast majority, which like repeatable empirical
experiments are open to cross-checking. But for anything firm to come out of this we need a low Bayes factor, and
that is obtained only if the probability of all that data if PA is inconsistent is very small. Is that the case? There is no
determinate answer, but we do believe, again as a matter of fact, that the Bayes factor is small because we believe
that in the time-scale of applications of these principles of arithmetical reasoning some contradiction would by now
have been discovered were those principles inconsistent. There is no way of proving this, but it is certainly what many
people feel. Plugging that ‘feeling’ in, we obtain the requisite small Bayes factor and hence an even higher posterior
probability than the prior. It may not be wholly justifiable, but it is (probabilistically) consistent reasoning; and that is
all we asked. Admittedly, we have dealt only with one problem, that of explaining why we are as confident as we are
of the consistency of PA, but it is not an atypical problem. At any rate, we must leave the discussion there, because it
is time to move on to one of the most controversial of questions, discussed by Bayesian and non-Bayesians alike, the
role which simplicity should be accorded in inductive reasoning.
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Simplicity

The characteristic and fundamental feature of the Bayesian model, that evidential evaluation is a function of two
variables, one indicating how ‘good’ the data are (the Bayes factor) and the other the independent plausibility (prior
probability) of the hypothesis, is both itself very intuitively obvious and hence not surprisingly echoed in the informal



observations of scientists themselves (Laplace's ‘good sense reduced to a calculus’ again). As a well-known statistician
has remarked

this provides a qualitatively correct picture of the way in which opinion is formed. One may believe a theory
either because one's initial prejudices are strong, and observation does not provide enough evidence to shake
them, or because the observational evidence is strong enough to overcome any prejudice, or perhaps one's
initial opinions and observational evidence reinforce one another. (Smith 1961: 4)

Admittedly Smith is explicitly a Bayesian. Einstein wasn't, of course, but consider the following comment (brought to
my attention by Robert Matthews) on Kaufmann's and Planck's experimental results concerning the velocity-
dependence of the energy of a moving electron. These results appeared to agree with Abraham's theory (according to
which the dynamics of electrons are based on purely electromagnetic considerations) and to be in conflict with the
predictions of Special Relativity. But Einstein was not impressed:

Herr Kaufmann has determined the relation between [electric and magnetic deflection] of fi-rays with admirable
care. . . . Using an independent method, Herr Planck obtained results which fully agree with [the computations
of] Kaufmann. . . . It is further to be noted that the theories of Abraham and Bucherer yield curves which fit
the observed curve considerably better than the curve obtained from relativity theory. However, in my opinion,
these theories should be ascribed a rather small probability because their basic postulates concerning the mass
of the moving electron are not made plausible by theoretical systems which encompass wider complexes of
phenomena. (translated and quoted by Pais 1982: 159; my italics)

Never mind Einstein's reasons for regarding Abraham's and Bucherer's theories as ‘implausible’; it is the form of the
inference from that implausibility which is important here, for it translates naturally and directly into the Bayesian one
that a small prior
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probability counters the effect of a large Bayes factor to yield an overall small posterior probability.

It is nevertheless an interesting question what if anything of value can be said about the factors that scientists regard
as promoting a high prior probability. Einstein in the quotation above suggests largeness of scope of a theory, the
extent to which it can ‘encompass wider complexes of phenomena’. Einstein is also on record as elevating more
aesthetic considerations, of simplicity and even beauty, to a very high status. In this no one, of course, surpasses
another great twentieth-century physicist, Dirac. Undoubtedly such considerations have played and do play a large
role, though more with some people than with others.

But simplicity has always been regarded with a special favour. A good many people's idea of simplicity is that it is not
merely a rather nebulous quality of ‘elegance’, but an avoidance of unnecessary complication in structure, and
particularly that part of the structure that is held responsible for generating the remainder. In other words, a judicious
wielding of Occam's razor results in simple explanations. Newton captured the idea in a well-known observation: ‘To
this purpose the philosophers say that Nature does nothing in vain, and more is in vain when less will serve; for
Nature is pleased with simplicity, and affects not the pomp of superfluous causes.” One way of explicating avoidance of
‘the pomp of superfluous causes’ in the mathematical sciences is in terms of minimizing the number of adjustable
parameters which appear in explanatory hypotheses. The pioneering Bayesian Harold Jeffreys went so far as to make
the goal of simplicity in this sense a fundamental postulate of his theory of probabilistic inference: simpler hypotheses,
he proposed, should be regarded as a priori more probable. This is Jeffreys's so-called simplicity postulate (1961: 47).
Popper adopted Jeffreys's analysis of simplicity in terms of paucity of undetermined parameters while, however,
denying that simplicity in that sense could, for logical reasons, vary in the same direction as prior probability. Other
people (most recently Forster and Sober 1994) have followed Popper in taking this view. The charge is based on the
mathematical fact that any hypothesis with k free parameters, k } 0, determines a hypothesis with k — 1 free
parameters by setting one of the original k parameters equal to some fixed number. For example, the hypothesis that
an orbit is some circle centred at the origin of the coordinate system (this has one free parameter, the length of the
radius) implies the hypothesis



that the orbit is some ellipse (two free parameters), but one with eccentricity O (now one free parameter). The logical
form of a hypothesis with k adjustable or free parameters is

daFag...da ¥ xAlaa0, .0,%)

where x may be an m-dimensional variable, and the reason the defender of a Simplicity Postulate appears to be in
trouble is that the simpler hypothesis implies by existential specification the less simple, from which it follows by the
probability calculus that its probability can be no greater, contradicting the simplicity postulate.

While all this is true, it ignores Jeffreys's own qualifications which preserve the consistency of the postulate. Jeffreys
wanted to model the behaviour of those scientists who, to get a better fit to the data, reluctantly complicate a simpler
hypothesis, say a linear hypothesis, call it H, by adding a small quadratic term, whose coefficient is to be determined

by further observations. The point is that the new coefficient is to be adjustable, subject to its being non-zero. !

7 Forster and Sober's response to this is misguided: ‘we note that this ad hoc maneuver does not address the problem of comparing
LIN [the family of linear curves] versus PAR [parabolas] but merely changes the subject’ (1994: 23). Not so: it is not an ad hoc
manoeuvre, nor does it change the subject. On the contrary, more than anything Forster and Sober themselves say, it expresses
accurately the fact that scientists are interested in comparing linear curves with nonlinear quadratic ones, not linear curves with

quadratic-or-linear ones. Nor (finally) is the comparison between LIN and PAR a problem for Bayesians, for these same reasons.

But now it is clearly consistent to assign H a larger prior probability than the hypothesis, call it H2, that the functional
form is quadratic with some non-zero leading coefficient, for H and HZ are now mutually exclusive alternatives.
Specifying some non-zero value b to H2 will yield another hypothesis, H2(b). By the probability calculus P(H2) -

P(H2(b)), and P(H) } P(H2) by the simplicity postulate. H and H2(b) have the same number of free parameters, namely
two, but they have different prior probabilities. This might seem to conflict with the simplicity postulate but Jeffreys

regards it as quite acceptable to assign HZ(b) the prior probability 0 (1961: 247)! In fact, there is no conflict with the
Simplicity Postulate as Jeffreys himself intended it to be understood, and given that understanding he supplies a
perfectly coherent rationale for these assignments. This is not the place here to go into the matter; the interested
reader can consult Jeffreys (1961) himself, or the discussion in Howson (1988).
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Not everybody accepts Jeffreys's theory of simplicity (though it still has supporters), though most physicists agree with
the importance he attached to theoretical determinacy: a standard objection to the so-called Standard Model—the
current theory of strong, weak, and electromagnetic interactions—is that it contains no fewer than seventeen
independent adjustable parameters (the ideal of physicists appears to be a theory which contains none). But
unfortunately simplicity is a far from univocal concept: a glance at the literature reveals almost as many non-equivalent
analyses of simplicity as there are advocates of it. Bunge's admirable critical survey (1963) looks at a good number of
them, though the currently fashionable approach based on minimum description length (see Rissanen 1982) occurred
too late to be included.

Different Bayesians commend different versions of the simplicity postulate (see e.g. Swinburne 1979). But whatever
notion of simplicity one thinks fits a simplicity postulate best, assigning priors in accordance with it goes beyond the
bounds of Bayesian inference construed as logically sound inference. The fact that simplicity, whatever in any particular
context it may be required to mean, is widely valued no more entitles it to the status of a part of the logic of inference
than does the fact that the current set-theoretical axioms are almost universally adopted entitle them to the status of
logical principles, a principle which is general acknowledged. But a preference for simplicity, in whatever form it might
take, can certainly be modelled within the Bayesian theory as a suitable constraint on prior probabilities.

Explanatory Emptiness?

The fact that prior probabilities are exogenous to the Bayesian model is one of the conditions for consistency with the
Humean position that no sound inductive solely from the observed facts themselves exists. This means that a variety
of possible non-logical constraints, of which simplicity is only one, could in principle be modelled by a suitable choice of



priors. However, this very plasticity of the Bayesian theory has been held up as criticism, for a reason we have already
discussed in Chapter 7. Since it does not in general fix the priors, the Bayesian model would seem to be consistent
with any way of responding to evidence at all. Indeed, we shall see that this is largely
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true. It is a common charge that models that can model anything by a suitable choice of parameters are to be
despised, because the ability to model anything implies the inability to explain anything, at any rate in any authentic
way. Thus the Bayesian theory has been charged with being explanatorily empty.

