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Preface

Philosophers of science can be justifiably proud of the progress achieved
in their discipline since the early days of logical positivism. A glaring
exception concerns the analysis of the testing of scientific hypotheses and
theories, an exception that threatens to block further progress toward a
central goal not only of the logical positivists but also of their predecessors
and heirs. That goal is the understanding of “the scientific method.” What-
ever else this method involves, its principal concern is with the issue of how
the results of observation and experiment serve to support or undermine
scientific conjectures. Not only does contemporary philosophy of science
fail to provide a persuasive analysis of this issue, there are even rumblings
to the effect that a search for an “inductive logic” or “theory of confirma-
tion” is a fruitless quest for a nonexistent philosopher’s stone. The princi-
pal difficulty here, it should be emphasized, does not derive from Kuhnian
incommensurability and its fellow travelers, for the issue has resisted reso-
lution even for cases that do not stray near the frontiers of scientific
revolutions.

This work explores one dimension of this impasse by providing a critical
evaluation of the approach I take to provide the best good hope for a
comprehensive and unified treatment of induction, confirmation, and sci-
entific inference: Bayesianism. It is intended for students of the philosophy
of scientific methodology, where ‘student’ is used in the broad sense to
include advanced undergraduates, graduate students, and professional phi-
losophers. It is also intended to annoy both the pro- and contra-Bayesians.
To fling down the gauntlet, the critics of Bayesianism have generally failed
to get the proper measure of the doctrine, while the Bayesians themselves
have failed to appreciate the pitfalls and limitations of their approach. And
to add insult to insult, neither side has appreciated the source of the
doctrine—the Reverend Bayes’s essay. Nor is there much appreciation of
what the new discipline of formal learning theory has to tell us about the
latent assumptions responsible for the apparent reliability of Bayesian
methods. If the annoyance serves as a spur to further progress, I will count
this book a success.

I want to emphasize as strongly as I can that this work is not intended
as a comprehensive review of the pros and cons of Bayesianism. Issues and
points of views on issues have been selected with an eye to giving the reader
a sense of the strengths and weaknesses of the Bayesian approach to
confirmation, and my selections should be judged on that basis.



Xii Preface

The reader who penetrates very far into this work may begin to experi-
ence a topsy-turvy feeling. Those who complain will in effect be crying,
Stop the world, I want to get off! For the world of confirmation is a
topsy-turvy world.

My intellectual debts are too numerous to recount here. But I would be
remiss if I did not acknowledge the many helpful suggestions I received on
earlier drafts of this book. Thank you Jeremy Butterfield, Charles Chihara,
Alan Franklin, Donald Gillies, Clark Glymour, David Hillman, Colin
Howson, Richard Jeffrey, Cory Juhl, Kevin Kelly, Philip Kitcher, Tim
Maudlin, John Norton, Teddy Seidenfeld, Elliott Sober, Paul Teller, Jan
von Plato, Bas van Fraassen, and Sandy Zabell. With all of this help, the
book should be better than it is.

The material in chapter 1 appeared as “Bayes’ Bayesianism,” Studies in
the History and Philosophy of Science 21 (1990): 351-370. A version of
chapter 5 appeared as “Old Evidence, New Theories: Two Unsolved Prob-
lems in Bayesian Confirmation Theory,” Pacific Philosophical Quarterly 70
(1989): 323-340. I am grateful to the editors of these journals for their
permission to reprint this material. The excerpts from Bayes’s essay found
in the appendix to chapter 1 are reproduced with the kind permission of
the editors of Biometrika.

Notation

Logic

(Vx) universal quantifier

(3x) existential quantifier

& conjunction, A & B (A4 and B)

&i<nAi A& A, &...& A,

v disjunction, 4 v B (A4 or B or both)

Viewdi AV Ayv...V A,

- material implication, 4 — B (if A then B)

- biconditional, 4 < B (A if and only if B)

1 negation, 714 (not A4)

= definition

EA A is valid (i.e., 4 is true in every possible world or model)

AEB A semantically implies B (i.e., B is true in every possible
world or model in which A is true)

Mathematics

xeX x is an element of X

XcY X is a subset of Y

XnY the intersection of X and Y

XvuY the union of X and Y

2

§

N

R

[ X-Y
sup

hm, _,

summation over the index i
integral

natural numbers

real line
fmapsxe X to f(x)e Y
supremum

the limit as n approaches infinity
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Probability and Statistics

Pr(A) the (unconditional) probability of 4
Pr(4/B)  the conditional probability of 4 on B
E(X) the expectation value of the random variable X

( ") nl/[mi(n — m)!]

m
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Introduction

The Reverend Thomas Bayes died in 1761, leaving a not inconsiderable
estate. Among the bequests was one for £100 to Richard Price, “now I
suppose preacher at Newington Green.”! This tentative identification of
Price’s whereabouts indicates a lack of close contact between the two men
when Bayes’s will was executed in 1760. But whatever the lack of personal
contact, there was a closeness of interests and outlooks: both men were
nonconformist preachers, both were fellows of the Royal Society, and both
were mathematicians of some accomplishment. Price discovered among
Bayes’s papers two essays, which he communicated to John Canton, secre-
tary of the Royal Society. One dealt with the properties of asymptotic
series, the other with what Price called “analogical or inductive reasoning.”
The latter was published in the 1763 volume of the Philosophical Transac-
tions under the title “An Essay Towards Solving a Problem in the Doctrine
of Chances.”

During the remainder of the eighteenth century and for most of the
nineteenth century, Bayes’s essay seems to have had little influence on
either the practice of statistics or the study of its foundations, and in the
early twentieth century the giants of probability and statistics, such as
Pearson, Fisher, and Jeffreys, read Bayes through lenses heavily tinted by
their own views of probability.? Bayes’s essay became better known after
it was reprinted in facsimile in 1940 and in a new edition in Biometrika in
1958, but if the state of the secondary literature is any indication, it wasn’t
until quite recently that statisticians and philosophers have made serious
attempts to understand what Bayes had written.? Yet even if Bayes’s actual
ideas have not been much used, his name certainly has. “Bayesianism” is
the label stitched to the Jolly Roger of a leading school of statistics and of
what is arguably the predominant view among philosophers of science
concerning the confirmation of scientific hypotheses and scientific infer-

. ence in general. The extent to which Bayes himself should be counted as a

Bayesian in modern terms is a question tackled in chapter 1. The chapters
that follow are focused mainly on the confirmation of nonstatistical
hypotheses and theories. I will have little to say about technical issues in
Bayesian statistics, although such issues do intrude from time to time, as
with the question of countable additivity (see chapter 2).

I confess that I am a Bayesian—at least I am on Mondays, Wednesdays,
and Fridays. And when I am a Bayesian I am an imperialistic apostle in
insisting that every sin and virtue in confirmation theory should be ex-
plained in Bayesian terms. My Monday, Wednesday, and Friday enthusi-
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asm has even led me to the extreme of rejecting various views on confirma-
tion held by my revered colleagues Clark Glymour, Adolf Griinbaum, and
Wesley Salmon. On Tuesdays, Thursdays, and Saturdays, however, I have
my doubts not only about the imperialistic ambitions of Bayesianism but
also about its viability as a basis for analyzing scientific inference. (On
Sundays I try not to think about the matter.) I hasten to add that my own
schizophrenia on this topic, deplorable as it may be, is symptomatic of a
deep schism in the philosophical community. The Bayesians and their
camp followers show an impatience tinged with contempt for those who
dare to doubt the orthodoxy. But doubters there are, and even a few claim
flat out that the orthodoxy is unworkable.

This is a topic I find worth pursuing not only for the sake of my own
mental health but also because of its wide ramifications. Bayesianism is the
only view presently in the offing that holds out the hope for a comprehen-
sive and unified treatment of inductive reasoning, If the hope is a vain one,
the better we should know as soon as possible so that we can begin work
on another approach. If, on the contrary, the hope can be fulfilled, then we
should all commit ourselves to labor in the vineyard planted by the Rever-
end Thomas. And beyond such concerns of global strategy, there is much
to be learned about the confirmation of scientific hypotheses and the
problem of induction by attending to the clash between the Bayesians and
their critics. Whatever one’s ultimate decision about Bayesian confirma-
tion theory, it possesses the one unmistakable characteristic of a worthy
philosophical doctrine: the harder it is pressed, the more interesting results
it yields. I intend the chapters that follow, even the critical ones, to show-
case this characteristic.

Chapter 1 begins at the beginning and traces the curious logic of Bayes’s
essay. This is an exercise that has an interest beyond the merely historical,
for the attempt to understand Bayes in his own terms reveals a microcosm
of problems that still reverberate through modern-day discussions of the
foundations of probability and inductive inference. This chapter does not
assume that the reader is familiar with modern Bayesianism but does
presuppose an acquaintance with the basics of probability theory. Those
readers who have not already made this acquaintance may wish to consult
chapter 2 first and then return to chapter 1.

Chapter 2 gives a brief review of the technical apparatus of modern
Bayesianism, including the probability calculus, Bayes’s theorem, and
rules for changing degree of belief via conditionalization. The probability
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axioms adopted there are the standard ones, plus a special form of count-
able additivity used repeatedly in subsequent chapters. Some technical
issues related to the general form of countable additivity are discussed in
an appendix. The popular Dutch-book justification for the probability
axioms, with probability interpreted as degree of belief, is discussed with
an admittedly critical bias. But if this justification is found wanting, others
are ready to take its place. Three of these alternative justifications are
reviewed.

Chapter 3 is a sermonette addressed to the uninitiated and the uncon-
verted. The discussion is designed to display the analytical prowess of
Bayesianism by showing how it can be used to dissect the strengths and
weaknesses of other approaches to confirmation, including hypothetico-
deductivism, Hempel’s instance confirmation, and Glymour’s bootstrap
testing. In addition, Bayesianism is shown to provide a satisfactory resolu-
tion of Hempel’s infamous ravens paradox and to help to make sense of
such truisms of confirmation theory as that variety of evidence can count
more than sheer quantity of evidence. Further, Bayesianism is shown to
provide an illuminating means of testing various claims about the indis-
pensability of theories in scientific inference. And Bayesianism is also
shown to provide the form of a solution to Quine’s and Duhem’s problem,
though how to instantiate the form depends on a resolution of the objectiv-
ity problem taken up in chapter 6.

Chapter 4 is supposed to quiet the doubts raised by a number of critics.
These critics variously charge that the Bayesian apparatus never gets into
gear for scientific laws because they receive flatly zero priors (Popper); that
the gears turn but to no avail, since the probabilification that hypotheses
receive is never genuine inductive support (Popper and David Miller); that
the gears turn too easily and too fast, which yields ersatz confirmation
(Griinbaum); and that the turning of the gears is accompanied by a nasty
grinding sound because the teeth get snagged on the problem of adhocness
that vitiated the hypotheticodeductive method (Richard Miller). The
Bayesian approach is also shown to meet the challenge of Nelson Good-
man’s new problem of induction; indeed, it is argued that without the help
of the Bayesian apparatus, it is hard, if not impossible, even to state
Goodman’s problem in a precise and persuasive form. The verdict on the
Bayesian analysis of the importance of novelty of prediction is somewhat
more equivocal.
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Having discussed the origins of Bayesianism, exposited the tenets of its
modern form, extolled its virtues, and defended it against its leading critics,
I then turn the proceedings over to my alter ego, who takes a more
jaundiced view of Bayesianizing. Chapter 5 takes up the problem of “old
evidence”—the seeming inability of the personalist form of Bayesianism to
account for the confirmatory power of evidence already known to be true.
The source of the interesting and recalcitrant version of the problem is
traced to the failure of scientists to be logically omniscient in the sense that
they are unable to parse in advance all of the possibilities in the space of
hypotheses. Garber, Jeffrey, Niiniluoto, and others have attempted to solve
the problem by exploiting a second aspect of the failure of logical omni-
science, the failure of real scientists to immediately recognize logical and
mathematical implications. They allow for a more humanized form of
Bayesianism in which the agents learn logical-mathematical truths and
change their degrees of belief via conditionalization on this new nonempir-
ical knowledge. I show, however, that while such an allowance is highly
desirable, it does not adequately resolve the original version of the old
evidence problem. Other attacks on the problem are discussed, and all are
found wanting.

Chapter 6 examines the two main attempts to provide a Bayesian expla-
nation of the rationality and objectivity of scientific inference: first, throu gh
the objectification of prior probabilities and, second, by “washing out”
priors with accumulating evidence. Neither attempt stands up to scrutiny.
The prospects for other Bayesian explanations of objectivity are assayed
and found wanting. These results can be read in two radically different
ways: the Bayesian account of confirmation is inadequate or else the
vaunted objectivity of science is open to serious question.

Chapter 7 is a plea for what is widely regarded as an outmoded and
discredited view of scientific inference, eliminative induction. I argue that
an interesting form of Bayesian inductivism can hardly succeed without
being eliminativist. However, the form of eliminativism recommended here
is not the quaint Sherlock Holmes variety that would turn induction into
deduction but a more sophisticated version that joins hands with elements
of Bayesianism. The self-conscious effort at eliminative induction under-
taken in recent years in relativistic gravitational theory is analyzed in some
detail. This case study emphasizes the need for the active exploration of the
space of possible hypotheses, a need that derives from the failure of logical
omniscience discussed in chapter 5.
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Chapter 8 brings together Thomas Bayes and Thomas Kuhn to see what
each can learn from the other. Kuhn’s points that.in scientific revolutions
there is no neutral algorithm for theory choice and that persuasion rather
than proof is the order of the day find a sympathetic resonance in the
humanized form of Bayesianism that recognizes nonconditionalization
shifts in degrees of belief that occur when new possibilities are introduced.
Such shifts, it is argued, are not governed by any neat formal rules. But
more generally, Kuhn’s conceptualization of theory choice and his insis-
tence that it is the community of experts rather than the individual mem-
bers that makes the choice are shown to be incommensurable with Bayes-
ianism. Here I side largely with Tom Bayes rather than with Tom Kuhn.

Chapter 9 begins with an examination of Putnam’s diagonalization
argument against Carnap’s systems of inductive logic. The argument %s
important because, if correct, it tells against Bayesianism in general. It is
also important because it led Putnam to an alternative conceptualization
of inductive inquiry that in the last few years has begun to bear fruit under
the label of formal-learning theory. This development raises in a new form
some of the old questions about the logic of discovery and the relationship
between discovery and justification. Formal-learning theory also helps to
unmask some of the disconcerting presuppositions built into the conver-
gence-to-certainty results needed to link Bayesian personalism to truth
and reliability. This unmasking makes the Bayesian look embarrassingly
like a dogmatist. ‘

The upshot of my examination of Bayesian confirmation theory is nei-
ther a simple thumbs up nor a simple thumbs down. Chapter 10 attempts
to present a more equivocal assessment with the help of a Galilean

dialogue.



1 Bayes’s Bayesianism

1 Bayes’s Problem

The title Price gave to Bayes’s essay, “An Essay Towards Solving a Prob-
lem in the Doctrine of Chances,” gives no real clue as to its ground-
breaking aims. Up to the time of Bayes’s essay, most of the work in the
doctrine of chances had concerned what can be called direct inferences:
given the basic probabilities for some chance setup, calculate the proba-
bility that some specified outcome will occur in some specified number of
trials, or calculate the number of repetitions needed to achieve some de-
sired level of probability for some outcome; e.g., given that a pair of dice is
fair, how many throws are needed to assure that the chance of throwing
double sixes is at least 50/50?' Bayes’s essay was concerned with the
problem of inverse inference: given the observed outcomes of running the
chance experiment, infer the probability that this chance setup will pro-
duce in a given trial an event of the specified type. More exactly, the
problem that Bayes set himself was this: “Given the number of times in
which an unknown event has happened and failed: Required the chance
that the probability of its happening in a single trial lies somewhere be-
tween any two degrees of probability that can be named” (p. 298).? Signifi-
cantly, Bayes thought that just as the answer to a problem of direct
probabilities was to be given by a calculation leading to a definite numeri-
cal value, so the solution to his problem had to be supplied in the same
terms.

Bayes’s essay may, for sake of analysis, be divided into four parts. Part
1 provides a definition of probability, which is then used to demonstrate
various principles of probability now taken as basic axioms or theorems
of the calculus of probability (Bayes’s propositions 1 to 7). These principles
are put to work in part 2 to derive formulas relating to a chance setup
utilizing a perfectly level billiard table (Bayes’s propositions 8 and 9 and
their corollaries).> Part 3 consists of a scholium in which Bayes attempts
to justify taking the formulas from part 2 as providing the form of a
solution to his problem. Part 4 (Bayes’s proposition 10, the rules, and an
appendix)* completes the solution by providing concrete applications and
numerical estimates of the integrals occurring in parts 2 and 3.> My main
focus will be on parts 2 and 3, which contain the key arguments for Bayes’s
proposed solution to his problem. But before I turn to these arguments, it
is necessary to do some initial spade work on part 1. For the reader’s
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convenience, Bayes’s main definitions and propositions are collected in an
appendix to this chapter.

2 Bayes’s Two Concepts of Probability

A central difficulty that surfaces in Bayes’s attack on his problem can be
traced to a tension that arises from trying to combine two concepts of
probability. At the risk of introducing misleading connotations, I will refer
to these two concepts as degree of belief and objective probability. The first
concept is set out in definition 5 of Bayes’s essay: “The probability of any
event is the ratio between the value at which an expectation depending on
the happening of the event ought to be computed, and the value of the
thing expected upon its happening” (p. 298). Modern Bayesian personalists
may wish to see this definition as the touchstone of their conception of
probability, and with the omission of only a couple of words the definition
can be given a personalist gloss: the probability of an event for a given
agent is the maximum amount that the agent is willing to spend for a
contract that pays (say) £1 if the event occurs and nothing otherwise. But
Bayes’s qualifying phrase “ought to be” suggests that what he had in mind
was not subjective or personal degree of belief but something more akin to
rational or justified degree of belief. This suggestion is supported by the
fact that the solution Bayes offers to his problem supplies determinate
numerical values not subject to the whims of different agents.

Bayes’s position also differs from that of thoroughgoing Bayesian per-
sonalists who do not recognize any notion of objective chance apart from
a limiting notion of objectified degree of belief. In his preface Price praises
De Moivre’s work for helping to show that “there are in the constitution
of things fixt laws according to which events happen, and that, therefore,
the frame of the world must be the effect of the wisdom and power of an
intelligent cause; and thus to confirm the argument taken from final causes
for the existence of the Deity” (p. 297). But Bayes deserves even higher
praise, because “the converse problem solved in this essay is more directly
applicable to this purpose; for it shews us, with distinctness and precision,
in every case of any particular order or recurrency of events, what reason
there is to think that such recurrency or order is derived from stable causes
or regulations in nature, and not from any of the irregularities of chance”
(p- 297). Some modern readers will interpret Price’s “order or recurrency
of events” as the tendency of the chance setup to yield stable frequencies,
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and his “stable causes or regulations” as physical propensities that are
inherent in the chance setup and responsible for the observed frequencies
in repeated trials. Whether or not Bayes would have endorsed such a
reading is impossible to determine with any certainty from the text of his
essay, but the application given in rule 1 suggests the interpretation of a
single-case propensity (see section 7 below). In any case, the very statement
of his problem hardly makes sense unless read as calling for a rational
estimate of the fixed but unknown value of a nonepistemic, objective
chance, whether interpreted in terms of propensities, in terms of limiting
frequencies, or in some entirely different manner.

The difficulty here is not that Bayes failed to give a definition of ‘objec-
tive probability’. In modern parlance, ‘objective probability’ is a theoreti-
cal term like ‘spin’ and ‘charm’. Such terms do not stand in need of any
definition over and above the implicit definitions they receive from the
roles they play in the theory—the theory of elementary particles in the case
of ‘spin’ and ‘charm’, the theory of chance setup in the case of ‘objective
probability’. Rather, the difficulty for Bayes comes in talking about the
degree of belief in the value of the objective probability. Recall that for
Bayes probability qua degree of belief is assigned to events, and whatever
the metaphysical status of events, they are things that can be ascertained

. to happen or fail to happen, since otherwise the expectation or contract

whose economic value defines the degree of belief cannot be paid off.

The most obvious response to this difficulty is to find a proxy event that
will do duty for the state of affairs of the objective probability’s lying
between specified limits. That this is the course actually followed by Bayes
is made abundantly clear by part 2 of his essay, as we will see below in
section 6.

3 Bayes’s Attempt to Demonstrate the Principles of Probability

Price informs us that “Mr Bayes has thought fit to begin his work with a
brief demonstration of the general laws of chance. His reason for doing
this, as he says in his introduction, was not merely that his reader might
not have the trouble of searching elsewhere for the principles on which he
has argued, but because he did not know whither to refer him for a clear
demonstration of them” (p. 298). Given Bayes’s definition of probability,
the modern reader might expect to find that Bayes’s demonstration of the
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laws of chance follows the strategy of showing that a violation of any of
the laws would lead to Dutch book (see chapter 2). In fact, what Bayes does
is both more interesting and more problematic.

An example of Bayes’s style of reasoning is given by his proof of proposi-
tion 1, the principle of finite additivity for “inconsistent events.” Let 4, B,
C be pairwise incompatible events, and suppose that your probabilities for
these events are respectively a, b, and c. If we let [£P; Z] stand for the
expectation or contract that awards payoff P, contingent on the occur-
rence of the event Z, these probability assignments mean that you are
willing to spend £a for [£1; A], £b for [£1; B], and £c for [£1;C]. Under
these conditions, Bayes asserts you should be willing to spend £(a + b + c)
for [£1; A or B or C]. So by the definition of probability, your probability
for the disjunctive event A or B or C is the sum of your probabilities for
the individual events. Bayes’s argument here seems to be that val[£1; 4 or
B or C] = val[£1; A] + val[£1; B] + val[£1; C] because having the con-
tract [£1; 4 or B or C] is equivalent to having the three contracts [£1; A],
[£1; B], and [£1; C] and because the value of having the three is the sum of
their values. This value additivity principle has been criticized by Schick
(1986) as part of his attack on the Dutch-book justification of the probabil-
ity axioms. I do not now wish to enter this dispute except, first, to reiterate
Schick’s point that value additivity is an implicit assumption of the Dutch-
book construction and, second, to note that given value additivity, Bayes’s
argument already justifies the finite additivity axiom of probabilities with-
out any need to bring in Dutch bookies.” But note also that Bayes’s
solution to his problem involves a principle much stronger than finite
additivity (see sections 4 and 8 below and also chapter 4).

The corollary to proposition 1 is the negation rule, Pr(4) + Pr(14) =
1, which follows immediately from proposition 1 on the assumption that
val[£N; A or 71A] = N (here val is measured in pound units). This rule is
used in turn to establish proposition 2, which asserts that the probability
of an event is to the probability of its failure as the loss, if it fails, is to the
gain, if it happens. For Pr(4) = P/N means that for me val[£N; A] = P.
This implies that my loss is £P if A fails while my gain is £(N — P) if
A obtains. Hence by the corollary to proposition 1, (Pr(4)/Pr(114)) =
(PN — P)).

Propositions 3 and 5, which concern the “subsequent events” 4 and B,
have been rendered by modern commentators respectively as
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_ Pr(B &4)
Pr(B/A) = W (1.1a)
and
_ Pr(4 & B)
Pr(A/B) = W (1.1b)

There is a double puzzle here. First, to modern eyes, (1.1a) and (1.1b) look
like definitions rather than substantive propositions needing proofs. Sec-
ond, having established (1.1a) in proposition 3, it would seem that (1.1b)
could be established by a parallel proof, whereas the proof Bayes actually
offers for proposition 5 is entirely different from that in proposition 3.
Shafer (1982) suggests that time order is the key to understanding the
difference Bayes saw between (1.1a) and (1.1b), but the time order of A and
B seems to me not to play any role in Bayes’s proof of proposition 3.8
Another suggestion for resolving these puzzles is as follows. As to the first
puzzle, (1.1a) may be seen as a definition of conditional probability, but the
definition still stands in need of justification or an operational underpin-
ning, which is what proposition 3 is supposed to provide. As to the second
puzzle, the fact that the proof of proposition 5 is so different from that of
proposition 3 suggests that in proposition 5 Bayes was after more than a
mere variant of proposition 3. Let Prg(-) stand for the probability that
results from Pr(-) upon learning that B obtains. Thus, when Bayes speaks
in proposition 5 of “the probability I am right” if I guess that A has
happened, “it first being discovered that the 2nd event [ B] has happened”
(p. 301), he may have intended Prg(A). In this notation, what proposition
5 then comes to is that Prg(A) = Pr(A4/B) = Pr(A & B)/Pr(B), or in modern
jargon that learning is modeled as conditionalization. This understanding
of proposition 5 is consonant with taking Bayes to be calling for the value
of Pry_,(p; < p < p,) when he states that his problem is to find the chance
that the probability p of the unknown event lies between the limits p, and
P, given the number of times x in which the event has occurred in n trials.
It must be admitted, however, that Bayes’s intentions in propositions 3 and
S are far from pellucid, and the text is ambiguous as to whether he meant
Pr(A/B) or Prg(A) or a mixture of the two. In fact, the matter may not have
.any resolution, since in Bayes’s day there was no well-developed concept
of conditional probability and certainly no standard notation for it (see
Shafer 1982).
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In attempting to prove proposition 3, Bayes sets Pr(4 & B) = P/N and
Pr(4) = a/N, and he supposes that the probability that “the 2nd [B] will
happen upon the supposition the 1st [4] does” (p. 299), i.e., Pr(B/A) (or
perhaps Pr,(B)) is b/N. Pr(4 & B) = P/N and Pr(A) = a/N mean respec-
tively that val[£N; A & B] = P and val[£N; A] = a. Bayes then reasons
that in the contract contingent on A & B one’s expectation “will become b
if the 1st [A] happens” (p. 299). This means, he says, that if 4 happens,
one’s gain is b — P, while if A fails, one’s loss is P. Thus by proposition 2,
he concludes that (P/(b — P)) = (a/(N — a)), which is then manipulated to
produce the desired result. The demonstration is not convincing, since the
sense of ‘gain’ here is not the same as that in proposition 2.

There are, however, enough materials in Bayes’s essay for a more satis-
fying justification. As we will see shortly, proposition 5 introduces the
notion of a nested contract [[£N;C]; D], whose payoff is the contract
[£N; C] if D obtains. Two plausible principles can be adopted in evalu-
ating such contracts. First, val[[£N, C]; D] = val[£N;C & D]. Second,
val[[£N; C]; D] = Pr(D) x val,[£N;C], where val,[ -] stands for the val-
ue of [-] conditional on the supposition that D obtains. But val,[£1; C]
may be taken as the definition of the conditional probability Pr(C/D).
And since val[£1;C & D] = Pr(C & D), we obtain Pr(D) x Pr(C/D) =
Pr(C & D).

Since proposition 5 is crucial to parts 2 and 3 of Bayes’s essay, I will
examine his attempted proof in some detail. This attempt is based on
proposition 4, whose curious logic has been illuminated by Shafer (1982).
Let there be two subsequent events 4,, B, to be determined on the first
day, two subsequent events A,, B, to be determined on the second day,
and so forth without end. The probability Pr(B),i=1,2,3,..., for the
occurrence of the second event on day i is supposed to be the same for all
i, and likewise for the probability Pr(4; & B;)for the coincidence of the two
eventsonday i. Let E;, j =1, 2, 3, ..., be the event that occurs just in case
an A event happens on the first day that a B event happens starting from
day j.° With A, = A and B, = B, proposition 4 asserts that

Pr(E,) = Pr(4 & B)/Pr(B). 1.2)

Shafer’s reconstruction of Bayes’s proof of (1.2) is elegant and brief.
Bayes assumes, on Shafer’s account, that Pr(E,) = Pr(E,) and also that E,
is independent of (4,, B, ). By construction, E, is the same as (4, & B,) v
(7B, & E,). Therefore,
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Pr(E,) = Pr(4, & B,) + Pr(T1B; & E,)
= Pr(4, & B,) + Pr(71B,) x Pr(E,)
= Pr(A4, & B;) + (1 — Pr(B,)) x Pr(E,)
= Pr(A, & B,) + (1 — Pr(B,)) x Pt(E,). (1.3)

The first equality follows from additivity (proposition 1), the second by the
multiplication principle for independent events, the third from the nega-
tion principle (corollary to Bayes’s proposition 1), and the fourth from the
starting assumptions. Equation (1.2) then follows by rearrangement of
terms.

Bayes’s own attempted proof, however, is somewhat different from
Shafer’s reconstruction. In particular, Bayes makes no direct appeal to the
multiplication principle for independent events; indeed, this principle is not
stated until afterward as proposition 6. To understand Bayes’s reasoning,
start from the fact that Pr(E,) = x means that val[£1; E, ] = x. On the first
day, I have the expectation of receiving £1 if both 4, and B, obtain. But if
this coincidence fails, I have “an expectation of being reinstated in my
former circumstances, i.e. of receiving that which in value is x depending
on the failure of the second event” (p. 300). Assuming that val[£1;E,] =
val[£1; E, ], this second expectation can be interpreted as the nested con-
tract [[£1; E, ]; 1B, ]. Since these two expectations “together are evidently
the same with my original expectation,” what is needed to establish
proposition 4 is a valuation principle for nested contracts that sets
val[[£1; E,]; 11B,] = val[£1; E,] x Pr(71B,), which is what Bayes seems
to mean when he writes, “Wherefore since x is the thing expected and
y/x the probability of obtaining it, the value of this expectation is y.”
From what was said above, we should have val[[£1;E,]; 1B;] =
val[£1;E, & 11B,;] = Pr(E, & 71B,). Thus it seems that the multipli-
cation axiom for independent events must be tacitly invoked to get
Pr(E, & 11B,;) = Pr(E;) x Pr(T1B,) = val[£1; E,] x Pr(T1B,).

The proof of proposition 5 is completed by adjoining to proposition 4
two further equalities derived in the corollary:

Pry(E,) = Prg(A4) (1.4)
and
Pry(E;) = Pr(E,) (1.5
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The first of these is straightforward, since, as Bayes says, “after this discov-
ery [that B obtains,] the probability of my obtaining N [the payoff of the
contract contingent on E,] is the probability that the 1st of the two
subsequent events [A] has happened upon the supposition that the 2nd
has” (p. 300). The argument for (1.5), however, is more problematic. Sup-
pose first that (1.5) fails because Pry(E,) < Pr(E,). Then before it is known
whether or not the first event has happened, “it would be reasonable for
me to give something to be reinstated in my former circumstances, and this
over and over again as often as I should be informed that the 2nd event
had happened, which is evidently absurd” (p- 300). Presumably, as Shafer
(1982) offers, Bayes means that under the reductio supposition one should
be willing to pay a premium to void the original contract [£1; E,] in favor
of a new contract [£1; E, ]; for before one learns that B happens, [£1; E, ]
and [£1;E,] have equal values, and afterward [£1;E,] drops in value,
while the value of [£1; E,] is presumably unaffected. And this would take
place over and over again with E,, E,, etc. each time it is learned that the
B event has occurred, which leads to an indefinitely large pay out. Though
somewhat reminiscent of Dutch-book arguments, the present argument
lacks their bite. The unfortunate fellow caught in a Dutch book faces sure
ruin, no matter what events the vicissitudes of chance choose to actualize,
whereas on Bayes’s construction there is only a contingent ruin in the
offing based on the continued occurrence of B events. But contingent ruin
is not a very powerful stick, since it threatens all too often even those who
are scrupulous to obey the principles of probability. The other half of
Bayes’s reductio is even less compelling. If Pry(E,) > Pr(E,), there is a
premium one will refuse as an inducement to cancel [£1; E,] in favor of
[£1,E,], and this over and over again as often as B events continue to
occur. Refusing to follow a course of action that as a matter of fact would
lead to unlimited gain is a matter for regret, but it does not seem to be the
kind of regret on which a theory of probability should be founded.

4 Bayes’s Principle-of-Insufficient-Reason Argument

In his preface Price refers to an “introduction which he [Bayes] has writ
to this Essay,” in which Bayes says (in Price’s words) that the solution of
his problem would not be difficult,

provided some rule could be found according to which we ought to estimate the
‘chance that the probability for the happening of an event perfectly unknown,
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should lie between any two named degrees of probability, antecedently to any
experiments made about it; and that it appeared to him that the rule must suppose
the chance the same that it should lie between any two equidifferent degrees; which,
if it were allowed, all the rest might be easily calculated in the common method of
proceeding in the doctrine of chances. Accordingly, I find among his papers a very
ingenious solution to this problem in this way. But afterwards he considered that
the postulate on which he had argued might not perhaps be looked upon by all as
reasonable. (P. 296)

Unfortunately, both Bayes’s introduction and his “very ingenious solu-
tion” have been lost. But from Price’s remarks it is not difficult to guess
how the construction would go. o
Suppose that a chance setup gives independent and identically dlstrlp-
uted (IID) trials with an unknown objective probability for the event in
question. If we let X be a variable that counts the number of times that the
event in question occurs in n trials, the form of the solution to Bayes’s

problem is given by

b2 (3)p*(1 — p)"~*Pr(dp) (1.6)
f3(@p(1 — py*Pr(dp)’

where Pr(/1) is the conditional degree of belief in *, given , and Pr(dp) is
the prior distribution over p. To give a definite solution, one needs to
specify Pr(dp). Price remarks that Bayes thought “the rule must be t'o
suppose the chance the same that it [the physical probability p] should lie
between any two equidifferent degrees,” i.e., Pr(dp) = dp, in which case the
solution is given by

Pr(p, < p<p,/X=x=

n+ 1)l [P —x
Pr(py<p<p:/X=x) = x(WJr_—l), L p*(1 — p)"*dp. (1.7)

Why must Pr(dp) be chosen to be uniform? Bayes speaks of an event
“concerning the probability of which we absolutely know nothing anteced-
ently to any trials made concerning it” (p. 305). This comment has sug-
gested to some commentators that he thought that the unifor_mity of the
prior was to be justified by an appeal to the principle of insufficient reason.
If this were Bayes’s reasoning it would be open to the familiar complaints.
Thus, for example, Fisher (1922) complained that instead of p we might use
another parameter g, where sing = 2p — 1, and reason that since vfre.a.nte-
cedently know nothing about ¢, equal intervals of g ought to be initially
regarded as equally probable.
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Bayes’s actual argument as given in his essay is more subtle and substan-
tial, as first pointed out by Molina (1930, 1931). Bayes gives an operational
characterization of an event “concerning the probability of which we abso-
lutely know nothing antecedently”; namely, “concerning such an event I
have no reason to think that, in a certain number of trials, it should rather
happen any one possible number of times than another” (p. 305). Now if
Pr(dp) = dp, in n trials the marginal distribution is Pr(X = x) = 1/(n + 1)
independently of x, so the operational constraint is satisfied. Conversely,
Murray (1930), at Molina’s urging, showed that Pr(X = x) = 1/(n + 1)
independently of x for all n > 0 only if Pr(dp) = dp. Thus the operational
constraint is equivalent to a uniform prior distribution for p. In modern
terms, Bayes was a “predictive Bayesian.”'°

The only thing Molina’s account leaves out, as noted by Stigler (1982,
1986), is that the operationalization of the prior distribution is strongly
motivated by Bayes’s definition of degree of belief as a betting quotient. I
would only add that Stigler’s insight needs to be pushed further, since the
same considerations come into play again when we reach the solution (1.7).
For example, in the case where X = n = 1,p; = 1/2,and p, = 1,(1.7) gives
a value of 3/4. The question now becomes, How do we operationalize
Pr(1/2 < p < 1/X = 1) = 3/4in terms of betting behavior, since 1/2 < p <
1 is not an event in the relevant sense?

There is also a second puzzle needing attention. If the Molina and Stigler
reconstruction is correct, then Bayes had a persuasive justification for
choosing the uniform prior distribution. But then we must ask why he did
not simply present this justification straight off. Why did he have to
structure his presentation so that the argument from the marginal distribu-
tion Pr(X = x) comes rather late in the essay?

My suggestion will link the two puzzles. Bayes’s justification for the
uniform prior distribution follows his discussion of the billiard-ball model,
and it is this model that provides the proxy event needed to deal with the
first puzzle. But before elaborating on this suggestion, I want to examine
more fully the notion that Bayes provided a nonproblematic instance of
the principle of insufficient reason.

5 Choosing a Prior Distribution

Although ingenious, Bayes’s argument for the uniformity of Pr(dp) is not
as unproblematic as some commentators have suggested (e.g, Molina
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1930, 1931; Stigler 1982, 1986). In the first place, the games that can be
played with insufficient reason to generate inconsistencies at the level of
the unobservable parameter p can also be played at the level of observ-
ables. Let n trials of the chance experiment be run, and let Y be a variable
whose values index the 2" possible sequences of successes and failures of
the event in question. If complete ignorance about p is to be expressed by
equal probabilities for the values of Y and this holds for all n > 0, then
Pr(dp) must have all the probability mass concentrated on p = 1/2. This
example was apparently first posed by Boole (1854, pp. 370-371). It was
put forward more recently by Edwards (1978) in a somewhat frivolous
vein. The early Wittgenstein would have taken it seriously, since in effect
it corresponds to the confirmation function he proposed in the Tractatus
(see 5.15—-5.154). Stigler has complained that the example misses the point
of Bayes’s strategy, since “X/n estimates the unknown [ p], and to have one
value of this variable more likely than another is to contradict the hypothe-
sis that we are absolutely ignorant about [p]” (1982, p. 256). But this
rejoinder seems to be a return to a naked appeal to insufficient reason as
applied to p, and as such it is open to Fisher’s objection, and it also misses
the point of the example. Bayes’s strategy was, first, to resist the temptation
to say that absolute ignorance about p just means that Pr(dp) is uniform
and, second, to operationalize ignorance about the unobservable p in
terms of the distribution of an observable. The point of the objection is
that there are different ways to operationalize, and they lead to different
Pr(dp)’s.

Of course, Wittgenstein’s position can be criticized in various ways.
Most obviously, his dogmatic prior distribution prevents any learning
from experience: an agent using Wittgenstein’s rule will bet at the same
odds on the next trial, regardless of the outcomes on the past trials. But
whether or not one sees this result as absurd or undesirable depends on
one’s attitude toward the problem of induction, an aspect of which Bayes
was supposed to be solving. If Pr is interpreted as rational or objective
degree of belief, as Bayes apparently wanted, then anti-inductivists from
Hume through Popper see Wittgenstein’s result as an expression of their
doctrine that past experience gives no purchase for making justified predic-
tions about the future. Although there is no direct textual evidence one way
or the other, it is not too fanciful to suppose that Bayes read Hume’s skep-
tical attacks on induction.'! If Bayes’s essay is to be thought of as a re-
sponse to Hume, the judgment has to be that Hume was not vanquished.'2
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As an aside it may be worth noting that the connection between Bayes
and Hume was solidified by Price. The examples in the appendix, com-
posed by Price, are surely implicit references to Hume. And three years
after the appearance of Bayes’s essay, Price published his Four Disserta-
tions (1767), the fourth of which, entitled “The Importance of Christianity,
the Nature of Historical Evidence, and Miracles,” used Bayes’s work in an
attempt to refute Hume’s “On Miracles.” Upon receiving a copy of Price’s
book, Hume responded, “I own to you, that the Light, in which you have
put this Controversy, is new and plausible and ingenious, and perhaps
solid. But I must have more time to weigh it, before I can pronounce this
Judgment with Satisfaction to myself.”** As far as I am aware, Hume did
not subsequently directly address Price’s arguments.!*

A second objection to the operationalization of Pr(dp) starts from the
commonplace that we are rarely in a state of absolute ignorance about the
objective probabilities involved in a chance mechanism. Bayes effectively
admits as much, since he assumed that the trials are IID, which is to
assume quite a lot about the mechanism of a chance experiment. When
what we know about the mechanism of the chance experiment favors some
values of p over others, what we know may be most naturally expressed
directly in terms of Pr(dp) rather than in terms of Pr(X = x). Of course,
knowing Pr(X = x) for all n will determine Pr(dp), no matter how lumpy
it may be, since Pr(X = x) will then give all the moments of Pr(dp). But 1
defy any real-world Bayesian agent to specify (without cheating!) enough
moments to fix with any tolerable accuracy an even moderately lumpy
Pr(dp). The orthodox Bayesian personalists will insist that if the enterprise
we are engaged in is to make any sense, the agent must be able to assign
values to Pr(X = x) in terms of betting quotients, just as Bayes required.
This is correct, but I am suggesting that we make such assignments not by
shining some inner light on the distribution of X but by first assessing how
the evidence bears on various hypotheses that determine Pr(dp) and then
calculating the resultant marginal Pr(X = x). The seeming attractiveness
of the operationalization of Pr(dp) through the marginal Pr(X = x)is thus
an artifact of the unrealistic assumption of complete ignorance.