Albert, whom we have already encountered in the role of scourge, makes just this charge, supporting it with the
following remarkable theorem (I give a slightly simplified statement of it). Suppose one's hypothesis space can be
parametrized by an interval Z of real numbers (this is very often the case in statistics); that is, the hypotheses can be
represented by the members of the set {t:t£Z}. Suppose also that each of these hypotheses determines a different
infinite sequence s of possible data, represented as a sequence of Os and 1s (this is no restriction in principle because
almost any data can be represented in binary code). In fact, as Albert points out, if we take Z to be the unit interval
we can regard the sequences simply as the binary representations of the numbers between 0 and 1. Let £ be the set
of all such sequences s. Thus any prior probability distribution over Z induces a corresponding distribution P over 1. Let
(s)j be the ith member of s, and s, be the data collected up to and including epoch n. Shorn of technicalities Albert's

theorem (proved in Albert 1999) states that the posterior probability P((s)n+1lSn) can be consistently chosen in any

way whatever! In particular, any choice of posterior probabilities will determine some prior probability measure on (a
sigma algebra of subsets of) Z. Relative to extensive enough possibility spaces, therefore, the Bayesian model is
consistent with any way of adjusting predictions about the future to what has been observed to happen in the past.
Albert rightly points out that possibility spaces at least as rich as, which includes all the possible ways in which the
course of Nature might evolve (here a Nature restricted to emitting Os and 1s), are implicit in the problem of
induction, and concludes that the Bayesian model is explanatorily empty and therefore useless even as a normative
theory of rational behaviour, let alone a descriptive one (1997: 5).

But this is not the correct conclusion. One might as well charge much of physical theory with being explanatorily
deficient because it can be used to model a vast range of possible different properties of physical systems, depending
on suitable choices of initial conditions. The fact is that the free parameters of any model, Bayesian or physical, need
to be appropriately fixed in order for the model to apply to
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anything at all. It is no objection to say that nevertheless the usual physical models will forbid some logical possibilities
independently of initial conditions (in classical physics, particles disappearing or appearing spontaneously; modern
particle physics rules out much less), because exactly the same is true of the Bayesian model of the situation above.
For example, any event A assigned prior probability O in that model will have posterior probability O with respect to
any evidence sequence. Such ‘pathological’ possibilities are frequently excluded at the outset, as is the case in the
precise formulation of Albert's own theorem, where it is a condition that the prior probability assigned the proposition
that the data will contain only a finite number of Os is 0. And that of course is precisely to restrict the initial conditions
appropriately.

It is not an objection that models of the evolution of physical systems are often robust in the sense that the model
predicts that in nearly all cases a particular general pattern will be exemplified, as statistical mechanical models
characteristically do (it is the main reason why they are so valued). So are Bayesian models. Many of the classical
results of statistical physics are what is called ‘almost surely’ or ‘almost always’ results; that is to say, they say that a
particular feature proved to characterize the relevant system does so on a set of probability-measure 1 (the ‘almost’ in
‘almost surely’ or ‘almost always’ has come to acquire this purely technical meaning). But as we shall now see, a
similar, if not even stronger, robustness holds for the evolution of posterior probabilities on increasing data, and in
exactly the same sense, that the systems that do not evolve this way constitute a set of negligible probability. These
‘almost surely’ Bayesian theorems, called ‘convergence-of opinion-theorems’, are worth a brief discussion.



Convergence-0Of-Opinion Theorems

To prove these theorems the mathematical details of the model have to be elaborated rather carefully. Typically there
will be a state-space S, called an infinite product-space, consisting of all denumerably infinite sequences s of elements
of some set A. These sequences model all the possible records of an unending sequence of observations, whose
individual outcomes are registered as appropriate members of A. A might be a set of numbers, for example. There is

nothing particularly

restrictive in the use of numbers for this purpose, since as Godel famously showed even the natural numbers are
capable of encoding arbitrarily large amounts of information. A complete set of propositions about the data-source is
taken for the domain of the probability function, complete in the sense that it is represented extensionally by a sigma-
field of subsets of S; that is to say it is closed under binary union (binary disjunction), complement (negation), and
countable union (countable disjunctions). The probability function is ‘predictive’ (the word is due to Blackwell and
Dubins 1961, who prove there a ‘typical’ convergence theorem), in the sense that it determines, for every positive
integer and every s, a sequence Pn(sp) of conditional probability functions defined for each element s of S, where s, is

the initial segment of s up to n, and which assigns probabilities to all the events which might occur after n. In
thoroughly Humean language Blackwell and Dubins describe such a function as assigning probabilities to the future
given the past (1961: 883). Suppose P and Q are two such probability functions absolutely continuous with respect to
each other (i.e. they assign probability O to exactly the same events). The theorem which Blackwell and Dubins proves
states that the variation-distance between P,(sp) and Qu(sp) as n tends to infinity itself tends to O, except at most for

a set of possible ‘histories’ s to which which P and Q both assign probability O (p.883). Another well- known result, due
to Halmos, for the same sort of state-space of infinite possible data streams, states that the posterior probability of
any such hypothesis H about the future, that is, the probability of H conditional on sp, will tend to one if H is true, and

to O if not, again except for a set of sequences s of probability 0 (Halmos 1950: 213, theorem B; see also Savage
1954: 46-50).

In Chapter 2 we discussed reliable learning programs, and the work of the formal learning theorists. Recall that among
things they consider in an abstract and formal way is the existence of ‘inductive methods’, that is, algorithms, into
which are fed as inputs increasing initial segments s,, which have the ability to identify truth-values of hypotheses

defined in the set of infinite histories as n tends to infinity. As Kelly remarks, Hume's argument effectively rules out
the existence of a method which will identify the truth of such a hypothesis at any finite stage across all possible
sequences s (in all ‘possible worlds’), and the results obtained are mostly technical theorems, interesting in themselves
but of little epistemological significance. They are often rather restrictive. One of them (Kelly 1996, proposition 4.10),

for

example, shows that the hypotheses verifiable in the limit of increasing data occupy a place very low in the relevant
topological hierarchy (in Baire space); very roughly, the ranks in this hierarchy, the Borel hierarchy, indicate increasing
complexity. By contrast, the probabilistic convergence-of-opinion theorems place no such restriction on the complexity
of what can be ‘learned’ from experience in this probabilistic sense (for a discussion of this point see Earman 1992,
chs. 6, 9), because that is only ‘with probability one’.

For the same reason, it should be clear that these convergence results do not conflict in any way with the claim that
Hume's Problem is unsolvable. Convergence to the truth is definitely not guaranteed. For a simple counterexample,
suppose the data source can emit only 1s and Os, and you assign prior probability O to the hypothesis H: Only 1s are
emitted. Then whatever your sample evidence sy at epoch n, the probability calculus requires that P(H|sp)= O, and

hence limP(H|sn) = 0. Remarkably, it is not even necessary that your prior probability takes the value zero on any

hypothesis: there are hypotheses with positive prior probability whose posterior probability never exceeds %2 even on
data streams for which they are true (Kelly, 1996: 308, proposition 13.5). And as we saw above, for any time-
evolution of any posterior probability on a big enough space there is some prior distribution which will generate it. The



convergence of opinion theorems claim only that according to the agent's own belief function (always countably
additive, incidentally) there is a probability of one of convergence to the truth or whatever. In other words, they state
a property not of your posterior probabilities but on your prior probabilities, for they prescribe what value your prior
probability must take on the proposition that your posterior probability converges to the real truth-value of the
hypothesis (the posterior probability relative to an n-fold sample sy, is actually a random variable defined on the

space).

| said that these theorems are the formal analogues of a similar constellation of theorems of statistical mechanics
where the evolution of a system is determined only with probability one. Thus Khinchin:

The most important problem of general dynamics is the investigation of the character of the motion of an
arbitrary mechanical system on the initial data, or more precisely the determination of such characteristics of
the motion which in one sense or another ‘almost do not depend’ on these initial data. (1949: 10; ‘almost’ is
the probabilist's technical shorthand for ‘with probability one’)

If anything the Bayesian results are stronger, because the physics theorems usually apply only to one type of measure,
Lebesgue measure, while the Bayesian theorems apply to any measure satisfying some usually very weak conditions. It
is perfectly possible for there to be system-evolutions which are exceptions to the ‘rule’, but such exceptions are
collectively of probability zero in the set of initial conditions (a perfectly elastic sphere traversing a box exactly parallel
to one wall would be an exception to the ‘law’ of increasing entropy). | also said that the probability model to prove
these results required countable additivity. In fact, what is used to prove all these theorems is the full theory of
measure, an extremely powerful mathematical tool developed in the nineteenth century to achieve results of the
greatest generality, and in particular to provide a theory of what should be meant by there being sufficiently ‘few’
exceptions to a rule as indeed to prove it in some sufficiently strong sense. In refining our understanding of the very
notion of generality in this way the development of measure-theoretical probability must count as one of the most
important conceptual innovations of the twentieth century.

The generality of the Bayesian convergence-of-opinion theorems is of course a generality in what is necessitated
(‘falmost’) as a condition of consistency in the agent's own belief structure. To this extent these results might appear to
take the Kantian revolution, in which man is placed firmly at the centre of things, a bit too far. Thus another
remarkable theorem, due to Dawid, asserts that with probability one in the limit of increasing sample-data the agent's
posterior probabilities will be ‘calibrated’, in the sense (roughly) that they match observed frequencies (Dawid 1982).
But what I must believe ‘with probability one’ need bear no relation to the truth of the matter: the fact that |1 must be
certain that | will be calibrated in Dawid's sense does not imply that | actually am. In fact, the theorem allows me to
be uncalibrated on infinitely many data streams. But theorems like these do allow us to answer in an interesting way
the question posed in Chapter 6: why are we so certain that our beliefs correspond in some sufficiently good way to
the facts? The usual answer, as we noted, is a not-terribly-satisfactory appeal to natural selection, not terribly
satisfactory because even if the theory of natural selection is correct, the use of to explain social and cognitive aspects
of human behaviour notoriously requires a good deal—many people think far too much—by way of untested additional
assumptions. Here we have another explanation: we are often consistent uncertain reasoners.

These convergence-of-opinion results seem to present again, however, the paradox discussed in Chapter 6: they tell us
that even though we may appreciate the force of the Humean argument that induction is invalid, if we have suitably
non-vanishing priors we should still be inductive reasoners. Of course, the resolution is in the non-vanishing priors,
which we now know to be the classic inductive premiss. Note also that grue has had its teeth drawn as well: we must
believe in the limit that with suitable evidence even a grue hypothesis will be correct. We noted in Chapter 2 that we
do believe all sorts of sudden-change-of-phase hypotheses, and in Chapter 3 that inconsistency is avoided because the

convergence to the truth-value is nonuniform across the class of competing hypotheses.



Must Bayesian Agents Accept the Most Probable Theory?

Ironically, most of the criticisms of the Bayesian model charge it with being insufficiently plastic to accommodate
established patterns of empirical reasoning, and on the contrary embodying patterns of inference that are not only not
exemplified in practice but which it would be insane to demand exemplified. For example, one of the most persistent
charges of Popper's against inductive probability is that the model it supplies implies that scientists should value always
the most probable hypotheses, and in the limit necessary truths:

In one way or another the various probability theories of induction establish too much, and in most cases more
than is intended; they do not merely give an estimate of the degree to which a theory has been tested, but
they dictate in every case which theory we ought to accept as the best theory, that is to say, the most probable
theory. (1983: 335; my italics)

At first sight it will probably appear astonishing that a mere theory of consistent assignment of probabilities could be
viewed in this light. But there is something interesting in this absurd charge none the less, for in most people's minds
there is a link between high probability and acceptance. Intuitively, acceptance of a hypothesis, in the sense of using it
as a basis for action etc., is consequent on a certain probability-threshold being exceeded (this value may of course
depend on the individual involved, and his or her taste or distaste for risk). The most likely explanation, which seems
supported by the italicized part of the quotation, of Popper's otherwise puzzling charge is that it
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results from the following inference: acceptance of H as an explanation of the facts requires a high enough probability;
therefore the most acceptable explanation is that which has the highest probability.

That inference is clearly invalid. We could leave matters there except for a well-known problem, or alleged problem,
with this account of acceptance, which is commonly held to be vulnerable to the so-called lottery-paradox. Due to
Kyburg (1983), this goes as follows. Suppose the threshold probability for acceptance is x, where x is sufficiently close
to but strictly less than 1 (if x were 1 very little would ever get accepted). Let n be any positive integer such that (n —
1)/n exceeds Xx; clearly for any choice of x short of 1 itself there must be such an n. Now consider a fair lottery with n
tickets numbered 1 to n. The probability that any given ticket will win is 1/n, and hence that it will not win is (n —
1)/n. (n — 1)/n exceeds x and so it is accepted that the ticket will not win. Hence for each ticket j it is accepted that j
will not win. But equally, since there is probability 1 that some ticket will win, it is accepted that one of these tickets
will win. In other words, defining acceptance in terms of exceeding some threshold probability less than 1 entails that

the set of propositions accepted is potentially inconsistent.

However, it does not follow that if the set of propositions accepted is inconsistent then an inconsistent set is also
accepted. That genuinely pathological state of affairs would only arise from the additional adoption of the following
closure principle, that if C is the class of accepted propositions then C is deductively closed, that is, the set of all
logical consequences of C, including of course the conjunction of those elements, is in C. But such a closure principle is
most certainly not a necessary one, and indeed, as Kyburg pointed out, we can regard the present case as a
counterexample to it: each of n propositions may be accepted, in the sense of each having a probability in excess of x,
but as we saw above their conjunction certainly need not have a probability in excess of x.

Defining acceptance in terms of a threshold probability has the virtue of simplicity, but it also may be too simple.
Maher, himself a Bayesian, has argued that a sufficiently high probability does not seem historically to have counted
either as a necessary or a sufficient condition for acceptance (1993: 133-52). Maher takes the plausible view that
acceptance is a species of decision and so should be treated decision-theoretically, which in Bayesian terms means in

terms of

maximizing an expected utility, in this case a type of epistemic or cognitive utility. He even constructs, by means of a
representation theorem a la Savage, a restricted family of utility functions. It becomes theoretically possible to accept
in this sense a hypothesis firmly believed to be false, because, though believed false, it has a sufficiently large
expected cognitive utility. In general, measures of verisimilitude can be constructed, though there is nothing like



consensus on which is correct, or even whether there is an unambiguously correct measure (see Niiniluoto 1998),
. . . . 8
which rank false theories in terms of truth-likeness.

8 Maher himself defines a measure of verisimilitude in terms of a normalized cognitive utility function, in a manner formally very similar

to Ramsey's definition of probability (Maher 1993: 228).

This fact is of considerable importance in view of the phenomenon emphasized in the writings of Cartwright, that
science habitually uses models of phenomena which are ‘known’ to be false (the scare quotes are a nod in the direction
of the general fallibilism in all things epistemological that most people now take for granted).

People Are Just not Bayesian Reasoners

Empirical research into the psychology of reasoning carried out in the 1960s and 1970s by Kahneman, Tversky, and
others seems to show rather conclusively that the Bayesian model isn't a model of the way people actually reason at
all. Not only that: individuals seem to reason in ways that cannot even be reconstructed as Bayesian. For example,
they persistently fall into the base-rate fallacy (see above, p. 54), and, if cued in an appropriate way, even believe that
a conjunction can be strictly more probable than one of its conjuncts (the well-known ‘Lindy the Bank-Teller Problem’ is
a nice way of showing this). And, of course, there is the fact that people, even highly educated people, are
systematically prone to give far too large an estimate of the probability of disease in the Harvard Medical School test.

Kahneman and Tversky's work excited a good deal of discussion. But | took pains to point out earlier that the Bayesian
model is not intended to be one of how people actually reason. It is a model of sound probabilistic reasoning, which
can be as distant as you like, or don't like, from the way people actually reason. There would be

cause for concern if people denied that certain patterns of reasoning identified by the model as sound were sound, and
one would then want to know why. But that is not the case: in the main, the patterns of deviance identified by
Kahneman et al. are seen as being incorrect (even by the respondents, when given time to reflect). The fact that the
respondents kept getting the wrong answer in the Harvard Medical School test justifiably caused concern, and raised
the demand for some sort of remedial education.

| have been using deductive analogies a great deal. Here is another one. The following experiment, due originally to
the psychologist P. C. Wason and called after him the Wason selection task, is designed to test people's grasp of a
simple type of deductive relationship. Respondents are presented with four cards, face down, and told that on one side
of each card is a positive whole number, and on the other side a letter of the Roman alphabet. The cards exhibit

numbers and letters on their visible upper faces as follows:

A3J4

The respondents are asked to indicate those cards which need to be turned over to evaluate the hypothesis H: ‘If a
card has an even number on one side it will have a vowel on the other’. The experiment has been performed over and
over again, always with very similar results: a large majority of respondents indicate the cards with 4 and A on them.
But this is incorrect, as far as the usual canons of deductive reasoning are concerned. The correct answer is 4 and J,
since if on the other side of the 4 card there is a consonant H is false, and if on the other side of the J card there is
an even number H is false also. Should neither counterexample be found, H is true. But turning over the A card will
yield no information about the truth-value of H.

Wason's experiment has generated an enormous literature attempting, | believe as yet rather inconclusively, to explain
the entrenched response (for a current assessment see Evans and Over 1996). Whatever that explanation will turn out
to be, however, it is beside the point of this discussion. The fact that people systematically disobey some rules in
certain contexts does not mean that those rules do not provide a good account of the correct performance of an
intellectual task, and even an account regarded by the violators as the correct account. The ability to perform correct
probabilistic calculations seems not to be something that many people are not
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innately good at. But so what? The fact is that people are now deliberately trained to be good at it, and they are
trained because it is increasingly widely recognized that probabilistic reasoning is sound reasoning—as indeed it is.

Bayesian Networks

| have stressed the fact that prior probabilities are exogenous parameters in the Bayesian model, and that they
correspondingly take up the role of the sorts of synthetic premisses in inductive arguments that Hume correctly
diagnosed must be present, however artfully concealed. But prior probabilities are not the only synthetic assumptions
to play such a role. We saw earlier that de Finetti's exchangeability assumption (Chapter 4, p. 72) is just such another,
able to generate the classic Humean inductive inference in which increasing data push the posterior probability of the
next instance towards 1. Exchangeability is a weak independence assumption, and (probabilistic) independence
judgements also themselves play a powerful supporting role. For example, we do not believe that the colour of an
experimenter's eyes will in general be a factor influencing the outcome, and embody this in a corresponding likelihood
assumption, P(E|H) = P(E), where E is any outcome and H is the proposition describing eye-colour. All the useful
applications of the theory are actually built on such assumptions.

They also play a crucial role in a recently developed and increasingly very important type of Bayesian modelling, so-
called Bayesian networks. Since these are the subject of a great deal of study, particularly in view of the fact that they
have great practical application as the basis of many successful expert systems, a brief description will not be out of
place. A Bayesian network is a probabilistic model of a self-contained network of factors which influence each other in a
hierarchical way, and is usually represented by, in the jargon, a directed acyclic graph in which nodes are the factors
and the directed edges (connecting lines) display the possible dependencies between the factors. A common example is
a diagnostic system, in which the nodes of the corresponding graph are a set of possible diseases and their symptoms,
with the edges directed from the diseases to their respective, possibly joint, symptoms. The strength of the link in the
network between parent and descendant nodes is represented by the

conditional, or posterior, probabilities of the latter given the former.

If designed to be implemented on a computer, as it often is, the network is a type of expert system, and one reason
why Bayesian networks have sprung into prominence is that a characteristic feature they embody makes the
computation of the joint probability distribution over all the nodes more of a practical proposition than it otherwise
would be. If the nodes constitute a set of n logically independent propositions, joint distributions over them require

assignments to 2" elements. Even to store that amount of information takes massive memory (24° is around a million
million, for example). More importantly, the sort of estimates that the average expert would be confi- dent with will
strongly underdetermine this distribution, even if their evaluations are probabilistically consistent. Generating a
complete consistent distribution even for such applications therefore poses very severe problems. Representing the
expert's knowledge (or beliefs, to be more accurate) as a Bayesian network goes some way towards a solution:
consistency is automatically guaranteed, and the amount of storage required is usually dramatically reduced to the
point where it becomes feasible. These properties flow directly from the central feature of such networks that they
incorporate Markov- like assumptions of probabilistic independence whereby each node is conditionally independent of
all other nodes in the hierarchy except its direct parents and its descendants.