It might seem unfair to tax Bayes with such quibbles, since the problem
he set himself is limited to events about whose objective probability we
know nothing other than that the trials are IID. But Bayes’s billiard table,
the only concrete example of a chance mechanism offered in his essay, is
suggestive of cases that do not conform to this stricture. Imagine a setup
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(different from Bayes’s own, as discussed in the next section) where a single
billiard ball is repeatedly tossed on the table, and consider the ball’s
coming to rest, say, on the right quarter of the table. If, as Bayes suggests,
our background knowledge (K) is strongly in favor of the hypothesis of a
level table and random throws (H , ), then our Pr(dp/K) will presumably be
strongly peaked about p = 1/4, and that or something close to it will
remain our betting quotient for each of the first few trials, regardless of the
outcomes of the preceding trials. Bayes’s own rule is incapable of illuminat-
ing these intuitions. By contrast, modern Bayesianism can handle this and
more complicated situations. Thus, suppose that K is ambiguous, partially
favoring H, and partially favoring alternative hypotheses, such as that the
table is warped in a certain way (H,), which by itself would lead to a prior
strongly peaked about (say) p = 1/2. By the principle of total probability,

Pr(p, <p <p,/(X = x) & K)
=Y. Pr(p, <p<p/H; & (X = x) & K) x Pr(H)/(X = x) & K), (1.8)

where the sum is taken over an exhaustive list of competing hypotheses.
Combining what we now call Bayes’s theorem,

Pr(H;/K) x Pr(E/H; & K)

Pr(H,/E & K) = PrE/K) ,

(1.9)

with (1.8), we get, when the new evidence E is X = x,
Pr(p, < p < po/(X = x) & K)

¥ Pr(p, <p<p,/H; & (X =x) & K) x Pr(H;/K) x Pr(X =x/H; & K)
B Y« Pr(X =x/H, & K) x Pr(H,/K) :

(1.10)

Formula (1.10) would not have been regarded by Bayes as a generaliza-
tion of his solution. Recall that Bayes demanded a rule for calculating
numerical values of probabilities.But even if we agree to a rule of equal
prior priors for the H; (i.e., equal values for Pr(H;)), it remains to assign
values to the priors Pr(H;/K). For these latter factors, no mechanical rule
suggests itself. As for the general form (1.9) of Bayes’s theorem applied, as
modern philosophers of science are wont to do, to hypotheses H; and
evidence E of the most varied sort, including nonstatistical theories and
nonstatistical experimental outcomes, it is hard to see how the factors
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involved can be interpreted so as to fit Bayes’s framework, either directly
as probabilities of events in Bayes’s sense or indirectly in terms of proxy
events. Bayes is thus prevented by his own scruples from being a Bayesian
in the sense that has become popular of late.

6 Proxy Events and the Billiard-Table Model

Postulate 1 of section 2 of Bayes’s essay supposes a square billiard table
ABCD “to be so made and leveled, that if either of the balls O or W be
thrown upon it, there shall be the same probability that it rests upon any
one equal part of the plane as another” (p. 302). Ball W is thrown first and
a line os is drawn parallel to AD through the point where the center of W
comes to rest. Afterward O is thrown n times, and its resting between AD
and os constitutes the happening of the event M in a single trial. If we
choose units so that the sides of the table have unit length and 0 < 6 < 1
marks the distance between AD and os (see figure 1.1), Bayes’s proposition
8 and its corollary correspond respectively to the formulas

Pr((p, <0 <p,) & (X =x) = rl (:) 0*(1 — 9)*do (1.11)

and

Pr(X = x) = J l (") 0*(1 — 6y*d#. (1.12)
o \X

And proposition 9 and its corollary correspond respectively to

22 (1) 6%(1 — Oy —"df

Pr(p, <0<p,/X=x)= I ®Fd —6r—=d (1.13)
and
Pr0<0<p,/X =x) = Q&1 - 0o (1.14)

~ 56 (1 — 0y ~do

In the scholium Bayes notes that the definite integral in (1.12) has the value
1/(n + 1), and when we substitute this value in (1.13), we arrive at

o [
Pr(p, <0< py/X = x) = x%f_—l? J 65(1 — B)db. (L.15)
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Bayes’s billiard table

Formula (1.15) has exactly the same mathematical form as the solution
formula (1.7) but a much different meaning: (1.15) gives the conditional
probability on X = x for the throw of W to have fallen between the
distances p, and p,, whereas (1.7) gives the conditional probability for the

. objective probability p to fall between p; and p,. One can well wonder

what role (1.15) has in justifying or motivating (1.7); indeed, one can
wonder why the billiard-table model is needed at all. For Bayes’s assump-
tion of IID trials and the principles of probability lead directly to (1.6), and
Bayes’s sophisticated version of the principle of insufficient reason leads
from (1.6) to (1.7) without the help of any concrete model or any further
assumptions about the chance mechanism producing instances of the un-
known event.

The puzzle is resolved by noting that the principles of probability as
Bayes understood them do not lead directly to (1.6), for as seen above,
Bayes’s demonstration of these principles depends upon his interpretation
of probability as degree of belief in events, and the state p, < p < p, is not
an event in the relevant sense. By contrast, proposition 8 and its corollary
(formulas (1.11) and (1.12)) make good sense for Bayes, since they are stated
in terms of the probability of ball W’s coming to rest between stated limits.
(Proposition 8 reads, “I say that before ball W is thrown, the probability
the point o should fall between [ p,] and [p,] ...,” and the corollary reads,
“Before the ball W is thrown the probability that the point o will lie
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somewhere between 4 and B ... and withal that the event M will happen
[x] times....”) The statement of proposition 9 (formula (1.13)) also begins
as a statement about the probability of the resting place of W, but then it
shifts to “and consequently that the probability of the event M in a single
trial.” And the corollary (formula (1.14)) is stated without any reference to
the initial throw of W: “if I guess the probability of the event M lies some-
where between 0 and [p,], my chance to be in the right is....” This shift
signals Bayes’s strategy of having the event p, <6 < p, go proxy for
Py <SP <P,

This strategy is made explicit in the form of a just-so story told in the
scholium:

And that the same rule [i.e., one having the same form as (1.15)] is the proper one
to be used in the case of an event concerning the probability of which we absolutely
know nothing antecedently to any trials made concerning it, seems to appear from
the following consideration,; viz. that concerning such an event I have no reason to
think that, in a certain number of trials, it should rather happen any one possible
number of times than another. For, on this account, I may justly reason concerning
it as if the probability had been at first unfixed, and then determined in such a
manner as to give me no reason to think that, in a certain number of trials it should
rather happen any one possible number of times than another. But this is exactly
the case of the event M. (P. 305; italics added) ‘

The assumption underlying Bayes’s problem is that there is a fixed but a
priori unknown objective probability for the unknown target event. But,
Bayes claims, we can treat the target event as if its probability is at first
unfixed and then subsequently determined, as is the objective probability
of event M in the billiard model by the rolling of ball W, for the resulting
probability of x occurrences of M in n trials is 1/(n + 1) for every value of
x, which is the essential feature of the unknown target event. Thus p; <
0 < p, is a suitable proxy for p, < p < p,, and (1.15) can be used as the
solution for the problem.

This reading of Bayes suggests a new interpretation of the worry Price
reports in his preface, namely, Bayes’s worry was not about the principle
of insufficient reason and the choice of a uniform prior distribution per se;
indeed, the essay shows no hesitation or hedge on this score. Rather
Bayes’s worry was how to tie the solution (1.7) to the interpretation of
probability he used to justify the probability principles that underlie (1.7).
Thus, I suggest that if Bayes had developed a different rule for determining
Pr(dp) and this rule had given a nonuniform distribution, he would still

H
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have needed a proxy event model, even if everyone had agreed that this
rule was correct. A warped billiard table, however, would not serve this
function—a point brought out by Pearson (19205, 1920b).

Pearson wanted to make Bayes’s billiard table more than merely part of
a just-so story. The table, he suggested, could serve to model one mecha-
nism of disease catching if it is assumed that men sicken from a disease
whenever their resistance falls below an a priori unknown value 6. But with
this model it is unnecessary to assume that the playing table is level. For
if Pr(d6) # d6, the probability of the occurrence of the disease is 6=
{8 Pr(d6). Thus § is uniformly distributed, and (1.15) holds with 8 in place
of 6.1% Pearson concluded that Bayes was unduly restrictive in assuming
the table to be level.

Pearson’s conclusion would have merit if Bayes’s strategy had been to
attack his problem under the assumption that the chance setup involves a
mechanism of the billiard-table type. On the contrary, Bayes’s posit was
that he knew nothing about the chance setup, save that it gives IID trials.
His justification for using a uniform prior rests on this posit, and to the
extent that this justification succeeds, it does so independently of the
billiard-table model, which serves, as I have tried to show, a different
function altogether. Moreover, if Bayes had seriously entertained the as-
sumption that as a matter of fact a billiard-table mechanism was operating,
then he should have also been prepared to entertain the assumption of
other mechanisms that suggest nonuniform priors. But, as argued in sec-
tion 5, he was not equipped to deal with these latter cases.

A different interpretation of the function of Bayes’s billiard-table model
is offered by Gillies (1987), who reads Bayes as anticipating and responding
to two possible objections that were in fact later raised by Fisher and
Neyman. Recall that Fisher’s objection was to Bayes’s invocation of insuf-
ficient reason to justify the uniform prior distribution over p. But here the
billiard-table model is irrelevant, since, to repeat, Bayes’s justification of
the uniform prior distribution, as codified in his scholium, applies to any
event “concerning the probability of which we absolutely know nothing
antecedently,” and it is thus wholly independent of the billiard model.
Neyman’s (1937) general objection to Bayesianism is based on his conten-
tion that, properly speaking, a probability distribution can be assigned
only to a random variable, whereas the p Bayes is trying to estimate is a
fixed but unknown constant and thus is a random variable in only a
degenerate sense at best. I see no plausibility in the notion that Bayes was
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worried, consciously or unconsciously, about this contention. The proba-
bilities he thought he had to supply for a solution to his problem concern
not measures over random variables but (rational?) degrees of belief. Such
probabilities do apply to propositions about the values of parameters like
p, at least if the propositions can be made to correspond to events in the
relevant sense.

7 Applications of Bayes’s Result

In the appendix Price discusses what he purports to be applications of
Bayes’s solution to the problem posed at the beginning of the essay. Dale
(1982) has claimed that Price’s illustrations are not in fact proper applica-
tions of Bayes’s solution. This is an issue worth addressing for the light it
casts on the meaning and significance of Bayes’s accomplishments. For
these purposes, it suffices to focus on one of Price’s illustrations:

Let us imagine to ourselves the case of a person just brought forth in this world,
and left to collect from his observation of the order and course of events what
powers and causes take place in it. The Sun would, probably, be the first object that
would engage his attention; but after losing it the first night he would be entirely
ignorant whether he should ever see it again. He would therefore be in the condi-
tion of a person making a first experiment about an event entirely unknown to him.
But let him see a second appearance or one return of the Sun, and an expectation
would be raised in him of a second return, and he might know that there was an
odds of 3 to 1 for some probability of this. (Pp. 312-313)

If we interpret “some probability” to mean that 1/2 < p < 1, then for
X = n = 1,formula (1.7) gives a value of 3/4 or, as Price says, odds of 3 to 1.

Dale claims to “see nothing in either the statement of Bayes’s problem
or its solution (as given in Propositions 9 and 10) that allows Price to solve
his problem in the way he does.... It seems clear that the solution is given
by Laplace’s [value] 2/3” (1982, p. 44). But from the preceding section we
know that Bayes’s solution is given not by the propositions of part 2 but
by the scholium. Part 2 provides the mathematical form of the solution and
allows Bayes to tell his just-so story that links his solution to the interpre-
tation of probability used in part 1. While the propositions of part 2 give
the probability that an event has occurred conditional on the assumption
that a subsequent event has occurred, the statement of the scholium makes
it clear that Bayes intended the solution to apply predictively to future
events as well as retrodictively to past events: “In what follows therefore 1
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shall take it for granted that the rule given concerning the event M in
proposition 9 is also the rule to be used in relation to any event concerning
the probability of which nothing at all is known antecedently” (p. 306;
italics added). If any further confirmation is needed, it can be found in
Bayes’s rule 1, which supplies numerical values for the chance (i.e., degree
of belief) that the (objective) probability of an event “in a single trial”
(p. 308) lies between stated limits. Bayes’s scholium, his rule 1, and the very
statement of his problem all indicate that he took objective probability to
apply to single trials. Thus there is little doubt that Bayes would have
regarded Price’s illustration as accurate.

Then from whence comes Laplace’s value of 2/3? This value is the
solution to a different problem. Suppose that after the initial n trials an
additional m trials are run. If Z is the variable whose value gives the
number of successes in the second run, we can ask for the value of
Pr(Z = z/X = x). Bayes does not give the answer, but it is easily derived
from his solution (1.7):

1

Pr(Z = z/X = x) = J <':) p*(1 — py"*Pr(dp/X = x)

0o

() s

- (m n n)(n +m+ 1) (1.16)

zZ+Xx

When x =n and z = m, (1.16) reduces to (n + 1)/(n + m + 1), which is
often called Laplace’s rule of succession. For Price’s sunrise example, m =
n =1, which gives Pr(Z = 1/X = 1) = 2/3. In the first part of his article
Dale carefully distinguishes the two problems Pr(p; < p < p,/X =x)="?
and Pr(Z = z/X = x) =7, but in criticizing Price’s illustration, he runs
them together.!® There cannot possibly be any conflict between the an-
swers, since the answer to the first entails the answer to the second.

It is Laplace’s (1.16) rather than Bayes’s (1.7) that is of use in guiding
betting behavior. So from the point of view of practical applications, one
might say that it is a shortcoming of Bayes’s essay that (1.16) is not derived.
But this failure only goes to underscore Bayes’s goal. Although Bayes uses
betting behavior in part 1 to motivate the principles of probability needed
for his solution, he was pursuing loftier aims than guiding gamblers; he
wanted to provide a reasoned inference to the stable causes or regulations
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in nature, or an answer to Pr(p, < p < p,/X = x) =7 rather than to
PrZ=z/X=x)="

8 Conclusion

Philosophers of science with any regard for the history of science must
resist the temptation to read Bayes’s essay purely from the perspective of
contemporary concerns about probability and induction. But unless the
interpretations of Bayes that I have offered are well wide of the mark, the
attempt to understand Bayes in his own terms reveals a microcosm of
foundational problems with which we are still struggling today. In his
preface to Bayes’s essay, Price laments the then crude state of analogical
or inductive reasoning “concerning, which at present, we seem to know
little more than that it does sometimes in fact convince us, and at other
times not; and that, as it is a means of [a]cquainting us with many truths,
of which otherwise we must have been ignorant; so it is, in all probability,
the source of many errors, which perhaps might in some measure be
avoided, if the force that this sort of reasoning ought to have with us were
more distinctly and clearly understood” (p. 297). Price’s hope that Bayes’s
essay would be the key to understanding the force of inductive arguments
has in some measure been fulfilled—or so modern Bayesians believe.
Whether or not Bayes himself would concur is a matter of intriguing but
idle speculation.

It is worth mentioning the irony that what invariably comes to mind
when Bayes’s name is mentioned, namely “Bayes’s theorem,” plays no
direct role in the solution to his problem. Three ingredients are needed
to provide a modern derivation of (1.6). The definition of conditional
probability gives

_Pr(p<sp<p)&(X = x))'

Pk =9 (1.17)

Pr(p, <p<p/X =x)

A form of the principle of total probability is then used to rewrite numera-
tor and denominator of the right-hand side of (1.17) respectively as

Pr((py <p <p)) & (X =x))

= f Pr,((p, < p < p2) & (X = x))Pr(dp’) (1.18)

o

Bayes’s Bayesianism 27

and

1 .
Pr(X =x) = f Pr, (X = x)Pr(dp’), (1.19)
V]
where Pr,.(4) may be thought of as the probability of 4, conditional on
the proposition p = p’ (see chapter 4). Finally, the application of Lewis’s
“principal principle” (see chapter 2) allows (1.18) and (1.19) to be rewritten
respectively as

P2

Pr(p, <p<p) & (X =x)) = f (Z)p"‘(l — p')" 7 Pr(dp) (1.20)

P
and

1

Pr(X = x) = f (:) p’*(1 — p'y~*Pr(dp’). (1.21)

0

What Bayes’s theorem and this derivation both bring to the fore is that the
prior distribution over p is the key to Bayes’s problem. This was Bayes’s
great insight.

Appendix: Bayes’s Definitions and Propositions'’

. Section 1

Definition 1 Several events are inconsistent, when if one of them happens,

. none of the rest can.

Definition 2 Two events are contrary when one, or the other of them
must; and both together cannot happen.

Definition 3 An event is said to fail, when it cannot happen; or, which
comes to the same thing, when its contrary has happened.

Definition 4 An event is said to be determined when it has either hap-
pened or failed.

Definition 5 The probability of any event is the ratio of the value at which
an expectation depending on the happening of the event ought to be
computed, and the value of the thing expected upon its happening.

Definition 6 By chance I mean the same as probability.
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Definition 7 Events are independent when the happening of any one of
them does neither increase nor abate the probability of the rest.

Prop. 1 When several events are inconsistent the probability of the hap-
pening of one or the other of them is the sum of the probabilities of each
of them.

Prop.2 Ifa person has an expectation depending on the happening of an
event, the probability of the event is to the probability of its failure as his
loss is if it fails to his gain if it happens.

Prop. 3 The probability that two subsequent events will both happen is
a ratio compounded of the probability of the 1st, and the probability of the
2nd on the supposition that the 1st happens.

Cor. Hence if of two subsequent events the probability of the 1st be
a/N, and the probability of both together be P/N, then the probability of
the 2nd on the supposition the 1st happens is P/a.

Prop. 4 If there be two subsequent events to be determined every day,
and each day the probability of the 2nd is b/N and the probability of both
P/N,andIam to receive N if both the events happen the first day on which
the second does; I say, according to these conditions, the probability of my
obtaining N is P/b.

Cor. Suppose after the expectation given me in the foregoing proposi-
tion, and before it is at all known whether the 1st event has happened or
not, I should find that the 2nd event has happened; from hence I can only
infer that the event is determined on which my expectation depended, and
have no reason to esteem the value of my expectation either greater or less
than it was before.

Prop.5 If there be two subsequent events, the probability of the 2nd b/N
and the probability both together P/N, and it being first discovered that
the 2nd event has happened, from hence I guess that the 1st event has also
happened, the probability I am right is P/b.

Prop. 6 The probability that several independent events shall all happen
is a ratio compounded of the probabilities of each.

Prop. 7 If the probability of an event be a, and that of its failure be b in
each single trial, the probability of its happening p times, and failing g times
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in p + g trials is Ea®b? if E be the coefficient of the term in which occurs
ab? when the binomial (a + b)"*? is expanded.

Section 2

Postulate 1 1 suppose that the square table or plane ABCD be so made
and levelled, that if either of the balls 0 or W be thrown upon it, there shall
be the same probability that it rests upon any one equal part of the plane
as another, and that it must necessarily rest somewhere upon it.

Postulate 2 I suppose that the ball W shall be first thrown, and through
the point where it rests a line os shall be drawn parallel to AD, and meeting
CD and ABin s and o; and that afterwards the ball O shall be thrown p + g
times, and that its resting between AD and os after a single throw be called
the happening of the event M in a single trial. These things supposed:

Lem.1 The probability that the point o will fall between any two points
in the line AB is the ratio of the distance between the two points to the
whole line AB.

Lem. 2 The ball W having been thrown, and the line os drawn, the
probability of the event M in a single trial is the ratio of Ao to AB.

Prop. 8 If upon BA you erect the figure BghikmA whose property is this,
that (the base BA being divided into any two parts, as Ab, and Bb and at
the point of division b a perpendicular being erected and terminated by the
figure in M; and y, x, r representing respectively the ratio of bm, Ab, and
Bb to AB, and E being the coefficient of the term in which occurs a?b? when
the binomial (a + b)**1 is expanded) y = Exy%. I say that before the ball
W is thrown, the probability that the point o should fall between f and b,
any two points named in the line AB, and withall that the event M should
happen p times and fail g in p + q trials, is the ratio of fghikmb, the part of
the figure BghikmA intercepted between the perpendiculars fg, bm raised
upon the line AB, to CA the square upon AB.

Cor. (to Prop. 8) Before the ball W is thrown the probability that the
point o will lie somewhere between 4 and B, or somewhere upon the line
AB, and withall that the event M will happen p times and fail gin p + ¢
trials is the ratio of the whole figure AiB to CA. But it is certain that the
point o will lie somewhere upon AB. Wherefore, before the ball W is
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thrown the probability the event M will happen p times and fail gin p + ¢
trials is the ratio of AiB to CA.

Proposition 9 If before anything is discovered concerning the place of the
poin't o, it should appear that the event M has happened p times and failed
g in p + g trials, and from hence I guess that the point lies between any
two points in the line AB, as f and b, and consequently the probability of
the event M in a single trial was somewhere between the ratio of Ab to AB
and that of Af to AB; the probability that I am right is the ratio of that
part of the figure AiB described as before which is intercepted between
perpendiculars erected upon AB at the points f and b, to the whole figure
AiB.

Cor. (to Prop. 9) The same thing supposed, if I guess that the probability
of the event M lies somewhere between 0 and the ratio of 4b to AB, my
chance to be in the right is the ratio of Abm to AiB.

Scholium

From the preceding proposition it is plain, that in the case of such an event
as I there call M, from the. number of times it happens and fails in a certain
number of trials, without knowing anything more concerning it, one may
give a guess whereabouts it’s probability is, and, by the usual methods
computing the magnitudes of the areas there mentioned, see the chance
that the guess is right. And that the same rule is the proper one to be used
in the case of an event concerning the probability of which we absolutely
know nothing antecedently to any trials made concerning it, seems to
appear from the following consideration; viz. that concerning such an
event I have no reason to think that, in a certain number of trials, it should
rather happen any one possible number of times than another. For, on this
account, I may justly reason concerning it as if its probability had been at
first unfixed, and then determined in such a manner as to give me no reason
to think that, in a certain number of trials, it should rather happen any one
possible number of times than another. But this is exactly the case of event
M. For before the ball W is thrown, which determines it’s probability in a
single trial (by cor. prop. 8), the probability it has to happen p times and
fail g in p + q or n trials is the ratio of AiB to CA, which ratio is the same
when p + q or n is given, whatever number p is; as will appear by com-
puting the magnitude of AiB by the method of fluxions. And consequently
before the place of the point o is discovered or the number of times the

ri%‘é
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event M has happened in n trials, I can have no reason to think it should
rather happen one possible number of times than another.

In what follows therefore I shall take for granted that the rule given
concerning the event M in prop. 9 is also the rule to be used in relation to
any event concerning the probability of which nothing at all is known
antecedently to any trials made or observed concerning it. And such an
event I shall call an unknown event.
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2 The Machinery of Modern Bayesianism

I. J. Good once quipped that there are more forms of Bayesianism than
there are actual Bayesians. While the ever growing popularity of Bayes-
ianism may have invalidated the letter of this quip, its core message is still
sound: there are many rooms to the mansion that Bayes helped to build.
No attempt will be made here to systematically survey all of this real estate.
Bayesians of whatever persuasion can speak for themselves; indeed, they
do speak for themselves, often ad nauseam. My focus will be kept on issues
concerning the testing and confirmation of scientific hypotheses and theo-
ries, typically of a nonstatistical kind. Bayesian personalism will be the
starting point for most of my investigations. Issues in Bayesian decision
theory and technical issues in Bayesian statistics will be largely ignored,

‘although from time to time technicalia will intrude.

1 The Elements of Modern Bayesianism

Bayesians of all stripes are united in the convictions that qualitative ap-
proaches to confirmation, such as hypotheticodeductivism and Hempel’s
instance confirmation (see chapter 3), are hopeless and that an adequate
accounting of the way evidence bears on hypotheses and theories must be
quantitative. The form of Bayesianism I will track here follows in Thomas
Bayes’s footsteps by implementing the quantitative approach in terms of
degrees of belief regimented according to the principles of the probability
calculus. The form of probability theory needed for applications to issues
of confirmation will be presented in section 2. Bayes, as we saw in chapter
1, exploited the connection between degrees of belief and betting behavior
in an attempt to justify the principles of probability. Modern Bayesians
follow suit with their Dutch-book arguments, which will be examined in
sections 3 and 4.

Bayesians are also united on the importance of Bayes’s theorem, a result
that Bayes himself never stated in modern form. If H, K, and E are
respectively the hypothesis at issue, the background knowledge, and the
new evidence, then one form of Bayes’s theorem states that

Pr(H/K) x Pr(E/H & K)
Pr(E/K)

Pr(H/E & K) = 2.1)

If {H},i=1,2,...,is a set of mutually exclusive and exhaustive hypoth-
eses, the principle of total probability allows (2.1) to be rewritten as
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Pr(H,/K) x Pr(E/H; & K)
Y;Pr(E/H; & K) x Pr(H,/K)’

Pr(H,/E & K) = 22
In Bayesian accounts of confirmation, the explanations of confirmational
virtues are couched largely in terms of the factors on the right hand sides
of (2.1) and (2.2): Pr(H/K), the prior probability of H; Pr(E/H & K), the
likelihood of E on H and K; and Pr(E/K), the prior likelihood of E.

The forms of Bayesianism to be examined here also share the tenet that
learning from experience is to be modeled as conditionalization. The rule
of strict conditionalization says that if it is learned for sure that E and if E
is the strongest such proposition, then the probability functions Pr,,, and
Pr,.., representing respectively degrees of belief prior to and after acquisi-
tion of the new knowledge, are related by

Prnew(') = Prold('/E)' (SC)

Bayes’s proposition 5 can, as we saw in chapter 1, be regarded as an
attempt to justify this rule. From the point of view of strict condition-
alization, Bayes’s theorem (2.1) makes explicit how the acquisition of new
evidence impacts on previous degrees of belief to produce new degrees of
belief.!

A more sophisticated form of conditionalization that allows for uncer-
tain learning is due to Richard Jeffrey (1983b). If we observe a jelly bean
by dim and flickering candle light, we will rarely come away with certain
knowledge of the color of the bean, but our probabilities will have
changed.? We may have gone, for example, from complete ignorance as to
whether the bean is red, yellow, or green (as represented by probabilities
of 1/3 for each) to, say, a probability of 2/3 for red and a probability of 1/6
each for yellow and green. To generalize and formalize, let {E;}, i = 1, 2,
..., be a partition of the probability space. Intuitively, the belief change
that takes place is supposed to be generated by the way in which the
experience bears on this partition (e.g., the color partition in the above
example). The belief change then accords with Jeffrey conditionalization
just in case

Proew(4) = Y. Proa(A/E;) x Pr,.(E;) for all A. JO)
Strict conditionalization is the special case where the new probability of

one of the elements of the partition is one. An application of total probabil-
ity shows that (JC) obtains under the condition of rigidity:
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Pr,..(A/E;) = Pr,4(A/E;) forall A and all i (R)

Arguably, (R) should apply in the jelly bean case when we look but don’t
get to touch, smell, or taste the bean, so that any change in our degrees of
belief about the sweetness, scent, or texture of the bean should be due
entirely to changes in our degrees of belief about its color.?

In chapter 1 we saw that Bayes’s essay contained a tension between
personalism (probability as personal degree of belief) and objectivism
(probability as uniquely determined rational degree of belief). The tension
survives in modern Bayesianism. The pure personalists, as represented by
de Finetti and his followers, recognize the axioms of probability as the only
synchronic constraints on degrees of belief. Some personalists have also
refused to recognize any diachronic constraints, but it turns out that the
Dutch-book arguments used to justify the probability axioms can also be

“used to justify rules of conditionalization (see, however, section 6 below).

Tempered personalists would add further constraints, such as Lewis’s prin-
cipal principle to be discussed below in section 7, or Shimony’s (1970)
injunction on the members of a scientific community to assign a nonzero
prior to any hypothesis seriously proposed by a fellow member of the
community. Objectivists, such as Harold Jeffreys (1961, 1973), carry the
tempering of priors to the extreme by proposing principles to uniquely fix
these numbers. Thomas Bayes himself seems to have fallen into this camp,
at least with respect to the problem treated in his founding essay.

The implications of these differing forms of Bayesianism for confirma-
tion theory will be discussed in later chapters. The present chapter concen-
trates on an elementary exposition of the common core of all forms of
Bayesian personalism.

2 The Probability Axioms

Since propositions are the object of belief and since probability is being
interpreted as degree of belief, probabilities will be assigned to objects that
express propositions, namely sentences. More specifically, let o be a col-
lection of sentences. The content and structure of .o/ will vary from context
to context, but at a minimum it is assumed that &/ is closed under finite
truth-functional combinations. Then a probability function Pr is a map
from o7 to R satisfying at least the following restrictions:
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Pr(A) >0 forany A e« (A1)
Pr(d)=1 ifl=4 (A2)
Pr(4 v B) = Pr(4) + Pr(B) ifE= 11(4 & B) (A3)

Here |= A means that A is valid in the sense that A is true in all models or
all possible worlds.* Again, the content and structure of the models or
possible worlds will depend upon the context. I assume at a minimum that
of respects propositional logic.® In this case (A1) to (A3) suffice to prove
many of the familiar principles of probability, including the following;

Pr(T14) = 1 — Pr(4) (P1)
Pr(4) = Pr(B) if=A— B (P2)
Pr(4 v B) = Pr(A) + Pr(B) — Pr(4 & B) (P3)
Pr(4) < Pr(B) ifAFB (P4)

Here A |= B means that A semantically implies B in the sense that B is true
in every model or possible world in which 4 is true.
Conditional probability may be introduced as a defined concept:

Definition If Pr(B) # 0, then Pr(4/B) = Pr(4 & B)/Pr(B).

Bayes’s theorem is now a simple consequence of this definition. An alterna-
tive approach takes conditional probability Pr(-/-) as primitive and de-
fines the associated unconditional probability Pr(-) as Pr(-/N), where N is
a necessary truth (i.e.,, = N). The advantage of this approach is that Pr(4/B)
can be defined even when Pr(B) = 0. Conditional probability is discussed
in more detail in appendix 1 to this chapter.

Some of the applications to be considered in later chapters also assume
a principle of continuity.

C If A;esd, i=1, 2, ..., are such that A,,, = A, for each n and
{A,,A,,...} is inconsistent (i.e, the A; are not all true in any model or
possible world), then lim,, , Pr(4,) = 0.

Actually, the axiom I will use most often is a weaker principle that applies
to first-order predicate logic. Let ‘P’ be a monadic predicate and let a,, a,,
... be a countably infinite sequence of individual constants. The principle
added as an additional axiom asserts that

-t
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Pr((Vi)Pa;) = lim Pr(& Pa,-), (A4)
where &<, Pa; stands for Pa, & Pa, & ... & Pa,. If we require that
(Vi)Pa; = Pa, for every n and that { 7(Vi)Pa;, Pa,, Pa,,...} be inconsis-
tent, then (A4) is shown to be a consequence of (C) by one’s taking
A, = (&i<,Pa; & 1(Vi)Pa,). 1t also follows that Pr((3i)Pa;) = lim,_,,
Pr(\/i<. Pa;), where \/;, Pa; stands for Pa; v Pa, v ... v Pa,. Axiom
(A4) can be regarded as an extension of the finite additivity principles (A3)
and (P3) to countable additivity.

In a manner of speaking, “half” of (A4) is already a consequence of (A1)
through (A3). Since (Vi) Pa; = &<, Pa;, it follows by (P4) that Pr((Vi) Pa;) <
Pr(&;<n Pa;). Moreover, Pr(Pa,), Pr(Pa; & Pa,), Pr(Pa, & Pa, & Pa,), ...
is a monotone decreasing sequence bounded from below (by (A1)), and

. so it must have a limit. Thus Pr((Vvi)Pq;) < lim,_, , Pr(&;<, Pa;). To turn

the ‘<’, into an ¢ =", as required by (A4), requires a new substantive
assumption.

Continuity or countable additivity does not come without intuitive cost.
Consider a denumerably infinite list H,, H,, ... of pairwise incompatible
and mutually exhaustive hypotheses. One might think that it should at
least be possible to treat these hypotheses in an evenhanded manner by
assigning them all the same probability. But this we cannot do consistently
with (C), since (C) implies that ) 2, Pr(H;) = 1. Continuity thus forces us
to play favorites. (Sticking to finite additivity would allow for a draconian
evenhandedness in the form Pr(H;) = 0 for all i) On the other hand,
abandoning countable additivity leads to results that Bayesians and non-
Bayesians alike find repugnant. Some of these results will be discussed in
appendix 1.

A different nomenclature is presupposed when mathematicians and stat-
isticians speak of probability. For them, a probability space is a triple
Q% P). Q, a set of elements, is called the sample space; %, a field of
subsets of Q, is the collection of measurable sets; and 2 is a nonnegative
(finitely or countably additive) function from % to R. (Here countable
additivity means that if B;e &% i =1, 2, ... are pairwise disjoint, then
2|2, B) = Y2, 2u(B))) As is discussed in detail in chapter 6, one can
move from the Bayesian personalist conception of probability to the math-
ematical conception by taking Q to be the set of models of the language of
o, F to be a field generated by sets of models of the form mod(4) for a
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sentence A € «, and 2 to be a measure satisfying #2(4) = Z:(mod(4)).
One can also move in the opposite direction, although an awkwardness
occurs when # is a o field (see appendix 2) and probabilities qua degrees
of belief are assigned to sentences in a standard first-order language, for
then not every member of # will correspond to a sentence, since these
languages do not allow infinite conjunctions or disjunctions. We can often
smooth over this awkwardness by taking limits of probabilities of finite
conjunctions or disjunctions.

3 Dutch Book and the Axioms of Probability

Rather than simply assuming that degrees of belief are regimented by the
principles of probability, one could try to exploit the interpretation of
probability as degree of belief as a means of getting a justification for the
probability axioms. We saw in chapter 1 that Thomas Bayes took this tack
by using the connection between degrees of belief and betting behavior.
Ramsey (1931) and de Finetti (1937) followed a related tack with their
Dutch-book strategy, although they were apparently unaware of the de-
tails of Bayes’s work, which contains, as we have seen in chapter 1, intima-
tions of Dutch book. The presentation given here follows Shimony 1955.

By a bet on A4 € o/ let us understand a contractual arrangement between
a bettor and a bookie by which the bettor agrees to pay the bookie the
amount $b if A turns out to be false and the bookie agrees to pay the bettor
$aif A turns out to be true. The sum $(a + b) is called the stakes of the bet,
and the ratio b/a is called the bettor’s odds. If Pr is the bettor’s degree-of-
belief function, the expected monetary value of the bet for him is $a x
Pr(A4) — $b x Pr(71A). The bet is said to be fair (respectively, favorable,
unfavorable) to the bettor according as the expected value is zero (respec-
tively, positive, negative). Using the negation principle (P1), the condition
for a fair bet comes to Pr(4) = b/(a + b). This ratio is called the bettor’s
fair betting quotient.

The idea of the Dutch-book argument is to turn this construction
around to produce a justification of the probability axioms: assume that
degree of belief functions as a fair betting quotient and then show that
something very nasty will happen if the degrees of belief fail to conform to
the probability axioms. Thus if Pr(A4) = r is your degree of belief in A4, then
(the story goes) you should be willing to bet on A on the terms in table 2.1.
S is allowed to be either positive or negative, which means that you are

i
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Table 2.1
Terms for betting on A i
Pay Collect Net
A false rS 0 —rS
A true rS N (1-rs

Note: S stands for the stakes.

required to accept either end of the bet. If you do enter such an arrange-
ment, the nasty thing that threatens is Dutch book, a finite series of bets
such that no matter what happens, your net is negative (a violation of what
is called coherence for degrees of belief). The Dutch-book theorem shows
that if any one of the axioms (A1) to (A3) is violated, then Dutch book can
be made. The converse Dutch-book theorem shows that if (A1) through (A3)
are satisfied, then Dutch book cannot be made in a finite series of bets. This
converse is crucial to the motivation for conforming degrees of belief to the
principles of probability, for if such a conformity were not guarantee
against Dutch book, the threat of Dutch book would not be a very effective
inducement to conformity. Only the proof of the Dutch-book theorem will
be sketched here. The interested reader can consult Kemeny 1955 and
Lehman 1955 for the converse.

To establish that (A1) is necessary to avoid Dutch book, suppose that
Pr(A4) = r < 0. Choose S < 0 and note that the net is negative whether or
not A is true. Similarly, if Pr(4) = r > 1, choosing S > 0 leads to a loss,
come what may. We can now establish that (A2) is necessary to avoid
Dutch book. For suppose that Pr(4) = r # 1 even though |=A. By the
previous results, 0 < r < 1. Choosing S < 0 then leads to a loss in case 4
is true, which is the only possible case. Finally, to show the necessity of
(A3), suppose that = ~1(4 & B) and consider a series of three bets: one on
A with a betting quotient Pr(4) = r, at stakes S;, one on B with a betting
quotient Pr(B) = r, at stakes S,, and one on A v B with a betting quotient
Pr(A v B) = r; at stakes S,. There are three possible cases to consider
(table 2.2). The theory of linear equations then shows that the stakes can
be chosen so that the nets are all negative unless ry = r, + r,, i.e., unless
(A3) holds.

If regarded as a definition, the formula given in section 1 for conditional
probability does not stand in need of a justification. But as in de Finetti
1937, the notion of the conditional probability of B on A4 can be introduced



40 Chapter 2
Table 2.2
Net payoffs for the three bets taken together

Net
A true, B false (1 =78 — 1,8, + (1 —r3)8,
A false, B true =Sy + (L —=7)8; + (1 —r3)S,
A false, B false —r8; — 18, — 138,

as a primitive and then operationalized in terms of a bet on B conditional
on A, the terms of which specify that if A obtains, a standard unconditional
bet on B is in effect, whereas if A fails, the bet is called off. Then (the story
goes) Pr(B/A) should be the agent’s critical odds for this conditional bet.
The agent is now offered three bets: a standard bet on A, a standard bet on
B & A, and a bet on B conditional on A. It is left as an exercise to show
that unless Pr(B/A4) x Pr(A) = Pr(B & A), stakes can be chosen for the
three bets so that the agent has a sure net loss. This argument does not
justify the rule of conditionalization, which requires a different argument
(see section 5 below).

The Dutch-book justification for continuity is not so pretty, and this is
perhaps one of the reasons it plays no role in the Bayesianism of Ramsey,
de Finetti, and Savage.® To Dutch-book a violation of (C) or (A4), which
is not also a violation of (A1) through (A3), requires laying an infinite series
of bets. But if I were to risk the same finite amount, no matter how small,
on each of these bets, then I would have to have an infinite bankroll, an
impossible dream. And if the dream should come true, I would not care
one whit about losing a finite or even an infinite sum if, as can always be
arranged, I have an infinite amount left over. To remedy this defect, we can
imagine that the bettor accepts an infinite series of fair bets but that the
total amount he risks is finite; e.g., he risks $(1/2) on the first bet, $(1/4) on
the second, $(1/8) on the third, and so on. With this setup, Adams (1961)
shows that a sure loss results from a violation of the general continuity
axiom (C) (see also Spielman 1977).

4 Difficulties with the Dutch-Book Argument

Qualms about.the Dutch-book justification of the probability axioms are
so numerous and diverse that it is hard to classify them. For future refer-
ence I note that when the requirement of logical omniscience is dropped,
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as it must be for realistic agents, the situation becomes more complicated;
this matter is discussed in chapter 5. For the present context, which takes
logical omniscience for granted, I begin with three miscellaneous qualms.
First, the Dutch-book construction for countable additivity involves, in
Ernest Adams’s words, “extremely unrealistic systems” (1961, p. 8). For
those who insist that degrees of belief must be operationalized in terms of
economic transactions, this constitutes a reason to reject countable addi-
tivity. (Thus it is not surprising that countable additivity plays no role in
de Finetti’s personalism.) But for those of us who reject operationalism and
behaviorism and insist that countable additivity is needed, the difficulty is
a shortcoming of the Dutch-book construction. Second, the requirement
that the agent be willing to take either side of the bet (i.c., the stakes S may
be either positive or negative) may not be satisfied by actual gamblers, and
in any case it already assumes the negation principle.” Third, a Bayes-
ianism that appeals to both Dutch book and strict conditionalization is on
a collision course with itself. The use of strict conditionalization leads to
situations where Pr(A4) = 1 although B A. As a result, something almost as
bad as Dutch book befalls the conditionalizer; namely, she is committed
to betting on the contingent proposition A at maximal odds, which means
that in no possible outcome can she have a positive gain and in some
possible outcome she has a loss (a violation of what is called strict coher-
ence). It is too facile to say in response that this is a good reason for
abandoning strict conditionalization in favor of Jeffrey conditionalization
or some other rule for belief change; for all the results about merger of
opinion and convergence to certainty so highly touted in the Bayesian
literature depend on strict conditionalization (see chapter 6).

A more basic worry harkens back to Bayes’s insistence that probability
as a betting quotient be attached to “events,” i.e., decidable propositions
(see chapter 1). Bets on the outcome of the Kentucky Derby are one thing,
bets on scientific hypotheses are quite another. A hypothesis with the
quantifier structure (3x)(Vy)Rxy can be neither verified nor falsified by
finite means. Thus a bet on such a hypothesis turns on a contingency that
can never be known for certainty to hold or to fail, and so the parties to
the bet have no sure way to settle the matter. To try to settle the bet by
appeal to the probable truth or falsity of the hypothesis runs afoul of the
fact that the parties can and often do disagree on whether the hypothesis
is probably true. But if the bet is never paid off, fear of being bilked
disappears.
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The response to this worry might be that bookies wearing wooden
shoes, money pumps, etc. are just window dressing. The underlying as-
sumption is that degrees of belief are manifested in preferences over the
kinds of bets described in section 3. This assumption granted, the Dutch-
book construction stripped of its decoration shows that the failure of
degrees of belief to conform to the probability calculus results in a structur-
al inconsistency in the individual’s preferences. Suppose that the individual
is nonsatiated in that she prefers more money to less. Then if this person
violates (A1) or (A2), the Dutch-book construction reveals that she is
literally inconsistent with herself, since she prefers the certainty of handing
over some $¢ > 0 to the status quo, despite her professed nonsatiation. In
the case of (A3) the argument is more involved, since it appeals to another
principle, “the package principle”; to wit, a person’s preferences are incon-
sistent if there is a finite series of bets such that she regards each as
preferable to the status quo while at the same time she regards the status
quo as preferable to the package of bets. If this hypothetical agent violates
(A3), we proceed to construct a finite series of bets each of which she finds
favorable. By the package principle, she should then find the package
favorable. But the package is shown to be equivalent to handing over
$¢ > 0, which contradicts nonsatiation. Note that on this reading the
Dutch-book construction does not justify strict coherence, i.., the require-
ment that Pr(A4) = 1 only if = A4, which I take to be a mark in favor of this
reading.

Schick (1986) has questioned the normative status of the package princi-
ple. Its plausibility, he argues, rests on accepting the notion of value
additivity, which holds that the value of the package of bets is the sum of
the values of the individual bets. But, Schick claims, an agent who refuses
to conform her degrees of belief to the probability axioms may read the
Dutch-book construction as a reason to reject value additivity. Schick’s
objection may not at first seem very moving, but it gains force in the
context of the sequential decision making that comes into play in the
attempted diachronic Dutch-book justification for conditionalization (see
section 6).

Although the above reconstrual of the Dutch-book construction is a
step forward, it is still too closely tied to the behavioristic identification of
belief with dispositions to place bets. Once it is admitted that betting
behavior is only indicative of, and not constitutive of, underlying belief
states, it must also be admitted that belief and behavior are mediated by
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many factors and that these factors can weaken to the breaking point the
simpleminded linkage assumed in the Dutch-book construction. In poker,
for example, betting high may be a good way to scare off the other players
and win the pot (see Borel 1924). And generally, a knowledge of the
tendencies of opponents may make it advisable to post odds that differ
from one’s true probabilities (see Adams and Rosenkrantz 1980).8

Two responses can be made to this complaint. First, one can drop the
Dutch-book approach in favor of a justification of the probability axioms
that focuses directly on the nature of belief and the cognitive aims of
inquiry and eschews altogether preferences for goodies, monetary or other-
wise. Some candidates for such a justification will be examined in the next
section. Second, one can continue to push the Dutch-book approach by
taking into account in a more systematic manner the preference structure
of the agent. I will follow this theme in the remainder of this section.

The opening melody of this theme is that the Dutch-book construction
rests on the assumption that utility is linear with money, or equivalently,
that agents are risk neutral, an assumption known to be false for many if
not most real-world agents.® To illustrate the complications that can arise

- in trying to use betting behavior to elicit degrees of belief for such real-

world agents, let us analyze from the point of view of expected-utility
theory the elicitation device Bayes himself used. Let $q be the maximum
amount the agent is willing to pay for a contract that awards $r if A is true
and $0 otherwise. If U is the agent’s utility function and Pr(dw/A4) and
Pr(dw/ 1 A) are the agent’s conditional probability distributions for wealth
exclusive of the contract prize, then a little algebra shows that the expected-
utility hypothesis implies that the agent’s degree of belief in 4 is

1 / [1 JUw+r—q - U(w))Pr(dw/A)]
[(UW) — Uw — g)Pr(dw/14)

(see Kadane and Winkler 1987). If the agent is risk neutral, ie., if U is
linear, then the degree of belief is seen to be equal to g/r, as Bayes thought.
If Pr(dw/A) = Pr(dw/ 14) (i.e., the agent’s wealth apart from the contract
payoff is not probabilistically dependent on A) but the agent is not risk
neutral, then Pr(A) will differ from g/r: if the agent is risk-averse, g/r will
understate Pr(4), while if she is risk-positive, g/r will overstate Pr(4). And
if Pr(dw/A) # Pr(dw/ 1A4), ¢/r is an even more distorted measure of Pr(4).
The moral is that the direct elicitation of degrees of belief by betting
behavior is doomed to failure. Degrees of belief and utilities have to be
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elicited in concert. In the standard developments of this concerted elic-
itation the aim is to show that preferences satisfying (what are taken to be)
rationality constraints can be represented in terms of expected utility, with
the probabilities being uniquely determined and the utilities determined up
to positive linear transformations. But the alleged rationality constraints
are open to challenge (see, for example, the paradoxes in Allais 1953 and
Elisberg 1961). Moreover, when the utilities are dependent not just on
the prizes but also on the propositions whose utilities are being elicited,
then the probabilities may not be uniquely determined (see Schervish,
Seidenfeld, and Kadane 1990 and Seidenfeld, Schervish, and Kadane
1990). Here I must break off the discussion, since I have strayed beyond
the scope of this work.

5 Non-Dutch-Book Justifications of the Probability Axioms

Aside from a fear of being bilked by Dutch bookies, there are a number of
other motivations for conforming degrees of belief to the probability calcu-
lus, three of which will be mentioned here.

The first is articulated by Rosenkrantz (1981), who follows de Finetti
(1972). Consider a partition {H;}, i=1, 2, ..., N, and an agent who
distributes her degrees of belief x; over the H; in accord with the constraint
that 0 < x; < 1 but not necessarily obeying the condition Y ;x; = 1, as
would be the case if she obeyed the probability calculus. Suppose that
when H; is the true hypothesis, the inaccuracy of her degrees of belief is
measured by the least-squares function

IGH)=xi+ - +xk +(1—x)* +xh; + -+ x3 2.3)

If the x; do not sum to 1, there is an alternative set of degrees of belief y,
that do sum to 1 and that dominate the x; in the sense that I(y; H) <
I(x; H;), whatever the value of j. This conclusion continues to hold when
(2.3) is generalized to a weighted least-squares measure where the weights
reflect judgments of how far the false alternatives are from the true hypoth-
esis. If the conclusion could be further generalized to any “reasonable”
measure of inaccuracy, we would be entitled to draw the moral that failure
to obey the axioms of probability undermines the goal of accuracy. A
discussion of what conditions constitute a reasonable measure of inaccu-
racy, together with a review of results and conjectures about the sought
after generalization, are found in Rosenkrantz 1981 (see also Lindley 1982).
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A second kind of justification is best construed as directed at well-
tempered personalists who aim at rational degrees of belief. It can be found
in various versions in Aczél 1966; Cox 1946, 1961; Good 1950; and also in
Shimony 1970, the version I will report here. It works on the concept of
conditional probability. Let Pr(H/E) be a real-valued function defined on
pairs of sentences (H, E), where H is a member of a nonempty set .« of
sentences closed under truth functional operations and E is a member of
the noncontradictory elements #° of Z# < .« (see appendix 1). It is further
supposed that Pr(-/-) satisfies the following six conditions:

Cl Pr(H/E)y=Pr(H'/E)ifEH~ H and FE- E'

C2 For any E € #°, there is an r, such that for any contradiction C € .o/
and any H € &, Pr(C/E) = ry < Pr(H/E).

C3 There is an r; such that for all E, F e #° Pr(E/E)= Pr(F/F)=
ro>ro.

C4 Pr(H & E/E) = Pr(H/E).

C5 For any E, F € #°, there is a function f such that Pr(H & F/E) =
Jfe(Pr(H/F & E), Pr(F/E)).

C6 For any E e #° there is a continuous and monotone increasing
function g in both variables such that if E = 1(H & J), then Pr(H v J/E)
= gg(Pr(H/E), Pr(J/E)).

Then there exists a continuou;\ and monotone increasing function h such
that h(r,) = 0, h(r;) = 1, and Pr(H/E) = h(Pr(H/E)) satisfies the standard
axioms for conditional probability.

The usefulness of this technical result for the justification of the proba-
bility axioms depends on the persuasiveness of two further assumptions:
first, that (C1) through (C6) should be satisfied for any rational conditional
degree of belief function and, second, that if Pr is a suitable measure of
rational degree of belief, then so is any monotone function of Pr, which
leaves us free to choose a Pr that satisfies the standard axioms. Neither of
these assumptions recommends itself with overwhelming force.

A third mode of justification starts from Carnap’s (1950) remark that
rational degrees of belief can, in some instances, be construed as estimates
of relative frequencies. Thus if H is of the form ‘Pa’, my degree of belief in
H may be interpreted as my estimate of the relative frequency of individ-
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uals with the property designated by ‘P’ in some appropriate reference
class.'® If my personal probabilities for propositions of this form are not
to be precluded a priori from being accurate estimates of frequencies, they
must fulfill the standard probability axioms, since frequencies do (see van
Fraassen 1983a and Shimony 1988).

Although attractively straightforward, such frequency-driven justifica-
tions have their limitations. As a result of calculation or of consulting
theories like quantum mechanics, my degree of belief in H may be an
irrational number. If ‘frequency’ means finite frequency, i.e., the ratio of the
number of individuals that have the property to the total number of
individuals in the (finite) reference class, then I am automatically precluded
from having an exactly accurate estimate. Limiting relative frequencies in
infinite sequences do not share this shortcoming, but such frequencies can
lead via the continuity axiom to a conflict with other probability assign-
ments we may want to make. Thus, for example, my estimate of the
limiting relative frequency for events such as Pa; may be O for each i, in
which case I set Pr(\/;<, Pa;) = Ofor every n. But at the same time I may be
convinced that at least one of the individuals must be a ‘P, which contra-
dicts (A4). More generally, for the multiply quantified hypotheses encoun-
tered in the advanced sciences, there is no obvious or natural way in which
one’s degree of belief can be regarded as an estimate of relative frequency
in either the finite or limiting sense. Of course, I can calibrate my degree
of belief in H with frequencies by finding an H’ such that Pr(H) = Pr(H’)
and such that Pr(H’) does have a natural interpretation as an estimate of
a frequency. But without further restrictions, there is no guarantee that the
probabilities assigned to the class of hypotheses so calibrated will satisfy
the probability axioms.

Although Dutch book and the other methods of justification investi-
gated in this section are all subject to limitations and objections, collective-
ly they provide powerful persuasion for conforming degrees of belief to the
probability calculus.

6 Justifications for Conditionalization

Dutch-book justifications can be given for both strict conditionalization
(Teller 1973, 1976) and Jeffrey conditionalization (Skyrms 1987).1! To
consider the former, suppose without any real loss of generality that upon
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learning E the agent shifts from Pr,, to Pr,,, where y = Pr.,4(A/E) —
Pr,..(4) > 0 and x = Pr,4(4/E) > 0. The diachronic Dutch bookie first
sells the agent three bets b;: [$1; 4 & E], b,: [$x; T1E], and b;: [$y; E], at
what the agent computes to be their fair values. (Recall that [$z; C] stands
for the contract that pays $z if C obtains and $0 otherwise.) If E proves to
be false, the agent has a net loss of $y Pr,,4(E). On the other hand, if E turns
out to be true, the bookie buys back from the agent the bet b,: [$1; A] for
its then expected value to the agent ($Pr,.(A4) = $(Pr,a(4/E) — y)). The
agent then has a net loss of $yPr,4(E), regardless of whether A obtains.

We can assess this argument for conditionalization in the light of the
distinction drawn above in section 4 between two readings of the Dutch-
book construction. If the central concern is to escape being systematically
bilked by a bookie, there is a simple solution that doesn’t commit you to
conditionalization: don’t publicly announce your strategy for changing
belief in the face of new evidence. If you are worried about clairvoyant
bookies who can read your mind, then don’t make up your mind in
advance; just wait to see what evidence comes in and then wing it. (This is,
in fact, what many of us do in practice.) This will make you proof against
systematic bilking, save by those bookies who have the ability to foresee
your future belief states. But from such precognitive bookies not even good
Bayesian conditionalizers are safe. Of course, if you do not conditionalize,
there will be a hypothetical lucky bookie who by chance rather than
system hits on a series of bets that guarantees you a net loss, but then even
if you do conditionalize, there will be a hypothetical lucky bookie who
takes you for a loss.

On the more pristine reading of the original synchronic Dutch-book
construction, the bookies in wooden shoes were only window dressing, and
what was really being revealed (so the story went) was a structural incon-
sistency in the preferences of an agent who did not conform her degrees of
belief to the probability calculus. In applying this reading to the diachronic
setting, we need to divide cases. Consider first the case of an agent who

~ eschews preset rules for changing degrees of belief. In this instance it is hard

to see how the charge of inconsistency can legitimately be leveled. For how
can such an agent’s preferences over bets at t; be inconsistent with her
preferences over bets at ¢, any more than her preferences over wines at ¢,
can be inconsistent with her preferences over wines at t,? Perhaps in
response it will be urged that without melding together preferences at
different times to form an integrated whole, it wouldn’t be proper to speak
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of an enduring agent. That is certainly true, but surely the requirements for
personal identity over time cannot be taken to entail rationality con-
straints—and conditionalization is allegedly such a constraint—since a
person who behaves irrationally does not cease to be a person.

The agent who has adopted a rule for belief change is more open to the
charge of inconsistency, since she has already committed herself at ¢, to
what her preferences over bets will be at ¢,. It would then seem that we can
apply at t, the package principle introduced in the discussion of synchron-
ic Dutch book: if an agent prefers each of a finite series of bets to the status
quo, then she also prefers the package of bets to the status quo. To make
this principle yield the desired consequence in the present setting, ‘prefer’
must be taken to mean prefer when the decision is viewed as an isolated
one, which is the tacit understanding in effect when the critical odds for a
bet on A are used to elicit the agent’s degree of belief in 4. But an agent
who is not a conditionalizer can satisfy the package principle by taking
‘prefer’ to mean prefer when the decision to accept or reject the bet is
placed in the context of a sequential decision problem. If we view the
diachronic Dutch-book construction as a sequential decision process, the
decision tree looks as in figure 2.1. The principles of rational decision
making require that at decision node 1 the agent face up to what she knows
about what her preferences will be at node 2, should she get there (see
Seidenfeld 1988). She knows that at node 2 the tiniest premium will lead
her to prefer to sell back to the bookie the bet on A, and she sees that in

loss

loss
gain
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Figure 2.1

Diachronic Dutch book on a decision tree
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the decision context this choice leads to a sure loss. She sees also that she
gets to node 2 if at node 1 she chooses to buy b, to b, and E obtains, and
further that if she chooses to buy b, to b; and E fails, she incurs a sure net
loss. Thus, all things considered, she sees that buying b, to b, is unfavor-
able. It is on just these grounds that Maher (1992) maintains that the
diachronic-Dutch-book argument is fallacious (see also Levi 1987).

To the extent that these decision-theoretic considerations are effective in
undermining the diachronic-Dutch-book justification for conditionaliza-
tion, they also bring into question the Dutch-book justification for the
axioms of probability. In essence, the decision-theoretic message is to look
before you leap. Such advice is just as valid in the synchronic setting as in
the diachronic or multitemporal setting. And in the former setting, the
advice clashes with the package principle needed in the argument for the
principle of additivity of the probabilities of exclusive alternatives, which
brings us full circle back to Schick’s (1986) objection to Dutch-book argu-
ments. The circle leaves me in an unsettled position. I agree, for example,
that if I adopted a rule of belief change other than conditionalization and
if I were cagey enough to draw up the decision tree for diachronic Dutch
book, then I would refuse to accept the initial bets. But since I regard each
of these bets as fair, should I not therefore recognize that there is something
amiss in my opinion/preference structure? Grounds for a definitive answer
do not exist, or if they do, I do not know of them.

A different and more modest justification for conditionalization has
been given by Teller (1976), who argues that there are specifiable circum-
stances under which it can be maintained that if any change in belief is
reasonable, then such a change must be via conditionalization. To identify
some of these circumstances, Teller proves the following formal result (see
also Teller and Fine 1975). Suppose that Pr,,4(E) > 0 and that the agent’s
domain & of beliefs is full in the sense that for any number ¢ and any
A € o such that Pr;,(4) = rand 0 < g < rthereisa B € of such that B |=
A and Pr,,4(B) = g. Suppose further that Pr,,(-) is such that Pr,.(E) = 1
and that for all 4, B € & such that A = E and B [ E, if Pr,,4,(A4) = Pr,4(B),
then Pr,.,(A4) = Pr,.(B). Then Pr,,, (‘) = Pr (- /E).

As can easily be verified under the assumption that Pr_4(E) = 0, Teller’s
crucial condition C(E) is equivalent to C'(E):

C(E) Forall A,Be of suchthat A = E and B = E, if Pr,;4(A) = Pr,4(B),
then Pr,..(A4) = Pr,..(B).
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C'(E) For all A, B e o (whether or not they entail E), if Pr,,,(A/E) =
Prold(B/E)i then Prnew(A) = Prnew(B)'

There are clear cases where we want to impose C(E) or C'(E) for at least
some A and B. Thus, let 4 be the proposition that Dancer will win the
Derby, B the proposition that Prancer will win the Derby, and E the
proposition that one or the other has won. Suppose that an agent is
initially equally confident of A and B. She now learns precisely that E—
that and no more. It would seem that, in accord with C(E), she would be
unreasonable in these circumstances to adjust her degrees of belief so that
Dancer is now preferred to Prancer (or vice versa). But to invoke the
formal result, we need to extend the argument to all pairs of initially
equally probable propositions entailing E. It is hard to see how this can be
done for any particular o/ that is sufficiently rich without using reasoning
that would apply equally to any o/ and would thus abandon the modesty
of the approach.

The basis for an immodest justification can perhaps be found in van
Fraassen’s (1989) result that under the assumption of the fullness of </,
C(E)is implied by the requirement that the new probability of any proposi-
tion A € &/ is a function solely of the evidence E and the old probability
of A. It is well to note, however, that van Fraassen himself would not take
such a justification to imply that conditionalization is necessary for ratio-
nality, since in his view rationality does not require that belief change
follows a preset rule (see van Fraassen 1989 and 1990).

A different motivation for Jeffrey conditionalization starts from the idea
that one should make as small a change as possible in one’s overall system
of beliefs compatible with the shift in those beliefs directly affected by the
learning experience. Consider a probability function Pr on .o/, thought of
as giving the probabilities prior to making an observation. Let {E;} be a
partition, intended as the locus of belief change, and let Pr* be a measure
on {E;} such that Pr*(E;) > O and ) ; Pr*(E;) = 1, intended to give the new
probabilities of the E; after observation. One would like to extend Pr* to
a probability measure Pr** on .o/ in such a way that Pr** makes as
minimal a change as possible in Pr. Relative to several natural distance
measures, the probability obtained by Jeffrey conditionalization fits the
bill, although for some distance measures it may not do so uniquely (see
Diaconis and Zabell 1982).

When the effect of observation is not so simple as to be localizable in a
single partition, the method for updating probabilities becomes problem-
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atic. Suppose that one’s experience results in new degrees of belief for each
of the partitions {E;} and {F;}. It is not guaranteed a priori that these
degrees of belief are mutually coherent in the sense that they are extendible
to a full probability on /. A necessary and sufficient condition for the
existence of such an extension is supplied by Diaconis and Zabell (1982).
Assuming coherence, one could proceed to produce a new probability
function by successive Jeffrey conditionalizations on the two partitions.
But the order of conditioning may matter. If we denote the results of Jeffrey
conditionalizing on {E;} (respectively {F;}) by Prg(-) (Prs(-)), then the
order does not matter in that Prgp(-) = Prgg(*) just in case Prg(E;) =
Pr(E;) and Prg(F;) = Pr(F)foralliand j.1? The interested reader is referred
to Diaconis and Zabell 1982 and van Fraassen 1989 for more discussion
of these and related matters.

While the cumulative weight of the various justifications for condition-
alization seems impressive, it should be noted that the starting assump-
tions of strict and Jeffrey conditionalization are left untouched. The former
assumes that learning experiences have a precise propositional content in
the sense that there is a proposition E that captures everything learned in
the experience, while the latter assumes that if there is no precise proposi-
tional content, still the resulting belief changes can be localized to a parti-
tion. One or the other of these assumptions is surely correct for an interest-
ing range of cases, but it is doubtful that they apply across the board. And
where the doubt is realized, the present form of Bayesianism is silent.

In the remainder of this book I will concentrate on cases where strict
conditionalization applies.

7 Lewis’s Principal Principle

What David Lewis (1980, 1986) calls the principal principle (PP) may be
viewed both as a rationality constraint on personal probabilities and as an
implicit definition of objective probabilities. To paraphrase Lewis, (PP)
requires that if Pr(-) is a rational degree of belief function, 4 a proposition
asserting that some specified event occurs at time ¢ (e.g., a given coin lands
heads up when flipped at t), A4, the proposition that asserts that the chance
or objective probability at time ¢ of A’s holding is p, and E any proposition
compatible with A that is admissible at ¢, then Pr(4/4, & E) = p. Admis-
sibility is, as Lewis notes, a tricky notion. But for present purposes it
suffices to focus on one category of evidence that should be admissible in
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the intended sense, namely, any proposition E about matters of particular
historical fact up to time ¢ (e.g., information about the outcomes of past
flips of the coin).

A glance at Bayes’s calculations reported in chapter 1 is enough to
establish that the Reverend Thomas himself used a version of (PP). Some
of the mathematical niceties of Bayes’s application of (PP) will be taken up
in chapter 4, but these will be ignored in the present chapter to simplify the
discussion.

Some early critics of probabilistic epistemology worried that the stan-
dard probability apparatus doesn’t suffice to capture the full force of
uncertain judgments. Consider two cases of partial knowledge. In the first
I know literally nothing about a coin, save that it is two-sided and has a
head and a tail. In the second I learn that 10,000 flips have produced 5,023
heads. If A is the proposition that the next flip will be heads, then in each
of the two cases my degree of belief conditional on the total available
evidence will presumably be (roughly) .5. But in the second case the
“weight” of the evidence seems much greater, and consequently, my degree
of belief is much firmer. The worry is that two numbers are needed to
characterize my belief state, one describing my degree of belief, the other
describing the weight of the evidence. But by using (PP), we can show that
information about weight is already encoded in the standard probabilities.
If we assume for sake of convenience that p can take on only discrete values
Pi, WE can write

Pr(A/E) = Y Pr(4/A,, & E) x Pr(4,,/E)

=2 pi x Pr(4,/E),

where the first equality uses the principle of total probability and the
second follows by (PP). The probability of 4 on E is thus the first moment
of the distribution Pr(4,, /E). One would expect this distribution to look
like figure 2.2a in the first hypothesized case and like figure 2.2b in the
second. Thus, as E. T. Jaynes (1959) suggests, at least part of what is
meant by ‘weight of evidence’ can be explicated in terms of the concentra-
tion of the Pr(4,/E) distribution. This sense of weight is connected to the
notion of firmness or resiliency, since presumably the greater the weight,
the more new information about the outcomes of additional coin flips that
is needed to significantly alter Pr(4, /E) and thus Pr(4/E).
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The distribution of personal probability of the objective probability

Principle (PP) is also (jokingly) referred to as Miller’s principle because
David Miller (1966) claimed to show that the principle is inconsistent.
There is no need to review Miller’s attack here, since Jeffrey (1970) and
Howson and Urbach (1989) have successfully parried the attack. But it is
worth reviewing van Fraassen’s assessment of (PP), since if he is correct,
(PP) has a less lofty status than it might seem to have at first glance.

Van Fraassen writes,

The intuition that Miller’s Principle is a requirement of rationality firmly links its
credentials to a certain view of ourselves—namely, that we are finite, temporally
conditioned rational beings. We have no crystal balls, and no way to gather
information about the future which goes beyond the facts which have become
settled to date. If we thought instead that Miller’s Principle must apply to all
possible and conceivable rational beings, we would have to conclude that omni-
science implies determinism. (1989, p. 196)

The argument proceeds by supposing that there is a rational agent who is
omniscient. For that agent, Pr(4) = 1 or 0, according as A is true or false
for any proposition 4. So Pr(4,,) = 1 for some unique 0 < p* < 1. But
then by (PP), we get Pr(4/4,,) = p* = Pr(4 & A4,,)/Pr(4,,) = Pr(A).
Hence p* is 1 or 0, according as A is true or false, which is determinism.
There is pressure, however, to argue the other way around. The objective
chance of a specified outcome (e.g., the reflection of a photon by a half-
silvered mirror) is 0 < p* < 1. This I know because quantum mechanics
(QM) tells me so. Therefore, if I am rational, I shouldn’t assign 1 or 0 as
my degree of belief in the outcome. So objective chance is incompatible
with rational omniscience about the future, and the scope of (PP) does after
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all include all rational agents. A potential difficulty with this line is that it
might seem to conflict with a reliability conception of knowledge. Thus,
suppose that a person is able to correctly predict the future time after time.
Wouldn’t we eventually be willing to say that this person knows what the
future holds? Correct prediction in itself is not a sure indicator of the
relevant sort of reliability, for it is consistent with lucky guessing. What is
needed for knowledge is the existence of a belief-forming mechanism that
reliably yields certainty, a probability of 1 or 0, on the events in question.
But such a mechanism is arguably inconsistent with the seemingly irreduc-
ible nontrivial probabilities involved in quantum events. Indeed, several of
the no-go results for hidden-variable interpretations of QM are not so
much proofs that no deterministic mechanism underlies QM as they are
demonstrations of the inconsistency of treating quantum-mechanical mag-
nitudes as if they had simultaneously determinate values.

In other cases, such as classical statistical mechanics, we want to main-
tain both determinateness and determinism on the microscopic level and
yet speak of objective chances of events defined on the macroscopic level.
For example, if a gas is initially confined to one half of a container by a
partition and the partition is removed, then the chance is overwhelmingly
great that in a time short by macroscopic standards the gas molecules,
insofar as macroscopic measurements will be able to ascertain, will become
evenly distributed over the entire container. In assigning personal proba-
bilities, it would be irrational to ignore such teachings of statistical me-
chanics. But this judgment, as opposed to the parallel judgment in the QM
case, rests, as van Fraassen says, on our view of ourselves as temporally
bounded agents who have no crystal balls for reading the future. And it
also rests on our view of ourselves as being bounded in other ways as well,
in particular, as being unable to discern the current exact microstate of the
gas. This second limitation means, in effect, that the admissible evidence
for (PP) is more circumscribed than originally announced, which is an
indication that the probabilities provided by classical statistical mechanics
are not wholly objective. This is not an unwelcome conclusion, since it is
generally acknowledged that these probabilities are partly physical and
partly epistemic.

Principle (PP) also has the apparent virtue that when combined with the
law of large numbers, it explains how we can come to learn the values of
objective chance parameters. Consider a coin-flipping case with indepen-
dent and identically distributed (IID) trials and an objective chance p for
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heads. Starting from p, we can construct (as explained in appendix 2) a
measure 22 on subsets of the collection of all possible outcomes of an
infinite repetition of this chance experiment, and we can prove that the #»
measure of the set of all infinite sequences of flips in which the relative
frequency of heads converges to p is 1 (the strong law of large numbers). It
follows that if one starts by assigning a nonzero prior to the hypothesis
that the objective chance of heads is p, obeys (PP), and updates probabili-
ties by conditionalizing on the outcomes of repeated coin flips, then in
almost every infinite repetition of the experiment (i.c., except for a set of
#:-measure 0) one’s personal probability will converge to 1 on the said
hypothesis in the limit as the number of flips goes to infinity (see chapter 4).

The mathematics here is impeccable, but the metaphysics remains
murky. If we think of p as something like a single-case propensity, then the
original application of (PP) has a plausible ring to it. Moreover, given the
assumption of IID trials, the objective probability in n trials of getting m
heads is

(")p"'(l —
m

It follows that as n — oo the objective probability goes to O that the relative
frequency of heads differs from p by any specified & > 0 (a form of the weak
law of large numbers). So by applying (PP) at each stage of this reasoning,
we can conclude that our personal probability goes to certainty that the
frequency of heads comes within any desired ¢ > 0 of the true objective
probability. But to get a personal-probability analogue of the strong form
of the large numbers, we need to operate with the measure % on the
collection of infinite repetitions, and it is not immediately apparent why
21 should function as an objective probability in the relevant sense of (PP),
that is, so as to underwrite the conclusion that our personal probability
ought to be one that in this infinite repetition of the experiment the limit
of the relative frequency of heads will equal the objective probability of
heads. The original (PP) can be defended on the grounds that it is constitu-
tive of what is meant by objective probability. But we can only get away
with such a move once.

Rather than start with single-case probabilities and then build the mea-
sure 2 on sets of infinite sequences, J. L. Doob (1941) proposed that we
take as basic the measure 2, identify the event (say) of a coin’s landing
heads on the 35th flip with the set of all infinite sequences that yield heads



56 Chapter 2

in the 35th place, and then take the 2, measure of this collection to be the
probability of heads on the 35th flip (and thus by the IID assumption, the
probability of heads on any trial). But what is now lacking is the conviction
that this probability value functions enough like a single-case propensity
so as to underwrite (PP) as applied to a particular, concrete flip.

It remains to be seen whether the difficulty here is trying to tell us
something about the strong law of large numbers or about (PP) or both.

8 Descriptive versus Normative Interpretations of Bayesianism

Is Bayesianism to be regarded as descriptive of actual reasoning, or does
it rather fix the pathways that “correct” or “rational” inductive reasoning
must follow? Bayes’s arguments for the probability axioms and the modern
descendants of these arguments, the Dutch-book construction, certainly
presuppose a normative aim, as do the discussions of rules of condition-
alization and Lewis’s (PP). This is just as well, since it is currently a matter
of lively controversy as to whether actual agents can be represented as
obeying the Bayesian constraints on belief and the allied decision rule of
maximizing expected utility (see Kahneman, Slovic, and Tversky 1982).
Eschewing the descriptive in favor of the normative does not erase all
difficulties. For ‘ought’ is commonly taken to imply ‘can’, but actual induc-
tive agents can’t, since they lack the logical and computational powers
required to meet the Bayesian norms. The response that Bayesian norms
should be regarded as goals toward which we should strive even if we
always fall short is idle puffery unless it is specified how we can take steps
to bring us closer to the goals. To make the complaint concrete, note that
in a rich language, agents who are computationally bounded may fail to
satisfy probability axiom (A2). This failure is not a mere inadvertence that
can easily be corrected, since by their very nature these agents fall short of
the logical omniscience that requires recognition of all logical truths in the
domain of Pr. Thus a 1 realistic Bayesianism must somehow make room for
logical learning. _And it is in n this regard that one must agree with Good
(1977) that probablhty qua dcgrcc of behef can change not only as the
result of observatlon and eygpenmcnt but also as aresult of calculatlon and

ofthe pr6'51" m of old evidence.
Actual agents also fall short of logical omniscience by being unable to
parse all the possibilities, and this inability can skew degrees of belief.
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The probability calculus requires that the degrees of belief assigned to
Einstein’s general theory of relativity (GTR) and its negation sum to one.
But when Einstein first proposed GTR, physicists had only the dimmest
idea of what was contained in the portion of possibility space denoted by
1GTR, and thus their assessments of the probability of GTR were ill
informed in the worst way. ‘Explore the space of possibilites’ is an empty
injunction unless accompanied by practical guidelines. Although I have no
general prescription to offer in this regard, I will offer in chapter 7 some
examples of how the exploration has been conducted in some actual and
challenging cases. It should be noted, however, that such an exploration
cannot be undertaken in an orthodox Bayesian fashion, for the recogni-
tion of heretofore obscured possibilities is typically accompanied by belief
changes, and it is hardly possible to account for all of these changes by
conditionalization, whether of the strict or Jeffrey form. This matter will
be taken up in chapters 7 and 8.

Finally, the considerations of chapter 9 raise a new and different chal-
lenge to the normatlvc status of Bayesianism by showmg that the structur-
al constramts it 1mposes on degrees of belief entail a substantive knowledge
of a kind that most scientists would not regard as appropriate to bring to

4 domain of i mqulry

9 Prior Probabilities

The topic of priors will come up again and again in the chapters below.
While it would not be productive to anticipate in advance all of the
nuances of the discussion, it may nevertheless be useful to outline the shape
of one of the central issues. For the Bayesian apparatus to be relevant to
scientific inference, it seems that what it needs to deliver are not mere
subjective opinions but reasonable, rational, objective degrees of belief.
Thence comes the challenge: How are prior probabilities to be assigned so
as to make this delivery possible? (Note that the presupposition of this
challenge is that the other factors involved in Bayes’s theorem, the likeli-
hoods, are unproblematic in a way that priors are not. While this may be
true in some special cases, it is most certainly not true in general. But since
this point only serves to complicate the matter at hand, I waive it for the
time being.)

Three responses to the challenge are to be found in the Bayesian corpus.
The first is that the assignment of priors is not a critical matter, because as
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the evidence accumulates, the differences in priors “wash out.” Chapter 6
will examine in detail various theorems that are supposed to demonstrate
this washout effect. In advance it is fair to say that the formal results apply
only to the long run and leave unanswered the challenge as it applies to
the short and medium runs.

The second response is to provide rules to fix the supposedly reasonable
initial degrees of belief. In chapter 1 we met Thomas Bayes’s attempt to
justify the rule of a uniform prior distribution. We saw that, although
ingenious, Bayes’s attempt is problematic. Other rules for fixing priors
suffer from similar difficulties. And generally, none of the rules cooked up
so far are capable of coping with the wealth of information that typically
bears on the assignment of priors.

The third response is that while it may be hopeless to state and justify
precise rules for assigning numerically exact priors, still there are plausibil-
ity considerations that can be used to guide the assignments. By way of
concrete illustration, consider the recent controversy about AIDS trans-
mission raised by Lorraine Day, a San Francisco surgeon. Day worried
that surgeons might contract AIDS by inhaling the air-borne blood of
infected patients. To protect against this risk, she urged her colleagues to
wear space-suit-like outfits when using high speed drills and saws that
create a fine mist of blood droplets. Critics responded that it is implausible
that Day’s hypothetical transmission mechanism poses any serious risk,
since the AIDS virus should remain suspended in the blood droplets and
since these droplets are typically too large to pass through the openings of
standard surgical masks. In Bayesian jargon, the critics are urging that
these plausibility considerations justify assigning a low prior to Day’s
hypothesis.

This third response does point to an important aspect of actual scientific
reasoning, but at the same time it opens the Bayesians to a new challenge,
which Fredrick Suppe has put in the form of a dilemma:

If standard inductive logic [i.e., Bayesianism] is intended to provide an analysis of
that plausibility reasoning, then we have a vicious regress where each iteration of
the Bayesian method requires a logically prior application; hence it is impossible
to ever get the Bayesian method going. Hence standard inductive logic is an
inadequate model of scientific reasoning about evidence and the evaluation of
hypotheses. If, on the other hand, standard inductive logic does not provide an
analysis of that plausibility reasoning, standard inductive logic is a critically incom-
plete, hence an inadequate model of scientific reasoning about evidence and the
evaluation of hypotheses. (1989, p. 399)
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Although some Bayesians have tried to seize one or the other of the horns
of this dilemma, it seems to me that the only escape is between the horns.!?
That is, Bayesians must hold that the appeal to plausibility arguments does
not commit them to the existence of a logically prior sort of reasoning:
plausibility assessment. Plausibility arguments serve to marshall the rele-
vant considerations in a perspicuous form, yet the assessment of these
considerations comes with the assignment of priors. But, of course, this
escape succeeds only by reactivating the original challenge. The upshot
seems to be that some form of the washout solution had better work not
just for the long run but also for the short and medium runs as well.

The matter of plausibility arguments also serves to bring to the surface
one of the lingering doubts that many philosophers have about Bayes-
ianism. The worry is that the Bayesian apparatus is just a kind of tally
device used to represent a more fundamental sort of reasoning whose
essence does not lie in the assignment of little numbers to propositions in
accord with the probability axioms. The only effective way to assuage this
worry is to examine the many attempts to capture scientific reasoning in
non-Bayesian terms and to detail how each of these attempts fails. Some
of this work will be done in chapter 3.

10 Conclusion

In the next two chapters I will assume that Bayesians are armed with the
probability calculus, including countable additivity if it should prove help-
ful, and also with whatever form of conditionalization seems appropriate
to the context. How this arsenal is deployed to attack problems in confir-
mation theory will be the subject of discussion.

Appendix 1: Conditional Probability

Cdnditional probability

Suppose that # < .o/ and let #° stand for the noncontradictory elements
of #. Then a conditional probability Pr(-/-) is a function from o/ x %°
to R satisfying the following:

CP1 Pr(-/B)is an unconditional probability on < for any B € %°.
CP2 Pr(B/B) = 1 for any B € %°.
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CP3 Pr(A & B/C) = Pr(B/C) x Pr(A/B & C) for any Ae <, Be %°,
Ce%#°and B& Ce %°.

Pr(-/-) is said to be full just in case # = . It will be assumed here that
we are dealing with full conditional probabilities, since any conditional
probability can be extended to a full one. If =N for N e #°, Pr(-) =
Pr(-/N) is the unconditional probability associated with Pr(-/-). (Pr(-) is
independent of the choice of N.) It is easy to see that if B € #° is such that
Pr(B) # 0, Pr(4/B) = Pr(A & B)/Pr(B) for any 4 € «.

Countable additivity, disintegrability, and conglomerability

A partition of the possibilities consists of a set {H,, H,,...} of statements
H; ¢ of that are pairwise exclusive and mutually exhaustive, i.c., {H;, H;} =
P& Pfori#jand {1H{, 1H,,...} = P & 71P. Let Pr(-/-) be a con-
ditional probability and Pr(-) its associated unconditional probability.
Here Pr(-) is said to be countably additive just in case the continuity
condition (C) (p. 36) holds. This condition implies that for any

partition {H,, H,,...},lim,_ , Pr(\/ic, H) = Y2, Pr(H,) = 1.

A countably additive Pr(-) associated with the conditional probability
Pr(-/-) has the property of disintegrability: for any A € o and any parti-
tion {H,,H,,...}, Pr(4) = Y2, Pr(4/H;) x Pr(H,). Disintegrability for a
partition in turn entails conglomerability: if k, < Pr(4/H,) < k, for every
i, then k; < Pr(A) < k,. The circle closes: conglomerability with respect to
every countable partition implies countable additivity (Schervish, Seiden-
feld, and Kadane 1984).