The consistency problem is solved because such independence assumptions uniquely determine the joint distribution
(Paris 1994 : 135-6). Storing a Bayesian network in memory need not be an insurmountable task because the number
of independent constraints the network represents is a function only of the number and sizes of the sets of factors
directly influencing each node, and to orders of magnitude only the latter count. If these are not too large storage is
feasible. Nor is this way of representing the expert's beliefs an arbitrary one. It is plausible precisely because the
making of independence judgments is a ubiquitous and indispensable part of everyday life, and while probabilistic
dependence is a broader category than causal dependence, a judgement of causal independence will usually translate
into one of probabilistic independence. For this reason Bayesian networks seem the natural tool for modelling diagnostic



and other systems intended to represent possible causal links and their strengths, at any rate as judged by the expert.
For more information on this topic of growing importance in the field of artificial intelliigence

end p.217

the reader should consult Pearl (1988), and for a more recent summary of results Paris (1994).

A Dynamic Equilibrium Model

This chapter started with a general discussion of what the Bayesian model was supposed to be a model of. | have
presented it as a model of reasoning from evidence that | think represents, more or less, characteristic varieties of
informal evidential reasoning that seem widely used in science. It has been fashionable for some time, however, to
play down more or less traditional models of scientific inference, like this one, in which attempts to systematize and
explain inductive reasoning as some species of sound reasoning are assigned a central role, as fundamentally
misleading. In a celebrated discussion (1953), Quine proposed a holistic model in which science, indeed knowledge as a
whole, is seen as a single entity like a confined field constantly striving to maintain an internal dynamic equilibrium.
The effect of experience is initially felt as a shock at the periphery which is then propagated throughout the interior,

rather than being embodied in discrete local inferences from data to hypotheses. °

9 According to Quine (1953: 42), ‘total science is like a field of force whose boundary conditions are experience’. It is interesting, if not
ironical in view of the normal perception of it, that the Bayesian theory plus the principles of Bayesian and Jeffrey conditionalization is a
quasi-Quinean theory of the influence of experience, since the acquisition of new information effects a global change in causing the

passage to a new belief function.

Later authors emphasize the undoubtedly considerable role played by often imperfectly understood technology, murky
interfaces between experimental and theoretical procedures, ‘trading zones’, guesswork and hunches masquerading,
and sometimes not even masquerading, as reasoned conclusions, the mechanical application of inappropriate statistical
techniques, and much else that allegedly shows the inappropriateness of logic-driven models of inference from

observation reports.

No doubt much of that is true. But the dangers of inference from noisy data are also well known. Too much attention
to fitting the data results in overfitting, the using up of large numbers of adjustable parameters to result in a model
that is almost completely unexplana- tory, in the sense of concealing rather than revealing the underlying dynamics of
the system. The fact is that there is evidence of an underlying

logic to scientific inference, that it is not all merely a process of unreasoned movement to a state of lowest energy.
Like any other activity the rational part of it will be bounded by all sorts of pragmatic factors. But there may still be
underlying norms which exert an influence which may be quite powerful. | stressed that | do not (unlike many
Bayesians, it is true) see the Bayesian model to be a model of even rational behaviour, let alone one of quotidian
scientific behaviour. It is a model of a type of consistent reasoning, and those principles of consistent reasoning that it
identifies do seem to find a respondent echo, more or less distant possibly, in some quite standard procedures of
scientific inference. The degree to which those procedures can be represented within the model is sufficiently
impressive, | believe, as to provide evidence—I now take off the Humean hat—that the logic of scientific discovery
really is that of epistemic probability.

Chances

There remains some unfinished business. Increasingly, chance occupies a foundational role in modern science: in
quantum mechanics, in statistical mechanics, in population biology, in genetics, in control theory, in communication
theory, and more. Perhaps surprisingly in view of this, there is still some controversy about the nature of chance itself.
Depending on the answer to the question of what chance is will be the answer to the subsidiary question of how
hypotheses about chances are to be empirically evaluated. One thing seems agreed by everybody, however: these



hypotheses do not make definite, categorical predictions however much detail about the usual sorts of initial conditions
is supplied. And therein, of course, lies a rather large problem. If such hypotheses, statistical hypotheses as we called
them in Chapter 5, simply do not make predictions in the ordinary sense, what does it mean—indeed, what could it
possibly mean—to say that observable data confirm or disconfirm them? The Bayesian theory offers a promising line of
attack in that the likelihood terms P(E|H), the point at which the evidence itself enters the calculation of posterior
probability via Bayes's theorem, do not demand there to be any deductive relation between H and E. One of the great
merits of the Bayesian over other models of theory confirmation, particularly deductivist ones, is that it has this

function inbuilt at the outset, an
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integral part of its ‘inference engine’. Historically, the first great success of the Bayesian theory was Bayes's own
calculation of the precise form of the posterior probability distribution for a chance. It is now thought that the
calculation was possibly a little over-precise, depending as it did on a use of the principle of indifference that even
Bayes was hesitant about. But the general procedure that Bayes introduced is not compromised, and in the next and

final chapter we shall see what it is and why it works.
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9 Chance and Probability

Colin Howson

‘Winwood Reade is good upon the subject,” said Holmes. ‘He remarks that, while the individual man is an
insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell
what any one man will do, but you can say with precision what an average number will be up to. Individuals
vary, but percentages remain constant. So says the statistician.’

(Sir Arthur Conan Doyle, ‘The Sign of Four’)

Introduction

Since the beginnings of probability theory it has been broadly accepted that a knowledge of objective chances should
determine one's epistemic probability; though not of course conversely. Though as | say it has been broadly accepted,
the explanation of why and exactly how it should be so has been the subject of a good deal of discussion. Indeed, a
diversity of explanations has been offered, including the ‘null explanation’ by Lewis and Levi that the dependence needs
no explanation, but is somehow constitutive of the meaning of chance. The situation is further complicated by there
being different theories of objective chance. | present one here, the only one that as far as | can see permits any
explanation at all of the relation between a knowledge of objective chance and degree of belief. That explanation will
also provide the means by which the Bayesian model is extended to the evaluation of chance hypotheses.

The literature on objective chance is a large one. It is also the arena for much controversy. | have added this final
chapter after some heart-searching, because it is not likely to settle any of the issues currently debated, and nor is
chance central to the topic of this book either. But some discussion is, | think, required, for chance is
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so fundamental to modern scientific theorizing that it is really incumbent on anyone proposing a model of inductive
inference to show how chance hypotheses fit into it. The following account will be brief, but | hope to the point, even if
it may strike those who have become (understandably) bound up with the ideas of David Lewis on the subject as
devoting insufficient attention to them. In my opinion Lewis's theory disqualifies itself from the outset by implicitly
defining chance, via what Lewis calls the ‘Principal Principle’ (below, p. 231), in terms of its relation to beliefs. It is like
defining ‘energy’, or ‘mass’, in terms of how beliefs should be affected. Strangely, perhaps, in a work that is devoted to
advancing the claims of a belief-based subjective notion of probability, | cannot regard a theory which in effect
subjectivizes chance as adequate to explain its role as a foundation-stone of science. Most scientists who express an
opinion on the nature of chance give chance an objective definition in terms of frequencies. The frequency approach
has its problems—I shall mention them in what follows—but it does not subjectivise chance and it is, | believe, capable
of withstanding the objections made to it. At any rate, it is this understanding of chance that | shall broadly support in

the following pages.

Chance

The eighteenth and nineteenth centuries saw many experiments consisting of very large numbers of repetitions of a
‘random’ trial, like throwing dice or tossing coins. Bouffant and others tossed a coin many thousands of times and
discovered that as the number of repetitions increased so the variation in the proportion of heads observed grew
smaller and smaller, and that by the thousandth or so trial it was very small indeed. Similarly with dice: as the
number of throws increased so again the variation in the observed proportions of each face diminished and grew very
small. Meanwhile, during the nineteenth century, developments in the physical sciences and demography began to
reveal that large enough aggregates of individually random events in a variety of contexts betrayed similar behaviour.
For example, as Laplace had noticed, the proportions of male and female births were very nearly constant from
department to department in France. Later in the same century the kinetic theory of gases provided evidence of

virtually constant proportions of molecules in
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the same velocity-intervals, and the Scottish physicist James Clerk Maxwell famously discovered the functional form of
the frequency- distribution to them.

These developments are the background to an identification that has had profound consequences in the mathematical
sciences, at any rate in those mathematical sciences in which stochastic (i.e. randomly generated phenomena) of some
sort or other are modelled: the identification is that of chance and frequency. The remarkable propensity of certain
types of repeatedly instantiable conditions to generate apparently random outputs at the individual level but very
uniform proportions for large enough aggregates of the individual outcomes was noted by Richard von Mises and made
the empirical basis of his Frequency theory (the best informal exposition is still the classic account in von Mises 1957;
a slightly more detailed one is given in von Mises 1964, ch. 1, or Howson and Urbach 1993, ch. 13). Today it is
customary to regard the long-run stability of the observed proportions or frequencies, of each of the various possible
outcomes, as evidence of a characteristic tendency in the experimental conditions to produce such outcomes, a
tendency which is naturally measured by its visible effect, the long-run frequency with which the outcomes actually
occur. Thus Pitowsky:

In the classical theory of probability [the chance interpretation], the observational counterparts of the
theoretical concept ‘probability distribution’ are the relative frequencies. In other words, as far as repeatable . . .
events are concerned, probability is manifested in frequency. (1994: 98)

Tendencies and chances are, in normal discourse, different sides of the same coin (no pun!): the inverse relation to
‘the tendency of setup S to deliver outcomes of type A’ is ‘the chance of getting As on S’. Thus von Mises's empirical
law of large numbers suggests a model in which random event-generators determine chance-distributions over the
class of possible outcomes, the numerical measure of the chances being the long-run proportions of the various
outcomes.