The failure of countable additivity and consequently of conglomerabil-
ity can lead to very awkward situations, such as the failure of a natural

principle of dominance, which demands that if an action O, is condition-.

ally preferred to O, for each member of a partition {H,, H,,...}, then O, is
unconditionally preferred to O, (see Kadane, Schervish, and Seidenfeld
1986). However, nonconglomerability should not be allowed to become a
bugaboo, since even when countable additivity holds, conglomerability
can fail for uncountable partitions (see Kadane, Schervish, and Seidenfeld
1986).

The failure of disintegrability is also very awkward for Bayesian infer-
ence problems, since it means that the denominator of Bayes’s theorem
(2.1) cannot be written in the form given in (2.2); so, for example, the
probability of the experimental outcome E cannot be assessed in terms of
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how well the alternative hypotheses H; explain the outcome (as given by
the likelihoods Pr(E/H; & K)) and how antecedently probable the hypoth-
eses are (as given by the priors Pr(H;/K)). This theoretical worry is of no
practical importance if in all realistic cases inference involves only a finite
number of H;.

Finally, it should be noted that Thomas Bayes’s own calculations (chap-
ter 1) implicitly assumed a form of countable additivity (see chapter 4).

Appendix 2: Laws of Large Numbers

Recall that a finite field %, over the set Q is a collection of subsets of Q that
contains Q and is closed under complementation and finite unions (and
thus under finite intersections). A ¢ field %, is closed under countable
unions (and thus under countable intersections). Each &%, generates a
o field Z,, namely, the smallest o field containing %,. Let 4z be a fi-
nitely additive probability measure on %,. (For any 4 € &, f:(A4) = 0;
#4(Q) = 1. Andforany A,,4,,...,4,€ o suchthat ;" A; = Ffori #j,
£\ Ji=1 4)) = Y1y 2(A;)) The function 4 is said to be continuous from
above at J justin case if 4, &, i =1, 2,..., are such that 4;,, < 4, and
N2, 4; = &, then (| Ji=; A;)) = 0 as n — co. (This implies a conditional
form of countable additivity: if | J2, B; € o and the B; are pairwise dis-
joint, then f2(| 2, B) = Y 2, 4+(B;).) Carathéodory’s extension lemma
shows that for such a 42 there is a unique extension to a countably additive
probability measure £ on the o field generated by .

In the application to IID trials of coin flips, take Q to be the collection
of all one-sided infinite sequences of possible outcomes. (So a typical w € Q
would be HTHHTHTTT....) Define a finite field of subsets of Q by
starting with the “cylinder sets,” where a cylinder set is the set of all @’s
that agree on the outcomes in a finite number of places. (A typical cylinder
set would be the collection of all w’s that have heads in the 20th place and
tails in the 801st place.) &, is then the finite field consisting of the empty
set and finite disjoint unions of the cylinder sets. A £: measure is defined
on %, by assigning probabilities to the cylinder sets in the natural way. For
example, the measure of the set of all w’s having heads in the 32nd and 41st
places and tails in the 33rd, 58th, and 105th places is p?(1 — p)?, where
p is the objective probability of heads. Since this 42 is continuous from
above at &, it follows from Carathéodory’s lemma that there is a unique
countably additive extension 2z of 4: to the o field %, generated by F,.
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If we now let j,(w) stand for the number of heads in the first n trials of
w, the weak and strong form of the law of large numbers can be stated as
follows:

WLLN The 2 measure of the set of w’s for which |(j,(w)/n) — p| > ¢
approaches 0 as n — oo for any ¢ > 0.

SLLN The 2: measure of the set of all w’s such that lim,_, ., (j,(w)/n) # p
is 0.

To put (SLLN) in its positive form, the Pr probability is one that the
limiting relative frequency of heads converges to p.

As indicated in section 7, a form of the weak law of large numbers
can be formulated and proved without the help of countable additivity.
Roughly, for any ¢ > 0, the probability (in the objective sense or in the
degree-of-belief sense tempered by Lewis’s principal principle) that the
actually observed relative frequency of heads differs from p by more than
¢ goes to 0 as the number of flips goes to infinity. This form of the law of
large numbers is to be found in the work of Bernoulli. The strong form of
the law of large numbers, which requires countable additivity, was not
proved until this century (see Billingsley 1979 for a proof).

3 Success Stories

The successes of the Bayesian approach to confirmation fall into two
categories. First, there are the successes of Bayesianism in illuminating the
virtues and pitfalls of various approaches to confirmation theory by pro-
viding a Bayesian rationale for what are regarded as sound methodologi-
cal procedures and by revealing the infirmities of what are acknowledged
as unsound procedures. The present chapter reviews some of these explan-
atory successes. Second, there are the successes in meeting a number of
objections that have been hurled against Bayesianism. The following chap-
ter discusses several of these successful defenses. Taken together, the com-
bined success stories help to explain why many Bayesians display the
confident complacency of true believers. Chapters 5 to 9 will challenge this
complacency. But before turning to the challenges, let us give Bayesianism
its due.

1 Qualitative Confirmation: The Hypotheticodeductive Method

When Carl Hempel published his seminal “Studies in the Logic of Confir-
mation” (1945), he saw his essay as a contribution to the logical empiricists’
program of creating an inductive logic that would parallel and comple-
ment deductive logic. The program, he thought, was best carried out in
three stages: the first stage would provide an explication of the qualitative
concept of confirmation (as in ‘E confirms H’); the second stage would
tackle the comparative concept (as in ‘E confirms H more than E’ confirms
H"); and the final stage would concern the quantitative concept (as in ‘E
confirms H to degree r’). In hindsight it seems clear (at least to Bayesians)
that it is best to proceed the other way around: start with the quantitative
concept and use it to analyze the comparative and qualitative notions. The
difficulties inherent in Hempel’s own account of qualitative confirmation
will be studied in section 2. This section will be devoted to the more
venerable hypotheticodeductive (HD) method.

The basic idea of HD methodology is deceptively simple. From the
hypothesis H at issue and accepted background knowledge K, one deduces
a consequence E that can be checked by observation or experiment. If
Nature affirms that E is indeed the case, then H is said to be HD-
confirmed, while if Nature affirms 1 E, H is said to be HD-disconfirmed.
The critics of HD have so battered this account of theory testing that it
would be unseemly to administer any further whipping to what is very
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nearly a dead horse.! Rather, I will review the results of the jolly Bayesian
postmortem.

Suppose that (a) {H,K}kEE, (b) 0<Pr(H/K)<1, and (c) 0<
Pr(E/K) < 1.2 Condition (a) is just the basic HD requirement for confirma-
tion. Condition (b) says that on the basis of background knowledge K, H
is not known to be almost surely true or to be almost surely false, and (c)
says likewise for E. By Bayes’s theorem and (a), it follows that

Pr(H/E & K) = Pr(H/K)/Pr(E/K). (3.1)

By applying (b) and (c) to (3.1), we can conclude that Pr(H/E & K) >
Pr(H/K), i.e., E incrementally confirms H relative to K. Thus Bayesianism
is able to winnow a valid kernel of the HD method from its chaff.

(To digress, this alleged success story might be questioned on the
grounds that HD testing typically satisfies not condition (a) but rather
a condition Hempel calls the “prediction criterion” of confirmation;
namely, (2") E is logically equivalent to E, & E,, {H,K,E,} = E,, but
{H,K} ¥ E,. That is, HD condition (a) is satisfied with respect to the
conditional prediction E, — E,, but the total evidence consists of E; and
E, together. Let us use Bayes’s theorem to draw out the consequences of
(). It follows that Pr(H/E, & E, & K) = Pr(H/E, & K)/Pr(E,/E, & K).
Thus if Pr(E,/E, & K) < 1 and Pr(H/E, & K) = Pr(H/K), the total evi-
dence E, & E, incrementally confirms H. These latter two conditions are
satisfied in typical cases of HD testing. For example, let H be Newton’s
theory of planetary motion, let E, be the statement that a telescope is
pointed in such and such a direction tomorrow at 3:00 .M., and let E, be
the statement that Mars will be seen through the telescope. Presumably,
E, is probabilistically irrelevant to the theory, and E, is uncertain on the
basis of E; and K.) '

Notice also that from (3.1) it follows that the smaller the value of
the prior likelihood Pr(E/K), the greater the incremental difference
Pr(H/E & K) — Pr(E/K), which seems to validate the saying that the more
surprising the evidence is, the more confirmational value it has. This
observation, however, is double-edged, as we will see in chapter 5.

The problem of irrelevant conjunction, one of the main irritants of the
HD method, is also illuminated. If {H, K} |= E, then also {H & I, K} = E,
where I is anything you like, including a statement to which E is, intuitively
speaking, irrelevant. But according to the HD account, E confirms H & 1.
In a sense, the Bayesian analysis concurs, since if Pr(H & I/K) > 0, it
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follows from the reasoning above that E incrementally confirms H & I.
However, note that it follows from (3.1) that the amounts of incremental
confirmation that H and H & I receive are proportional to their prior
probabilities:

Pr(H/E & K) — Pr(H/K) = Pr(H/K)[(1/Pr(E/K)) — 1]
Pr(H & 1/E & K) — Pr(H & I/K) = Pr(H & I/K)[(1/Pr(E/K)) — 1].

Since in general Pr(H & I/K) < Pr(H/K), adding the irrelevant conjunct I
to H lowers the incremental confirmation afforded by E.

Finally, it is worth considering in a bit more detail the case of HD
disconfirmation. Thus, suppose that when Nature speaks, she pronounces
TE.If{H,K} |= E and if K is held to be knowledge, then H must be false,
so HD disconfirmation would seem to be equivalent to falsification. But as
Duhem and Quine have reminded us, the deduction of observationally
decidable consequences from high-level scientific hypotheses often requires
the help of one or more auxiliary assumptions A. It is not fair to ignore
this problem by sweeping the A’s under the rug of K, since the A’s are often
every bit as questionable as H itself. Thus from Nature’s pronouncement
of T1E all that can be concluded from deductive logic alone is that 1 H v
T A. If HD methodology were all there is to inductive reasoning, then
there would be no principled way to parcel out the blame for the false
prediction, and we would be well on the way to Duhem and Quine holism
(see section 4 below). In particular, H could be maintained come what may
if the only constraints operating were those that followed from direct
observation and deductive logic. But the fact that the majority of scientists
sometimes regard the maintenance of a hypothesis as reasonable and
sometimes not is a fact of actual scientific practice that cries out for
explanation. The Bayesian attempt at an explanation will be examined in
section 7 below.

2 Hempel’s Instance Confirmation

Having rejected the HD or prediction criterion of confirmation, Hempel
constructed his own analysis of qualitative confirmation on a very different
basis. He started with a number of conditions that he felt that any adequate
theory of confirmation should satisfy, among which are the following:
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Consequence condition If E = H, then E confirms H.
Consistency condition If E confirms H and also H’, then  1(H & H').

Special consequence condition If E confirms H and H = H', then E con-
firms H'.

Hempel specifically rejected the converse consequence condition:

Converse consequence condition If E confirms H and H' |= H, then E
confirms H'.

For to add the last condition to the first three would lead to the disaster
that any E confirms any H.® (Note that HD confirmation satisfies the
converse consequence condition but violates both the consistency condi-
tion and the special consequence condition.)

Hempel’s basic idea for finding a definition of qualitative confirmation
satisfying his adequacy conditions was that a hypothesis is confirmed by
its positive instances. This seemingly simple and straightforward notion
turns out to be notoriously difficult to pin down.* Hempel’s own explica-
tion utilized the notion of the development of a hypothesis for a finite set /
of individuals. Intuitively, dev,(H) is what H asserts about a domain
consisting of just the individuals in I. Formally, dev,;(H) for a quantified H
is arrived at by peeling off universal quantifiers in favor of conjunctions
over I and existential quantifiers in favor of disjunctions over I. Thus, for
example, if I = {a,b} and H is (Vx)(Iy)Lxy (e.g., “Everybody loves some-
body”), dev,(H) is (Laa v Lab) & (Lbb v Lba). We are now in a position
to state the main definitions that constitute Hempel’s account.

Definition E directly Hempel-confirms H iff E |= dev,(H), where I is the
class of individuals mentioned in E.

Definition E Hempel-confirms H iff there is a class C of sentences such
that C = H and E directly confirms each member of C.3

Definition E Hempel-disconfirms H iff E Hempel-confirms 71H.

The difficulties with Hempel’s account can be grouped into three catego-
ries. The first concerns the pillars on which the account was built: Hempel’s
so-called adequacy conditions. Bayesians have at least two ways of defining
qualitative confirmation, one of which we already encountered in section
1; namely, E incrementally confirms H relative to K iff Pr(H/E & K) >
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Pr(H/K). The second is an absolute rather than incremental notion; specif-
ically, E absolutely confirms H relative to K iff Pr(H/E & K) > k > .5. (A
third criterion sometimes used in the literature, e.g., Mackie 1963, says that
E confirms H relative to K just in case Pr(E/H & K) > Pr(E/K). The
reader can easily show that on the assumption that none of the proba-
bilities involved is zero, this likelihood criterion is equivalent to the incre-
mental criterion.) In both instances there appears to be a mismatch, since
Hempel’s account is concerned with a two-place relation ‘E confirms H’
rather than with a three-place relation (‘E confirms H relative to K’). The
Bayesians can accommodate themselves to Hempel either by taking K to
be empty or by supposing that K has been learned and then working with
the new probability function Pr'(-) = Pr(-/K) obtained by conditionaliza-
tion. But since one of the morals the Bayesians want to draw is that
background knowledge can make a crucial difference to confirmation, I
will continue to make K an explicit factor in the confirmation equation.

The first difficulty for Hempel’s account can now be stated as a dilemma.
For any choice of K compatible with H, Hempel’s adequacy conditions
accord well with the absolute notion of Bayesian confirmation. For exam-
ple, if Pr(H/E & K) > .5 and H |= H’, then Pr(H'/E & K) > .5, so the spe-
cial consequence condition is satisfied. But absolute confirmation cannot
be what Hempel had in mind, since he holds that the observation of a
single black raven a confirms the hypothesis that all ravens are black,
even though for typical K’s, Pr((Vx)(Rx — Bx)/Ra & Ba & K) « .5. On the
other hand, while the incremental concept of confirmation allows that a
single instance can confirm a general hypothesis, both the consistency
condition and the special consequence condition fail for not atypical K’s,
as examples by Carnap (1950) and Salmon (1975) show.® Of course, there
may be some third probabilistic condition of confirmation that allows
Hempel’s account to pass between the horns of this dilemma. But it is up
to the defender of Hempel’s instance confirmation to produce the tertium
quid. And even to conduct the search for a probabilistic tertium quid is to
fall into the hands of the Bayesians.

The second category of difficulties revolves around the question of
whether Hempel’s account is too narrow. One reason for thinking so is
that, as Hempel himself notes, a hypothesis of the form

(Vx)@y)Rxy & (Yx)(Vy)(Vz) [(Rxy & Ryz) - Rxz] & (Vx) T1Rxx

cannot be Hempel-confirmed by any consistent E, since the development
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of such a hypothesis for a finite domain is inconsistent. Nor is the hypoth-
esis (Vx)(Vy)Rxy Hempel-confirmed by the set of evidence statements
{Ra;a;}, where i=1,2,...,10° and j=1, 2, ..., 10° — 1. Even more
troublesome is the fact that Hempel’s account is silent about how theoreti-
cal hypotheses are confirmed, for if, as Hempel intended, E is stated purely
in the observational vocabulary and if H is stated in a theoretical vocabu-
lary disjoint from the observational vocabulary, then E cannot, except in
very uninteresting cases, Hempel-confirm H.” This silence is a high price
to pay for overcoming some of the defects of the more vocal HD method.

Clark Glymour (1980) has sought to preserve Hempel’s idea that hy-
potheses are confirmed by deducing positive instances of them from obser-
vation reports. In the case where H is stated in theoretical vocabulary,
Glymour’s bootstrapping method allows the deduction to proceed via
auxiliary hypotheses, typically drawn from a theory T of which H itself is
a part.® His basic confirmation relation is thus three-place: E confirms H
relative to T.

The Bayesian response to these difficulties and to Glymour’s reaction to
them is twofold. First, there is no insuperable problem about how observa-
tional data can confirm, in either the incremental or absolute sense, a
theoretical hypothesis; indeed, the application of Bayes’s theorem shows
just how such confirmation takes place, at least on the assumption that the
prior probability of the hypothesis is nonzero (a matter that will be taken
up in chapter 4). Second, unless bootstrap confirmation connects to rea-
sons for believing the hypothesis or theory, it is of no interest. But once the
connection is made, the bootstraps can be ignored in favor of the standard
Bayesian account of reasons to believe. This matter will be examined in
more detail in section 4 below.

The third category of difficulties is orthogonal to the second. Now the
worry is that while Hempel’s instance confirmation may be too narrow in
some respects, it may be too liberal in other respects. Consider again the
ravens hypothesis: (Vx)(Rx — Bx). Which of the following evidence state-
ments Hempel-confirm it?

E;: Ra, & Ba,

E,: TRa, & 1Ba,
E;: TRa,

E,: Ba,
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Es: TRas & Bas
Es: Rag & 1Bag

Only E fails to Hempel-confirm the hypothesis, and that is because Eg
falsifies it. The indoor ornithology involved in using E, to E; as confirma-
tion of the ravens hypothesis has struck many commentators as too easy
to be correct. Bayesian treatments of Hempel’s ravens paradox will be
taken up in the following section.

If anything is safe in this area, it would seem to be that E; does confirm
(Vx)(Rx — Bx). But safe is not sure. Recall that Hempel’s definition of
confirmation is purely syntactical in that it is neutral to the intended
interpretation of the predicates. This means that E; Hempel-confirms
(Vx)(Rx — Bx) even if we take Bx to mean not that x is black but that x is
blite, i.e., x is first examined before the year 2000 and is black, or else is not
examined before 2000 and is white. Let a; be first examined in the year i.
Then by the special consequence condition, Ra; & Ba; & Ra, & Ba, &
... & Ra 999 & Ba, 9o Hempel-confirms the prediction Ra,o0; = Baygo1>
i.e., the prediction that if a, o, is a raven, then it is white, which is, to say
the least, counterintuitive. We have here an instance of what Goodman
(1983) calls the “new riddle of induction.” The Bayesian treatment of this
problem will be given in detail in chapter 4. But for now I will simply note
on behalf of the Bayesians that they are not committed to assigning proba-
bilities purely on the basis of the syntax of the hypothesis and the evidence,
as Hempel’s analogy between deductive and inductive logic would suggest.
The present example is enough to show that an adequate account of
confirmation must be sensitive to semantics, and this lesson is easily incor-
porated into Bayesianism.

3 The Ravens Paradox

In sections 1 and 2 Bayesianism gained reflected glory of sorts from the
whippings the HD and Hempel accounts took. It is time for Bayesianism
to earn additional glory of a more positive sort.

Hempel took it as a desirable consequence of his account that the
evidence Ra & Ba confirms the hypothesis (Vx)(Rx — Bx).? The paradox
of the ravens in one of its forms arises from the fact that on Hempel’s
analysis, the evidence 71Rb & ~1Bb also confirms (Vx)(Rx — Bx). Before
turning to the Bayesian analysis of the paradox itself, it is worth noting
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that the Bayesian is not even willing to go the first step with Hempel
without first looking both ways.

Suppose that 0 < Pr(H/K) < 1, where H stands for the ravens hypothe-
sis. Then by an application of Bayes’s theorem it follows that finding a to
be a black raven induces incremental confirmation,

Pr(H/Ra & Ba & K) > Pr(H/K),
just in case
Pr(Ra/H & K) > Pr(Ra/1H & K) x Pr(Ba/Ra & 1H & K).

Incremental disconfirmation results just in case the inequality is re-
versed.!® The reader is invited to reflect on the kinds of background
knowledge K that will make or break these inequalities. Consider, for
instance, a version of I. J. Good’s (1967) example. We are supposed to
know in advance (K) that we belong to one of two bird universes: one
where there are 100 black ravens, no nonblack ravens, and 1 million other
birds, or else one where there are 1,000 black ravens, 1 white raven, and 1
million other birds. Bird a is selected at random from all the birds and
found to be a black raven. This evidence, Good claims, undermines the
ravens hypothesis. Use the above formula to test this claim. Such exercises
help to drive home the point that a two-place confirmation relation that
ignores background evidence is not very useful.

Let us turn now to the Bayesian treatment of the bearing of the evidence
of nonblack nonravens on the ravens hypothesis. Suppes (1966) invites us
to consider an object a drawn at random from the universe. Set

Pr(Ra & Ba/K) = p,, Pr(Ra & 71Ba/K) = p,,

Pr(1Ra & Ba/K) = p,,  Pr(1Ra & “1Ba/K) = p,. G2
Then

Pr(71Ba/Ra & K) = p,/(p, + ps) (3.3)
and

Pr(Ra/71Ba & K) = p,/(p + Pa). (3.4)

From (3.3) and (3.4) it follows that Pr(T1Ba/Ra & K) > Pr(Ra/1Ba & K)
iff p, > p,. But from what we know of the makeup of our universe, it seems
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safe to assume that p, > p,, with the consequence that the conditional
probability of &’s being nonblack, given that it is a raven, is much greater
than the conditional probability of a’s being a raven, given that it is
nonblack. The moral Suppes wants us to draw from this is that sampling
from the class of ravens is more productive than sampling from the class
of nonblack objects, since the former procedure is more likely to produce
a counterexample to the ravens hypothesis.

There are two qualms about this moral. The first is that it doesn’t seem
directly useful to Bayesians; indeed, at first blush it seems more congenial
to a Popperian line that emphasizes the virtues of attempted falsifications
of hypotheses. Second, it is not clear how the moral follows from the
inequality derived, since a was supposed to result from a random sample
of the universe at large rather than from a random sample of either the
class of ravens or the class of nonblack objects.

Horwich’s (1982) attack on the ravens paradox starts from the observa-
tion that there are several ways to obtain the evidence Ra & Ba, namely,
to pick an object at random from the universe at large and find that it has
both ravenhood and blackness, to pick an object at random from the class
of ravens and find that it is black, or to pick an object at random from the
class of black things and find that it is a raven. A similar remark applies to
the evidence 1Rb & 1Bb. Horwich introduces the notation R*a to mean
that a was drawn at random from the class of ravens and the notation
—1B*b to mean that b was drawn at random from the class of non-
black things. To illuminate the ravens paradox, he wants to compare the
confirmational effects of the two pieces of evidence R*a & Ba and
T1B*b & 1Rb. According to Horwich’s application of Bayes’s theorem,

Pr(H/R*a & Ba & K) = Pr(H/K)/Pr(R*a & Ba/K) 3.5)
and
Pr(H/1B*b & “1Rb & K) = Pr(H/K)/Pr(T1B*b & T1Rb/K), (3.6)

where K is the same as before. Thus
Pr(H/R*a & Ba & K) > Pr(H/71B*b & 1Rb & K)
iff Pr(T1B*b & "1Rb/K) > Pr(R*a & Ba/K).

But the latter is true for our universe, Horwich asserts.
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But as with Suppes’s construction, it is not clear how this conclusion
follows. In the first place, why is it true (as (3.5) and (3.6) assume) that

Pr(R*a & Ba/H & K) = Pr(T1B*b & 1Rb/H & K) = 1?

It is true that the probability of a randomly chosen raven being black,
given H & K, is 1, but Pr(R*a & Ba/H & K) is the probability that an
object a is randomly chosen from the class of ravens and is black, given
H & K, and this probability is surely not 1. In the second place, comparing
Pr(71B*b & 71Rb/K) and Pr(R*a & Ba/K) involves a comparison of the
probability that an object will be randomly sampled from the class of
ravens with the probability that it will be randomly sampled from the class
of nonblack things, and such a comparison seems peripheral to the para-
dox at best.

Horwich’s basic idea can be brought to fruition by putting into the
background knowledge K the information that R*a and —1B*b. Bayes’s
theorem can then be legitimately applied to the new K to conclude that

Pr(H/Ra & Ba & K) = Pr(H/K)/Pr(Ba/K) (3.7
and
Pr(H/1Rb & 1Rb & K) = Pr(H/K)/Pr(T1Rb/K). (3.8)

Thus, relative to this K, the evidence Ra & Ba has more confirmational
value vis-a-vis the ravens hypothesis than does -1Rb & ~1Bb just in
case Pr(T1Rb/K) > Pr(Ba/K). A further application of the principle of
total probability shows that this latter inequality holds just in case
Pr(71Ba/71H & K) > Pr(Rb/71H & K). This last inequality presumably
does hold in our universe, for given that some ravens are nonblack (1H),
we are more likely to produce one of them by sampling from the class of
ravens than by sampling from the class of nonblack things simply because
of the known size and heterogeneity of the class of nonblack things as
compared with the known size of the class of ravens. Suppes is thus
vindicated after all, since the greater confirmatory power of Ra & Ba over
TIRb & 71Bb has to do with the relative threats of falsification. In this way
Bayesianism pays a backhanded compliment to Popper’s methodology;
namely, it is precisely because, contrary to Popper, inductivism is possible
that the virtues of sincere attempts to falsify can be recognized.!!

Similar points are made by Gaifman (1979), although his assumed sam-
pling procedure is somewhat different. Let K report that ¢ was drawn at
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random from the universe and found to be a raven and that d was also
drawn at random from the universe and found to be nonblack. An analysis
like the one above shows that

Pr(H/Rc & Bc & K) > Pr(H/"1Rd & 1Bd & K)
just in case Pr(71Bc/1H & K) > Pr(Rd/1H & K).

But the procedure of sampling from the universe at large can be wasteful,
since it can produce relatively useless results, such as 71Re & Be. More-
over, one can wonder whether the evidence Ra & Ba, under the assump-
tion that a was drawn at random from the class of ravens, gives better
confirmational value than the evidence Rc & Bc, under the assumption
that ¢ was drawn at random from the universe at large, i.e., whether

Pr(H/Ra & Ba & K & K) > Pr(H/Rc & Bc & K & K).

Ileave it to the reader to ponder this question with the clue that the answer
is positive just in case

Pr(T1Ba/71H & K & K) > Pr(11Bc/1H & K & K).'?

4 Bootstrapping and Relevance Relations

In Theory and Evidence (1980) Glymour saw bootstrapping relations not
only as a means of extending Hempel’s instance confirmation to theoreti-
cal hypotheses but also as an antidote to Duhem and Quine holism. It
makes a nice sound when it rolls off the tongue to say that our claims about
the physical world face the tribunal of experience not individually but only
as a corporate body. But scientists, no less than business executives, do not
typically act as if they are at a loss as to how to distribute praise through
the corporate body when the tribunal says yea, or blame when the tribunal
says nay. This is not to say that there is always a single correct way to make
the distribution, but it is to say that in many cases there are firm intuitions.
Bootstrap relations would help to explain these intuitions if they helped to
explain why it is that for some but not all H’s that are part of a theory T,
E bootstrap-confirms H relative to T.

As a sometime Bayesian I now think that bootstrapping should be
abandoned in favor of a Bayesian analysis. Bayesians can be sympathetic
to the two motivations for bootstrapping mentioned above in section 2. At
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the same time Bayesians can recognize that any account of confirmation
modeled on Hempel’s approach will have two fatal flaws. (1) For Hempel,
whether or not E confirms H depends only on the syntax of E and H. But
from Goodman we know this to be wrong (see section 2 above and chapter
4). (2) For Hempel, confirmation is a two-place relation. But from the
ravens paradox and other examples we know that background informa-
tion K must be brought into the analysis to get an illuminating treatment.
The relevance of these points to bootstrapping can be brought into focus
with the help of Christensen’s (1983) examples.

Let T have as its axioms H,: (Vx)(Rx — Bx), and H,: (Vx)(Rx - Hx), the
former of which is our old friend the ravens hypothesis and the latter of
which asserts that all ravens live a happy afterlife in bird heaven. At first
blush, evidence from the observation of the color of a raven is directly
relevant to H, but is irrelevant to H,, even relative to T. But Christensen
shows how, with a little logical flimflam, such evidence leads to a bootstrap
confirmation of H, relative to T. On the standard conception of theories,
T is the logical closure of {H,, H,}. Thus it is part of T that

H;: (Vx)[Rx - (Bx « Hx)].

From E: Ra & Ba, we can deduce via H, that Ra & Ha, which is a Hempel
positive instance of H,. Moreover, the possible alternative evidence E’:
Ra & 71Ba, leads via H; to Ra & 71Ha, which is a counterinstance of H,.
Together these “computations” constitute a positive bootstrap test of H,.
But intuitively, only phony-baloney confirmation/testing has taken place.
A revised set of bootstrap conditions proposed by Glymour (1983) rule out
this particular example, but Christensen (1990) has shown how the coun-
terexamples can be revived in a more complicated form.'3

One could seek further restrictions to rule out the new counterexamples,
but this now seems to me to be a mistake—we do not want a once-and-
for-all answer to, Does E confirm H relative to T? that is independent of
the interpretation of the nonlogical constants in E, H, and T and also
independent of the background knowledge.

To make the point more concrete, let me use another of Christensen’s
examples, which is structurally identical to the above ravens case. Now T
is the logical closure of H,: (Vx)(Sx — Ax), and H,: (Vx)(Sx = ¥x). H, is
intended to assert that anyone with certain disease symptoms has the
antibodies to a certain virus, while H, is intended to assert that anyone
with the said symptoms has been infected by the said virus. T contains
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H,: (Vx)[Sx - (Ax & Vx)]. The evidence E: Sa & Aa, leads via H; to a
positive instance of H,, while the alternative possible evidence E': Sa &
1Aa, leads via H, to a negative instance of H,. Although structurally
identical to the former example, we are not so ready to see phony-baloney
confirmation/testing here.

To diagnose the felt asymmetries between the two cases, we need to
know to what end the three-place Glymourian relation ‘E bootstrap-
confirms/tests H relative to T” is to be put. E bootstrap-confirms H relative
to T cannot be taken to imply that, assuming T to be true or well con-
firmed, E confirms H, for in the cases at issue H is part of T. Rather, the
most plausible usage is in adjudicating questions of evidential relevance.
Note that in these examples Hempel’s version of the “prediction criteri-
on” of confirmation is satisfied; i.e., E is of the form E, & E,, where
{T,E,} EE, but E, # E,, while E' is of the form E & E’, where
{T,E,} &= T\E}, but E| ¢ 1E,. The antiholist then asks, if E is found to
hold, to which parts of T can the praise for the successful prediction be
attributed? If E’ is found to hold, on which parts of T can the blame for
the unsuccessful prediction be laid?

With this interpretation of bootstrapping, the Bayesian diagnosis of the
counterexamples is straightforward. H gets praise from E if, relative to K,
E incrementally confirms H, and H gets blame from E’ if, relative to K, H
is incrementally disconfirmed by E’. The bird-heaven case gave off a bad
odor since our current background knowledge K would have to be radical-
ly altered for Ra & Ba to incrementally confirm H, or for Ra & 71Ba to
incrementally disconfirm H,. Indeed, given the tenets of traditional empiri-
cism, we could never get to an alternative K where this would happen. By
contrast, the virus case smelled sweeter even though, from the point of view
of bootstrapping, it is structurally identical to the bird-heaven case. A
possible reason is that in the virus case H, will get praise from Sa & Aa
and blame from Sa & 71A4a if K makes likely the proposition that all and
only those people who have been infected by the virus have antibodies to
it, a not implausible situation.

It might be complained that while such a diagnosis does in fact help to
explain intuitions, it is irrelevant to the original project; the aim of that
project was to provide an internalist analysis of relevance relations, and
given that aim, it is illegitimate to bring in K. The response to this com-
plaint parallels the response to Hempel’s complaint that background infor-
mation about the relative sizes of the classes of ravens and nonblack things
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is irrelevant to his project, which concerns only the two-place relation ‘E
confirms H’; namely, no interesting account of confirmation can be devel-
oped if K is left out of the picture.

Aron Edidin (1988) has maintained that the core of the program of
relative confirmation is left untouched by Christensen’s examples. I think
that there is a sense in which Edidin’s contention is correct, but by the same
token I think that the program of relative confirmation can be seen to be
drained of much of its interest. Let us suppose that the core of the program
is concerned with the relation ‘E confirms H relative to auxiliaries A’, where
typically the auxiliaries do not include H itself. Edidin’s point is that
there is nothing in Christensen’s examples to suggest that the apparatus
developed in Theory and Evidence is not adequate to provide a correct
explication of this relation. Thus in Christensen’s ravens example there is
nothing counterintuitive to maintaining that E: Ra & Ba, does confirm
H,: (Vx)(Rx — Hx), relative to the auxiliary assumption H,: (Vx)[Rx —
(Bx < Hx)]. This seems to me correct in the following respect: in the sense
in which Hempel could say that E: Ra & Ba, confirms H,: (Vx)(Rx — Bx),
it is also natural by extension to say that E confirms H, relative to H,.

" But if the core of the program of relative confirmation is left untouched,
it remains to ask what purpose is served by the program. Two responses
suggest themselves. First, we can hope to use the relation ‘E confirms H
relative to A’ to explicate theory-relative confirmation. Thus, we can say
that ‘E confirms H relative to T°, where T typically contains H, means that
there is an appropriate 4 in T such that E confirms H relative to A. Here
the appropriateness of A is supposed to guarantee that the resulting confir-
mation/disconfirmation of H relative to T by E implies that the praise/
blame for T’s passing/failing to pass an HD test can be attached to H. The
presumption of Theory and Evidence was that the appropriateness of 4 can
be settled purely in terms of structural relations among A, H, E, and T. This
presumption is belied by the analysis above of Christensen’s examples,
which shows that the parceling out of praise and blame depends on
the epistemic status of A, which in turn depends upon the background
knowledge.

The second response is that getting a handle on relative confirmation is
useful in deciding how evidence affects the credibility of hypotheses and in
turn the credibility of theories of which the hypotheses are parts. But again,
the epistemic status of the auxiliaries must be taken into account. Edidin’s
discussion indicates that the move from ‘E confirms H relative to A’ to ‘E
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contributes to the credibility of H’ is a tricky one; it requires not only that
the auxiliaries A “must themselves be credible.” In some cases it requires
also that “their credibility must be substantially independent of the credi-
bility of the evidence” (p. 268) and in other cases that they have “antecedent
credibility independent of that of the hypotheses” (p. 269). But what exactly
do these requirements come to? I submit that no precise answer can be
given without invoking the Bayesian apparatus. Further, the answer this
apparatus yields is that no answer can be given in the abstract: it depends
on the background information K, and it depends not just on the logico-
structural relations involved in the HD and bootstrapping account of rela-
tive confirmation but also on the intended interpretation of the nonlogical
terms in E, H, and A.

The complaint here is not that, on pain of circularity, HD or bootstrap-
ping relations of relative confirmation cannot figure in an account of how
evidence bears on the credibility of theoretical hypotheses; rather, the
complaint is that such relations may not contribute in any perspicuous
way to the assessment of that bearing. Consider again the simpler case of
the confirmation of observational hypotheses. How, for example, does
evidence about the color of ravens and nonravens bear on the credibility
of the hypothesis that all ravens are black? By now, I hope, the reader is
convinced that an illuminating path to an answer need not take the form
of first deciding when E Hempel-confirms H and then trying to puzzle out
the further conditions necessary for the move from Hempel-confirmation
to an incremental increase in credibility. The moral here has double
strength when we move from Hempel-confirmation of observational
hypotheses to the more complicated case of relative confirmation of theo-
retical hypotheses.

5 Variety of Evidence and the Limited Variety of Nature

It is a truism of scientific methodology that variety of evidence can be as
important or even more important than sheer amount of evidence. An
adequate account of confirmation is not under obligation to give an un-
qualified endorsement to all such truisms, but it should be able to identify
the valid rationale (if any) of such truisms.

A Bayesian explanation of the virtue of variety of evidence would con-
centrate on the ability of variety to contribute to a significant boost in the
posterior probability of a hypothesis. To illustrate how part of the explana-
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tion might go, consider again the HD case where H, K }= E, and suppose
that Eis E; & E, & ... & E,, where the E; report the outcomes of perform-
ing some one experiment over and over or alternatively the outcomes of a
series of different experiments. The most helpful form of Bayes’s theorem
to cover this situation is

Pr(H/E & K)

_ Pr(H/K)
" Pr(E,/K) x Pr(E,/E, & K) x - x P{(E,JE, & ... & E,_, & K)'
3.9)

As we will see in chapter 4, if Pr(H/K) > 0, the factor Pr(E,/E, & ... &
E,_, & K) must go to 1 as n grows without bound. This factor gives the
probability of the next experimental outcome predicted by H, conditional
on the background information K and the information that the previous
predictions have been borne out. The more slowly this probability ap-
proaches 1, the smaller the denominator (for a given n) and hence the larger
the posterior probability of H (for a given n). This is exactly where variety
of evidence enters, for the more various the experiments, the slower one
would expect the approach to certainty to be for the next outcome.!* At
one extreme is the case where the E; are the outcomes of repeating the same
experiment consisting, say, of measuring over and over again a quantity
believed to have a stable value. Then with appropriate assumptions K
about the reliability of the measuring apparatus, only a few repetitions are
needed to achieve near certainty for the next instance, and amassing a large
number of further instances achieves little gain for the posterior probabili-
ty of H. At the other extreme is the case where the E; are the outcomes of
experiments that are not only different but seem quite unrelated. Then new
ins#ances will make for a bigger gain in the posterior probability of H.!3

These remarks have value only if we already have a grip on the notion
of variety of evidence. But rather than trying to give an independent
analysis of variety, what I would like to suggest is that the observations
above can be given a new twist and used to define ‘variety of evidence’
through rate of increase in the factors

Pr(E,)E, &...& E,_, & K).}¢

Such an analysis has two consequences, one of which is obvious, the other
of which is a little surprising.
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The obvious consequence is that the notion of variety of evidence has to
be relativized to the background assumptions K, but there is no more than
good scientific common sense here, since, for example, before the scientific
revolution the motions of the celestial bodies seemed to belong to a dif-
ferent variety than the motions of terrestrial projectiles, whereas after
Newton they seem like peas in a pod.

The less obvious consequence is that induction, or a necessary condition
for it, presupposes a limited variety in nature, as Keynes (1962) tried to
teach us. As already remarked, Pr(H/K) > 0, which is necessary for the
probabilification of H, implies that

Pr(E,)E, & ... & E,_, & K) > 1

as n — oo. This means that from the point of view of the proposed analysis
of variety, E, for large enough n cannot be counted as various with respect
toE,,E,,..., E,_,, contrary to what our untutored intuitions might have
told us. The fact that the E, are unified in the very minimal sense of being
entailed by a single H to which we assign a nonzero prior eventually forces
us to see them as nonvarious.

Another aspect of the importance of variety of evidence arises in con-
junction with eliminative induction, whose virtues are touted in chapter 7.
Bayes’s theorem in the form (2.2) shows how the probability of a hypothe-
sis is boosted by evidence that eliminates rival hypotheses. Thus variety of
evidence can be analyzed from the point of view of how likely the evidence
is to produce efficient elimination.'”

6 Putnam and Hempel on the Indispensability of Theories

Induction by enumeration is inadequate for capturing many of the infer-
ences routinely made in the advanced sciences, as is brought out very

_ nicely by the following example of Putnam’s (1963a). Imagine that you

were a member of the Los Alamos Project during World War I1. As you
prepare for the first test of what you hope will be an atomic bomb, you
consider prediction H: when these two subcritical masses of U,;5 are
slammed together to form a supercritical mass, there will be an atomic
explosion. H has a counterpart in purely observational terms, namely H":
when these two rocks are slammed together, there will be a big bang. If E
is the sum of the directly relevant observations made up to this juncture,
there is no way for an inductivist who limits himself to simple enumeration
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to move from E to a confidence in H'. For up to now there have been no
recorded cases of rocks of this kind exploding, but there have been many
recorded cases of rocks of this kind being slammed together without
exploding (because critical mass was never reached). Nevertheless, you and
your fellow project scientists are confident of H'. Why?

The Bayesian is happy to supply the answer. You were in possession of
a theory T of the atomic nucleus that entails H'. Applying the principle of
total probability to the total available observational evidence E & E gives

Pr(H'/E & E) = Pr(T/E & E) + Pr(H'/ 1 T& E & E) x Pr(1T/E & E).

Thus if your opinions conformed to the probability calculus, your confi-
dence in H’ should have been at least as great as your confidence in 7. And
the combination of E and E made you somewhat confident of T (because,
for example, T entails other experimental regularities whose positive in-
stances are recorded by E). Further, 11T includes other theories that also
entail H' or make H’ highly probable, and E & E made you somewhat
confident of those theories. The upshot was that you were more than
somewhat confident of H'.

Putnam used this story to register a complaint against any explication
of degree of confirmation that makes the confirmation of H on E & E
independent of the presence or absence in the language of predicates not
occurring in H', E, or E (what Carnap in 1950 and 1952 called an inductive
method of the “first kind”). In terms of the present example, such an
explication implies that Pr(H'/E & E) can be assessed in a language that
contains only observational predicates. But since expressions involving T
cannot occur in such a language, the explanation above of the expectations
of the Los Alamos scientists cannot be stated in such a setting. To provide
an explanation within the strictures of an inductive method of the first
kind, it must be supposed that the scientists involved would have had the
same degree of confidence in H' had they never considered T, a highly
implausible supposition, to say the least. Of course, it could be replied that
the failure of inductive methods of the first kind to accord with the actual
psychology of scientists may be ignored, since the task of explicating
degree of confirmation is a normative rather than a descriptive one. The
rejoinder is that the normative status of a proposed explication comes into
question when the explication fails to accord with what the history of
science provides as paradigm cases of good inferences. In effect, Carnap
agreed with this rejoinder in his response to Putnam. He wrote that
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for situations of this kind we must construct a new inductive logic which refers to
the theoretical language instead of the observational language. I would say that the
scientists at the time in question would indeed have been willing to bet on the
positive success of the first nuclear explosion on the basis of the available evidence,
including results of the relevant laboratory experiments. Inductive logic must
reconstruct this willingness by ascribing to c(H, E) a considerable positive value.'®
(1963b, p. 988)

Is there an argument here for scientific realism? Not much of one, but
something is better than nothing. Consider the position of an antirealist
who is neither an instrumentalist nor an inductive skeptic with respect to
observational predictions but who is an inductive skeptic with respect to
theoretical claims. In the Los Alamos example such an antirealist will
agree that reasonable expectations about the explosion prediction H’ can
be formed on the basis of E & E. He also agrees that the nuclear theory T
has a truth value and that the proposition asserting that T is true is not
merely a disguised way of asserting that observational predictions of T
are correct. But he nevertheless denies that the observational evidence
E & E serves as a basis for a reasonable belief in the truth of T. Such an
antirealist is very much in the same position as someone who uses a
Carnapian method of the first kind, and whatever objections can be
brought against the latter can also be brought against the former.

The above considerations also help to illuminate Hempel’s (1958) pro-
posed resolution of the “theoretician’s dilemma.” On Hempel’s formula-
tion, the dilemma runs thus: either theoretical terms fulfill their function of
systematizing deductive connections among observation statements or
they don’t. If they don’t, they are obviously dispensable. If they do, they
are likewise dispensable, since Craig’s (1956) lemma shows that the obser-
vational consequences of an axiomatizable theory can always be reaxiom-
atized in purely observational vocabulary. Hence theoretical terms are
dispensable. Hempel’s response was that theories may be indispensable
because they serve to establish inductive as well as deductive connections.

T might be said to be essential to establishing inductive connections
among observables if there are observation sentences O, and O, such
that Pr(0,/T & 0,) > Pr(0,/0,), or more interestingly, if Pr(0,/T & 0,) >
Pr(0,/0; & 0,), where Oy is a sentence logically equivalent to the set of
observational consequences of T.*° The first condition is certainly satisfied
in the Los Alamos example with O, = E & E and 0, = H', and for sake of
argument we may suppose that the second condition is satisfied as well.
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But on further reflection, these facts do not by themselves establish the
claimed indispensability of T. In the Los Alamos example, the key question
is what degree of confidence to put in H’' on the basis of the total available
evidence E & E. Thus in this example the claim that theories are indispens-
able for purposes of inductive systematization must be understood as the
claim that the evaluation of Pr(H'/E & E) depends in some essential way
on T. But what way is this? I suggest that the answer must be the one
supplied by my discussion of Putnam’s story. And I would further suggest
that the moral of the story can be generalized.

Suppose that for purposes of scientific investigation of a certain domain,
an inductive agent adopts a language .% and a degree-of-belief function Pr
on the propositions .o/ of .. We may suppose that £ is a purely observa-
tional language. Subsequently the agent expands her language to ¥,
which includes theoretical predicates, and adopts a degree-of-belief func-
tion Pr’ for the propositions ./’ > &/ of the new language. Even though
she is a rational agent, it may very well be that Pr’ restricted to .« does not
coincide with her previous belief function Pr. Of course, this phenomenon
has nothing to do per se with the observational/theoretical distinction; it
is merely a corollary of the point that the probability assigned to a proposi-
tion may depend upon the possibility set in which the proposition is im-
bedded. The moral here has an intralanguage counterpart. Within, say, the
language of physics as it is constituted at any particular time, physicists are
explicitly aware of only a small portion of the possible theories that can be
formulated in the language. When new theories are formulated, the range
of the explicitly recognized possibilities being thereby expanded, the prob-
abilities of previously considered hypotheses and theories may change.
This matter is taken up in chapters 5 and 7.

A striking consequence emerges when we combine such morals with
Carnap’s principle of tolerance, according to which “everyone is free to use
the language most suited to his purpose” (1963a, p. 18). Since the exercise
of this freedom is guided to a large extent by pragmatic factors, and since
degree of confirmation is affected by the choice of language, the implica-
tion is that evidential support has a pragmatic dimension. Pure person-
alists will hardly be shocked by this consequence, but those who want
confirmation theory to deliver rational and objective degrees of belief may
not be so shock-proof.

Those who do find such a consequence repugnant may want to consider
restrictions on the principle of tolerance, but it is hard to see how a princi-
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pled intolerance is to be implemented. Alternatively, the consequence can
be avoided by doing confirmation theory in a universal language adequate
for reconstructing all past and future scientific endeavors. But even if such
a utopian scheme is possible, its relevance to the actual practice of science,
which takes place in a context far from utopia, is tenuous.?® Rather than
try to avoid the consequence, I recommend a cautious embrace. Chapter
7 gives a concrete example of one form the embrace might take.

7 - The Quine and Duhem Problem

If hypotheticodeductivism were the only tool available for assessing evi-
dence, we would be at a loss in making judgments about how evidence
bears differentially on the components of a scientific theory. Some addi-
tional tool is thus sorely needed. In section 4, I found fault with Glymour’s
attempt to parcel out praise and blame using bootstrapping relations, and
I intimated that the parceling out is best accomplished with Bayesian
means. Sometimes a Bayesian analysis supports a kind of holism. Thus if
T consists of the conjunction of T; and T, and if T contradicts E & K, the
blame may attach to Tas a whole without sticking to either component T;
or T,. Indeed, Wesley Salmon (1973) has provided an example where,
relative to K, E incrementally confirms each of T; and T, even though T
is refuted by E & K.2! In more typical cases of refutation, however, our
intuitions suggest that the blame does stick to one or another component
of the theory and also that it sticks more firmly to some components than
to others.

An example of how the Bayesian apparatus can be used to support such
intuitions in historically realistic cases has been given by Jon Dorling
(1979). Suppose that theory T consists of core hypotheses T; and auxiliary
assumptions T; that T, & T, = E’; and finally that nature pronounces E,
which is incompatible with E’.22 Dorling assumes that T, is probabilisti-
cally irrelevant to T, (that is, Pr(T,/T;) = Pr(T})), that the priors Pr(Ty) =
k, and Pr(T,) = k, satisfy k, >k, and k, > .5, while the likelihoods
Pr(E/1T, & T,) = k5, Pr(E/T, & T,) = k,, and Pr(E/ T, & 1T;) =
ks satisfy ky « k4, ks « 1. Then Bayes’s theorem shows that the blame falls
more heavily on the auxiliaries T, than on the core T . If we take the time
to be the mid nineteenth century, T, to be Newton’s theory of motion and
gravitation, T, the assumption that tidal effects do not influence lunar
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secular acceleration, and E the observed secular acceleration of the moon,
then Dorling argues that plausible values of the relevant probabilities are
k,=.9,k,=.6,ky=.001, k, = ks = .05. With these values he finds that
Pr(T,/E) = .8976 and Pr(T,/E) = .003, so that the refuting evidence E only
slightly reduces the probability of the core of the theory, while strongly
undermining the auxiliary.??

Assuming that Dorling’s reconstruction of the prevailing degrees of
belief is historically correct, we are presented with a Bayesian success story
in the form of an explanation of the attitudes and behavior displayed
by the scientific community during an important incident in nineteenth-
century astronomy. But what we don’t yet have is a solution to the Quine
and Duhem problem, at least not if what we demand of a solution is a
demonstration that one way of parceling out the blame is rationally justi-
fied while others are not. For it is perfectly compatible with Bayesian
personalism to assign values to k, through k, that make T, the goat while
rendering T, blameless.>* We have arrived at one aspect of the general
problem of the objectivity of scientific inference, a problem that will occupy
us from chapter 6 onward. I will note in advance that while much of the
attention on the Bayesian version of this problem has focused on the
assignments of prior probabilities, the assignments of likelihoods involves
equally daunting difficulties.

In the present context the difficulties can be illustrated by noting that
when T, & T, | 11E but nature pronounces E, then blame attaches
squarely to T, in the sense that Pr(7,/E) « Pr(T;) just in case

Pr(E/T, & 1T;) x Pr(NT,/T)) « Pr(E/1 T, & T,) x Pr(T,/ 1 T,)
’ +Pr(E/T, & 1) x Pr(Q1T,/ 1 Th).

In general, none of the factors involved has an objective character, and a
large variability can be expected in the values assigned by different persons.
Dorling’s argument that this inequality fails in his historical case study is
based on the assumption that Pr(E/ 1T, & T,) is small—an assumption
Dorling takes to be justified because (he says) no plausible rival to New-
ton’s theory could predict E either quantitatively or qualitatively. This
justification succeeds if 71T is limited to rivals actually constructed by
nineteenth-century physicists. But a critic of this analysis might well ask
why pronouncements about what it is and isn’t rational to believe in the
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face of E should depend on the vicissitudes of which of the myriad possible
theories happened to be constructed by physicists of the time.

Let us attempt to add some objectivity by moving to a simple if unrealistic
case. Assume first that T, and T, are probabilistically irrelevant to one
another. Assume second that we can parse 1T, as T v T2 v ... v T},
where the T} are pairwise inconsistent, and that we can parse 71T, as
T} v T v ... v T/, where the TJ are also pairwise inconsistent. Assume
finally that T, or any one of the T{ when conjoined with T, or any one of
the T¥ together entail a definite prediction for the phenomenon in ques-
tion. Then the condition for blame to attach to T; becomes

. j Pr(Tz) i Pr(j T2) k
Z,-: Pr(T{) « [W] x 3 Pr(Ty) + I:ﬁ(j—Tl—)] X Zk: Pr(T{),

where the sum on j is taken over values such that T, & T} - E, the sum
on i is taken over values such that T} & T, - E, and the sum on k is taken
over values such that T* & 1T, - E (ie., Tf & T§ |- E for every value of
j). At first this result is a little disconcerting, since in an effort to objectify
the problem, we have reduced it to one involving judgments of priors.
What we can hope is that the priors used in this context are posteriors
taken from another context and that the latter have been objectified
through the weight of accumulated evidence.

The result of accumulating evidence has been investigated by Redhead
(1980) under a different set of assumptions. He invites us to consider a
series of refutations of the core (T;) plus auxiliary (T). T; is replaced by T;
to accommodate the evidence E refuting T; & T; then new data F that
refutes T, & Ty is found; T; is replaced by T, to accommodate F; etc. If
each of the successive auxiliaries is given an initial weight of .5, and if the
likelihoods of each new piece of evidence (given 1T, & T, T, & 113,
or 71T, & 1T;) are equal and substantially less than 1, then the proba-
bility of T, is quickly driven down toward O by the series of refutations.
This is an interesting result, but it does not provide a resolution of the
original problem.

The upshot is that we have a highly qualified success for Bayesianism:
the apparatus provides for an illuminating representation of the Quine and
Duhem problem, but a satisfying solution turns on a solution to the
general problem of objectivity of scientific inference, a matter that will
occupy us in coming chapters.
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8 Conclusion

The reader does not have to share the details of the sentiments I have
expressed above to be convinced that applying the Bayesian apparatus to
topics like the paradox of the ravens, the variety of evidence, the role of
theories in scientific inference, and the problem of Quine and Duhem leads
to fruitful avenues of investigation. There are many more examples of
fruitfulness that could be given. Some will be developed in chapter 4 in the
context of responses to challenges to Bayesianism confirmation theory.
Others can be found in such Bayesian tracts as Rosenkrantz 1981, Hor-
wich 1982, and Howson and Urbach 1989. Franklin (1986, 1990) supplies
excellent case studies of experiments in physics and makes an attempt to
provide a Bayesian rationale for the strategies he sees experimental physi-
cists using to validate their results.

4 Challenges Met

Despite or perhaps because of its successes, Bayesianism is not without its
detractors. One of the most serious charges against it is that its machinery
does not apply to the confirmation of universal hypotheses about an
infinity of individuals, since (the charge goes) the prior and thus the poste-
rior probability of such a generalization will be flatly 0. Three versions of
this worry are examined in sections 1 to 3. Section 4 explores a different
worry expressed by Karl Popper and David Miller. They argue that even
when the probabilification of a hypothesis takes place, no genuine induc-
tive support can be seen in the incremental boost in probability. Section 5
is devoted to Richard Miller’s charge that Bayesianism is just as broken-
backed as is HD methodology because the notorious problem of adhocing
the auxiliary hypotheses that besets the latter has analogues that vitiate the
former. Section 6 takes up Griinbaum’s worry that Bayesianism commits
its practitioners to an unbridled and implausible form of instantian in-
ductivism. Section 7 explores the ability of Bayesianism to cope with
Goodman’s “new problem of induction.” Finally, section 8 asks whether
Bayesianism can account for the importance of novel predictions.

1 The Problem of Zero Priors: Carnap’s Version

A Carnapian confirmation function c(H, E) for a language is a conditional
probability function (see appendix 1 of chapter 2) defined on pairs of
sentences H, E of the language, where E is noncontradictory. From the
axioms of conditional probability it follows that c(H & E,t) = c(E,t) x
c(H, E), where t is a tautology. If c is strictly coherent (see chapter 2) so
that c(E,t) # 0 for a noncontradictory E, then we can write c(H, E) =
c(H & E, t)/c(E, t). If we set m(-) = c(*, 1), c(H, E) = m(H & E)/m(E), we see
that the confirmation function is determined by the measure function m.
(When c is not strictly coherent, the story becomes more complicated, but
the details will not be rehearsed here.)

Following Carnap (1950, 1952), let us now specialize to a language LX
containing K monadic predicates Py, P,, ..., Py, assumed to be logically
independent, and N individual constants a,, a,, ..., ay. A state description
specifies for each P, and a; whether or not P; applies or fails to apply to a;.
In this setting, a measure function is an assignment to the state descriptions
of positive weights that sum to 1, and the c(H, E) determined by this
measure function is the ratio of the sum of the weights attached to the state
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descriptions in which both H and E hold to the sum of the weights of the
state descriptions in which E holds.

If the only significance of the subscripts on the a;'s is that different
subscripts indicate that the individual constants denote different individ-
uals, then it is natural to require the following:

R1 The c functions are symmetric, i.e. c(H, E) = c(I1(H), [1(E)).

Here I1(X) indicates the result of replacing the individual constants in X
by their counterparts from an arbitrary permutation of the individual con-
stants. For some time Carnap was enamored of a particular symmetric ¢
function, c*, which is defined by assigning equal measures to each structure
description and to each state description within a structure description,
where a structure description is a maximal set of state descriptions each of
which can be transformed into any other by a permutation of the individu-
al constants. Carnap’s assumptions here can be seen as a generalization of
Bayes’s notion that when only two outcomes are possible, the prior proba-
bility of any given number of successes in n trials is 1/(n + 1) (see chapter 1).

In The Continuum of Inductive Methods (1952) he saw the need for a
more general approach, which I will now briefly sketch. By a Q-property,
let us understand the conjunctive property formed by choosing for each
i=1,2,..., Keither P,or 1P, There are x = 2X Q-properties of LX. These
properties are mutually exclusive and exhaustive, so we may think of them
as boxes that partition the universe. Consider the evidence E" that tells us
which of the n individuals examined so far fall into which Q boxes. If H*!
is the hypothesis that the next individual examined will fall into the kth Q
box, then (R1) implies that c(HF ™!, E”) is a function purely of n, k, and the
box occupation numbers ny, n,, ..., n, (3%, n; = n). In The Continuum of
Inductive Methods Carnap required something much stronger:

R2 The value of the confirmation function c(H*!, E") depends on n, but
not on the other occupation numbers.

The problem now is to determine the general form of ¢(-,) satisfying
these constraints. Apparently unaware that W. E. Johnson (1932) had
successfully tackled the same problem many years before, Carnap showed
by a very ingenious argument that (when x > 2) any ¢ function obeying
(R2) can be written as

m + Afx

o(Hy B =

, 4.1)
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where 4 lies in the interval [0, + co]. The parameter 4 can be viewed as an
index of inductive caution that determines how fast we are willing to learn
from experience. The value 4 = 0 (which is forbidden by strict coherence)
corresponds to the “straight rule” of induction: c(H; ™, E") = n,/n. At the
other extreme, A = co implies that there is no learning from experience in
that the probability that the next individual falls into the kth Q box is 1/x,
regardless of how many of the objects examined so far have fallen into this
box. Setting 4 = x gives us back c¢*. Given the special values fixed by (4.1),
it is easy to show that the value of c¢(H, E) for any sentences H and E of LX
is uniquely determined.

This scheme cannot be extended in any natural way so as to permit the
confirmation of universal hypotheses in a universe containing a countable
infinity of individuals. For from (4.1) it follows that c¢(& <, F;a;, t) tends to
0 as n tends to infinity. Since (Vj)P.a; = & j<a P:a; for any n, c((Vj)P.a;,t) <
c(&j<nP:a;,t), with the upshot that the universal generalization must
receive a ¢ value of 0 in an infinite universe.

Kemeny (1963) was so disturbed by this result that he flirted with the
idea that confirmation functions have to be constructed from measures
that take real-valued functions rather than real numbers as values. How-
ever, nothing this drastic is required to permit the confirmation of universal
generalizations in infinite universes. Hintikka (1966) and Hintikka and
Niiniluoto (1980) retain (R1) but modify (R2) to allow that c(H;*, E") may
depend upon the total number of boxes occupied in addition to n,, n, and
k. They show that in their more liberal systems the prior probability of a
universal generalization can be nonzero in an infinite universe and that the
posterior probability of the universal generalization can approach 1 as the
positive instances accumulate.

We need not go into the details of the Hintikka and Niiniluoto systems
to understand how the symmetry requirement (R1) and its generalizations
are compatible with the confirmation of universal generalizations. For
simplicity, consider a monadic predicate ‘P’ and an infinite sequence of
individual constants a,, a,, .... And consider a probability measure Pr
defined on all the Pa, and on all finite truth functional compounds of such
atomic formulas. In concert with (R1), we suppose that Pr is exchangeable
(de Finetti), meaning that for any k,

Pr(+Pa, & +Pa, &...& t+Pa,)
= Pr(t+Pa,, & tPa, & ... & *Pa,), (R1)
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where the + indicates that either the predicate or its negation may be
chosen, and n}, n3, ..., n; stands for an arbitrary permutation of ny, n,, ...,
n,. De Finetti’s representation theorem then shows that the Pr probability

that k out of n individuals will be P is

(") f 1 051 — 9)"*u(df) 4.2)
kJ Jo

for a uniquely determined measure ; on 0 < 0 < 1. In the extreme case
where n = k, (4.2) gives

1

Pr(& Pa,-) = f 0"u(d0). 4.3)
Jj<n 1]

Assigning a finite mass u to the extreme value § = 1 assures that as n tends

to infinity, lim,_, , Pr(& j<, Pa;) is nonzero. Such an assignment coupled

with the axiom of continuity (A4) (chapter 2) assures that (Vj)Pa; gets a

nonzero prior. Furthermore, since

Pr ((Vj)Paj / & Paj) = Pr((Vj)Pa;)/Pr (& Pa,-),
j<n j<n

we are also assured that a true universal generalization is eventually

learned to be true, in that

lim Pr <(Vj)Pa,-/& Paj) =1
n—o jsn
Generalizations of de Finetti’s representation theorem can be proved for
cases where (R1') is relaxed, and the confirmation of universal generaliza-
tions can also be studied in these cases.''

My conclusion is that Carnap’s problem of zero priors for universal
generalizations is an artifact of his particular language-based approach to
confirmation and not a problem for confirmation theory in general.

2 The Problem of Zero Priors: Jeffrey’s Version

While acknowledging that nothing in the probability calculus itself pre-
vents the assignment of nonzero priors to universal laws, Richard Jeffrey
nevertheless opines that “in the absence of special reasons to the contrary,
it is to be supposed that the [Bayesian] agent’s degree of belief in a
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universal generalization will be zero; for willingness to attribute positive
probability to a universal generalization is tantamount to willingness to
learn from experience at so great a rate as to tempt one to speak of
‘jumping to conclusions’” (1983b, p. 194). This temptation is one that
should be resisted, especially by a Bayesian of the personalist school,
whose motto is, Have the courage of your convictions. But let us see why
Jeffrey thinks that the temptation is there.
By the continuity axiom,

Pr((¥j)Pa;) = lim Pr(& paj)

n—w j<n

= lim Pr(Pa,) x Pr(Pa,/Pa,) x -

x Pr(Pa,/Pa, & Pa, & ... & Pa,_,). 4.4)

Thus, if the universal generalization is to get a nonzero prior, the factors
Pr(Pa,/Pa, & Pa, & ... & Pa,_,) must approach 1 sufficiently rapidly as
n increases, for otherwise the product of the factors on the right hand side
of (4.4) would tend to 0. Just how rapid must this increase be? As an
example, Jeffrey sets

Pr(Pa,/Pa, & Pa, & ... & Pa,_,) = (2" — 1)/2". 4.5)

The product (1/2)(3/4)(7/8) ... is finite, so the Bayesian agent using this
measure will regard (Vj)Pa; as confirmable by experience. But this agent
also assigns a probability greater than .999 to Pa,, after observing 9
positive instances, which means that he is willing to risk $999 on this
outcome to gain $1, which strikes the faint of heart among us as jumping
to conclusions.

Jeffrey’s example is only an example, and before drawing any morals
from it, we need to know which features are peculiar to it and which carry
over to other cases where the generalization is assigned a nonzero prior.
The limit in (4.4) is positive just in case each of the factors is positive and

Pr(71Pa,) + Pr(11Pa,/Pa,) + Pr(11Pas/Pa, & Pa,) + -

has a finite positive value. If we set x, = Pr(Pa,/Pa, & ... & Pa,_,), the
sum in question has the form > =, (1 — x,). Applying the Cauchy ratio test,
we find that a sufficient condition for this sum to have a finite positive
value is that there exist a constant C such that for sufficiently large values
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of n
(=% )1 -x)<C<1 (4.6)

In the case of (4.5), (4.6) is fulfilled, since for every n, (1 — x,,,)/(1 — x,) =
1/2. But the qualification that there exist an N such that for all n > N,
(1 — x,41)/(1 — x,) < C < 1 means that the ratio can exceed any C < 1 for
as long a finite stretch as you like and consequently that the rate of
learning from experience for this specified stretch can be made to fit any
desired criterion of caution.

In sum, there is no need to contemplate assigning zero or infinitesimal
priors to universal laws, for willingness to assign finite nonzero priors is
not tantamount to a willingness to learn from experience at what the
fainthearted may regard as an immodest rate.

3 The Problem of Zero Priors: Popper’s Versions

In the infamous appendix 7 (“Zero Probability and the Fine Structure of
Probability and Content™) of The Logic of Scientific Discovery, Popper
claims that “in an infinite universe ... the probability of any (non-tautologi-
cal) universal law will be zero” (1961, p. 363). In arguing for this claim,
Popper uses a variant of the continuity axiom (A4), although for his
purposes it would be enough to note that from the other standard axioms
it follows, for example, that Pr((Vj)Pa;) < lim,_, , Pr(& <, Pa;). If we fur-
ther assume probabilistic independence for distinct instances, i.c.,

Pr(Pa, & Pa,, & ... & Pa, )= Pr(Pa, ) x Pr(Pa,) x --- x Pr(Pa,) (I)

for distinct a’s, and if we also impose exchangeability (R1), then
lim,, , Pr(&j<s Pa;) = lim,_, ,[Pr(Pa,)]” = O unless Pr(Pa,) = 1 for any
a,, a condition which not even the most enthusiastic inductivist wants to
affirm.

In support of (I) Popper contends that “Every other assumption [op-
posed to (I)] would amount to postulating ad hoc a kind of after-effect; or
in other words, to postulating something like a causal connection between
[distinct instances]” (1961, p. 367). By using Popper’s own notion of pro-
pensity probability, we can see, I think, (a) why this contention is false, (b)
why Popper’s form of anti-inductivism corresponds not to inductive skep-
ticism but to dogmatism, (c) why Pr((Vj)Pa;) = 0 is not sufficient by itself
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for anti-inductivism, and (d) how Hume’s ontological scruples can be
partially reconciled with one form of inductivism.

Suppose that we know that the repeated trials of an experiment are
governed by a fixed propensity p (a la Popper) whose numerical value is as
yet undetermined, and that the trials are independent, i.e., IID trials. It is
crucial to note that the first ‘I in IID is not to be interpreted as indepen-
dence tout court, ie., as Popper’s (I), but rather as a kind of conditional
independence. To see what I mean by the latter, assume that the agent who
wishes to predict outcomes of the experiment has a probability function
Pr(-) defined on a set ¢ of propositions that includes propositions about
the outcomes and also propositions of the form p, < p < p,, and assume
in addition that the agent associates with every value of p € [0, 1] a proba-
bility function Pr,(-) defined on . Intuitively, Pr,(-) is the probability
function the agent would adopt if she knew that the value of the propensity
is p. Pr(-) and Pr,(-) are knitted together by a consistency condition
requiring that for any A € </,

1
Pr(4) = J Pr,(4)Pr(dp), (Con)
o

which assumes that p+— Pr,(A) is a measurable function for each 4 € o2
There is nothing new here; in effect, I am just making explicit the assump-
tions underlying Thomas Bayes’s own calculations (see chapter 1). Note
that (Con) implies a form of countable additivity. Consider any countable
partition of [0, 1] into subintervals {I,,1,,...}. Since Pr, (p € I,) is 1 or O
according as p’ lies inside I, or not,

1 00

Pr,(pel,)Pr(dp) =) Pr(pel,)

=1

Pr(pe(0,1])=1= f

0

The ‘T in IID can now be taken to mean that for any k,

Pr,(Pa, & Pa, & ... & Pa, )= P1,(Pa,) x Pr,(Pa,) x -~ X Pr,(Pa,,).
I

The ‘ID’ means that Pr,(Pa;) = p for any j. Now try to suppose that
Popper’s (I) held for this chance setup. In particular, it would mean that

Pr(Pa, & ... & Pa, /Pa, & ... & Pa, ) = Pr(Pa, & ... & Pa,).

Expanding each side of this equality, we get
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{Pr,(Pa, & ... & Pa, & Pa, & ...& Pa, )Pr(dp)
{6 Pr,(Pa, & ... & Pa,, )Pr(dp)

1
= -[ Pr,(Pa, & ... & Pa, )Pr(dp). 4.7
0
By the IID assumption, (4.7) leads to

1 1 1
f p*Pr(dp) = f P*Pr(dp) x J p"Pr(dp), “8)
] ] 0

which can hold for all k and m if and only if the prior probability distribu-
tion Pr(dp) is concentrated at a point. Thus, imposing (I) on the IID
propensity model requires the agent to be certain from the start about the
value of p, which is surely dogmatism rather than skepticism.

From the point of view of a scientist who has pinpointed the hidden
springs of nature, in this case the value of p, there is no induction, in the
sense that past trials of the experiment do not affect her expectations of
future outcomes. But for us mortals, for whom the hidden springs remain
at least partially hidden, induction takes place not because of some causal
glue that binds together events (there is none) and not because we are
dogmatic rather than skeptical (our skepticism in the sense of open-mind-
edness may be expressed by a Pr(dp) whose support takes in the entire
interval [0, 1]). Rather, induction takes place for us because past outcomes
affect our assessment of the unknown p value; and this in turn affects our
assessment of future outcomes. Since the IID assumption and the resulting
(I') provide a precise sense in which the events are causally independent,
and since Pr here is interpreted as personal degree of belief, there is nothing
in the resulting inductivism that should make Hume’s hackles rise.

Everything said in the preceding paragraph could be taken as a gloss of
Bayes’s model (see chapter 1). Moreover, Bayes’s choice of Pr(dp) illustrates
how Pr((Vj)Pa;) = 0 is not sufficient to rule out inductivism in at least a
weak form. For Bayes’s rule implies that Pr(&;<, Pa;) = 1/(n + 1), which
in turn implies both that Pr(Pa,.,/& <, Pa;)— 1 as n— oo (successful
instance induction) and that Pr((Vj)Pa;) = O (zero prior for the general
hypothesis).? If only Popper had read Bayes’s essay sympathetically, his
philosophical development might have been quite different.

In appendix 7 Popper vacillates between the charge that inductivism
cannot be justified by Hume’s lights and the more serious charge that the
inductivism grinds to a halt because of internal inconsistencies in the
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mechanism. The former charge is less than telling, since inductivists may
feel comfortable in providing a justification that does not fit Hume’s stric-
tures or they might opt for a nonjustificatory vindication or they might try
to motivate their procedures as a codification of accepted inductive prac-
tice in science and declare that any further justification or vindication is
unnecessary. The latter and potentially more damning charge is made
most clearly in Popper’s attempt to give a proof that Pr((Vj)Pa;) must be
0 by hoisting the inductivists on their own petard. Harold Jeffreys (1973)
has shown, without using exchangeability (R1’) or continuity (A4), that
Pr((Vj)Pa;) > 0 is a sufficient condition for weak instance induction in the
form Pr(Pa,.;/&; <.Pa;)—1 as n— oo (see section 7 below). Popper
claims, in effect, that by applying Jeffreys’s result simultaneously to an
ordinary predicate ‘P’ and to a Goodmanized predicate ‘P*, a contra-
diction is generated. At most, however, what follows is that not both
Pr((Vj)Pa;) > 0 and Pr((¥j)P*a;) > 0 can hold, not that all universal laws
must have zero priors. And on closer inspection it turns out that not even
this weaker conclusion follows. This matter will be taken up in detail in
section 7 below.

4 The Popper and Miller Challenge

In 1983 Nature published a letter by Karl Popper and David Miller
containing a purported proof of the impossibility of inductive probability.
Although Popper and Miller did not explicitly mention Popper’s earlier
contention that the prior probability of a universal hypothesis should be
zero in a universe with an infinite number of individuals, from a pedagog-
ical point of view their argument is best seen as providing a fallback
position for the anti-inductivist. Thus, suppose contra the earlier Popper
that the probability of the universal generalization H on the background
knowledge K is nonzero. And suppose that evidence E is acquired that
raises the probability of H, that is, Pr(H/E & K) > Pr(H/K), which as we
know from chapter 3 will be the case when

(H,K}E=E and 0 < Pr(H/K), Pr(E/K) < 1.

Still, Popper and Miller claim, this increase in probability cannot be
regarded as confirmation, in the sense of genuine inductive support. To
show us why this is so, they invite us to note that for any H and E, H is
logically equivalent to (H v E) & (H v T1E). Since E deductively implies
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the first conjunct, the question of inductive support, they claim, boils down
to the way in which E affects the second conjunct. That question is settled
by the following two lemmas.

Lemmal Pr(1H/E & K) x Pr(TE/K)=Pr(H v 1E/K) —
Pr(H v 11E/E & K) (Popper and Miller)

Proof
Pr(1H/E & K) x Pr(TE/K) = (1 — Pr(H/E & K))(1 — Pr(E/K))
=1— Pr(E/K) — Pr(H/E & K)
+ Pr(H/E & K) x Pr(E/K)
= [1 — (Pr(E/K) — Pr(H & E/K))]
— {Pr(H/E & K)}.

The [ ]term can be massaged using a form of total probability: Pr(E/K) =
Pr(H & E/K) + Pr(1H & E/K). Thus Pr(E/K) — Pr(H & E/K) =
Pr(T(H v 1 E)/K) = 1 — Pr(H v T1E), which shows that the [ ] term is
equal to Pr(H v T1E/K). Since the { } term is equal to Pr(H v T1E/
E & K), the lemma is proved.

As a direct consequence of Lemma 1 we get lemma 2:

Lemma 2 If Pr(H/E & K) # 1 # Pr(E/K), then Pr(H v TE/E & K) <
Pr(H v E/K).

According to Popper and Miller, lemma 2 is “completely devastating to
the inductive interpretation of the calculus of probability” (1983, p. 688). If
Pr(E/K) = 1, Pr(H/E & K) = Pr(H/K), and E does not incrementally sup-
port H. The case where Pr(H/E & K) = 1 is also uninteresting, for if Pr is
strictly coherent (see chapter 2), E & K = H, which places us in the realm
of deductive rather than inductive support. And even if strict coherence is
rejected, the case is still uninteresting, since Pr(H/E & K) < 1 for most
real-life examples of confirmation in science. Thus, we may safely assume
that the conditions of lemma 2 are satisfied, and we may conclude that
H v TE, what Popper and Miller call the part of H that goes beyond E,
is countersupported by E.

Popper and Miller introduce their letter with an unfortunate flourish:
“Proofs of the impossibility of induction have been falling ‘dead-born from
the Press’ since the first of them (in David Hume’s Treatise of Human
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Nature) appeared in 1739. One of us (K. P.) has been producing them for
more than 50 years. This one strikes us both as pretty” (1983, p. 687). Hume
did not claim to have proved the impossibility of induction but rather that
induction cannot be justified except on a psychological basis. By contrast,
Popper and Miller offer an impossibility proof that does literally fall
dead-born from the press. For once the assumption of nonzero priors is
granted, there is no firm ground for the anti-inductivist to stand on, or so
I will argue.

The Popper and Miller article has elicited a sizable number of com-
ments, both pro and con, but many of the relevant points can be discerned
from the first responses published in Nature by Isaac Levi (1984) and
Richard Jeffrey (1984). Levi endorsed the Popper and Miller position by
appeal to the principle that if E & K = H, < H,, then Pr(H,/E & K) =
Pr(H,/E & K). Applying this to the factorization of H into (H v E) &
(H v T1E), we note that E = H < (H v T1E), so that we should have
Pr(H/E & K) = Pr(H v E/E & K). This is perfectly correct. But as
Gaifman (1985) warns, the absolute concept of confirmation must not be
confused with the incremental one (see chapter 3). From E = H, « H, it
does not follow that E has the same incremental effect on both hypotheses,
ie., that Pr(H,/E & K) — Pr(H,/K) = Pr(H,/E & K) — Pr(H,/K), even if
K is a tautology. Indeed, the Popper and Miller lemmas provide a coun-
terexample, since they show that Pr(H v TE/E & K) < Pr(H v 1E/K),
even in the case where Pr(H/E & K) > Pr(H/K).

Jeffrey rejected the Popper and Miller argument on the grounds that it
rests on a specious identification of H v T1E as the part of H that goes
beyond the evidence E. To take a concrete example, the part of (Vj) Pg; that
goes beyond Pa, & Pa, & Paj is intuitively (Vj)[(j > 4) - Pa;] and not
the Popper and Miller (Vj)Pg; v 71(Pa, & Pa, & Paj).

Gillies (1986) responded that the Popper and Miller argument can be
restated in a form that is independent of the identification of H v 1E as
the part of H that goes beyond E. Suppressing K for the sake of simplicity,
define the support given by E to H as s(H, E) = Pr(H/E) — Pr(H). Itis then
easy to show that s(H,E) = s(H v E,E) + s(H v E, E). Since, according
to Gillies, s(H v E, E) represents the deductive support conferred by E,
s(H v 1E,E) must represent the inductive support, which we have
already seen to be negative. So far so good, but what is needed to complete
the impossibility proof is an inference that moves from the facts that the
support function s(H, E) is the sum of two functions and that neither of the



98 Chapter 4

latter functions can represent positive inductive support to the conclusion
that s(H, E) cannot represent positive inductive support. As Chihara (1988)
notes, the following general inference rule (G) is not valid:

G Iffunction fis thought to represent F and if f = f, + f,, where neither
f1 nor f, can represent F, then f cannot represent F.

Thus the burden is on the critic of inductivism to show that the relevant
instance of (G) is truth-preserving.*

Aside from the details of the debate between Popper-Miller and their
critics, the real question for inductivism is the one emphasized by Nelson
Goodman in Fact, Fiction, and Forecast, namely, when do already ob-
served instances confirm a hypothesis merely by content cutting (i.e., by
entailing part of the content of the hypothesis) and when do they genuinely
confirm it in the sense of supporting its predictions about unexamined
instances?® To make the question concrete, consider again H: (Yj)Pa;, and
let Pa, & Pa, & ... & Pa, stand for the observed instances. We want to
know whether the probability for a positive result for the next instance
Pa,,, or the next m instances Pa,,,, Pa,,,, ..., Pa,,, increases as n
increases and, if so, whether the increase continues until certainty is
reached in the limit. Popper’s original form of anti-inductivism attempted
to derive negative answers from claims about zero priors. By contrast, the
Popper and Miller argument attempts to prove the impossibility of induc-
tivism even granting the inductivist that (Vj)Pg; has a positive prior. But
that concession makes the answers to our questions demonstrably yes, even
if we assume nothing about exchangeability or continuity (see section
below). :

5 Richard Miller and the Return to Adhocness

As noted in chapter 3, Quine’s holism and his thesis that any scientific
theory can be rationally maintained come what may are derived by com-
bining a bit of Duhem with a lot of HD methodology and a refusal to
entertain any other constraints on theory testing. Duhem’s point was that
an HD test of a typical theory T requires the use of auxiliary assumptions
A consisting, perhaps, of other theories plus boundary and/or initial condi-
tions, for it is not T by itself but T plus A that entails a prediction E that
can be submitted to the judgment of observation and experiment. In the
face of a negative judgment the theory T can be saved by blaming the

s
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outcome T1E on errors in A. If deductive logic alone were the only tool
available for assessing the bearing of evidence on theories, it would indeed
seem to follow that T can be maintained, come what may.

In chapter 3 Bayesianism was touted as a potential antidote to Duhem
and Quine methodological pessimism, though there was some hand wav-
ing about the problem of objectivity, whose discussion is postponed to
chapter 6. Richard Miller (1987) has argued that even if this hand waving
is permitted to pass, Bayesianism is not the panacea it might seem. Indeed,
he thinks that the HD problem of adhocing the auxiliaries revisits Bayes-
ianism as the problem of adhocing the likelihoods. Miller puts his com-
plaint in the form of a dilemma: “If the likelihoods were kept rigid, rational
belief in many good theories would have to be lowered to an implausible
degree. If likelihoods can be bent to fit the facts, Bayes’ Theorem cannot
account for the real force of compelling arguments” (1987, p. 319).

Let us try to understand each horn of Miller’s dilemma. To begin with
the second horn, it is not Bayes’s theorem itself but the combination of the
theorem and a rule of conditionalization (chapter 2) that accounts for the
force of compelling arguments. When E is learned, the combination gives,
in the case of strict conditionalization,

Pt w(T) = Pryg(T/E) = (Pryg(T) x Pry(E/T))/Proa(E).

Thus, if Pr,;,(E/T) « Pr,4(E), learning E leads to the result that Pr,  (T) «
Pr,,4(T). This much is clear. What Miller means by “bending” or “revising”
the likelihoods is less clear, but his discussion of the use of auxiliary
hypotheses suggests the following interpretation. Suppose that {4;} is a
partition of the relevant auxiliaries that could be brought into play. Then
by the principle of total probability,

Pro(E/T) = Z Proy(E/T & A;) x Pr(4,/T)

and

Prya(E) = Z Proa(E/Ai) x Pryg(4;).