It is very easy to show that P(A), interpreted as ‘the chance of getting As’ (on a specified experimental set-up) and

measured by the long-run frequency or proportion of As in repeated trials, satisfies the probability axioms I-Il1l. We

also obtain a new insight into the definition of conditional probability P(A|B) = P(A&B)/P(B) where P(B) } 0. P(AIB) is
(it is also easy to show) the proportion of As among the B-type outcomes. We can also note that the axioms

continue to hold in the limit as the sample size m tends to infinity. This last fact is important, because it gives a
precise mathematical sense to the otherwise vague ‘long run’. Obviously, for any finite number k of trials the
proportion pA of A-type events will necessarily be changed just by increasing k by one so long as pA is not zero or one,
so we cannot consistently take ‘the long run’ as being any fixed number. This difficulty vanishes by going to the limit in
an infinite sequence of trials, which is just what von Mises did, defining the (chance) probability of A to be the limiting
value of the proportion of As in the sequence. The frequency definition did not originate with von Mises: there was a
preceding line of thinkers who also thought of probability in these terms, starting it seems in the nineteenth century
with John Venn, the author of Venn diagrams. Nor was von Mises by any means the last to adopt such a frequency
definition of objective probability. But von Mises added something else of the first importance to the frequency idea, as

we shall see.

Despite its widespread adoption by working physicists and statisticians, the frequency definition has been subjected to
a good deal of criticism, some of it apparently well-founded. A principal objection is that since an infinite sequence of
trials can never in principle be performed, any statement about limits of proportions in infinite sequences of trials is at
best untestable, at worst meaningless (see e.g. Jeffrey 1992: ch. 11). Nobody can ever carry out an infinite sequence
of trials, and even in a long enough finite one the equipment will distort and eventually wear out. The problem is
exacerbated by the fact that a limiting value of the proportion of As in an infinite sequence of trials is consistent with
any behaviour of the frequency in a finite initial segment, so that even if any sense could be given to sequences going
on forever, we could never know what the limit of the frequency would be:

Quantum theory predicts only probabilities, and hence, in some strict sense, makes no physical predictions at



all: every prediction refers in some strict sense only to an infinite-n limit that can never be physically realised.
(Stapp 1989: 164)

To this extent the frequency definition appears to render chance hypotheses immune from empirical evaluation.

One way often suggested for getting round the problem is to appeal to a group of theorems of the mathematical
theory, called ‘laws of large numbers’. The first, historically, was proved by James
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Bernoulli in his great work (1715), and is now known as the weak law of large numbers. Suppose that we are looking
at a repeatable experiment and considering a particular outcome A of it. Suppose also (a) that the chance of A
occurring at any given repetition is constant, equal to p, and (b) that the probability of any getting any specified
sequence of As and non-As is simply the product of their probabilities p, 1 — p; in this case the repetitions are said to
be probabilistically independent. Any sequence of trials satisfying (a) and (b) is called i.i.d., standing for ‘independent,
identically distributed’. Bernoulli proved that if the sequence of repetitions is i.i.d., then as the number of repetitions
tends to infinity the probability that the difference between the proportion of As and p is as small as one likes tends to
1. A stronger version of Bernoulli's theorem for i.i.d. trials, appropriately called the strong law of large numbers, states
that if we consider the uncountably infinite set of all possible outcomes of infinite sequences of repetitions of the
experiment, then with probability arbitrarily close to 1 there is a point at which thereafter the difference between the
proportion of As is confined within an arbitrarily small interval around p. If a stronger additivity axiom (the axiom of
countable additivity) is used, as it usually is by mathematical probabilists, then the strong law can be proved in a very
simple form: it says that with probability 1 the limit of the proportion of As, as the number of repetitions tends to

infinity, is equal to p.

Writing P(A) for p, probabilistic independence is easily shown to be equivalent to the condition that P(Aj|X) = P(Aj) =
P(A), and P(—Aj|X) = P(—Aj)=1— P(A), where A; says that A occurs at the ith trial, and X is any sequence of past
outcomes before the ith trial (Howson and Urbach 1993: 41, 42). This is usually interpreted to mean that the chance
of any given outcome is independent of previous outcomes, which seems to be a plausible assumption about classic
repeatable random trials like coin-tossing, dice-throwing, etc. where there seems to be no causal connection between
earlier and later outcomes (though the relation between probabilistic and causal independence cannot be pushed too
far: it is not difficult to think of probabilistic dependencies with no direct causal connection). It also seems plausible
that the other component of i.i.d., the constancy of the chance from trial to trial, is satisfied; at any rate over short
enough historical periods before the apparatus wears out etc. So Bernoulli's theorem seems to make the prediction that

in such trials there is a very high chance that we shall see the proportion of As fall
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within some small (and actually computable as a function of the number of trials) interval around P(A). Moreover, the
strong law says that the chance is 1 that the limiting proportion of As will actually be equal to P(A). Doesn't all this
make our earlier numerical definition unnecessary? And more than unnecessary, wrong? For the strong law also
suggests that there is no necessity for the limiting proportion to be equal to P(A) if there is such a limiting proportion
—since the convergence is merely something that is asserted to happen with a chance of 1; and indeed some have
taken the law to implicitly suggest that there might not even be convergence to that or any limit.

On the other hand, it is not clear how without very strong additional assumptions such laws of large numbers explain
the connection between chances and frequencies in repeated trials, or indeed explain any observed phenomenon at all.
Bernoulli's law states that with a chance approaching 1 frequencies will be close to chances in i.i.d. trials. To take that
as making a statement about actually observed frequencies presupposes that some sort of interpretative bridge
between empirical fact and hypotheses about chance has already been established, which is just what the theorem is
alleged to provide. The empirical character of law of large numbers explanations appears therefore to be just as
questionable as that of von Mises's limiting frequency hypotheses. Not only that: von Mises's theory has if anything the
explanatory advantage in being able to show that random trials which generate convergent relative frequencies must
be i.i.d.



To show this requires going into some of the details of von Mises's theory. Because it is somewhat peripheral to the
main concerns of this book | shall give only a sketch. Von Mises thought that a scientific theory of chance phenomena
should satisfy two basic principles. The first we are already familiar with, that on repeated trials relative frequencies
should converge to some characteristic value. This is the principle of convergence. The second is the one that makes
the outcomes genuinely ‘chancy’: they must occur randomly within these sequences, or Collectives as von Mises called
them. The intuitive idea underlying von Mises's technical definition is that outcomes occur randomly in a sequence if
there is no computational method, which may if required also input reports of all the outcomes already observed, of
picking out trials to bet on for which the odds of success differ from the average. Odds are functions of probabilities,
and in a limiting-frequency theory of probability the randomness criterion
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becomes this: there should be no algorithm, which at any point can input information about past outcomes, for picking
out an infinite subsequence in which the relative frequencies of the various types of outcome differ from those in the
original Collective. It is now possible to show that this definition, together with the convergence principle, implies that
the outcomes making up a Collective are i.i.d. (see von Mises 1967; a simpler discussion is in Howson and Urbach
1993: ch. 15). So what appears as a separate and not easily justifiable postulate in ‘laws of large numbers’
explanations actually emerges as a straightforward deductive consequence of the two basic principles of von Mises's
theory.

There is a rather obvious problem none the less with the formal definition of randomness as it stands. According to it
the two infinite sequences 1,1,1,1,1,1,1 . . . ; 1,2,3,4, . . . are random, since there is certainly no way of selecting an
infinite subsequence of either sequence in which the relative frequencies of any of the characters tend to different
limits; in the first sequence, the limiting relative frequency of 1s in any infinite subsequence will also be 1, and in any
infinite subsequence of the second sequence the limiting relative frequency of any integer n will still be 0. But these
sequences are highly non- random according to our intuition, and it would seem that von Mises's formal explication is
at best incomplete. Fine (1973: 100) suggests a way of strengthening the randomness condition which would exclude
this and other types of problematic sequence, but there is an obvious way of excluding the sequences above, which is
to stipulate in addition that there should exist no method of actually predicting the outcome on the basis of some
identifiable characteristic of any particular trial in the sequence.

There are other explications of randomness quite different from von Mises's. The best-known and most highly
developed is that developed independently by Chaitin and Kolmogorov in which a (finite) sequence is said to be
random if it cannot be reproduced by means of a program at least as short as the sequence itself. Such a sequence is
random in the intuitive sense of there being no more simple rule for predicting, that is, reproducing, its members than
the production of the sequence itself. This theory, sometimes called the ‘incompressibility’ and sometimes the
complexity theory of randomness, was extended to infinite sequences by Martin-L6f and others. Unlike this account,
von Mises's does not provide an account of the randomness of finite sequences, and intuitively we do often feel
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inclined to attribute randomness to these. On the other hand, it is something of an open question whether there is
even a uniquely determined concept of randomness there to explicate; if anything, the evidence suggests otherwise.
But in von Mises's account we do at least have something that underwrites the statistician's working definition of
random samples as sequences of i.i.d. outcomes. Maybe that is not the last word, but it is good enough for most
purposes.

Single-Case Chance

One thing von Mises's theory of probability does not do is ascribe chances to the outcomes of single trials, like the
chance of this coin landing heads at this toss. This is held by some (though not by von Mises, for reasons of which we
shall shortly be aware) to be a weakness of that theory, and alternative so-called single-case theories have been
developed, principally by David Lewis and Popper (I am referring to his propensity theory). According to these accounts
not only does it make perfectly good sense to speak of the chance of an event at any given single trial, but it is



necessary to do so if theory is to be brought into contact with empirical data—because even a sample of n trials is a
single trial of a new set of experiental conditions specified by repeating the original one n times. | shall briefly deal with
these claims in turn (there is a longer discussion in Howson and Urbach 1993: ch. 15).

Consider the repeatable experiment of tossing a particular symmetrical and evenly balanced coin. In the account |
have offered, ‘the chance of heads is in a small interval around %%’ relative to these conditions means nothing more
than ‘the apparatus would, repeated indefinitely in the same ambient circumstances, generate a collective in which the
frequency of heads would converge to a value in a small interval around ¥2'. In Lewis's and Popper's (otherwise rather
different) accounts, however, it is claimed in addition that the chance of a head approximately equal to Y2 is a property
of each separate toss of the coin. But there is a telling objection to that claim. The chance is allegedly ¥ because the
structure of the coin provides a symmetry of causal influence, and this is exhibited in the long run frequency of heads
being close to %%. But that particular toss is one in which the upward force is applied to a particular point of the coin,
at a particular point above the surface onto which the coin will fall, where the

energy of the system after the impulse is rapidly dissipated in a particular way depending on the state of the gaseous
medium at the time, etc. The coin plus tossing mechanism plus surrounding atmosphere is presumably a (large-scale)
quantum system in which there is a certain amount of indeterminacy; nevertheless the more accurately the initial
conditions are specified the more accurately the path of the coin is determined. A closer specification of the
parameter-values at that toss will very likely give a chance of heads closer to 1 or O.