Insofar as the factors Pr,4(E/A; & T) are “objective”—as they are, for
instance, when T & A; = E or T & A; = 71E—a change of heart about
the likelihood of E on T will have to come through a change of heart about
Pr,,4(4;/T).% Fiddling these factors along with the factors Pr,4(4;) can



100 Chapter 4

ameliorate or cancel the original judgment that Pr,4(E/T) « Pr,,4(E) and
thus that Pr,.,.(T) « Pr,(T).

While such fiddlings might be termed Bayesian adhocery, they are more
accurately described as an abandonment of Bayesianism. In chapters 5 and
8, I will argue that data-instigated hypotheses call for literally ad hoc
responses. When new evidence suggests new theories, a non-Bayesian shift
in the belief function may take place. But leaving such cases aside for the
moment, any Bayesian worth his salt will want some compelling reason for
abandoning his credo. Miller’s reason is that there are situations where
either likelihoods are bent or else rational belief in a good theory would
have to be lowered to an implausible degree. This claim is itself subject to
a dilemma.

Suppose first that a “good theory” is one deserving of attention because
it has some desirable features, such as fecundity, predictive power, simplic-
ity, or whatnot. Then there is no presumption that such good theories
always or ever have significant posterior probabilities. Indeed, if the com-
petition is keen and there are many incompatible good theories vying
for our allegiance, then the probability calculus alone assures that some of
them must have small probabilities. Suppose next that a “good theory” is
one that, on the basis of the total available evidence, has a high posterior
probability either in absolute terms or relatively to competing theories.
Then it is analytic that belief in good theories cannot be lowered to an
implausible degree. _

In effect, Miller’s contention is that the second horn of this second
dilemma is unsound because the history of science provides examples
where there is a clash between Bayesian calculations on the one hand and
intuitions about what is to be believed on the other. In response, the
Bayesian can offer two diagnoses. First, insofar as the clash is real, it must
be resolved contra intuitions. In the Bayesian game you are allowed to
play favorites once by your assignments of prior probabilities. Let us
suppose that you did so in assigning T a high prior (because of its many
making-good features) and also that you agreed that E is more likely by
itself than on the assumption of 7. But now upon learning that E, you want
to renege on the latter commitment so that you can continue to assign a
high probability to T. The Bayesian machinery prevents this second round
of playing favorites, and so it should. Second, the Bayesian can make the
case that the clash that Miller tries to promote does not occur in actual
cases. Given our present evidence about geology and population genetics,
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we now take Darwin’s theory of evolution to be a good theory in the
worthy-of-belief sense. But there is no presumption that theories now
accorded this status must always have had it at every earlier stage of
inquiry. Indeed, the gaps in the fossil record, the existence of fossils in the
lower sedimentary levels, and many other difficulties that Darwin himself
pointed out should have meant that in Darwin’s day his theory had a low
posterior. The story of how the accumulation of additional evidence raised
the posterior probability of the theory of evolution is a paradigm example
of progress in science. The adhocery Miller seems to advocate would
disguise this progress.

Science, like our system of justice, assumes that the truth is most likely
to out if adversaries prosecute the case and a decision is rendered by an
impartial judiciary. A crucial difference is that in the scientific enterprise
the same scientists play both roles at once. This perhaps encourages Miller,
as it encourages scientists themselves, to blur the difference between the
two roles. Scientists qua advocates of competing theories are free to blame
the difficulties in their pet theories on the auxiliaries and to bend the
likelihoods if they think this will help their advocacy. But the reaction of
scientists qua neutral judges should be not to adopt non-Bayesian attitudes
but to change probabilities in a Bayesian fashion in the light of whatever
further evidence the advocates can provide. Admittedly, the two roles are
hard to keep separate, but not to strive for a separation is a prescription
not just for anti-Bayesianism but also for antiscience and antirationality.

None of the above touches a more traditional form of adhocery. If T gets
into genuine Bayesian trouble by having its posterior probability driven
further and further downward by accumulating evidence, then T itself can
be adhoced, i.e., T can be modified in those features responsible for the
diminishing probability. But there should be nothing in Bayesianism to
prevent such a tactic; indeed, not only is it not a dishonorable tactic to
modify theories in the light of adverse evidence, it is good scientific com-
mon sense. Of course, if successive adhocings continue to run into trouble,
the program of trying to keep alive the theory takes on a degenerative cast.
When to abandon what seems to be a sinking ship and when to try to keep
the ship afloat is a difficult and delicate problem.

A related problem is suggested by Miller’s Darwin example, although
the problem itself is hardly peculiar to biology.” When Darwin first sprang
“the theory of evolution” on the world, what he was offering was not a
concrete theory but a general type of theory. Initially neither he nor his
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supporters could supply a specific version of the theory that deserved to
be accorded a high posterior probability on the basis of the available
evidence. But clearly, the theory type the Darwinians were proposing was
worth pursuing—or so it seems in retrospect. The general problem of
when a theory type, all of whose extant versions have a low or even flatly
zero posterior, should be pursued and when it should be cast on the trash
heap of science is, like its cousin mentioned above, a difficult one. Bayes-
ianism offers no solutions to such problems, nor should it. The problems
are ones of practical decision. What Bayesianism can offer is an account of
one of the essential ingredients that go into the decision-making process.
In the Darwinian case a key ingredient is the probability of the vague
hypothesis that some theory of evolution that is recognizably Darwinian
(say, because it assigns natural selection a central role in descent) is true or
approximately true. The other essential ingredient is the collection of
utilities assigned to the alternative courses of action. It is then a matter of
choosing the action that maximizes the expected utility. Beyond this, I very
much doubt that there are any valid and nonplatitudinous methodological
rules to be stated about such decision problems. I will return to these
matters in chapter 8.

6 Griinbaum’s Worries

Popper worried that the Bayesian machinery does not work at all. Griin-
baum (1976) worried that it works too well. His worries are encapsulated
in a series of challenges. “Can the Bayesian succeed where unbridled
instantianist inductivism failed, and show why the same confirming experi-
ment should not be repeated ad nauseam?” (1976, p. 242). Griinbaum’s
demand is that the Bayesians meet this challenge by supplying a proof of
“a monotonic diminution in the amounts of probability increase” from
repetitions of the same experiment (1976, p. 242). But if we rule out the case
where convergence to certainty takes place after a finite number of experi-
mental results have come in, it follows trivially that the successive amounts
of probability increase must eventually diminish, and this is so whether the
results come from repetitions of the same experiment or from perfor-
mances of different experiments. Of course, one’s intuition is that the
diminution ought to set in sooner and ought to be steeper in the former
cases than in the latter cases. Instances of this intuition cannot be demon-
strated from the probability calculus alone, and in that sense Bayesians
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cannot meet Griinbaum’s challenge. But if judgments as to variety of
evidence are not a priori but depend upon judgments about how the world
is organized, then the Bayesian should not be embarrassed in rejecting the
stringent form of Griinbaum’s challenge. There would most certainly be an
embarrassment here if the Bayesian apparatus could not be used to ana-
lyze variety of evidence, but as I tried to indicate in chapter 3, the appara-
tus appears to be promising in this regard.
Griinbaum also issued a second related challenge:

Does Bayesianism sanction the credibilification of a new hypothesis by a sufficient
number of positive instances which are the resuits of NON-risky predictions? For
example, would a sufficient number of cases of people afflicted by colds who drink
coffee daily for, say, two weeks and recover not confer a posterior probability
greater than 1/2 on the new hypothesis that such drinking cures colds? (1976,
p. 243)

He is pessimistic that the Bayesian can respond in the negative, for apart
from some restricted cases, he writes, the Bayesian formalism will typically
permit the following: “In the case of those successful but non-risky predic-
tions which are supportive, a sufficient number of them will credibilify a
hypothesis to be more likely true than not” (1976, p. 244). The qualifier
“non-risky” is crucial, since without it the claim is demonstrably false for
theoretical hypotheses or more generally for the case where many compet-
ing hypotheses cover the same data. This is easily shown in the HD case
where the predictions are deductively entailed by the hypothesis and the
background information.

Counterclaim 1 Suppose that {H,K} = E;, i=1, 2, .... Then it is not
the case that Pr(H/E; & E, & ... & E, & K) - 1 as n — oo if there is an
alternative H' such that {H’,K} = E; for each i, K = 1(H & H'), and
Pr(H'/K) > 0.

Proof By Bayes’s theorem,

Pr(H/E, & E, & ... & E,& K) _ Pr(H/K)
Pr(H/E,& E, & ... & E,& K) Pr(H'/K)’

Since H and H' are incompatible, given K, Pr(H/X & K) + Pr(H'/X &
K) < 1. So if the posterior probability of H were to go to 1, the posterior
of H' would go to 0, with the result that (Pr(H/K)/Pr(H'/K)) = +c and
thus that Pr(H'/K) = 0.
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Counterclaim 2 Suppose that {H,K} = E;,i=1,2,.... Then Pr(H/E, &
E, & ...& E, & K) < .5for all n if there is a rival H' such that {H',K}
E,foreachi, K = 11(H & H’), and Pr(H'/K) > Pr(H/K).

Proof Similar.

Perhaps Griinbaum’s claim will hold when the qualification ‘nonrisky’
is restored. But on behalf of the Bayesian, I ask for the precise sense of
‘nonrisky’ to be supplied, and I predict that when this is done, either the
claim will not prove to be correct, or else the resulting Bayesian credibilifi-
cation will not be counterintuitive.

In fairness to Griinbaum, I should note that I have not responded to the
core of his worry that Bayesian methods are not helpful in evaluating
causal hypotheses, such as that drinking coffee cures colds. “And how, if at
all,” he asks, “does the Bayesian conception of inductive support enjoin
scientists to employ a control group in the case of this causal hypothesis ...
with a view to testing the rival hypothesis that coffee consumption is
causally irrelevant to the remission of colds?” (1976, p. 243). I am of the
conviction that causal talk is a mare’s nest of confusions, snares, and
delusions. In any case, I insist that a prelude to successful hypothesis
testing is a precise statement of the hypothesis in noncausal language.
Thus, perhaps what is meant by the claim that coffee consumption cures
colds is simply that the rate of remission among people who drink coffee
is higher than among those who don’t, other factors being constant. If so,
the need for a control group is self-evident. Or perhaps the claim is meant
to point to a hypothesis about the action of some chemical ingredient of
coffee either on the immune system or directly on cold viruses. But again,
this version of the hypothesis needs to be stated precisely either as a
universal or a statistical generalization, without weasel causal words. And
once this is done, I am confident that Bayesianism is competent to illumi-
nate the methodology of testing the generalization.

7 Goodman’s New Problem of Induction

Enough ink has been spilled over Goodman’s “new problem of induction”
to drown an elephant. Not surprisingly, most of the spill is directed at
Goodman’s notion of “entrenchment” and his attempts to use this notion
to fashion rules of projectability. What is more than a little surprising is the
paucity of literature devoted to clarifying what the new problem is sup-
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posed to be. The need for such a clarification will, I trust, soon become
evident.

Goodman takes Hume to task not for his descriptive approach to the
problem of induction but for “the imprecision of his description™:

Regularities in experience, according to [Hume], give rise to habits of expecta-
tion.... But Hume overlooks the fact that some regularities do and some do not
establish such habits.... Regularities are where you find them, and you can find
them anywhere. ... Hume’s failure to recognize and deal with this problem has been
shared even by his most recent successors. (1983, p. 82)

According to Goodman, the remaining problem left unresolved by Hume
is to describe which hypotheses are and which are not capable of receiving
confirmation from their instances.

To begin the discussion of this form of Goodman’s problem, suppose
that instances are taken in the HD sense, i.e., the instances E,, i = 1,2,...,
are deductive consequences of hypothesis H and the background
knowledge K. (If you want H to be a universal conditional, such as
(Vi)(Pa; = Qa,), take the instances E, to be of the form (Pa; — Qa;), or else
let K state that all the objects examined are P’s and take the instances to be
of the form Pa; & Qa;.) Then we know that H is confirmable by its in-
stances in the sense that Pr(H/E; & K) > Pr(H/K), at least if

0 < Pr(H/K), Pr(E,/K) < 1.

So if we exclude the cases where H or E; is already known to be almost
surely true or almost surely false, Goodman’s new problem would seem to
boil down to identifying the hypotheses to which nonzero priors are to be
attached. Unfortunately, this formulation does not accord with the exam-
ples Goodman gives and in particular with his claims that the hypothesis
“All men now in this room are third sons” is not confirmed by the finding
that some particular man now in this room is a third son, and that “All
emeralds are grue” is not confirmed by the evidence that emeralds exam-
ined before the year 2000 are all green.® For it is much too draconian to
suppose that these and other hypotheses in the target class of unpro-
jectable hypotheses are to be initially and forever condemned to limbo by
receiving zero priors. (If this is right, it follows that the difference between
a projectable hypothesis and a nonprojectable one cannot lie merely in the
difference in the prior probabilities of these hypotheses. Of course, if belief
change goes via conditionalization, with Pr,., (‘) = Pr,4(-/E), the differ-
ence must lie in the prior probabilities in the sense of the entire Pr,4(*)
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distribution. But it remains to pinpoint more precisely the features of
Pr,,4(-) that make for the difference. That is the task undertaken below.)

A natural response to such examples is to distinguish, as suggested
above in section 4, between genuine confirmation and mere content cut-
ting. The third son and the grue hypotheses may be confirmed, in the sense
of having their probabilities raised, by the positive instances in question.
But intuitively, the probability goes up only because part of the content of
the hypotheses has been exhausted, and the past instances do not serve to
boost confidence that future instances will conform to the predictions of
the hypothesis. Goodman himself puts the point this way: genuine confir-
mation occurs “only when an instance imparts to the hypothesis some
credibility that is conveyed to other instances” (p. 69). In keeping with
Goodman’s terminology, let me apply the term ‘projectable’ to a hypothe-
sis capable of receiving such genuine confirmation from its instances.’

Bayesians will not be easily convinced that they have been presented
with a persuasive distinction, for the new understanding of the new prob-
lem seems to leave us with the same conundrum as before. Let us say that
relative to K, H is weakly (respectively, strongly) projectable in the future-
moving sense over its instances E,, E,, ... just in case

i (v g 5 ) -

n—w i<nm

10

(respectively, lim Pr( & EJ/& E; & K) = 1).
m,n— o n<j<n+m i<n

Similarly, we can say that relative to K, the predicate ‘P’ is weakly (respec-

tively, strongly) projectable in the future-moving sense over the individuals

a,, a,, ... just in case

lim Pr(Pa,,H/& Pa; & K) =1

n—+w i<m
(respectively, lim Pr( & Pg / & Pa & K) = 1).
m,n—>wm n<j<n+m i<n

Now a sufficient condition for both the weak and strong projectability of
H is that Pr(H/K) > 0.

Proof of the sufficiency for weak projectability (H. Jeffreys) By Bayes’s
theorem and the fact that {H,K} |= E;,
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_ Pr(H/K)
- Pr(E,/K) x Pr(E,/E; & K) x -+ x Pr(E,.,/&i<n E: & K)'

If Pr(H/K) > 0, the denominator on the right-hand side will eventually
become smaller than the numerator, which contradicts an axiom of proba-
bility, unless Pr(E, /&<, E: & K) > 1 as n — oo.

Proof of the sufficiency for strong projectability (Huzurbazar) Rearrange
Bayes’s theorem to read

Pr(& E,./K) = Pr(H/K)/Pr (H /

i<n

‘ E,.&K).

i<n

Setting u, = Pr(& ;<. Ei/K), we see that u, > Pr(H/K) > 0. Since u,,, =
u, X Pr(E,;1/&i<nE: & K) and u,, u,, ... is a monotone decreasing
sequence bounded from below, it must have a limit L > Pr(H/K) > 0.
Thus, lim,, ,,, o(tp+m/t,) = L/L = 1.

As a result, Pr((Vi)Pa;/K) > 0 is a sufficient condition for both weak and
strong projectability of ‘P’.

We know from previous sections that Pr((vi)Pa;/K) > 0 is not a neces-
sary condition for weak projectability of ‘P’. We can say a bit more about
this matter under the assumption of exchangeability (R1’). Applying de
Finetti’s representation theorem (section 2), we see that the necessary and
sufficient condition for the failure of weak projectability is

1 +1

lim M <1

n—o _“ 0 ontu(do)

The label (CM) is chosen to indicate a closed-minded attitude, for (CM) is
equivalent to the condition that u([0,6*]) =1 for some 6* < 1, which
rules out any possibility for an instance of ‘P’ to have a probability greater
than 6*. The extreme case of closed-mindedness is a p concentrated on a
point. For example, if u({1/2}) = 1, then each instance of ‘P’ is assigned a
probability of 1/2 independently of all the other instances. Thus the user
of the resulting Pr function is certain of the probability of an instance of
‘P’, so certain that no number of other instances will change her mind. The

(CM)
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probability measure advocated by Wittgenstein in the Tractatus, already
encountered in chapter 1, had this character.

Another sense of projectability for predicates sometimes used in the
literature is codified in the definition that relative to K, ‘P’ is somewhat
projectable in the future-moving sense over the individuals a,, a,, ... just in
case for each n,

Pr (Pa,,+1/& Pa; & K) > Pr (Pa,,/ & Pa & K).

i<n i<n—1
Under exchangeability, this sense of projectability holds unless u is con-
centrated on some value of 0, as can be seen by applying the Cauchy and
Schwartz inequality. Thus the case of a closed-minded but not completely
closed-minded p provides an example where ‘P’ is somewhat but not
weakly projectable.

To return from this digression, the main point is that we still have failed
to locate a persuasive “new problem” of induction. Projectability as con-
strued above fails to separate green from grue, except on the implausible
assumption that the grue hypothesis is to be assigned a flatly zero prior
and the green hypothesis a nonzero prior.

Perhaps the failure is due to using the wrong definition of projectability.
Let us try a somewhat different tack by introducing a doubly infinite array
of individuals: ..., d_,, A_p41»s ---» Ag> Ays ---s Au_y, Gy, ... The axiom of
continuity, should we choose to employ it here, would be written as

Pr((Vi)Pa;) = lim Pr( & Pai). (A4)
n—o0 -n<i<n

And we can say that relative to K, ‘P’ is weakly projectable in the past-

reaching sense just in case for any n,

Pr(Pa,,,/Pa,& Pa,_, & ... & Pa,_, & K) > 1

as k — + oo, and similarly for strong projectability. To illustrate the differ-
ence between the past-reaching and the future-moving senses of project-
ability, think of the individuals as a doubly infinite sequence of days
stretching infinitely into the past and the future, and take Pa; to mean that
the sun rises on day i. Then the past-reaching sense of projectability re-
quires that one’s confidence that the sun will rise on some fixed future day
approaches certainty as the experience of sunrises stretches further and
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further into the past, whereas the future-moving sense requires only that
one’s confidence in a new sunrise approaches certainty for a shifting future
day that recedes into the future along with the accumulating instances of
new dawns. Practical inductive inference requires that we stand pat in the
present and lay our bets on the happenings of a fixed future day. Thus the
unresolved component of Hume’s problem can arguably be identified with
the task of describing the hypotheses and predicates we take to be project-
able in the past-reaching sense. We have finally arrived at a real problem.
For projectability of a predicate to hold in the future-moving sense, it is
sufficient for the universal generalization over the predicate to receive a
nonzero prior. But not so for the past-reaching sense of projectability, as
Goodman’s own examples show. Consider a predicate ‘P’ and a grue
analogue ‘P* defined by

P*a, = [((i < 2000) & Pa;) v ((i > 2000) & ~1Pa;)],

where i ranges from 1 to + co. Nothing in the probability calculus prevents
us from assigning nonzero priors to both (Vi)Pa; and (Vi) P*a;, in which
case it follows both that Pr(Pa,. /&;<,Pa)— 1 and that Pr(P*a,,,/
&i<n P*a;) = 1 as n — co. But contrary to what Popper suggests in appen-
dix 7 of The Logic of Scientific Discovery (see section 2 above), no contra-
diction results, since the rates of convergence need not be the same. Indeed,
Goodman’s examples prove that the rates of convergence cannot be uni-
form over different predicates (see Howson 1973).

Now let i range between —oo and + co. The assignment of positive
priors to both (Vi) Pa; and (Vi)P*a; does not guarantee, on pain of contra-
diction, that ‘P’ and ‘P*’ are both projectable in the past-reaching sense, for
otherwise we would have both

Pr(Pa;o01/Paz000 & Pa1sgs & ... & Pajg00-1) = 1
as k - + oo and
Pr(P*a001/P*a3000 & P*a1999 & ... & Pa*ayg00-4) > 1

as k- + oo, which is a contradiction, since P*a,yo, is equivalent to
T1Pay01, While P*a,400, P*a1949, . .. are equivalent to Pa, g0, Pajg99, - - - -

Whether the line between projectable and nonprojectable hypotheses in
the past-reaching sense is to be drawn in terms of entrenchment or the like
is an issue I will not broach here. What I will note is that if exchangeability
holds for ‘P’, past-reaching projectability for ‘P’ is equivalent to future-
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moving projectability. This occasions two further remarks. The first is that
if we assign nonzero priors to both (Vi) Pa; and (Vi)P*q;, then we cannot
consistently take exchangeability to hold for both ‘P’ and ‘P*’. Conversely,
if we take exchangeability to hold for both, then consistency demands that
one of the measures u and u* in de Finetti’s representation theorem be
closed-minded. The second remark is that in the demonstrations of project-
ability, exchangeability is functioning as a uniformity-of-nature postulate.
This allows Goodman to revive his original point: uniformities are where
you find them, and you find them everywhere. The Bayesian apparatus
allows Goodman’s problem to be stated in a more precise form. If we want
to be open-minded, then we have to make careful choices of where to see
uniformity in the sense of exchangeability.

Another nice feature of the analysis is that Hume’s old problem and
Goodman’s new problem are seen to be facets of the general problem of
underdetermination of hypotheses by evidence. In chapter 6, I will consid-
er the extreme form of this problem where theoretical hypotheses are
underdetermined by all possible observational evidence. As a result of this
underdetermination, no amount of evidence will force a merger of opinion
or convergence to certainty about the true hypothesis. Here we are con-
fronted with a more limited but no less interesting form of the problem: the
underdetermination of observational hypotheses about the future by all
possible evidence about the past. As a result, no amount of past evidence
forces convergence to certainty about the true hypothesis, at least not
without the help of substantive assumptions, such as exchangeability.

The above remarks help us to appreciate an important but now largely
forgotten exchange between Goodman and Carnap in 1946 and 1947.
Goodman’s “Query on Confirmation” (1946), directed primarily at Hem-
pel and Carnap, concluded that what these authors had given us was
“an ingenious and valuable logico-mathematical apparatus that we may
apply to the sphere of projectable or confirmable predicates whenever we
discover what a projectable or confirmable predicate is” (p. 385). Carnap’s
response came in a paper entitled “On the Application of Inductive Logic”
(1947). There he demanded that the qualities or relations designated by the
primitive predicates of his confirmation language be “simple,” i.c., not
analyzable into simpler components. Purely qualitative properties (e.g.,
‘blue’) are then defined as those that can be expressed without the use of
individual constants but not without the help of primitive predicates.
Purely positional properties (€.8., ‘x = a,4’), by contrast, can be expressed
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without the help of primitive predicates. And finally, mixed properties (¢.g.,
‘x is red or x = a,g’) are ones that fall into neither of the previous catego-
ries. Carnap tentatively proposed that all purely qualitative properties are
projectable, while purely positional ones are not, and he was inclined to
think mixed properties are not, “but this requires further investigation”
(p. 146). Goodman’s charge of incompleteness is, then, rebutted, since all
the primitive predicates of the confirmation language are simple and there-
fore projectable, and as for the complex predicates, it is only a matter of
applying c* (which was then Carnap’s favorite confirmation function) and
seeing what the results are."’

The reader familiar with Goodman’s style can easily guess the gist of his
rejoinder, published as “On the Infirmities of Confirmation-Theory”
(1947). Goodman began by rejecting Carnap’s root assumption that there
are absolutely simple properties. “The nature of this simplicity is obscure
to me since the question of whether or not a given property is analyzable
seems to me to be quite as ambiguous as the question whether a given body
is in motion” (p. 149). Goodman then complained that

we are offered no evidence or argument in support of Carnap’s conjecture that
cither the class of purely qualitative predicates is identical with the class of intu-
itively projectable predicates, or that such predicates as are projectable though not
purely qualitative will also prove to be projectable by his definition. The first
alternative seems prima facie dubious since predicates like “solar,” “arctic,” and
“Sung” appear to be intuitively projectable but are not purely qualitative; the
grounds for the second alternative are not evident. (Pp. 149-150)

We can now see that something is to be said for either side in this debate.
In favor of a Carnapian or more generally a probabilistic approach is that
the use of the probability calculus, so conspicuously absent in Goodman’s
writing on induction, leads to a significant clarification of the problem of
projectability.'? Specifically, it allows us to distinguish different senses of
projectability and to prove results about the conditions under which pro-
jectability in one or more of these senses holds or fails. As a case in point,
we have seen that if the “purely qualitative” nature of a predicate ‘P’ is
taken to imply exchangeability (and Carnap so took it) and the u of de
Finetti’s representation theorem is not closed-minded, then no Good-
manian excursions into the pragmatics of entrenchment or the like are
needed, for it is demonstrable that ‘P’ is projectable.

Such results, however, do not entirely justify the closing paragraph of
Carnap’s paper:
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If somebody were to criticize an axiom of Euclidean geometry because it does not
contain a rule specifying for which particular class of triangles the Pythagorean
theorem holds, the author of the system might reply: no additional rule is required,
the axiom system is complete; take it and discover for yourself under what condi-
tions the theorem holds. If anybody misses in my system of inductive logic a rule
specifying the particular kind of properties for which inductive projection is per-
mitted, the reply is: no additional rule is required; the definition of degree of
confirmation is complete, and is sufficient to determine the kind of property for
which projectability holds. (1947, p. 147)

But it remains to be established that the class of predicates that are “purely
qualitative” in the intuitive sense (e.g., ‘blue’) is or ought to be identified
with the class that underwrites the technical results on probabilistic project-
ability. Thus Goodman’s original complaint stands, but a major proviso is
needed. The “ingenious and valuable logico-mathematical apparatus” that
Goodman thought to be so much idle machinery without a prior solution
to the problem of projectability turns out to have a positive role in framing
the problem.

As a postscript, I will mention one episode in a fascinating correspon-
dence between Carnap and Hempel that took place during the period of
1946 to 1947, when Goodman introduced the grue problem.'* At one
point Hempel commented that Goodman’s problem is closely related to
the shopworn point that “any given finite evidence satisfies several incom-
patible general regularities, which lead to different predictions for future
cases.”'* I, of course, agree with Hempel’s remark, since it identifies Good-
man’s problem as an aspect of the general problem of underdetermination.
But I want to note that if ‘satisfies’ is taken to mean confirms, then
Hempel’s remark is a strange one for him to have made, since one of the
adequacy conditions he imposes on an account of qualitative confirmation
is the consistency condition, requiring that the set of hypotheses confirmed
by any self-consistent evidence must be mutually consistent (see chapter 3).
If one is thinking of hypotheses that are confined to observational general-
izations that can be stated in first-order predicate logic without function
symbols (as Hempel was when writing “Studies in the Logic of Confirma-
tion,” 1945), then a consistent E will not “satisfy” incompatible hypotheses
unless Goodmanized predicates are involved (a possibility Hempel did not
envision when writing “Studies™). Indeed, we can use this fact to define the
notion of a Goodmanized predicate, or rather, we can say of two predicates
that each is Goodmanized relative to the other just in case the semantic
rules of the language allow that there are individuals that simultaneously
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satisfy both predicates, whereas for other individuals to simultaneously
satisfy both implies a contradiction. (Which member of the pair is “really”
Goodmanized is, as Goodman has shown, a delicate matter to decide.) 1
think that the fact that Goodmanized predicates have to be employed in
the limited setting presupposed by Hempel confirmation theory to pro-
duce examples of evidence that satisfies incompatible hypotheses is in part
responsible both for the misimpression that Goodman’s problem involves
a trick and for the further misimpression that the problem is to be solved
by a clever logical maneuver. When we move to a richer language, both
misimpressions immediately disappear, for when hypotheses formulated
in a theoretical vocabulary are allowed, it is easy to produce examples
where the same evidence satisfies any number of incompatible hypotheses
that do not involve any gerrymandered predicates. What is then called
for is not a clever logical maneuver but a judgment as to which of the
conforming hypotheses is better supported by the evidence. This is a
problem for which Bayesianism seems tailor-made. In later chapters we
will see how well the clothes fit.

Finally, I cannot resist speculating about how the later Carnap should
have responded to Goodman’s Fact, Fiction, and Forecast.'* The Carnap
I have in mind was tending in his later years more and more toward
Bayesian personalism. This Carnap should have said to Goodman, “You
applaud Hume’s descriptive approach to the problem of induction, but
you fault him for the inaccuracy of his description. I fault your approach
in Fact, Fiction, and Forecast on the same grounds. You set for yourself
the task of describing rules of projectability with which all (rational?)
inductive agents operate. There are no rules of the kind you seek. Different
agents project different predicates to different degrees, and the only con-
straints on the projections are those provided by Bayesian personalism.”
In chapter 6, I will examine the implications of such a position for the
objectivity of scientific inference.

8 Novelty of Prediction and Severity of Test

In this chapter and the preceding one I have emphasized the merits of the
Bayesian approach to confirmation. In the following chapters I will focus
on what I take to be the most serious weaknesses of Bayesian methodol-
ogy. In between these two extremes lies a murky area where it is hard to
discern whether Bayesianism earns merits or demerits.



114 Chapter 4

A prime instance of the murk stems from the widely held notion that
novelty of predictions is an important factor in assessing the evidential
support of theories. Many commentators have focused on what may be
dubbed temporal novelty, and various remarks in the literature indicate
that the following is taken to be a methodological truism about temporal
novelty:

N1 Suppose that T |= E. If E was already known to be true prior to the
articulation of T, then E does not confirm T.

Or more cautiously:

N2 Suppose that T |= E, and T = E,. If E, was known to be true prior
to the articulation of T whereas E, became known only afterward, then E,
confirms T more than does E;.

Both (N1) and (N2) are subject to solid counterexamples drawn from the
history of science, as will be discussed in detail in chapter 5. (For instance,
take T to be Einstein’s general theory of relativity [GTR], E, to be the
data about Mercury’s perihelion, and E, to be the data about the bending
of star light during a solar eclipse. E; but not E, was known to be true
prior to the articulation of GTR. But almost without exception, physicists
say that E, affords GTR better confirmation than does E,.) The fact that
“old evidence” can give better confirmational value than “new evidence”
poses a major problem for Bayesianism. In this section I will have to ignore
as best I can this thorny problem.

John Worrall (1985, 1989) has championed the importance of novel
predictions, but for him it is use novelty as opposed to temporal novelty
that matters. In broad terms, his claim is the following:

N3 Suppose that T; = E and T, = E. If E was used in constructing T,
but not in constructing T,, then T, receives more support from E than
does T;.

The Bayesian evaluation of (N3) begins with the observation that since
both T; and T, are assumed to entail E, it follows that Pr(T, ,/E) —
Pr(T; ,) = Pr(T,,,)[(1/Pr(E)) — 1]. So if ‘support’ in (N3) is interpreted as
incremental confirmation (and if the problem of old evidence is ignored),
(N3) is valid by Bayesian lights just in case Pr(T,) > Pr(T;) whenever E
was used in constructing T, but not T,.
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The notion that E was used in constructing T; is vague and ambiguous.
(For example, did Einstein use the data concering Mercury’s perihelion in
constructing GTR? As will be seen in chapter 5, the answer is affirmative
in the sense that on the way to the final version of his theory he rejected
alternative theories because they failed to yield the correct perihelion
prediction. On the other hand, he didn’t explicitly use the perihelion data
in constructing his field equations, and he had to do an elaborate calcula-
tion to convince himself that these equations did predict a shift of 43
seconds of arc per century.) However, there is a clear-cut class of cases,
namely, those where T, comes from a more general theory Ty by fitting T}
to E, e.g., T| contains a free parameter whose value is fixed or at least
circumscribed by E. A concrete example is supplied by the Brans and
Dicke theory of gravitation. Until the value of the parameter w is fixed, the
theory yields no definite prediction about the three classical tests of GTR:
the advance of the perihelion of Mercury, the bending of light, and the red
shift. But the results of these three experiments place constraints on w.
Since these results were not used in constructing GTR—at least not in the
parameter-fixing sense, since GTR contains no free parameters—it follows
from (N3) that GTR should be better supported by the classical tests than
the constrained Brans and Dicke theory. However, my informal survey has
found that research workers in relativistic gravitational theory do not
show much enthusiasm for this conclusion. On the Bayesian analysis, this
is not surprising, since it not at all clear that GTR deserves a higher prior
than the constrained Brans and Dicke theory.

What is Worrall’s rationale for (N3)? He writes,

As for the question of why it should matter, once a theory has been produced, how
it was produced, my answer in outline is this. Whether or not it can be given some
further rationale, we do seem to regard the striking empirical success for a theory
as telling us something about the theory’s overall—what? Truth? Verisimilitude?
Probable truth? General empirical adequacy? Closeness to a natural classification?
Take your pick. The reasoning appears to be that it is unlikely that the theory
would have got this phenomenon precisely right just “by chance,” without, that is,
the theory’s somehow “reflecting the blueprint” of the Universe. The choice be-
tween the “chance” explanation and the “reflecting the blueprint” explanation of
the theory’s success is, however, exhaustive only if a third possibility has been ruled
out—namely that the theory was engineered or “cooked up” to entail the phenom-
enon in question. In this latter case, the “success” of the theory clearly tells us
nothing about the theory’s likely fit with Nature, but only about its adaptability
and the ingenuity of its proponents. (1989, p. 155)
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The Bayesian need not be unsympathetic to these sentiments, for insofar
as Worrall’s rationale is a good one, it can be given a Bayesian reading,
since information about the genesis of a theory is clearly relevant to the
assessment of its prior probability. The rationale doesn’t appear to be a
good one in the clearest class of cases where E is used in the construction
of T, the parameter-fixing cases. There may be other cases where the theory
is cooked up to yield E in some sufficiently unappetizing way so that, as
Worrall says, the success of the theory is more a reflection of the ingenuity
of its proponents than of the likely fit of the theory with nature. But this is
precisely what the Bayesian would construe as a plausibility argument that
nudges lower the assignment of the prior probability to the theory.

Two rejoinders to the Bayesian assay of (N3) are worth mentioning. The
first is that since the assignment of priors is a tricky and subjective busi-
ness, the Bayesian reading of (N3) gives it a much less firm status than it
was intended to have. On behalf of the Bayesians I reply that this is as it
should be, since the implication of novelty for confirmation is a matter
of considerable disagreement among both scientists and philosophers of
science. (But, of course, the problem of priors cannot be swept under the
rug. It will receive my full attention in chapter 6.) The second rejoinder is
that the Bayesian interpretation of Worrall’s rationale relies on a judgment
of the efficacy of a plausibility argument, and on pain of circularity,
the judgment cannot be analyzed in Bayesian terms. This objection was
already considered in section 9 of chapter 2.

Presumably, the proponent of use novelty should also subscribe to the
following:

N4 Suppose that T|= E, and T = E,. If E, but not E, is used in the
construction of T, then T receives more support from E, than from E;.

On the Bayesian analysis, (N4) is valid just in case Pr(E,) < Pr(E,) when-
ever E, but not E, is used in the construction of T. Since this condition is
patently absurd—why should the prior likelihood of the evidence depend
upon whether it was used in constructing T?—the Bayesians and the
proponents of (N4) are at loggerheads. I leave it to the reader to judge who
the winner is by considering historical examples.

Deborah Mayo (1991) has argued that the concern with novelty is
misplaced. What is really at issue, she maintains, is the severity of a test of
a hypothesis, and the resort to novelty is but a ham-handed way of trying
to guarantee severity. While I tend to agree with her diagnosis, I am
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concerned that her own criterion of severity is too demanding. According
to her account, passing a test with outcome E counts as support for
hypothesis H only if the test is severe in that the probability is high that
such a passing result would not have occurred were E false. I take this
subjunctive clause to imply that Pr(E/1H & K) is low (where K is the
background knowledge). If this consequence obtained, it would be a beau-
tiful result, since if H and —1H have comparable priors, it follows that out-
come E gives H a high posterior probability (see chapter 7). The difficulty
is that when high-level theoretical hypotheses are at issue, we are rarely in
a position to justify a judgment to the effect that Pr(E/71H & K) « 5. If
we take H to be Einstein’s general theory of relativity and E to be the
outcome of the eclipse test, then in 1918 and 1919 physicists were in no
position to be confident that the vast and then unexplored space of possi-
ble gravitational theories denoted by “IGTR does not contain alternatives
to GTR that yield the same prediction for the bending of light as GTR.
Today we know that "1GTR contains an endless string of such theories.
The difficulties this makes for a Bayesian account of the confirmation of
theories like GTR will be discussed in chapter 7.

9 Conclusion

Perhaps full-time Bayesians will not be satisfied with my efforts at defend-
ing their doctrine. But I trust that I have managed to reveal one of the
undeniably impressive properties of Bayesianism: the more it is attacked,
the stronger it gets, and the more interesting the objection, the more
interesting the doctrine becomes. This feature, together with the positive
successes of Bayesianism and the failures of alternative views, certainly
justify giving Bayesianism pride of place among approaches to confirma-
tion and scientific inference.
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5 The Problem of Old Evidence

1 Old Evidence as a Challenge to Bayesian Confirmation Theory

One of the great virtues of Bayesian confirmation theory is its ability to
pinpoint and explain the strengths and weaknesses of rival accounts, or so
it was claimed in chapters 3 and 4. Recall, in particular, that I claimed that
Bayesianism explains why the HD method of confirmation works as well
as it does. To review, suppose that the confirmatory power of E for T is
measured by C(T, E) = Pr(T/E) — Pr(T).! Suppose further that (1) T = E
(the basic HD condition), (2) 1 > Pr(T) > 0, and (3) 1 > Pr(E) > 0. Then
by Bayes’s theorem, C(T,E) > 0, in consonance with the HD method.
Furthermore,

C(T & X, E)/C(T,E) = Pr(T & X)/Pr(T) = Pr(X/T),

which shows how tacking an irrelevant conjunct X onto T serves to reduce
confirmatory power.

This display of virtue also serves to reveal an Achilles’ heel of Bayesian-
ism, or so Glymour (1980) has argued. To see the difficulty in concrete
terms, take the time to be November 1915, when Einstein formulated the
final version of his general theory of relativity (GTR) and when he first
showed that this theory explains the heretofore anomalous advance of the
perihelion of Mercury.? The nature of Mercury’s perihelion had been the
subject of intensive study by Le Verrier, Newcomb, and other astronomers,
and so the relevant facts E were old evidence. In Bayesian terms, this
means that for any agent who was conversant with the field and who
operated according to the model of learning from experience by strict
conditionalization (see chapter 2), Pr;4,5(E) = 1. Thus condition (3) above
fails, with the results that Pr, o, s(T/E) = Pr,4,5(T) and C(T, E) = 0 for any
T and thus for GTR in particular,which seems to run counter to the
generally accepted conclusion that the facts E did in November 1915 (and
still do) provide strong confirmation of GTR. Indeed, in an exhaustive
survey of the literature Brush (1989) found that with very few exceptions
physicists have held that the perihelion phenomenon gives better confir-
mational value than either of the other two classical tests—the bending of
light and the red shift—despite the fact that the former was old news while
the latter two represented novel predictions.