This would seem to imply that the chance of a head at any given toss is almost never ¥2 or anywhere near it. A further
consequence is that the usual coarse-grained statistics for such events, like sample frequencies, will at best only give
correspondingly coarse-grained average values of the chances, and certainly not values that can be applied to
individual cases. But this means that with nicely balanced and symmetrical coins which when tossed large numbers of
times yield frequencies of close to Y2 cannot be credited with generating chances of %% at each toss. All we would
appear able to say is that, depending on circumstances which we do not and probably cannot even in principle know in
any detail, the chance, if it exists, is very close to 1 or 0. And this means in its turn that we have a theory which is
almost never applicable in any interesting way to the vast majority of problems where we should want to apply it
(quantum mechanics might be an exception).

Moreover, there also seems no reason to suppose that non- frequency chances should even satisfy the probability
axioms. With frequency theories like von Mises we know that they do because the probability calculus is also a calculus
of frequencies, including limiting frequencies, as can easily be checked. Lewis has an argument why they should: it is
that where we have a knowledge of chance distributions, epistemic probabilities should be equal to those chances. This
automatically guarantees that chances are formally probabilities, but Lewis's only argument for that principle appears
to be that it is one everyone accepts more or less as an axiom. That is hardly an argument. As we shall see in the
next few sections, a frequency theory of chance by contrast provides the basis for a very good argument for the
principle, which in its turn shows how sample data can provide information about frequency-chances, sufficient in

principle to devise empirical tests of hypotheses about chances in collectives.

Beliefs and Chances

It was pointed out earlier that there is a compelling intuition that there is some connection between chances and
beliefs. In Chapter 7 we considered the view that beliefs should be equal to chances where the latter exist, but as we
saw this apparently obvious answer faces serious difficulties.

A useful way to begin answering some of the objections is to observe that though we can't assume as yet, or indeed
ever, that we know what the chance distribution over the set of possible outcomes of some particular experimental
set-up is, we can consider how we should adjust our beliefs conditional on information of that sort (why this is a
helpful way to start off will be apparent later). So consider the piece of information, call it B, that the chance of A is q
on a particular experimental set-up S, and consider also what your degree of belief in the occurrence of A should be on



the supposition simply that B is true. We are in effect trying to evaluate a conditional probability of the form P(A|B),
where B = ‘Chance(A) = p’. It is tempting to set this conditional probability equal to p: symbolically

@) P& | Chance(A) = p) = p.

This might not look well-formed, because of the double appearance of A; and with the second embedded in the
functional expression Chance(A) which is itself a member of the domain of P. But there is no definitional regress here
despite the appearance of one. The space of possibilities w is one which simultaneously confers truth-values on
propositions like A not themselves referring to chances and assigns values between 0 and 1 inclusive to a class of
random variables, parametrized by A,B,C, etc., which are misleadingly written ‘Chance(A)’, ‘Chance(B)’ etc., though
they depend not on A but on w. It would be better possibly to write them explicitly in standard form as random
variables depending on w, like Xa(w), Xg(w), etc., but | shall continue to use the informal expression ‘Chance(A)’

rather than the more forbidding Xa.

Rule (1) is an ancient one, ancient at any rate relative to the development of the mathematical theory of probability.
Indeed, it is crucial to Bayes's own seminal paper, in which he set himself precisely the task of evaluating the posterior
probability of a conjectured

chance distribution. However, Bayes didn't, unusually for someone otherwise so careful to list all the postulates that he
considered necessary to his argument, list this rule as a separate one. In fact, only well after Bayes wrote was the
procedure identified and named: Jeffreys calls such conditional probabilities ‘direct probabilities’ (1961: 57), though it is
often now called by the whimsical name, the ‘Principal Principle’, conferred on it by David Lewis (1980: 266—77). At
any rate, (1), the principle of direct probabilities, the principal principle, or whatever the reader's favourite moniker for
(1) is, is a fundamental Bayesian principle, crucial, as we shall see later, to its method of evaluating statistical
hypotheses (recall that a statistical hypothesis is a hypothesis about a chance distribution).

Before that, we must see how (1) is justified—if it is. First—and an important point when introducing additional
principles—it is easy to see that (1) will not lead to inconsistent probability assignments, because we know from
Chapter 4 that chances themselves obey the probability axioms. So (1) is certainly a consistent way to relate
probabilities to chances. Secondly, and more interestingly, it is the only consistent way of doing so. For suppose for
some value, say s, other than q were assigned as the value of P(A|Chance(A) = q). Also suppose ‘Chance(A) = q’ is
true, and you were to bet k times with stake 1 at odds s/(1 — s) on A, m of which you win (i.e. A occurs m of those k
times). Then you would gain m(1 — s) and lose (k — m)s, so your net gain would be m = sk = k([m/k] — s). However,
by the definition of chance, m/k tends to g since ‘Chance(A) = q’ is true. Hence in the limit your net gain would be k(q
= s), which is non-zero since by assumption g # s. So by betting at what are alleged to be fair odds you face the
possibility of a guaranteed positive net gain or loss, contradicting the assumption that s was the value determining fair
odds.

An interesting question is raised by this simple demonstration. Why, if it is a valid principle, is (1) not a probability
axiom? And more seriously, how can we have a completeness result for the probability axioms excluding (1)? The
answer is very simple. The axioms are provable complete relative to certain items in the vocabulary of the theory
receiving suitably fixed interpretations, just as the usual axioms and rules of inference of deductive logic are provably
complete relative to suitably fixed interpretation of the so-called logical constants which may or may not include
identity, the connectives, quantifiers, and so forth. What is not regarded as fixed for the

purpose of the completeness theorem in Chapter 7 is the interpretation of the propositions which are the arguments of
the probability function, the As, Bs, Cs, etc. However, the validity of (1) clearly depends on interpreting one such
argument, ‘Chance(A) = r’, in the usual way as a distribution of chances, understood as long-run frequencies, over
some subset of the domain of P. When we do so, (F) generates the additional constraint (1).

Rule (1) expresses the general form of the way belief about chances interacts with belief in the occurrence of events in



the outcome- spaces of chance-generating experiments, or, to use the terminology favoured in discussions of the
chance-like ‘reduction of the wave- packet’ in quantum mechanics, of methods of preparation. That link expressed in
(1) will turn out to be also the empirical link between finite observational data and the truth or falsity of hypotheses.
Before we see how, there is a loose end to be tied involving once again the problem of countable versus finite
additivity.

Countable Additivity Again

Rule (1) says that in suitable circumstances one's epistemic probability distribution over the outcomes of a chance-
generating set-up should be identified extensionally with a chance distribution over those outcomes. Now epistemic, or
Bayesian, probabilities are countably additive, and therefore, according to (1), so must chances be. But there is
evidence which, prima facie, suggests that chances are not, at any rate when measured by long-run relative
frequencies. Suppose we generate an infinite sequence in which every integer occurs with a determinate limiting
relative frequency, namely O, since 0 = lim(1/n) as n tends to infinity. Also, the sequence is a random one in the
sense of von Mises. However, the limiting relative frequency with which the infinite disjunction ‘1 or 2 or 3 or ... or n
or . . . " is satisfied in that sequence is 1 because that disjunction is exhaustive of all the possibilities, while the sum of
the limiting relative frequencies of each disjunct is 0, since each of these is 0 and the sum of a countable number of
0's is 0. Hence the limiting frequency distribution for that Collective is not countably additive.

Later in his life von Mises did impose countable additivity as an additional constraint which relative frequency
distributions had to satisfy in order to qualify as a Collective, but he did so in a way that
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seemed merely an ad hoc response to the objections of mathematical probabilists who were accustomed to the superior
mathematical formalism its incorporation engenders (at any rate in what is called the measure-theoretic treatment due
to Kolmogorov). There are, however, considerations that render it compelling. Consider all the subsets of the natural
numbers of the form {n, n + 1, n + 2, . . .}, open intervals in the usual order topology, and their intersections as n
increases (the intersection of any family of sets is the set of members all have in common). It is not difficult to see
that the intersection of all these open intervals as n tends to infinity is the empty set, extensionally speaking the
impossible event which we know has probability 0. Now the probabilities of the sets {n, n + 1, n + 2, . . .} cannot
increase as n increases (justify this observation by what you already know of axioms I-Ill and their consequences),
and for infinitely many values of n must decrease. Intuitive continuity considerations would seem to require that the
limit of the probabilities of that decreasing sequence of nested open intervals should tend to the probability of its limit,
that is, of the empty set. But it is not too difficult to prove that this continuity requirement is actually equivalent to
countable additivity! Indeed, it was in the form of exactly that continuity principle that Kolmogorov in his famous
monograph (1956) introduced the constraint of countable additivity. For all these reasons, therefore, that axiom seems
an independently natural one to impose on chance distributions.

Estimating Chances

Historically the first major scientific application of the Bayesian theory was in the area of evaluating a chance
hypothesis, and it was made by none other than Bayes himself in his celebrated memoir (1763). It might seem at first
blush that there is no special need of the Bayesian or any other sophisticated theory here: chances are measured by
long-run frequencies, so to estimate any chance all one has to do is to examine the associated long-run frequency.
But, as we noted earlier, matters are far from being so simple; on the contrary, on a closer examination they could
hardly appear less promising. For ‘long-run’ actually means ‘limiting’, and not only is no mortal capable of examining
what happens at infinity, but long before that point—infinitely long—not merely the mortal but the hardest bits of
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the hardware will all be long gone. And the sorts of finite data we can examine in repetitions of an observation
conducted under similar conditions are very finite indeed, sometimes rather small. But however extended the data are,



the brute mathematical fact remains that the limiting value of any sequence imposes no constraints whatever on what
happens in any initial segment. The possibility of any empirical check on chance hypotheses seems hopeless.