Replacing the incremental with the absolute criterion of confirmation,
according to which E confirms T at ¢ just in case Pr,(T/E) > r for some
fixed r > 0, allows old evidence to have confirmational value. But the value
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of the absolute degree of confirmation may not capture the strength of the
evidence, since if E' and E” are both old at ¢, then Pr,(T/E’) = Pr,(T/E") =
Pr(T).2

In section 2, I will examine some preliminary attempts to solve or
dissolve the problem of old evidence. Although unconvincing, these at-
tempts nevertheless serve the useful functions of distinguishing different
versions of the problem and of pinpointing the version most worthy of
attention. Sections 3 to 5 discuss an approach to this worthy version due
to Garber (1983), Jeffrey (1983a), and Niiniluoto (1983). Section 6 takes up
the neglected flip side of the old evidence problem: the problem of new
theories. Section 7 summarizes some pessimistic conclusions for the pros-
pects of Bayesian confirmation theory in the light of the old-evidence
problem.

2 Preliminary Attempts to Solve or Dissolve the Old-Evidence
Problem

Resorting to an objectivist interpretation of probability would help if it led
to Pr(E) < 1 for old evidence E. But insofar as I have a grasp of objective
probability interpreted either as propensity or as relative frequency, it
would seem that the objective probability is 1 (or else 0) for an anomalous
perihelion advance of 43 seconds of arc per century, at least on the assump-
tion that a deterministic mechanism is operating. This difficulty need not
arise if objective probability means not propensity or frequency but the
uniquely determined rational degree of belief. Thus Rosenkrantz (1983)
recommends that we compute Pr(E) relative to a “considered partition”
H,, H,, ..., H,: Pr(E) = Y., Pr(E/H;) x Pr(H,). He claims that unless E
is a necessary truth, this sum will be less than 1 and will remain less than
1, since the likelihoods Pr(E/H;) are “timeless relations.” I have two diffi-
culties with this tack. First, I am unpersuaded by attempts to objectify the
assignments of prior probabilities.* Second, if Pr(-) is interpreted as degree
of belief, rational or otherwise, then it must be time-indexed, and Pr, o, 5(E)
would seem to be 1.

Another way to try to resolve the problem of old evidence would be to
insist upon using a conditional probability function Pr(-/-) that is defined
even when the conditioning propositions have 0 unconditional probability
(see appendix 1 to chapter 2). This allows one to adopt as a measure of
evidential support C(T,E) = Pr(T/E) — Pr(T/E). When 0 > Pr(T) > 1,
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C(T,E) = (1 — Pr(T))C(T, E), so the new measure agrees qualitatively with
the old as to positive and negative relevance. But the seeming advantage
of the new measure is that in the case of old evidence (Pr(E) = 1), when
C(T, E) = 0, C(T, E) can be positive. Unfortunately, C(T, E) is not a suitable
measure of confirmatory power. In the HD case (T |= E) with old evidence
(Pr(E) = 1), C(T, E) = Pr(T), which means that all such evidence is counted
as having the same confirmatory power.>

The original problem of old evidence would vanish for Bayesian person-
alists for whom Pr(E) # 1, with Pr interpreted as personal degree of belief.®
There are both historical and philosophical reasons for such a stance. In
my running example, the literature of the period contained everything
from 41” to 45" of arc per century as the value of the anomalous advance
of Mercury’s perihelion, and even the weaker proposition that the true
value lies somewhere in this range was challenged by some astronomers
and physicists.” Of course, if we push this line to its logical conclusion, we
will eventually reach the position that no “thing language” proposition of
the sort useful in confirming scientific theories is ever learned for certain,
and the strict conditionalization model will collapse. Bayesians are hardly
at a loss here, since Jeffrey (1983b) has proposed a replacement for strict
conditionalization that allows for uncertain learning (see chapter 2).

However, denying that Pr(E) = 1 only serves to trade one version of the
old-evidence problem for another. Perhaps it was not certain in November
1915 that the true value of the anomalous advance was roughly 43" of arc
per century, but most members of the scientific community were pretty
darn sure, e.g., Pr(E) = .999. Assuming that Einstein’s theory does entail
E, we find that the confirmatory power C(T, E) of E is Pr(T) x .001/.999,
which is less than .001002. This is counterintuitive, since, to repeat, we
want to say that the perihelion phenomenon did (and does) lend strong
support to Einstein’s theory.®

In what follows, then, I will work within the Bayesian personalist frame-
work, using strict conditionalization to model learning from experience,
and I will use C(T, E) as the measure of confirmatory power. I will first
consider the response that a proper use of this apparatus shows the old-
evidence problem to be a pseudoproblem for logically omniscient Bayesian
agents. Here logical omniscience involves two elements. The first (LO1)
embodies the assumption that all the logical truths of the language L on
which Pr is defined are transparent to the Bayesian agent. This assumption
is codified in the basic axiom that if = X in L, then Pr(X) = 1. Thus failure
to accord maximal probability to logical truths of L leads to Dutch-book
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situations. The second element (LLO2) involves the assumption that the
agent is aware of every theory that belongs to the space of possibilities. In
effect, when making the starting probability assignments Pr, , the agent
formulates and considers every theory that can be stated in L. Now take a
piece of empirical evidence E about which the agent was not certain ab
initio, i.c., 1 > Pr, (E) > 0, and suppose that the agent learns E between ¢,
and t,,. Then if Pr, (T/E) > Pr, (T), a confirmational event takes place.’
That event takes place only once, since on the strict conditionalization
model, for any m > n + 1, Pr, (E) = 1. But once is enough, for at t,, we can
still say that E is good evidence for T, since the history of the present
probability function Pr, contains the relevant sort of confirmational
event.

This solution does not apply to real-world Bayesian agents who violate
(LO2). In my running example, this includes the entire physics community
in 1915, since Einstein’s general theory was not formulated until the end of
November of that year. Of course, if we could succeed in showing in
Bayesian terms how GTR was confirmed for real-life scientists in 1915,
then we could use the above strategy to cover post-1915 times.

As an aside it may be helpful here to refer to Eells’s (1985) revealing
classification of the problems of old evidence:

I. The problem of old new evidence: T was formulated before the discov-
ery of E, but it is now later, and Pr(E) = 1. So Pr(T/E) = Pr(T).
II. The problem of old evidence: E was known before the formulation
of T.
A. The problem of old old evidence: It is now some time subsequent
to the formulation of T.
1. T was originally designed to explain E.
2. T was not originally designed to explain E.
B. The problem of new old evidence: It is now the time (or barely
after the time) of the formulation of T
1. T was originally designed to explain E.
2. T was not originally designed to explain E.

Taking into account confirmational histories and confirmational events,

" seems to solve (I), and given a solution to (IL.B), it also serves to solve (ILA).
The remaining problem is that of new old evidence. The only places I differ
with Eells are over cases (II.A.1) and (IL.B.1), where Eells assumes that E
cannot confirm T (see the discussion below in sections 5 and 6).
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To return to the main discussion, Garber (1983), Jeffrey (1983a), and
Niiniluoto (1983) have reacted to this version of the old-evidence problem
by proposing to drop (LO1) as well as (LO2). Dropping (LO1) allows
Bayesian agents to do logical and mathematical learning, and such learn-
ing, so they claim, can serve to boost the probability of the theory, as
required by the incremental analysis of confirmation. What Einstein
learned in November of 1915, so the story goes, was that his general theory
entailed the heretofore anomalous perihelion advance, and conditionaliza-
tion on that new knowledge was the relevant confirmational event.!® I will
examine this line of attack in detail in the following sections, but before
doing so, I will comment briefly on another tack.

The alternative to Garber, Jeffrey, and Niiniluoto (GJN) is to demon-
strate incremental confirmation for counterfactual degrees of belief, using
degrees of belief the agent would have had if he hadn’t known E prior to
the formulation of T.!' But as Chihara (1987), Eells (1985), Glymour
(1980), van Fraassen (1988) and other commentators have objected, it is
not evident that the relevant counterfactual degree of belief will be determi-
nate or even that it will exist. In my historical example it is relevant that
in 1907 Einstein wrote, “I am busy on a relativistic theory of the gravita-
tional law with which I hope to account for the still unexplained secular
change of the perihelion motion of Mercury. So far I have not managed to
succeed” (Seelig 1956, p. 76). Thus it is not beyond the pale of plausibility
that if Einstein hadn’t known about the perihelion phenomenon, he
wouldn’t have formulated GTR. And if someone else had formulated the
theory, Einstein might not have taken it seriously enough to assign it a
nonzero prior, or he might not have understood it well enough to assign it
any degree of belief at all. I will return to counterfactual degrees of belief
in section 7.

3 Garber’s Approach

To illustrate how logical omniscience (LO1) can be abandoned so as to
make way for a more realistic Bayesianism, Garber (1983) begins with a

Jlanguage L in which distinct atomic sentences are treated as logically

independent and in which the nonatomic sentences are all truth-functional
compounds of the atomic ones. He then moves to a richer language L* that
contains the sentences of L and also new atomic sentences of the form
X |- Y, where X and Y are sentences of L.!2 The symbol 4’ is a primitive
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connective of L*, but the aim is to interpret it as logicomathematical
implication in whatever system of logic and mathematics is needed for the
branch of science in question. Toward this end, Garber requires that under
the Pr function, ‘"’ behaves as if it obeys modus ponens:

Pr(X Y& X)=Pr(X+FY)& X &Y) G)

Garber then shows that learning that T |- E can serve to confirm T. More
specifically, he shows that there is a probability Pr defined on the sentences
of L* and satisfying (G) such that 0 < Pr(4 |- B) < 1 whenever A and 1B
are not both tautologies of L. It may therefore be that Pr(4/4 |- B) >
Pr(4). We may wish to add the further constraint that Pr(4 |- B) = 1
whenever A —» B is a tautology of L. But since Einstein’s GTR does
not truth-functionally entail the perihelion advance evidence E, it is con-
sistent with this constraint to set Pr(GTR |- E) < 1 and thus to have
Pr(GTR/GTR |- E) > Pr(GTR).

Three criticisms have been brought against this approach. The first is
that Garber has only shown that a solution to the problem of old evidence
is possible within the framework of the Bayesian strict conditionalization
model and not that a solution of this form actually applies to the historical
case at issue. To complete the solution for the case of the perihelion of
Mercury, it would have to be demonstrated that there is a plausible set of
constraints that Einstein’s degrees of belief did or should have satisfied and
that guarantee that his learning that GTR |- E served to boost his degree
of belief in GTR. This hiatus was addressed by Jeffrey (1983a), whose
attempt to fill the gap will be examined in detail in the next section.

A second criticism of Garber’s approach derives from the observation
that his approach requires logical omniscience (LO1) with respect to the
truth-functional logic of L* but not with respect to predicate logic, arith-
metic, or calculus. But demanding knowledge of very complicated truth
functional implications can be even more unrealistic than demanding
knowledge of simple truths of arithmetic or calculus. This leads Eells (1985)
to propose that a truly realistic version of Bayesianism should set the
standard of what logicomathematical truths the Bayesian agent is sup-
posed to know in terms of complexity. I agree with Eells, but for present
purposes it suffices to stick to Garber’s preliminary version of (not
thoroughly) humanized Bayesianism.

A third, and I believe unfair, category of criticism has been leveled in
both the published literature and in informal discussions. To put it at its
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unfairest, the charge would go thus. To apply Garber’s formalism to the
problem of old evidence assumes that ‘I’ has been identified as the appro-
priate form of logicomathematical implication. But constraint (G) does not
suffice for this identification, since other relations also satisfy (G). And if
conditions sufficient to pin down the intended interpretation of ‘" are
added to (G), there is no guarantee that Garber’s demonstration of how
learning T |- E can serve to boost the probability of T will remain valid.

The response I propose on Garber’s behalf is that (G) is not supposed to
fix the interpretation of ‘. The interpretation is fixed extrasystematically,
e.g., by the intention of the agent to use ‘I’ to mean implication in some
logicomathematical system. If it is then asked why (G) was imposed in the
first place, two reasons can be given. It is important to demonstrate that
Pr assignments can be made to reflect various constraints that ‘-’ ought
to satisfy if it is interpreted extrasystematically as logicomathematical
implication. And also, (G) plays an important role in proving that in actual
historical cases Pr(T/T | E) > Pr(T), as will be seen below in section 4.

Van Fraassen (1988) is unconvinced that Pr assignments that resolve the
old evidence problem can be made to conform to constraints appropriate
to ‘I taken as a form of logicomathematical implication. In particular, he
proposes that the form of a plausible constraint for conditional proof is the
following:

If Pr'(X & Y) = Pr'(X) for all Pr’ in ¢(Pr), then Pr(X |- Y) = 1. (vF)

Here %(Pr) is the class of alternatives to Pr that allow for the generaliza-
tions involved in conditional proof. Van Fraassen then poses the following
dilemma for Garber. Suppose first that €(Pr) consists of all probability
functions that can be generated from Pr by strict conditionalization or by
Jeffrey conditionalization or, more generally, by any shift in degrees of
belief that does not change zero probabilities into nonzero probabilities.
(In the jargon of probability, Pr' must be absolutely continuous with
respect to Pr.) Then it follows from (vF) that

PriX Y)=Pr(X}F V)& (X = Y))
and that
PrX - Y)=Pr(X - Y)& (X |- Y)).

So X |- Y is probabilistically indistinguishable from material implication.
Thus if Y is old news, then so is X - Y. On the other hand, to take €(Pr)
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to include probability functions not absolutely continuous with respect to
Pr is to consider priors we might have had if we didn’t have the old
evidence. But that is to enter the mire of counterfactual beliefs that 1
decided above in section 2 must be avoided.

On behalf of Garber, I propose to escape the dilemma by rejecting (vF)
as a suitable means of reflecting conditional proof. Indeed, one can hold
that no condition like (vF) is needed to reflect the successful application of
a proof strategy, whether conditional proof or otherwise. Rather, the suc-
cess is expressed in the Bayesian learning model. Thus, suppose that at
time t, the Bayesian agent shows that X implies Y by means of a con-
ditional proof strategy, by a reductio strategy, by deriving Y from X
and the accepted axioms by means of the accepted inference rules, or by
whatever proof strategy is allowed in the relevant logic. Then the agent
has learned that X |- Y, and so on the strict conditionalization model,
P, (X Y)=1.

My own concern about Garber’s system lies not so much with qualms
about lurking inconsistencies as with doubts about its relevance to the
old-evidence problem. The axiom of probability requiring that Pr(X) = 1
if = X is not contradicted in Garber’s system by a value for Pr(GTR |- E)
lying strictly between 0 and 1, since in this system neither |=(GTR |- E)
nor = 1(GTR |- E). For in Garber’s system a possible world is given by
an assignment of truth values to the atomic sentences; thus GTR |- E is
true in some of the possible worlds and false in others. But then it is hard
to see how the formal result that Pr(GTR/GTR |- E) > Pr(GTR) bears on
the idea that my learning that the theory entails E (in predicate logic or
second-order logic or whatever) boosts my degree of belief in GTR, for the
formal result holds only for a semantics that masks what GTR |- E is
supposed to mean. In what follows, I waive this qualm because I think that
the entire approach is beset by more fundamental difficulties.

4 Jeffrey’s Demonstration

Let us now consider Jeffrey’s attempt to show how learning that T |- E can
serve to boost the probability of T. Suppose the following:

Pr(E)=1 (J1.a)
1>Pr(T)>0 (J1.b)
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1>PTHE>0, 1>Pr(Tk 1E)>0 (J2.)
Pr(T+ E) & (T  T1E)) =0 (J2.b)
Pr(TAT \~ E) v (T |+ T1E)) = Pr(T) (J3)
Pr(T & (T - 11E)) = P(T & (T E) & E) d4)

Then Pr(T/T - E) > Pr(T).
Proof
Pro(TAT+H E) v (T} TE))

_ Pr(T&(T+E)+Pr(T&(T+ TE))—Pr(T &(T+E)& (T} 1E))
- Pr(THE)+Pr(T} 1E)—Pr((T+E) & (T 1E))

3 Pr(T/T |- E)

" 14 [P(T | E)/P(T | E)}

The first equality follows by the definition of conditional probability and
the standard axioms of probability. The second equality follows from the
first, since by (J1.a) and (J.4), the second and third terms in the numerator
on the right-hand side are 0, and by (J2.b), the third term in the denomina-
tor is 0. Then by (J2.a), the right hand side of the second equality is less
than Pr(T/T |~ E). But by (J3), the right-hand side of the second equality
is greater than or equal to Pr(T), which gives the desired resulit.

Conditions (J1) and (J2.a) follow from the meaning of the problem of old
evidence. Condition (J4) is just an application of Garber’s (G). The crucial
condition is (J3), which says in application to my running example that in
November of 1915 Einstein’s degree of belief in GTR before learning that
it entailed the missing 43” was less than or equal to his conditional degree
of belief in the theory, given that the theory implies a definite result about
the perihelion advance. Eells (1985) demurs that (J3) is suspect. For exam-
ple, the above demonstration shows that in the presence of the other
conditions (J3) leads to the result that if Pr(T | E) = Pr(T  T1E),
then Pr(T/T - E) > 2Pr(T). This means that the prior probability of
T cannot be greater than .5. And as Pr(T) approaches .5, Pr(T/T |- E)
approaches 1, a wholly implausible result in the actual historical case at
issue. I would add that (J2.b) is also suspect, for if we are supposed to be
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imagining humanized, nonlogically omniscient agents, it is unreasonable
for them to be certain that a new and complicated theory is internally
consistent.

Such difficulties do not lead Ecells to reject the GIN approach. His stance
is that the Bayesian can explicate “T |- E confirms T” as Pr(T/T |- E) >
Pr(T) “without expecting there to be any single formal kind of justification
... for exactly the cases in which T |~ E should be taken as confirming T~
(1985, p. 299). While it is a fair comment that a single formal justification
cannot be expected to cover all the cases, the GIN approach loses its
interest if it cannot be shown that increases in probability will take place
in an interesting range of cases. (Suppose that in the original setting, where
the problem of old evidence is neglected, all the Bayesians could say is that
Pr(T/E) > Pr(T) happens when it happens. Then I would suggest that the
number of adherents to Bayesian confirmation theory would dwindle.
Fortunately, we can demonstrate that the inequality holds when various
relations between T and E obtain and that these relations cover many of
the cases where confirmation intuitively takes place.) It is to this question
that I now turn.

As an alternative to Jeffrey’s demonstration, consider the following:

Pr(E) =1 (Al.a)
1>Pr(T)>0 (Alb)
1>Pr(THE)>0 (A2)
Pr(THE)v(TH TE)=1 (A3)
P(T & (T 1E))=Pr(T & (T |- 1E) & T1E) (A4)

Then Pr(T/T | E) > Pr(T).
Proof
Pi(T)=P(T&[(T+ E)v (T 1E)])
=Pr(T&(T+ E))+ P(T & (T |- T1E))
—Pr(T& (T E)& (T T1E))
= Pr(T & (T |- E)).
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The first equality holds in virtue of (A3). The second follows from the first
by the addition axiom. And the third follows in virtue of (A1.a) and (A4).
Thus

Pr(T)
P(T |- E)

which, by (A1.b) and (A2), is greater than 0.

Pr(T/T b E) — Pr(T) = [1 — Px(T  E)],

Since (A3) is stronger than Jeffrey’s (J3), it might seem that this second
derivation cannot be an improvement on the first. Note, however, that the
present derivation did not have to rely on the suspect assumption that

Pr(TH E)& (T 1E)) =0.

Yet it would also seem that this approach is also subject to Eells’s type of
objection, since it follows that Pr(T/T |~ E) = Pr(T)/Pr(T | E), which
means that if Pr(T) = Pr(T | E), then Pr(T/T |- E) = 1. But the result
that Pr(T & (T |~ E)) = Pr(T)says that the agent is certain that if T is true
then T |- E. Since T |- E is (probabilistically) a consequence of T, Pr(T) <
Pr(T |- E), with strict inequality typically holding. Thus, the analogue of
Eells’s objection for the present derivation lacks bite.

Alas, the problem of old evidence in the perihelion case remains unre-
solved. The meaty condition (A3) says that upon writing down his theory,
Einstein was certain that it implied a definite result about the advance of
the perihelion of Mercury. But the historical evidence goes against this
supposition. Indeed, Einstein’s published paper on the perihelion anomaly
contained an incomplete explanation, since, as he himself noted, he had no
proof that the solution of the field equations he used to calculate the
perihelion was the unique solution for the relevant set of boundary
conditions.

Assume that Einstein’s degree of belief in GTR, conditional on the
theory’s giving the correct prediction for the perihelion of Mercury, was
greater than his degree of belief in the theory, conditional on the theory’s
giving no definite prediction about the perihelion. If we let T |- N stand
for (T | E) & (T | T1E), the assumption amounts to replacing (A3)
with

Pr(T/T — E) > Pr(T/T |~ N). (A3)
Then (A1), (A2),(A3’), and (A4) together imply that Pr(T/T | E) > Pr(T).
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Proof
Pr(T) = Pr(T/T | E) x Pt(T+ E) + Pr(T/T | 1E) x Pr(T  E)
+ Pr(T/T+ N) x Pr(T |- N).

By (Al.a) and (A4), the second term on the right-hand side is 0. And
since Pr(TH—E) + Pr(THN) < 1, Pr(THE) < 1 (by (A2), and
Pr(T/TH E) > Pr(T/T N) (by (A3)), the equality cannot hold if
Pr(T) > Pr(T/T |- E).

While the doubt left by Eells’s analysis may not have been completely
resolved in favor of the GIN approach, I think enough has been said to
make it plausible that in an interesting range of cases, learning T |- E can
serve to boost confidence in T.

5 The Inadequacy of the Garber, Jeffrey, and Niiniluoto Solution

For those Bayesians who have been persuaded by Garber, Jeffrey, and
Niiniluoto of the need to humanize their doctrine, the way is now open to
search through the Einstein archives for evidence that in November of
1915 Einstein’s beliefs conformed to (J1) through (J4) or to one of the
alternative schemes (A1) through (A4) or (A1), (A2), (A3'), (A4). Suppose
that the findings are positive (alternatively, negative). Would the problem
of old evidence with respect to GTR and the perihelion of Mercury have
thereby been shown to have a positive (alternatively, negative) solution?
Not at all. The original question was whether the astronomical data E
confirmed GTR (for Einstein, if you like). Garber, Jeffrey, and Niiniluoto
replace this question with the question of whether Einstein’s learning that
T |- E raised his confidence in the theory. Not only are the two questions
not semantically equivalent; they are not even extensionally equivalent.
We can say without a shadow of a doubt that for Einstein E did confirm
T. But we have to be prepared for the archival finding that the conditions
needed to prove that Pr(T/T | E) > Pr(T) fail for him.

The point becomes clearer when we shift from Einstein to others. We
now want to say that the perihelion phenomenon was and is good evidence
for Einstein’s theory. But along with most students of general relativity, the
first thing we may have learned about the theory, even before hearing any
details of the theory itself, was that it explains the perihelion advance. So
there never was a time for us when Pr(T |- E) < 1.
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Moreover, even if the two questions
Does E confirm T for person P?
Does learning T |- E increase P’s degree of belief in T?

should stand or fall together, there is no guarantee that the strength of
confirmation afforded by E is accurately measured by the boost given to
degrees of belief by learning T |- E. This matter is connected to the issue
of whether E can confirm a theory designed to explain E.'* It will be
helpful here to distinguish three senses in which person P might be said to
have designed T so as to explain E.

1. When P created T, he was motivated by a desire to explain E.

2. Before settling on T, P examined and rejected alternative theories that
failed to explain E.

3. In arriving at T, P went through an explicit chain of reasoning that
started with E and worked back to T.

As we move from (1) to (3), it becomes less and less surprising to P that
T | E, and therefore P’s learning that T |- E gives a smaller and smaller
boost to his degree of belief in 7. We have already seen that Einstein
satisfied (1). That he satisfied (2) is indicated by the fact that he wrote to
Sommerfeld in November of 1915 that one of the reasons he abandoned a
previous theory, constructed with the help of his friend Marcel Gross-
mann, was that it yielded an advance of only 18" per century for Mercury’s
perihelion.'* But this piece of personal history does not seem to have
diminished the confirmational value of E, as opposed to T |- E, for
Einstein. Nor would the discovery that Einstein also satisfied (3) show that
E had no confirmational value for Einstein or his fellow scientists.!*

Substituting a tractable problem for an intractable one is a time-
honored tactic. The tactic is fruitful if the solution to the tractable problem
illuminates the original problem. In this case, however, the solution given
by GIN to the Bayesian learning problem for humanized agents fails to
speak to the original problem. Further, the so-far intractable part of the
problem of old evidence is just as much a problem of new theories as of old
evidence. How probability is to be assigned to the newly minted theory is
a question that must be answered before we can begin to worry about
whether and how the probability of T is boosted by E, by T |- E, or by
whatever. The problem of new theories will be touched upon in section 6
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and discussed in more detail in chapter 8. But before I close this section, it
will be helpful to sketch a non-Bayesian account of why the perihelion data
does constitute good confirmation of GTR.

Such an account could appeal to at least four facts: (1) that GTR yields
the exact value of the anomalous advance, (2) that it does so without the
help of any adjustable parameters, (3) that the perihelion phenomenon
provides a good bootstrap test of GTR, and (4) that dozens of attempts
were made within both classical and special relativistic physics to resolve
the anomaly, all of which failed.'® By way of explaining (3), assume that
the exterior field of the sun is stationary and spherically symmetric. Then
the line element can be written as

ds? = [1 — (am/r) + 2pm?/r?) + ---]1d¢?
—[1 + @ym/r) + ---]1(dx? + dy? + dz?),

where m is the mass of the sun, r? = x2 + y? + z2, and a, f, y are undeter-
mined parameters. Einstein’s GTR requires that « = # = y = 1. The first-
order red shift depends only on a, while the bending of light depends only
on o and y. By contrast, the advance of the perihelion of a planet depends
upon all three parameters, and so the perihelion data helps to pin down a
parameter left undetermined by the other two classical tests.

The point here is that without doing any Bayesian calculations and
without solving the Bayesian problem of old evidence, we can recognize on
independent grounds the confirmational virtues of the perihelion data. Of
course, there is nothing to block Bayesians from taking into account the
factors enumerated above. But how these factors can be made part of
Bayesian calculations in the context of old evidence remains to be seen.

6 New Theories and Doubly Counting Evidence

Despite my rejection of the GIN substitution move, I agree with the main
thrust of their humanized Bayesianism: namely, a realistic theory of confir-
mation must take into account nonempirical learning. But while Garber,
Jeffrey, and Niiniluoto address the learning of logicomathematical facts,
they, like most of Bayesian authors, are silent about the learning of new
theories, despite the obvious importance of such learning for an under-
standing of scientific change.!” Indeed, I would venture that the problem
of new theories presents both a more interesting challenge and a more
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interesting opportunity for Bayesians than does the original problem of
old evidence.

In Bayesian terms, the introduction of new theories causes a humanized
Bayesian agent (who fails (LO2)) to shift from a probability function Pr,
operative before the introduction, to a new function Pr’, operative after the
introduction. And typically, Pr’ is not derived from Pr by any straightfor-
ward conditionalization process. How this transition is or ought to be
managed is a matter that I will take up in chapter 8. For present purposes,
the details of how Pr’ is generated are irrelevant.

The problem of new theories presents the opportunity to further explore
the slogan that a theory T is not confirmed by evidence E that T was
designed to explain. Suppose that E, whether fresh or stale, leads to the
proposal of a new theory 7, and suppose that this new T is assigned a
nonzero probability relative to the new Pr’ function. Then since the Pr’
assignments were made in light of E, it would seem to be double counting
the evidence to take it to confirm T in the sense of raising the Pr’ probabil-
ity of T.'® That is the kernel of truth in the slogan. (Of course, if the agent
fails logical omniscience (LO1) his assignment Pr'(T) may not accurately
reflect the evidential import of E, for he may fail to know that T |- E, and
upon learning the implication, he may change his degree of belief in T a la
Garber and Jeffrey. But this does not undercut the prohibition against
doubly counting evidence.)

It is worth noting that, looked at from the perspective of new theories,
the problem of old evidence is not a problem at all but merely an applica-
tion of the methodological truism that evidence should not be doubly
counted. But looked at from the ex post facto perspective, the problem of
old evidence is a real problem, since we want to affirm that E does after all
confirm or support T.

7 Conclusion: A Pessimistic Resolution of the Old-Evidence
Problem

The recognition that the interesting residual problem of old evidence arises
from the problem of new theories is important, for it automatically under-
cuts some of the proposed treatments of old evidence. Suppose that the
problem of a new theory has been resolved in that in reaction to the
introduction of T the Bayesian agent chooses, in some appropriate way, a
new probability function Pr' such that Pr'(T) > 0. In this setting, we
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cannot follow Howson’s (1984, 1985) prescription for resolving the old-
evidence problem by computing the difference between what the agent’s
degree of belief in T would have been if his total knowledge at the time T
was introduced had been K — {E}, and what his degree of belief in T
would have been were he subsequently to come to learn E.!° At least we
cannot take this computation to be given by the comparison of Pr'(T/K)
and Pr'(T/K — {E}), since both of these probabilities are equal to Pr'(T),
unless the very introduction of T caused the agent to become uncertain
about what he previously regarded as certain and accordingly to assign
Pr'(K) < 1. Howson’s prescription is relevant for Bayesian agents who are
logically omniscient in sense (LO2) and who change their belief functions
only by conditionalization. But it is not a prescription that will cure the
tough version of the old-evidence problem for agents who fail (LO2) and
who resort to non-Bayesian shifts in their belief functions when new
theories are introduced.

There seem to me to be only two ways to deal with the residual problem
of old evidence. The first is to ignore it in favor of some other problem.
That, in effect, is the route pioneered in the GIN approach. A perhaps
better motivation for going this route derives from the view that ultimately
our goal in scientific enquiry is to choose among competing theories, and
for that choice, what matters are the relative values of the probabilities of
the theories conditional on the total evidence, old as well as new (see,
however, chapter 7).

But if the problem is not to be ignored, the only way to come to grips
with it is to go to the source of the problem: the failure of (LO2). There are
in turn two strategies for coping with the failure of (LO2), both involving
counterfactual degrees of belief based not just on counterfactual evidence
sets but on counterfactual probability functions. One version, already
mentioned in section 2 above, imagines that the agent is empirically defi-
cient as well as logically deficient. It imagines that the agent didn’t know
E and asks what, in these circumstances, the agent’s degree of belief in T
would have been when T was introduced, and then it compares that
number with what the agent’s subsequent degree of belief in T would have
been had he then learned E. The computation is thus done using not the
probability function Pr’ actually adopted by the agent upon the introduc-
tion of T but a hypothetical function. The other version imagines what the
agent’s degree of belief in T would have been ab initio if he were not
logically deficient but were a superhuman calculator satisfying (LO1) and
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(LO2), and then it compares this number with the degree of belief this
supercalculator assigns after learning E. This calculation involves a hyper-
hypothetical probability function. I have no doubt that counterfactual
enthusiasts can concoct ways to get numbers out of one or both of these
scenarios. But what has to be demonstrated before the problem of old
evidence is solved is that the numbers match our firm and shared judg-
ments of the confirmational values of various pieces of old evidence. It
would be quite surprising if such a demonstration could be given, since the
counterfactual probabilities and thus the counterfactual incremental boosts
in confirmation will vary greatly from one person to another. Hope springs
eternal, but even if the hope is realized the Bayesian account of confirma-
tion retains a black eye for being forced to adopt such a complicated and
dubious means of accommodating such a simple and common phenome-
non in scientific inference.
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6 The Rationality and Objectivity of Scientific Inference

1 Introduction

The rationality and objectivity of scientific inference is a topic that has
been much on the minds of philosophers of science over the past few
decades. But all too often these minds have been abuzz with incommen-
surability, relativism, duck-rabbit gestalt switches, the theory-ladenness of
observation, and the like. I will have more to say about these matters in
chapter 8, but for present purposes I will assume that we have all taken a
magic pill that has cured this particular buzz. While this strategy will be
unappealing to some readers, I think it serves to make the problem of
rationality and objectivity more interesting, since, if I am right, the prob-
lem arises even if the “new fuzziness” (as Clark Glymour has dubbed it) is
set aside.

For the purest of the Bayesian personalists, the constraints of rationality
begin and end with the axioms of probability. Less extreme personalists
want to impose the conditionalization model for learning from experience
and perhaps some form of David Lewis’s principal principle (chapter 2). If
these procedural constraints are satisfied, will the resulting degrees of belief
count as rational? And if not—if there is a mismatch between the rational-
ity of the result and the alleged rationality of the procedure—can we
properly say that the procedure is fully rational? To put the matter in
concrete terms, if in the face of the currently available evidence you assign
a high degree of belief to the propositions that Velikovsky’s Worlds in
Collision scenario is basically correct, that there are canals on Mars, that
the earth is flat, etc., you will rightly be labeled as having an irrational
belief system. And if you arrived at your present beliefs within the frame-
work of Bayesian personalism, then the temptation is to say that at worst
there is something rotten at the core of Bayesian personalism and at best
there is an essential incompleteness in its account of procedural rationality.

Here the issue of rationality merges with that of objectivity. We use
epithets like ‘irrational’ and ‘crackpot’ in the case I just described and in
other cases where there is objectivity of opinion in the sense of a tight
intersubjective agreement in the relevant scientific community and where
the stigmatized person has opinions that differ radically from the consen-
sus. Such objectivity exists in science not only concerning the roundness of
the earth but for more theoretically interesting propositions as well, e.g.,
that matter has an atomic structure, that space and time are relativistic
rather than absolute, etc. One’s expectation, or hope if you will, is that
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the explanation of the intersubjective agreement on such matters is not
merely historical or sociological but has a justificatory character—other-
wise labeling as ‘irrational’ or a ‘crackpot’ those whose opinions depart
radically from the consensus would be unfounded.

This sort of talk has traditionally been thought to presuppose a meta-
physical thesis of objectivity to the effect that the object of scientific
inquiry, “the world,” exists independently of knowing subjects and that
it makes sense to say of our opinions that either they match or fail to
match this objective reality. In recent years the social constructivists have
ridiculed this thesis as an outdated piece of ideology. I will not dignify
constructivism with a response but will instead concentrate on what I take
to be a more interesting but unmet challenge to the objectivity of scientific
inference.

The popular image of science would have it that science provides us with
a methodology for generating objective opinion: apply the scientific meth-
od faithfully and long enough and eventually it will produce certitudes that
match reality, and before certainty is reached, the faithful use of the meth-
od by all the members of the scientific community guarantees objectivity
qua intersubjective agreement on degrees of belief. These degrees of belief
are rational because they are produced by an objective method of inquiry:
it is value-free and presupposition-free, it is evidence-driven, and it sanc-
tions no inference not strictly warranted by the evidence.! This straw man,
or as I would prefer to say, this wish list, has been criticized on the grounds
that nothing remotely like it can be instantiated because of incommensur-
ability, the theory-ladenness of observation, and the like. Again I am
postponing this challenge until chapter 8 to take up a more fundamental
challenge: even if we leave aside incommensurability and its fellow travel-
ers, there is still no obvious candidate for this objective method of inquiry.
Certainly Bayesianism doesn’t qualify, since it not only allows but requires
presuppositions in the form of prior probabilities.

Failure to fulfill the pop-science specifications for an objective method
of inquiry does not mean that Bayesianism cannot deliver on objectivity.
We will see that the long-run use of the Bayesian method does ‘produce
certainties that “almost surely” match reality. At least this is so for obser-
vational hypotheses; theoretical hypotheses are another matter, one that
requires careful discussion. Less satisfactory are attempts to ground objec-
tivity as intersubjective agreement for opinions that fall short of certainty.
Two of the most widely used attempts to provide the grounding within the
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Bayesian framework are (1) constraining priors and (2) the washing out of
priors. Both attempts, I will argue, have only limited success. Several other
alternatives present themselves: (3) definitional solution, (4) socialism, (5)
evolutionary solution, (6) modest but realistic solutions, (7) non-Bayesian
solutions, and (8) retrenchment. Each of these alternatives will also be
found wanting.

2 Constraining Priors

The first strategy for grounding objectivity as intersubjective agreement
proceeds by supplementing the personalist form of Bayesianism by adding
constraints on prior probabilities. The literature contains numerous and
telling objections to various attempts to implement this strategy. I will
not review this literature here but will simply indicate briefly why such
attempts are unworkable and why they would not solve the problem of
rationality and objectivity even if they were workable.

There are two reasons why such principles are unworkable. The first is
that different applications of these principles are possible, and the different
applications can yield conflicting results. This phenomenon was illustrated
in chapter 1 for Bayes’s particular application of the principle of insufficient
reason. Nor is the problem of choosing the “correct” application much
easier than the general problem of deciding what to believe. This is again
illustrated by Bayes’s case, since the application favored by Bayes leads to
an inductivist probability with a high rate of learning from experience,
whereas another application led to a noninductivist probability with no
learning from experience. What holds for Bayes’s rule for assigning priors
holds quite generally: there are different ways of conceptualizing an infer-
ence problem, and the application of the rule to the different conceptual-
izations leads to different results. The problem of choosing among the
different results is no less difficult than the original problem of assigning
priors.

Even if there were no ambiguity in the conditions of application of these
principles, there would remain the problem that the conditions are rarely
satisfied in real-life cases. Recall that Bayes assumed a condition of com-
plete ignorance regarding the unknown event. If we ignore the potential
ambiguities in this notion, the point is that such a condition will be realized
only in never-never-land Bayesianism, where an agent begins as a tabula
rasa, chooses her priors, and forever after changes her probabilities only
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by conditionalization. A more realistic Bayesianism would recognize the
local and episodic character of problem solving. In Bayesian terms, we use
different probability functions for different problem-solving contexts, and
within a context we may change probabilities not by conditionalization
but by some more radical means.? Thus, far from being a tabula rasa, the
typical scientist comes burdened with a wealth of information in trying to
make what the Bayesian would describe as decisions about prior pro-
babilities. E. T. Jaynes’s modern version of the principle of indifference tries
to take into account some of this information, since it enjoins us to maxi-
mize a quantity he calls “entropy” subject to known constraints that can
be expressed in terms of moments of the probability distribution.? But only
a small part of prior information can be expressed in these terms.

How, then, is prior information taken into account? What one finds
running through the scientific literature are plausibility arguments. In
Bayesian terms, these arguments are designed to persuade us to assign high
priors to some alternatives and low priors to othersé’Part of what it means
to be an “expert” in a field is to possess the ability to recognize when such
persuasions are good and when they are not. But it is highly doubtful that
this ability can be codified in simple formal rules. And even if it could, why
is or should only expert opinion be tolerated?

Suppose now for the sake of argument that there are workable rules for
assigning priors. There are still two reasons why these rules will not suffice
to explain objectivity. First, the explanation would have the sought-after
justificatory character only if the rules in question were accepted as norms
of rational behavior. But their normative status is highly controversial;
indeed, these rules are either explicitly rejected or else ignored by a large
segment of the Bayesian camp. Second, even if these rules were uniformly
accepted, they would not be sufficient to explain objectivity unless they
sufficed to fix the likelihoods Pr(E/H;) needed to implement the right-hand
side of Bayes’s theorem in the form (2.2). But these rules are typically
intended to fix the prior probabilities on a partition {H;} of hypotheses and
are not intended to apply to partitions such as {E & H;}, where E is a
possible data report.’ There are, of course, cases where the likelihoods do
have an objective status. The HD case, where for each i either H; & K = E
or H; & K = T1E, is one such. Another obtains when all the Bayesian
agents agree on a statistical model for a chance experiment, E repdrts
outcomes of the experiment, the H; are alternative hypotheses about the
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objective-probability parameters of the chance setup, and Lewis’s princi-
pal principle applies. But these cases hardly exhaust the domain that
would have to be covered by an adequate theory of scientific inference.
Consider, for example, as astronomers of the seventeenth century were
forced to, what probability should be assigned to stellar parallax of various
magnitudes on the assumptions of a Copernican cosmology and the then
accepted background knowledge, which contained scanty and uncertain
information about the distance between the earth and the fixed stars.®

3 The Washing Out of Priors: Some Bayesian Folklore

Many Bayesians analyze objectivity in terms of the washing out of priors.
Thus Adrian F. M. Smith writes,

I personally am only able to make sense of the concept [scientific objectivity] in
the context of a Bayesian philosophy that predisposes one to seek to report, openly
and accessibly, a rich range of possible belief mappings induced by a given data set,
the range being chosen to reflect and potentially to challenge the initial perceptions
of a broad class of interested parties. If a fairly sharp consensus of views emerges
from a rather wide spread of initial opinions, then, and only then, might it be
meaningful to refer to “objectivity.” (1986, p. 10)

The implication of Smith’s suggestion is that even if there were workable
principles for constraining priors, it would be a mistake to impose them.
It is a fact of life that scientists start with different opinions. To try to quash
this fact is to miss the essence of scientific objectivity: the emergence of an
evidence-driven consensus from widely differing initial opinions.