That conclusion is premature. Recall the result mentioned a little earlier that inbuilt into von Mises's Collectives is the
i.i.d. property, that the outcomes occur probabilistically independently of each other, and the same outcomes have the
same chance of occurring at each point. This feature is represented in a derived Collective C,, obtained by partitioning

the first one C into n-tuples, so that if C is an outcome of the original experiment repeated indefinitely often, Cy

represents a sequence of indefinitely many repetitions of the experiment of repeating the original one n times.
Remarkably, it is possible to show that Cy, is a Collective if C is (see Howson and Urbach 1993: ch. 13, for a more

extended discussion of these rather subtle points). The significance of that result for our discussion is that it tells us
how to compute the chance of obtaining any particular outcome- sequence obtained by tossing the coin n times,
relative to the derived collective Cy,. A striking property of this chance is that it depends only on the number r of heads

in the sequence, not on the order in which the heads and tails actually appear. Label such an outcome e(r,n); then the
chance is

(2) Chance(e(rn)) = p(l—p)"™,

where p is the original chance of heads. The proof is immediate from the independence and constant probability
properties. The constant probability of heads is p, and of tails 1 = p, and independence implies that these multiply.
Thus the chance of a sequence of r heads, occurring each with chance p, and n = r tails, occurring each with chance 1
— p, is given by the right-hand side of (2).

The term ‘constant probability’ in this context should not be misunderstood. We know that von Mises's theory is
emphatically not a single-case theory. In that case it might be asked how von Mises probabilities can be constant from
trial to trial. But there is no contradiction: the answer is implicit in the observation that the Collective with respect to
which these probabilities are referred is Cp,.
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For what we are talking about is the constancy of the probability of heads in the n-fold outcomes of repeating the first
experiment n times in succession. So now we are dealing with a sample space S, of all the possible 2™ n-tuples of
heads and tails. On S, these n 0,1-valued random variables X;, | = 1,2, . . ., n, are defined such that Xj(w) = 1 if the
ith member of the n-tuple w is a head, and O if it is a tail. ‘X; = 1’ says that the ith outcome in the particular

sequence w of n tosses is a head. To say that heads and tails occur independently with constant probability means
only that the X; are independent random variables and Pn(X; =1)=Pn(Xj = 1) for all distinct i,j, such that 1 = i,j = n,

where Ph(X; = 1) is the limiting relative frequency (in C, now!) of n-tuples having a head at their ith place. In other

words, constant probability from trial to trial does not refer to any specific tosses: it means only that the limiting
relative frequency in C, of n-fold outcomes having a head at the ith place is the same for alli = 1,2, . . . ,n.

Note that (2) is derived from the sole hypothesis, call it H(p), that the coin tossing generated a Collective in which the

chance of heads is p; (1) therefore tells us that P(e(r,n)|H(p))=p"(1—p)"=". Our observational data from n tosses of
the coin will of course be e(r,n) for some particular value of r. Bayes's theorem tells us that

P | . Ple(rn) | H{p))P(H(p))
P(Hip) jelrn)) = Blolen]y
©) | lelr .ll]JI

and we can immediately substitute p"(1=p)"=" for P(e(r,n)|H(p)) in (3). Now suppose, as above, that we are
interested in the relative odds on two different hypotheses, H(p) and H(p"), about the value of p based on the same
data e(r,n) (since chances can take any values in the unit interval, which is a continuum, the prior and posterior
probability distributions over chances will generally be continuous, in which case we should strictly regard P(H(p)) and
P(H(p") as probability-densities, and their ratios as odds-densities; but we shall ignore this complication). We
correspondingly form the ratio P(H(p)|e(r,n))/P(H(p")|e(r,n)), obtaining



P(H{p) | e(rn)) _p'(l—=p)""P(H(p))
P(H{p/) | elrn)) Pl = pn)nTPH(pr)

“

The picture will become clearer when it is seen that the function p"(1—p)"—", considered as a function f(p) of p with

parameters r and

n, has a single maximum at p = r/n, the relative frequency of heads in the sample e(r,n). This is suggestive, and even
more suggestion is conveyed by the behaviour of f(p) as n is increased: the curve comes to resemble more and more
closely a vertical spike at p = r/n, with the values of f(p) away from that point rapidly becoming negligible in relation

to the maximum. Suitably normalized, the function p"(1—p)"=" (the likelihood function in the statistical terminology
introduced by Fisher) is itself a probability-density distribution over the values of p, where of course these are located
in the interval, called the closed unit interval, between 0 and 1 inclusive. In statistical theory the measure of the
spread of values around the mean of this distribution (the mean is approximately equal to r/n for large n) is called the

standard deviation. This is of the order of 1/n3, which tells us that as n increases practically the whole of the mass of
the distribution becomes very quickly concentrated in a small neighbour- hood around r/n.

We can now relate the behaviour of f(p) to (4). If p is sufficiently close to r/n, and p’ is sufficiently distant from p,
then (4) will become very large, to an extent that is increasingly insensitive to the magnitudes of either P(H(p)) or
P(H(p")), assuming neither is 0. The same obviously remains true interchanging p and p’. This result is of the first
importance. Given the priors P(H(p)) and P(H(p")), (4) allows us to compute exactly the posterior odds ratio for those
hypotheses, and tells us that if p is sufficiently distant from p and neither of the priors is too extreme this odds ratio
will become very small or large for quite moderate values of n. In other words, far from not being able to use finite
frequency data to discriminate between hypotheses about chance, we can assess exactly how much frequency data we
need to make judgments of the relative credibility of chance hypotheses (but recall the remark earlier, that the priors
H(p) and H(p") are likely to be prior densities, so we are talking really of finite prior probabilities only in small regions

including p and p").

In fact, much more than this can be, and has been, done. Bayes himself, by dint of making suitably restrictive
assumptions about the experiment he was describing—in effect he assumed that only chance could explain its
outcomes, and he used the principle of indifference to justify a uniform prior probability distribution over the chances—
gave an exact form for the posterior distribution of p conditional on e(r,n) (it is what is called a beta distribution).
People have also been experimenting with other types of chance model than von Mises's

(though it is fair to say that something like that model remains the one that scientists would acknowledge as the one
they subscribe to if pressed on the matter). That model, as we saw, implicitly asserts that all chance phenomena must
be fitted into a fundamental i.i.d. model. To a surprising extent this can be done: for example, chance systems
exhibiting strong internal dependencies, like Markov chains, can be accommodated within such a model by regarding
the attributes of the underlying Collective as entire stochastic processes. But a fundamentally i.i.d. model is still
thought by many statisticians to be far too limited in scope to be applicable to the whole range of indeterminate
phenomena that might be brought into the domain of systematic empirical theorizing, and often a very artificial
theoretical environment for many of the systems which might be accommodated within it (for an excellent discussion
of these issues, and the proposal of a quite different type of model, which he calls a probability forecasting system, see
Dawid 1984). Still, in however temporary and transient state the sorts of statistical theorizing outlined above might be,
it is still pretty much mainstream science, and its reconstruction within the Bayesian theory gives it a rationale that is
otherwise wanting. Though other theories of statistical inference, like Fisher's and the Neyman—Pearson theory purport
to be able to reach similar conclusions, we have seen in the earlier discussion that the way they do so is by the
invocation of fallacious principles, in particular those underlying the No Miracles argument. It is not a historical accident
that the Bayesian theory was developed to a very considerable extent by people, like Bayes and Laplace, and later
Jeffreys, de Finetti, and Savage, trying to solve the fundamental problem of statistical inference, how finite



observational data bear on hypotheses which do not make predictions, in any deductive way, about what can be
observed in finite samples.

To those who are worried that such a conclusion might seem to conflict with the earlier denial that there is a positive
solution to Hume's Problem, there are two things to be said. First, the posterior discriminations of the sort described
above depend, if they are at all definite, on certain conditions on the prior probabilities being satisfied, as we have
taken some care to note; and, if the earlier discussion is correct, it is in the priors that the question-begging that
Hume declared present in all inductive argument is located. The object of the exercise above is to show that when
these are fixed in the way people tend to fix them the Bayesian model—unlike any other that |

am aware of—delivers a coherent and consistent reconstruction of the conclusions people do in fact draw from sample

evidence.

Now let us change the example slightly and instead of considering the posterior probability, or more accurately
probability-density, of a particular value or values of p, look instead at the posterior distribution F(p)—again, usually a
density distribution—over the entire range of possible values of p, that is, over the closed unit interval. The fact that

for large sample size n the likelihood function p"(1—p)"=" assumes the form of a sharp spike in the neighbourhood of p
= r/n, taking negligible values over the remainder of the range of p, means that the prior distribution over p becomes
increasingly unimportant in determining the posterior distribution, so long as it doesn't actually vanish anywhere near
r/n. As is often remarked, this means that the precise form of the non-vanishing prior is fairly unimportant if the
sample is sufficiently large; indeed, one might as well start off with a uniform prior as any other: in the long run the
result will be the same to within the bounds of any assignable error. This property of the likelihood function also
underlies the weak law of large numbers, and the convergence of the posterior distribution above is itself a type of law
of large numbers (according to the eighteenth- and nineteenth-century writers it represented the successful ‘inversion’
of Bernoulli's law).
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Finale

Colin Howson
We have solved Hume's Problem in about the only way it could be solved, by divorcing the justification for inductive
reasoning from a justification of its consequences. Inductive reasoning is justified to the extent that it is sound, given
appropriate premisses. These consist of initial assignments of positive probability that cannot themselves be justified in
any absolute sense. The 300-year-old programme for an inductive logic based on formal probability has arrived finally
at maturity, ceasing at last to be merely a controversial and inconsistency-ridden bag of mathematical tricks; now, for
the first time in its long history, it can display its own explanatory credentials as an authentic species of logic, kindred
to deductive logic. We now know what it can do and what it cannot. Hume told us what it cannot do. What it can do is
reconcile the correctness of his sceptical arguments with the entrenched belief that there are none the less sound
inductive arguments. So there are, but like sound deductive arguments, they don't give you something for nothing:
you must put synthetic judgements in to get synthetic judgements out. But get them out you do, and in a
demonstrably consistent way that satisfies certainly the majority of those intuitive criteria of inductive reasoning which
themselves stand up to critical examination.

Surely that can't be all there is to scientific rationality? Possibly not: | have scrupulously avoided discussing scientific
rationality, partly because it is a highly contested area, but mainly because this is a book about logic, not about
rationality. The rules, if there are any, determining what is rational and what is not to believe or do I am happy to
leave to others to fight over. But what | do believe, and | believe that this extended footnote to Hume shows, is that
no theory of rationality that is not entirely question-begging can tell us what it is rational to believe about the future,
whether based on what the past has displayed or not. This is not to say that evidence tells us nothing. The trouble is
that what it does tell us cannot be unmixed
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from what we are inclined to let it tell us. Increasing observational data certainly, provably, reinforces some
hypotheses at the expense of others, but only if we let it by a suitable assignment of priors. We would like to think
that an unbroken sequence of viewings of green emeralds reinforces the hypothesis that all emeralds are green.
Unfortunately, it can equally be regarded as reinforcing the hypothesis that all emeralds are grue, which is inconsistent
with the favoured hypothesis, unless we prevent it doing so by assigning appropriate prior weights. Without our
assistance, the evidence cannot tell us that the course of Nature may not change, or for that matter remain the same
in emeralds' continuing grueness. Nothing can. Hume was right.
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Coda: ‘Of Miracles’

Colin Howson
Although Hume was not what today we would call a probabilist, remarks scattered about his philosophical writings

show his probabilistic instincts to have been sounder than those of many a modern expert (we saw, for example, his
penetrating, and wholly valid, criticism of the principle of indifference earlier in Chapter 4), and nowhere is this more
true than in ‘Of Miracles’. In this famous essay, a sustained polemic against the Christian and all faiths founded on
alleged miracles, Hume proposed an explicitly probabilistic condition for regarding miracles as ‘established’ by
testimony. At the time and subsequently there was a great deal of interest in how the new science of probability could
be applied to the problem of the credibility of witnesses, and many results, not all equally respectable, were obtained.
Hume's is actually one of the more respectable (though this has been contested). What is chiefly remarkable about it
from the present point of view is that it provides a simple example of how an intuitive probability judgement is
mirrored in the mathematics of probability.

Hume's own statement of his criterion in the Enquiry is clear enough:

That no testimony is sufficient to establish a miracle, unless the testimony be of such a kind, that its falsehood
would be more miraculous, than the fact, which it endeavours to establish. (1748: X. I)

To see whether he is correct, however, we need to know exactly what Hume means by ‘miracle’. In the same essay he
explicitly defines a miracle as ‘a violation of the laws of nature’, a definition which has puzzled many commentators
because it appears to contradict Hume's own sceptical philosophy. This is not really so. Hume is speaking in descriptive
mode, in which a law of nature is a type of phenomenon that has so often been found to occur that, our innate
expectations being of the kind they are, we cannot help but assign it

a maximal or near-maximal probability of always being repeated in the same circumstances. There is, however, no
implication that we are correct to do so. The point of Hume's criterion is to show that it is virtually a self-defeating
strategy to argue for miracles, and hence indirectly for ‘God’, by appeal to the testimony of onlookers or others. For
miracles have, by definition, a prior probability of close to zero. Hence, given what we know about the ability of people
to be deceived easily, at their own behest or others’, it can be virtually discounted that the probability of their being
mistaken is actually less than that prior probability: it is bound to be much greater.

So everything turns on Hume's criterion. Is it right? Here | shall follow the account of Gillies (1991; my notation will
differ slightly from his), who provides a Bayesian reconstruction of it in which it is a necessary condition for the
credibility of a miracle given testimony. | shall then extend Gillies's account to show that the criterion is sufficient also
—as Hume himself claimed it was. Let H stand for what the testimony claims, that is, ‘the miracle [as described in the
testimony] really occurred’, and E for the testimony was supplied in the circumstances described by some general
background information to which, as background, we can assume P assigns the value 1. Let p = P(H), assumed to be
very small, and let q be the probability that the testimony as given is false. How should we express this formally?
Well, g can't just be the probability of M being false, because that does not involve the fact that it was testified to by
people who may be unreliable, a possibility that is of course central to Hume's argument. Accordingly, g must be the
probability that the testimony was supplied, in the given circumstances, and is false; i.e. q = P(E& — H).

This is Gillies's reading of ‘the probability that the testimony is false’, and | believe that it is the correct one. It is
opposed by Earman on the ground that P(E& —H) = P(—=H)P(E|—H) = P(E)P(—H]E); the last two products involve
respectively P(—H), the prior improbability of the miracle, and P(E), the probability of the testimony having occurred as
it did, and Earman claims that both these are irrelevant to the probability of the testimony being false (1998: 45).
However, against that view, | maintain that both these quantities are highly relevant to the chance that the
witness(es) would have testified falsely. First, the less the chance that the miracle occurred the less is the chance that
the content of the testimony is true (these two propositions are clearly equivalent: the equivalence
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is an instance of Tarski's well-known T-schema), and secondly, the greater the probability that the witness(es) would
testify anyway the greater, in the circumstances assumed, is the probability that they would testify as they did had the
miracle not occurred, and this latter conditional probability is intuitively closely related to the chance of the witness(es)
testifying falsely. In fact both assertions, that in the circumstances of very small P(H), P(E) is approximately equal to
P(E]—H), and that in those same circumstances P(E|—H) is approximately equal to P(E&—H), are easily provable: the
theorem of total probability,

P(E) =P(E|H)P(H) + P(E| — H)P( — H).

tells us, given the smallness of P(H), that P(E) is approximately equal to P(E|-H), the probability of the testimony
having been given on the supposition that the miracle did not actually occur, while Earman's first identity above tells
us that if P(H) is very small then P(E|—H) is approximately equal to P(E&—H).

If all this is correct then we can express Hume's criterion formally as the condition that q, that is, P(E&—H), must be
less than p, that is, P(H), if the existence of the miracle is to be ‘established’ by the testimony. To evaluate Hume's
claim we therefore need a precise formal rendering of what it means to ‘establish’ H through E. It might appear that,
in explicitly probabilistic terminology, Hume means P(H|E) = 1. But this would be too strong. His text makes it clear
that he intends something much more like a ‘balance of probability’ judgement in favour of one possibility and against
the alternative to it:

When anyone tells me, that he saw a dead man restored to life, | immediately consider with myself, whether it
be more probable, that this person should either deceive or be deceived, or that the fact, which he relates,
should really have happened. | weigh the one miracle against the other; and according to the superiority, which
| discover, | pronounce my decision, and always reject the greater miracle. (1748: X. I)

A ‘balance of probability’ judgement in favour of some alternative is one which says that it is more probable than not,
i.e. which has probability in excess of one half. So let us see what follows from assuming that there is a ‘balance of
probability’ judgement in favour of H conditional on E, that is, that P(H|E) exceeds ¥2. Well, we know that we can write
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. P(E | H)P(H)
P(H|E) = 5 . S
| (E|H)P(H) + P(E | — H)P( —H)

and we know that P(E|-H)P(—-H) = P(E&—H). Hence

. P(E |H)P(H)
P(H|E) =
| P(E|H)P(H) +P(E& — H)

On the right hand side of the last identity we now have both the terms, P(H), that is, p, and P(E&—H), that is, q, of
Hume's criterion. On the other hand, we also have P(E|H), which does not figure explicitly in it. However, Gillies shows
that independently of the value of P(E|H) it follows that if P(H|E) } 1/2 then g ( p (1991: 256). This follows very
quickly, in fact, for if we write P(E|H) as a, then the last identity states that

1p
P(H|E) = ——
ap-

m and it follows immediately that P(H|E) } » if and only if q { ap. Since a = 1, we infer that if P(H|E) } Y then q { p-

Thus Hume's criterion is a necessary condition for the miracle being more probable than not given the testimony. But
Hume seems to have intended it also as a sufficient condition:

If the falsehood of his testimony would be more miraculous, than the event which he relates; then, and not till
then, can he pretend to commend my belief or opinion. (1748: X. I1)

Was Hume wrong in believing that his criterion was sufficient? Gillies does not address this question, but it is easily
answered. If a { 1 it is not difficult to see that there are values of p and g such that we can simultaneously have
P(HIE) = 1/2 and q { p, but if a = 1 then for all values of g and p, q { p implies that ap/(ap + q), that is, p/(p + q), )
1, that is, P(H|E) Y. Thus a necessary and sufficient condition for Hume's criterion q p being itself a sufficient



condition for P(H|E) } Y is that P(E|H) = 1. But | think we can reasonably assume this: that is to say, had the miracle
occurred in the circumstances described then testimony to that effect would certainly have been forthcoming. It
certainly is assumed in the continuing debate on Hume's discussion and | am certain that it was assumed by Hume

himself. At any rate, grant it and we do indeed have P(E|H) = 1 and Hume's criterion as a necessary and sufficient
condition for a balance of probability verdict in favour of miracles.

Hume undoubtedly had an ulterior motive in presenting his criterion, which is both a fairly commonplace piece of
common sense and a novice's exercise in the probability calculus. His motive was to undermine the support for
religious and particularly Christian faith that the various testimonies to the observation of miracles provided or were
thought to provide. For, granted the exiguous independent probability of a miracle really having occurred, granted that
the quality of the testimony, often at long temporal distance, often by primitive people, often at second or third—or
greater—hand, and finally, granted Hume's criterion, it follows that the testimony provides no support at all.
Unfortunately for Hume's purpose, however, his criterion turns out to be a double-edged sword. It encouraged the
analytical investigation of the probability of testimony, a subject which accounted for a fairly substantial amount of the
work of eighteenth- and nineteenth-century probabilists (Condorcet, Laplace, and Poisson are the great names), and in
the course of the investigation the possibility became apparent that sufficiently much independent testimony would
drive the improbability of it all being erroneous down to as small a number, in theory, as could be desired (Charles
Babbage, the inventor of the ‘analytical engine’, seems to have been the first to see this; for a recent discussion and
reinforcement of the point see Holder 1998 and Earman 1998). Thus Hume's own criterion can be turned on him.
Those that live by the sword. . .

end p.245
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