It is part of the Bayesian folklore that the emergence of such a consensus
is routine. Differences in prior probabilities do not matter much, at least
not in the long run; for (the story goes) as more and more evidence
accumulates, these differences wash out in the sense that the posterior
probabilities merge, typically because they all converge to 1 on the true
hypothesis. Here are two passages that have given currency to this folklore.
The first comes from the now classic review article “Bayesian Statistical
Inference for Psychological Research” by Edwards, Lindman, and Savage:

Although your initial opinion about future behavior of a coin may differ radically
from your neighbor’s, your opinion and his will ordinarily be transformed by
application of Bayes’ theorem to the results of a long sequence of experimental flips
as to become nearly indistinguishable. (1963, p. 197)
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A similar sentiment has been expressed by Suppes:

It is of fundamental importance to any deep appreciation of the Bayesian viewpoint
to realize the particular form of the prior distribution expressing beliefs held before
the experiment is conducted is not a crucial matter.. .. For the Bayesian, concerned
as he is to deal with the real world of ordinary and scientific experience, the
existence of a systematic method for reaching agreement is important.... The
well-designed experiment is one that will swamp divergent prior distributions with
the clarity and sharpness of its results, and thereby render insignificant the diversity
of prior opinion. (1966, p. 204)

I take it that if this folklore were correct, the explanation of objectivity
would have a justificatory resonance. The consensual degrees of belief are
justified because they are the inevitable results of a rational process: let the
Bayesian agents start off with whatever initial degrees of belief they like, as
long as they conform to the probability calculus and as long as they don’t
differ too radically (as explained below), and let them update their opinions
via the rule of conditionalization; as a result, they will all be driven by the
accumulating evidence to the same final degrees of belief.

The folklore_is based on more than pious hope and promissory notes.
There are in fact hard mathematical results on merger of opinion that can
be proved within the framework of a moderately tempered Bayesian per-
sonalism, characterized by the following principles:

P1 Degrees of belief satisfy the axioms of probability.

P2 Learning from experience is modeled as change of probability via
strict conditionalization.

P3 All the agents of concern begin as equally dogmatic in that they
initially assign O’s to the same elements of the probability space.

Principle (P3) can be motivated by a rule of mutual respect that enjoins
members of a scientific community to accord a nonzero prior to any
hypothesis seriously proposed by a member of the community.” Alterna-
tively, it could be held that decisions on zero priors help to define scientific
communities and that an account of scientific inference must be relativized
to a community.®

The sort of result that Edwards, Lindman, Savage, and Suppes had in
mind can be illustrated by an example adapted from Savage’s Foundations
of Statistics (1954). In this example it suffices to explicate (P1) in terms of
(A1) to (A3) from chapter 1; countable additivity for Pr plays no role here,
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although it does figure essentially in the more sophisticated results dis-
cussed below in sections 4 and 5. Consider a coin-flipping experiment, and
suppose that all of the Bayesian agents of concern accept the posit K of
independently and identically distributed (IID) trials. Suppose further, in
concert with (P3), that they all assign nonzero priors to the hypotheses
{H,}, where H; states that the objective probability of heads is p; (p; # p; if
i # j). And finally, assume that in conformity with Lewis’s principal princi-
ple they all evaluate the likelihoods as

Pr(& E;/H; & K) =pr(l —p)"™,
jsn

where E; reports the result of the jth flip and m is the total number of heads
in the first n flips. Choose any one of the agents in the Bayesian community,
and apply Bayes’s theorem to conclude that for her the ratio of the posteri-
or probabilities of two of the competing hypotheses is

Pr(H;/&;<n E; & K) _ p"(1 — p)" " Pr(H,/K)
Pr(H,/&j<n E; & K)  pI(1 — p) " Pr(H,/K)’

The strong form of the law of large numbers assures us that in almost every
endless repetition of the experiment, the relative frequency of heads ap-
proaches the true value of the chance, say ps, in the limit as n - 0.° As a
consequence, the likelihood ratio for i = 3 and k s 3 almost surely blows
up, which implies that Pr(H,/&;<, E; & K) > 1 as n— oo. By (P2), the
probability function Pr,(-) at stage n for an agent with starting probability
Pro(*) = Pr(-/K) is Pr(-/& <, E; & K). Thus as n — oo, the opinions of all
of the agents regarding the H; will almost surely merge, since each agent
almost surely converges to certainty on the true hypothesis H,.

Mary Hesse has objected that “the conditions of [Savage’s type of
convergence] theorem...are not valid for typical examples of scientific
inference” (1975, p. 78). In particular, the crucial IID assumption certainly
does not apply to the results of experiments addressed to nonstatistical
hypotheses. Nor, as already noted above, is the assumption of objective
likelihoods justified in these nonstatistical cases, save when HD testing is
applicable.

While these objections are well taken, it is nevertheless true that more
powerful convergence-to-certainty and merger-of-opinion results, none of
which uses the questionable assumptions tagged by Hesse, are available in
the statistics literature. Since the most elegant of these results use Doob’s
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theory of martingales, I will briefly outline some of the leading ideas of
this theory in the following section.

4 Convergence to Certainty and Merger of Opinion as a
Consequence of Martingale Convergence

Consider a probability space in the mathematician’s sense, that is, a triple
(Q, #, #2) consisting of a sample space , a collection % of measurable
subsets of Q, and a countably additive function #»: & — [0, 1] such that
#4(Q) = 1. Let {X,} be a sequence of random variables (rv’s) and let {Z,}
be a sequence of o fields such that &, = #,,, < #.'° The set {X,} is said
to be a martingale with respect to {%, } just in case for every n, E(|X,|) < oo,
X, is measurable with respect to #,, and E(X,,,/#,) = X,..! 1 Doob’s basic
martingale convergence theorem states that for such a martingale, if
sup,E(]X,|) < oo, then lim,_,, X, is finite and exists almost everywhere
(a.e.) (see Doob 1971).

Doob’s application of this result is simple but ingenious. Let X be an rv
such that E(|X|) < co. Then the X, = E(X/#,) form a martingale (“Doob’s
martingale”) with respect to the #,. If we think of the #, as corresponding
to the information gathered up to and including stage n, then successive
conditional expectations of X as we come to know more and more yield a
martingale. If the particular Doob martingale satisfies sup,E(|X,|) < oo,
the convergence theorem guarantees that lim,., E(X/#,) is finite and
exists a.e. Further, if &, denotes the smallest o field that contains all of the
F,, thenlim,_,  E(X/#%,) = E(X/#,)ae.Andif #, = #,then E(X/#,) =
E(X/¥)=X.

The final step was, to my knowledge, not explicitly noted by Doob
himself, but probabilists took the step to be so obvious as not to require
explicit mention. Take X to be the characteristic function [H] corre-
sponding to some hypothesis H, i.e., [H](w) = 1 if H is true at w €Q, 0
otherwise. E([H]) < o0, and sup,E([H]/#,) < . Soif [H] is measurable
and £, = #, lim,_,, E([H]/#%,)(w) = [H](w) a.e. But E(LH]/#,) is just
the conditional probability of H on the evidence gathered through stage n.
So the upshot is that if the information gathered is complete enough
(#,, = &), then almost surely the posterior probability of H will go to 1 if
H is true and to 0 if H is false.

Hesse’s complaints against Savage do not apply here, since IID trials
and objective likelihoods have not been assumed. In effect, the washing out
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launders not only different estimates of priors but also different estimates
of likelihoods. As with the Savage result, merger of opinion takes place
because of the almost sure convergence to certainty. In both cases, how-
ever, the merger is of a very weak form. All that is guaranteed is that
for almost any world, any pair of equally dogmatic Bayesian condition-
alizers, any hypothesis H, and any desired ¢ > 0, there is an N such that
after the agents have seen at least N pieces of data, their opinions regarding
H will differ by no more than ¢. Since N may depend not only on the world
and on ¢ but also on H and on the pair of agents chosen, the merger can
be far from uniform. Stronger results on merger of opinion can be derived,
as will be discussed in the following section.

5 The Results of Gaifman and Snir

Gaifman and Snir (1982) have shown how to translate the results of section
4 into a setting more in harmony with the standard philosophical discus-
sions of confirmation theory, where probabilities are assigned to sentences
of some formal language and the results of experiment and observation are
reported in the form of atomic sentences or truth-functional compounds of
atomic sentences. Specifically, Gaifman and Snir work in a language %
obtained by adding empirical predicates and empirical function symbols
to first-order arithmetic, assumed to contain names for each of the natural
numbers N. The Gaifman and Snir models Mod, for £ consist of inter-
pretations of the quantifiers as ranging over N, and interpretations of the
k-ary empirical predicates and k-ary function symbols respectively as sub-
sets of N* and functions from N* to N. (So, for example, if ‘P’ is an atomic
empirical predicate, Pi might be taken to assert that the ith flip in a
coin flipping experiment is heads.) A sentence ¢ of .Z is said to be valid in
Z(E @) justin case ¢ is true in all w e Mod .

We can now make our starting assumption (P1) more precise by re-
quiring that the probability axioms (A1) to (A3) from chapter 2 hold for
Gaifman and Snir’s | and that countable additivity holds in the form

Pr((vi)n(i)) = lim Pr<.§< 'I(i)), (A4)

where n(i) is an open formula Whose only free variable is i. Assumption
(A4') is needed for the application of the martingale theorems.
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For a sentence ¢ of &,
mod(g) = {w e Modg: ¢ is true in w}.

The family of sets {mod(¢): ¢ is a sentence of .} is a field that generates
a o field 4. It is shown that for every Pr on . satisfying (A1) to (A4’) there
is a unique countably additive 2: on ¢ such that #:(mod(¢)) = Pr(¢) for
every ¢. Then (Modg, 4, 2:) is the mathematical probability space. For a
given Pr on %, a property is said to hold a.e. just in case it holds for a set
K < Modg such that 2:(K) = 1. Now for w e Mod, and a sentence ¢,
define @* as ¢ or T1¢ according as w € mod(¢) or w e mod(1¢). A class
of sentences @ is said to separate a set K < Mod just in case for any two
distinct w;, w, e K, there is a @ € ® such that w, e mod(¢) and
w, e mod(Tg). (If ® = {¢;},i =1,2,3,...,separates Mody and if ¥, are
the fields generated by {mod(¢;): i < n}, then ¥, generates 4. Thus it is the
separating power of the accumulating evidence that makes applicable the
Doob martingale convergence results.) Finally, Pr, and Pr, are said to be
equally dogmatic just in case 2z, and %z, are mutually absolutely continu-
ous (i.e., 22,(A4) = 0 iff 22,(4) = 0 for any A € ¥). This implies the equal
dogmatism of (P3) assumed above, but the converse does not necessarily
hold unless Pr; and Pr, are definable in .#. For simplicity, then, assume
that the Pr functions of the agents in the Bayesian community are definable
in Z.

Using the standard martingale convergence theorems for (Mod,,%, #2)
and then transferring the results down to %, we can establish the following
result.

Gaifman and Snir Theorem Let ® = {¢;},i=1, 2, ..., separate Mod .
Then for any sentence y of ¥

L Pr(¥/&i<n ") = [¥1(w) ace. as n — oo,
2. if Pr’ is as equally dogmatic as Pr, then

o))

a.c.asn— oo.

sup,, -0

Call ® in the hypothesis of the theorem an evidence matrix. If @ is
separating, part 1 of the theorem shows that the evidence accumulated in
almost any world by successively checking the elements of the evidence
matrix serves to drive the posterior probability to certainty in the limit,
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and this certainty is reliable in that in almost any world where the proba-
bility goes to 1 (respectively, 0), the hypothesis ¢ is true (respectively,
false).!? The rate of convergence to certainty cannot be expected to be
uniform over . For example, take y, to assert that in a countable sequence
of balls drawn from a bottomless urn, all the balls up to and including the
nth are red, while the rest are green. For a reasonable Pr function one
would expect that as n gets larger and larger, it takes longer and longer for
certainty to set in.

This makes all the more remarkable part 2 of the theorem, which says
that merger of opinion between two equally dogmatic agents is uniform
over y, or in mathematical jargon, that the distance between two equally
dogmatic Pr functions, as measured in the uniform distance metric, goes
to 0. Note, however, that without further restrictions one cannot hope to
show that there is merger of opinion in the strong sense of uniform conver-
gence over the set of equally dogmatic Pr functions.'® This would be
the case, for instance, if the collection of equally dogmatic Pr functions
formed a closed convex set with a finite number of extremal points (see
Schervish and Seidenfeld 1990). But such additional assumptions marked-
ly reduce the scope of the explanation of objectivity.

These results do not rest on those presuppositions of Savage’s type of
result, which, though plausible for the coin flipping case, are highly implau-
sible when applied to the testing of nonstatistical hypotheses. Also the
distinguishability hypothesis of the theorem is satisfied if the empirical
predicates and function symbols of # all stand for observable properties
and functions and if the evidence matrix consists of a complete enumera-
tion of the atomic observation sentences.'* In this case the successive
checking by direct observation of the elements of the evidence matrix
serves to drive the convergence to certainty and the merger of opinion.

The theorem is undeniably impressive. Indeed, it seems almost too good
to be true, especially when one reflects on the fact that y may have a
quantifier structure as complicated as you like. In chapter 9 we will learn
that there is a sense in which it is too good to be true.!*

6 Evaluation of the Convergence-to-Certainty and
Merger-of-Opinion Results

Some of the prima facie impressiveness of these results disappears in the
light of their narcissistic character, i.c., the fact that the notion of ‘almost
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surely’ is judged by Pr. Sentence iy may be true in the actual world w, and
in some intuitively natural neighborhood of worlds near w,. But if
Pr(y) =0, Pr(y/&i<, @) is also 0 in all these worlds. This does not
contradict the theorem, since these worlds form a set of measure 0, as
judged by Pr. From the point of view of an omniscient observer, the
self-congratulatory success of the Bayesian method is hollow if the zeros
of the prior distribution are incorrectly assigned. The personalist will no
doubt respond by noting that in real life there are no omniscient observers
and by asserting that flesh-and-blood observers have no metastandard by
which to judge the correctness of Pr. Be that as it may, ‘almost surely’
sometimes serves as a rug under which some unpleasant facts are swept, as
we will see in chapter 9.

Another qualm concerns GﬂnJan and Snir’s semantics for .#. In the

usual semantics, the models Mod, are not separated by the empirical
atomic sentences, so the straightforward application of the theorem to
empirical testing is lost. Perhaps, however, one should not worry about the

models that lie in {lid?dlg but not in Mod ¢, since they contain nonstandard
integers and thus are in some sense “impossible worlds.”

Leaving aside these qualms, the convergence-to-certainty results do
ground that aspect of the objectivity of Bayesian inference concerned with
the long-run match between opinion and reality; at least this is so for
observational hypotheses. But the merger-of-opinion results do not serve
to ground objectivity qua intersubjective agreement for opinions that fall
short of certainty, and this for two different sorts of reasons. The first has
to do with the limit character of the results. Keynes’s lament that in the
long run we are all dead has no sting in the present context if we can know
in advance how long the long run is. But what is lacking in the resuits
before us is any estimate of the rate of convergence. Nor does it seem
possible to derive informative estimates in the present general setting. In
Savage’s type of example in section 3, results about the rate of concentra-
tion of the posterior distribution are readily derivable, since all the agents
agree on the statistical model that serves to fix the form of the likelihoods.
In IID experiments, for example, the concentration of the posterior, as
measured by the reciprocal of the variance, can be expected to grow as \/r_z
This happy circumstance will not obtain in general, especially when the
hypotheses at issue are nonstatistical.

It is not just that different Bayesian agents will give different estimates
of rates of convergence but that there may be no useful way to form the
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estimates. To form an estimate for a given possible world we need to know
what kind of evidence is received and also what bits are received in what
order. A statistical model in effect specifies the relevant evidence (e.g.,
the outcomes of repeatedly flipping a coin), and the assumption of indepen-
dent or exchangeable trials says that the order does not matter. But in the
general case, the relevant evidence can come in myriad forms, and within
a form the order can matter crucially. Some sort of estimate of rate of
convergence could be produced by averaging over the rates for different
sequences of evidence strings. However, this requires a weighting of differ-
ent sequences, and it is problematic whether in the general setting there
exists a weighting function that will gain the allegiance of all the Bayesian
agents.

The second reason that the formal merger results do not serve to ground
objectivity derives from the observation that for some aspects of the objec-
tivity problem not only is the long run irrelevant, so is the short run.
Scientists often agree that a particular bit of evidence supports one theory
better than another or that a particular theory is better supported by one
experimental finding than another (e.g., the data from the perihelion of
Mercury better confirm Einstein’s general theory of relativity than either
the red-shift data or the bending-of-light data). What happens in the long
or the short run when additional pieces of evidence are added is irrelevant
to the explanation of shared judgments about the evidential value of
present evidence.

Finally, the theorem does not suffice to demonstrate even long-run
convergence to certainty and merger of opinion for theoretical hypotheses,
at least not if one form of the antirealists’ argument from underdeter-
mination is correct, for the failure of the crucial distinguishability premise
corresponds to one plausible explication of the notion of underdeter-
mination of theory by evidence. This topic will be explored in the following
section.

7 Underdetermination and Antirealism

The twin goals of this section are to discuss merger-of-opinion results for
theoretical hypotheses and to assess a popular argument for antirealism. I
begin with a discussion of the latter argument. :

The underdetermination of theory by observational evidence is widely
thought to weigh in favor of a nonrealist interpretation of scientific
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theories. But upon first reflection, it is not easy to see how underdeter-
mination supports semantic antirealism, i.e., the doctrine that theoretical
terms lack referential status.!® Nor is it obvious why underdetermination
supports epistemological antirealism, i.c., the doctrine that observational
evidence gives no good reason to believe theoretical propositions, even if
their constituent terms are referential.!” After all, observational assertions
about the elsewhere are underdetermined by all possible observations that
can be made here, while observational assertions about the future are
underdetermined by all possible past observations. But nevertheless, we
may have good reason to believe observational predictions about the
elsewhere and elsewhen.!® Is there, then, something special about theoreti-
cal propositions that allows the epistemological antirealist to take a princi-
pled stand that differs from a form of blanket skepticism?

I will explore one possible answer that can be given within the confines
of Bayesian confirmation theory. Antirealists have typically been leery of
Bayesianism, and seemingly with good reason, since there is nothing in the
Bayesian machinery to prevent the assignment of high probabilities to the-
oretical propositions. If the Bayesian account of scientific inference should
imply that inferences to unobserved observables stand or fall together with
inferences to unobservables, then in Bayesian eyes, at least, epistemological
antirealism would be reduced to general inductive skepticism.

The beginnings of an antirealist response are suggested by the merger-
of-opinion results discussed above. The mere assignment of a high person-
al probability to a proposition, theoretical or observational, by some
member of the scientific community does not constitute the good reasons
for belief that we want from scientific inference. In particular, the supposed
objectivity of scientific inference is missing. To explore this matter further,
let me say that the degree of belief in a hypothesis H is objectifiable with
respect to a class {Pr} of probability functions just in case for a.c. w € Mod o,
there is a number r such that for every suitable evidence matrix ® = {¢;}
and every Pre {Pr}, Pr(H/&;, ) > r as n— co. What constitutes a
“suitable” ® may be open to dispute among empiricists of different stripes,
but for present purposes, let us take suitable ®’s to consist of enumerations
of the atomic observation sentences of . Then the convergence-to-cer-
tainty results show that for any community of scientists who operate
with equally dogmatic Pr functions and for any observational H, the
degree of belief in H is objectifiable (for any such H, r may be taken to be
1 or 0). Whether or not the objectification sets in within the lifetime of the
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average scientist is something that the convergence results do not tell us.
But at least in principle there is a long-run notion of objective degree of
belief for observational propositions, whether or not we are around in the
long run to achieve it.

For theoretical propositions the situation is altogether different. For a
start, once theoretical terms are added to the language %, the suitable
evidence matrices will no longer serve to separate Mod ¢, and consequent-
ly, the condition for the application of the convergence result fails.'® 'To
extend the convergence results to theoretical hypotheses, some assumption
about observational distinguishability is needed. Call the incompatible
theories T, and T, weakly observationally distinguishable (wod) for the
models MOD just in case for any w,, w, € MOD such that w, € mod(T;)
and w, € mod(T;), there exists a (possibly quantified) observation sentence
0 such that w, € mod(0) and w, € mod(110). If {T;} is a partition of
theories that are pairwise wod for Gaifman and Snir's MOD = Mod,,
then the degrees of belief in these theories will be objectifiable. For given
any Ty e {T}, Pr(Tj/&i<n @) — [T (W) ae. for any suitable ® = {cp,-}.z.0
But at this juncture the antirealist can interpose that the failure of wod is
precisely what the underdetermination of theory by observation mfaans (in
at least one precise sense). Hence underdetermination does constitute an
argument for epistemological antirealism by way of undermining the con-
ditions needed to demonstrate the objectification of belief in theories.

This last move requires some comment. Consider the more usual and
apparently stronger sense of observational distinguishability; namely, T‘
and T, are strongly observationally distinguishable (sod) for MOD just in
case there is a (possibly quantified) observation sentence O such that for
any w,, w, € MOD, if w, € mod(T;) and w, € mod(T3), then w, € mod(0)
and w, € mod(710), i.e., relative to MOD, O is a consequence of' T, and

10 is a consequence gf\sz Trivially, sod implies wod. If MOD is taken
to be the usual models Mod, for .#, then a simple compactness argument
shows that the implication goes in the opposite direction.?' The paraliel
implication is not quite so obvious if MOD is taken to be Gaifman z.md
Snir’s Mod,, since Mod,, is not compact even if £ contains empirical
predicate symbols but no empirical function symbols (for example, thel"e is
no model in Modg for {(3i)Pi, T1P1, T1P2,...}, even though there 1s a
model in Mod ¢, for every finite subset). And in fact, if T; and T; are allowed
to consist of the closure under logical implication of arbitrary sets of
sentences, then the implication does not hold. But if we restrict attention
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to the case where T; and T, are sentences, which is the case at issue, then
the implication does hold.2?

This discussion raises problems for both the Bayesian who wants the
merger-of-opinion results to have bite and for the would-be epistemologi-
cal realist. To take the first problem first, it might seem that the conver-
gence-to-certainty results for theoretical hypotheses are bootless. Either
wod holds for pairs of {T;} or not. If it does not hold, then the convergence
results do not apply. If it does hold, then the convergence results do apply
but are useless, for wod entails that distinct pairs of the {7;} have incom-
patible observational consequences, so one can arrive at the true theory by
simple eliminative induction without using the Bayesian apparatus. In fact,
however, the latter horn of this dilemma is flawed, since sod does not
necessarily mean that the observational consequences of the {T;} are fi-
nitely verifiable or falsifiable. And if finite verifiability and falsifiability fail,
the convergence results do have some bite: one converges to certainty on
T;,4, say, by making more and more atomic observations and thereby
converging to 0 on the (possibly muitiply quantified) observation sentences
that separate Ty, from its rivals.?®> Of course, the worries about rates
of convergence raised above apply here as well.

I now turn to a discussion of how the would-be epistemological realist
might respond to the underdetermination argument. First, he could grant
the force of the move from underdetermination to antirealism but main-
tain that underdetermination does not pose a serious threat, because either
it is not widespread or else occurs in uninteresting varieties. Starting from
a theory and tacking on theoretical epicycles that add no new observa-
tional predictions would produce an endless string of observationally
indistinguishable theories, but this form of underdetermination is uninter-
esting, since the core theoretical content is the same in every case. Theories
of gravitation that are observationally indistinguishable and that make
interestingly different theoretical commitments can be created if they are
permitted to remain silent about classical gravitational tests. But com-
pleteness (in the sense of yielding definite predictions) with respect to the
phenomena belonging to the commonly agreed-upon explanatory domain
of gravitation would seem to be a reasonable demand to impose on
theories of gravitation worthy of consideration (see, for example, Will
1972). Indeed, it could be held to be a necessary condition for calling a set
of axioms a theory of gravitation. Whether there are explanatorily com-
plete and observationally indistinguishable theories of gravity that make
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interestingly different theoretical posits is a question that will be taken up
in chapter 7.24

Second, the realist could deny that underdetermination does support
epistemological antirealism by denying the antirealist’s identification of
good reasons to believe with objectified degree of belief in the Bayesian
sense of merged posterior opinion. To repeat, past observations, even if
they stretch infinitely far into the past, do not serve to objectify observa-
tional predictions about the future for a broad class {Pr} of equally dog-
matic probability functions.?® But nonetheless, one might claim that past
experience does give good reason to believe that the sun will rise tomorrow
and that the emeralds seen in the dawn of this new light will be green.
Similarly, the realist may hold that we can have good reasons to believe
theoretical claims even if the degree of belief is not objectifiable in the
technical sense offered above. I am sympathetic to this point of view, but
it is unavailing in the present context, which seeks to discern the implica-
tions of Bayesianism for the realism versus antirealism controversy. For in
its current stage of development, the Bayesian account of scientific infer-
ence contains no explication of objective good reasons other than the
forced merger of subjective opinion or the apparently unworkable schemes
for objectifying assignments of priors. The Bayesianized version of the
realist versus antirealist debate thus grinds to a halt over the unresolved
problem of objectivity.

8 Confirmability and Cognitive Meaningfulness

I suggested above that the epistemological antirealist who does not wish
to be a vulgar skeptic may run afoul of Bayesianism, since quashing
Bayesian inferences to unobservables threatens to quash inferences to
unobserved observables. The strength of this objection is open to debate,
but we need not settle the debate to recognize that the objection can be
turned around to cast doubt on Bayesian inference. If Bayesians can
assign nonzero priors to hypotheses about such unobservable entities
as quarks, then it would seem that they can also assign nonzero priors to
hypotheses about vital forces, devils, and deities. Consequently, Bayesian-
ism faces the embarrassment of countenancing inductive arguments in
favor of (or against) such hypotheses.

Perhaps the embarrassment can be faced down with a divide-and-
conquer strategy.
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Case 1. The hypothesis ‘Jehovah exists and rules the world’ (J) is so
construed that it does make a difference for the probabilities of pieces of
observational evidence E about, say, the amount of suffering in the world
(Pr(E/J & K) # Pr(E/K)). Then Bayes’s theorem shows how and why (J) is
confirmed (or disconfirmed) by E. So contrary to first impressions, we can
properly speak of inductive arguments for the existence of God (see
Swinburne 1979).

Case 2. ‘Jehovah exists and rules the world’ is construed so that it
doesn’t make a probabilistic difference for any observational evidence
E(Pr(E/J & K) = Pr(E/K)). Then Bayes’s theorem shows why (J) is im-
mune to inductive considerations. In this case the embarrassment doesn’t
need to be explained away, since it doesn’t arise.

The positivists and logical empiricists held that ‘Jehovah exists and rules
the world’ and its like are not real hypotheses, since (in their jargon) these
inscriptions are “cognitively meaningless.” Initially the positivists favored
verifiability/falsifiability as the identifying mark of the cognitively mean-
ingful, but when this criterion ran into difficulties, they switched to con-
firmability/disconfirmability.2® If the latter criterion is to be implemented
through Bayesian personalism, then it must be conceded after all that
‘Jehovah exists and rules the world’ can be cognitively meaningful. To the
extent that positivists and logical empiricists balk at such a conclusion,
their views clash with the Bayesianism promoted here. Whether the clash
is just another nail in the coffin of a dying philosophical movement or
whether it is a mark against Bayesianism is a matter that I will leave to the
reader to decide.

9 Alternative Explanations of Objectivity

I turn now to an examination of some of the alternative explanations (3)
to (8) listed in section 1. The idea behind (3) is that a definitional ploy may
succeed where honest theorem proving has failed. The notions of rational-
ity and objectivity are relativized to a scientific community and ‘commu-
nity’ is defined in terms of merger of opinion over the relevant range of
hypotheses. This move threatens to reactivate the buzz of relativism I
assumed at the beginning of the chapter to have been cured. Therefore,
further discussion of this alternative will be postponed to chapter 8. Chap-
ter 8 will also take up one form of (4), socialism in the guise of a rule for
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manufacturing a consensus by means of a prescription for aggregating
opinions. It is not giving away too much to anticipate the conclusion that
neither (3) nor (4) holds the answer to our prayers.

The remainder of this chapter will be devoted to a discussion of (5), the
evolutionary solution; (6), modest but realistic solutions; (7), non-Bayesian
solutions; and (8), retrenchment.

10 The Evolutionary Solution

The results of Savage and Doob discussed above have exercised a fascina-
tion not only because they entail merger of opinion but also because they
reveal a link that joins Bayesian methods to truth and reliability. But
because it is forged only in the infinite limit, the link revealed in the formal
theorems is too weak.

A partnership between Darwin and Bayes might be thought to supply
the missing link for the medium and short runs. The idea of the partnership
is, first, that evolution has produced a species for which rapid merger of
opinion (not necessarily to 1 or 0) takes place and, second, that the evolu-
tionary story of this merger has the sought-after justificatory character in
that our degrees of belief are reliable estimates of the actual frequencies of
relevant events, since otherwise we would not have survived.

The ideas of van Fraassen (1983a) and Shimony (1988) mentioned in
chapter 2 can be used to give an account of what it means for degrees of
belief to be reliable estimates of frequencies, at least for simple atomic
hypotheses. It is far from clear, however, what is meant by saying that my
degree of belief of .75 in Einstein’s GTR is a reliable estimate of a frequency.
Talk about the frequency with which hypotheses of this sort have proven
to be true is vague, but insofar as I understand it, the relevant frequency
would seem to be 0. I can calibrate my degree of belief in Einstein’s GTR
with frequencies by finding an H for which my Pr(H) is naturally inter-
preted as an estimate of a frequency and for which I set Pr(H) = Pr(GTR).
But such calibration involves subjective judgments.

Even if the Darwin and Bayes partnership had an unproblematic state-
ment, there would still be two obstacles to implementing it. In the first
place, there is no obvious Darwinian edge to reliability of beliefs about the
esoteric matters that lie at the core of modern science. Case after case could
be cited from the history of science where scientists developed a strong
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consensus that the hidden springs of nature followed, at least approxi-
mately, the dictates of a certain theory only to become convinced at a later
stage that the theory was badly flawed. In the second place, while there
may be a class of propositions for which a rapid and accurate process for
fixing degrees of belief was essential to survival during humankind’s forma-
tive stages (e.g., ‘Tiger near’), it isn’t clear how far this class extends even
into the realm of mundane affairs. Thus, despite the importance of weather
to prosperity and even survival itself, historically, our weather forecasts
have been notoriously unreliable. Perhaps we have prospered as a species
not because of any general reliability of belief-fixing processes but because
we are robust enough to tolerate or creative enough to maneuver around
the consequences of the unreliabilities in this process.?’

11 Modest but Realistic Solutions

The washout theorems studied above had the lofty aim of underwriting a
global consensus, but because of their limit character, they proved to be
incapable of explaining the consensus that exists now. This actual consen-
sus is partial rather than sharp and spotty rather than global. Its partial
and spotty nature make it at once easier and more difficult to explain—
easier because there is less to explain, and more difficult because the
explanation will not be uniform but will consist of disparate pieces. Here
I will concentrate on explaining such comparative judgments as evidence
E confirms H,; more than it confirms H,, or E, confirms H more than does
E,.

The former case seems especially difficult to deal with. Suppose, for
example, that H, and H, are both hypotheticodeductively confirmed by E
relative to the background knowledge K (ie., {H,,K}}E E and
{H,, K} = E). The incremental Bayesian confirmations of H, and H, are
respectively

Pr(H,/K)[(1/Pr(E/K)) — 1]
Pr(H,/K)[(1/Pr(E/K)) — 1],

and the absolute confirmations are respectively Pr(H,/K)/Pr(E/K) and
Pr(H,/K)/Pr(E/K). Thus, on the Bayesian analysis, any judgment to the
effect that E is better evidence (in either the incremental or absolute sense)
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for H, than for H, boils down to the judgment that Pr(H,/K) > Pr(H,/K),
and we are back in the middle of the swamp of the problem of priors.

The hope burns brighter when the case concerns the way in which
different pieces of evidence bear on the same hypothesis or theory. Consid-
er the three classical tests of Einstein’s GTR. As noted in chapter 5, it is
generally agreed by physicists that the evidence Ep of the advance of
Mercury’s perihelion gives more support to GTR than does the evidence
Eg of the bending of light or the evidence Ey of the red shift. On the
Bayesian analysis, the incremental confirmation values are Pr(GTR/K) x
[(1/Pr(Ep 3 x/K)) — 1]. Since the prior probability factor is the same in all
three cases, the focus shifts to the prior-likelihood factors Pr(Ep g g/K).
(Here we run smack into the problem of old evidence [see chapter 5],
which is a thorn in the side of Bayesianism confirmation theory. I am just
going to ignore it for present purposes.) Can we show that judgments
about these prior likelihoods have an objective basis?

Here is one attempt. Imagine a complete enumeration {T;} of alternative
theories of gravity, and suppose that each theory yields a definite predic-
tion about the three classical tests.2® By total probability,

Pr(Ep s r/K) = Z Pr(Ep 5r/T; & K) x PI(T;/K).

By assumption, the first factors in the sum on the right-hand side are all
either 0 or 1, so the sum reduces to the sum of the priors of those theories
that successfully explain the results of the test in question. Thus if it could
be shown that the set of theories that succeed with respect to Ep is a proper
subset of each of the sets of theories successful with respect to E and
Eg, it would follow that, independently of judgments of the prior prob-
abilities of the theories, Ep gives a better confirmational value than either
Eg or Ey.

As mentioned in chapter 5, to first-order approximation, the most gener-
al stationary spherically symmetric line element can be written as

ds? = [1 — (am/r) + 2Bm*/r?)]de? — [1 + (2ym/r)}(dx? + dy® + dz?).

GTR sets the parameters «, f, and y equal to 1. The perihelion shift
depends on all three parameters, while the red shift depends only on a and
the bending of light only on « and 7. Does it follow that any theory that
successfully explains the perihelion shift must also explain the red shift and
the bending of light? Not necessarily, for a theory can get the red shift and
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bending of light wrong but by compensating errors get the perihelion right.
So it seems that our judgments in this case cannot be divorced from
judgments about prior probabilities of theories.

Still, the Bayesian might claim a partial victory here on the grounds that
he has to explain not why E, gives better confirmational value than Eg or
Ejy (for in fact it may not) but only why it was thought that this was so. The
long history of failures to explain the perihelion phenomenon (see Earman
and Glymour 1991) coupled with the ready availability of multiple alterna-
tive explanations of the red shift perhaps explains why, around the time
GTR was introduced, most physicists would have set Pr(Ep/K) <
Pr(Eg/K) and thus Pr(GTR/E, & K) > Pr(GTR/E, & K).This explana-
tion doesn’t hold today, when many of the presently available members of
the zoo of alternative theories of gravity explain the perihelion shift (see
chapter 7).

12 Non-Bayesian Solutions

At present this is an empty label, since there aren’t any extant non-
Bayesian accounts of scientific inference that have proved to be viable
across the broad range of cases. As one example of dashed hopes, I would
cite Hempel’s account of qualitative confirmation and Glymour’s attempt
to extend Hempel’s ideas to the confirmation of theoretical hypotheses by
means of bootstrapping relations. One might have hoped that Hempel’s
confirmation relations and Glymour's boostrapping relations, which are
purely logicostructural relations, could provide at least part of the basis for
objectivity. Alas, as we saw in chapter 3, the Bayesian apparatus is needed
before any conclusions can be drawn about the bearing of these relations
on the credibility of hypotheses. Other examples of dashed hopes could be
cited, but enough tears have already been shed.

13 Retrenchment

If (1) through (7) of section 1 all fail, the only resort would seem to be a
retrenchment to a more modest set of goals for a theory of confirmation
and scientific inference, as suggested by conceiving the theory as con-
stituting an inductive logic that parallels deductive logic. Deductive logic
provides a neutral framework for evaluating deductive arguments. It is
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neutral in the sense that it doesn’t tell us which contingent statements to
accept as true. But it is not lacking in bite, since it does tell us that if we
accept certain statements as true, then on pain of inconsistency we must
accept certain other statements as true and reject still others as not true.
On this analogy, inductive logic can be thought to provide a neutral
framework for evaluating inductive arguments. It is neutral in that it
doesn’t tell us what degrees of belief to assign to contingent propositions.
But it does have bite in that it tells us that if we assign such and such
degrees of belief to such and such propositions, then on pain of inconsis-
tency (i.e., incoherency) we must also assign specified degrees of belief to
other propositions.

One might hope for a bit more than this from a theory of confirmation,
although the more calls for work on our part. Consider the EUREKA!
cartoon that appeared recently in the Toronto Globe. Why is the cartoon
amusing? The part of the explanation of the humor relevant to present
concerns is simply that there is in fact a sharp consensus about the out-
comes of the “unnecessary experiments”—that is what makes them unnec-
essary. However, the basis of this consensus remains to be investigated.
The worst-case result of the investigation would find a consensus built on
sand, a consensus that obtains not because of merger of opinion forced by
the accumulated evidence but because members of our community have
given in to social pressures to conform. A better-case result would find a
de facto washing out of priors. That is, the actually accumulated evidence
does force a merger of opinion for the class of actual belief functions with
which the members of our community have been endowed. But this class is
relatively narrow, and when it is expanded with additional belief functions
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equally dogmatic with respect to ours, merger no longer takes place. Ever
better cases are reached as this class expands until we reach the best-case
result, where the consensus is very solid in that it arises for a maximal class
of equally dogmatic belief functions that assign nonzero priors to the
phenomena in question.

The results of such investigations will color the Bayesian interpretation
of consensual degrees of belief. Where the consensus is one of the best-case
types, the degrees of belief may deservedly be labeled as objective. But as
we shade toward the worse-case end of the spectrum, scare quotes will need
to be added to the label, and eventually the label may be withdrawn
altogether. Whatever the decision, the Bayesian will insist that his appara-
tus is equal to drawing the relevant distinctions. And hankering after some
form of objectivity beyond the ken of these distinctions is to hanker after
the unobtainable.

Without taking any final stand on this issue, I want to agree partly with
the Bayesians in insisting that investigations of the kind outlined above
need to be carried out in detail. What I very much fear, however, is that
these investigations will not reveal any strong Bayesian basis for claiming
objectivity for the opinions so confidently announced at the beginning of
this chapter or for the opinions implicitly endorsed in the EUREKA! car-
toon. Certainly the discussion of the general problem of induction and the
grue problem in particular shows thai merger of opinion on hypotheses
about the future cannot be forced even in a limit sense for a maximal class
of equally dogmatic belief functions by any amount of evidence about the
past, since these hypotheses are underdetermined by all past evidence. And
I suspect that the evidence actually gathered forces the current consensuses
in science only for a very circumscribed class of belief functions. Unless
reasons can be found to privilege this class over others, the door is open
to relativism, social constructivism, and other equally horrific isms.

14 Conclusion

In a certain mood I am all for upholding scientific common sense and for
proclaiming that the presently available evidence does justify high confi-
dence in the propositions that Velikovsky’s Worlds in Collision is humbug,
that space and time are relativistic rather than absolute, that the next
emerald we examine will be green, etc. For those in a like mood, the drift
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of this chapter indicates that Bayesian personalism must either be supple-
mented or else rejected altogether as an account of scientific inference.

Some Bayesians would respond, “Scientific common sense be damned!”
For them, there is no question of rejecting Bayesianism as an account of
scientific inference, since (they proclaim) such an account must be couched
in terms of degrees of belief and since what Bayesianism provides is ratio-
nality constraints on degrees of belief. Nor is there any question of sup-
plementing Bayesianism, since to go beyond Bayesianism is to go beyond
the “logic” of inductive inference. The supplementing principles must,
therefore, be substantive in nature, and as Hume taught us, any justifica-
tion for such principles must produce a regress or a vicious circle.

I trust that the reader of previous chapters will be convinced that the
first part of this response is unacceptable. Bayesianism without a rule of
conditionalization is hamstrung, but the attempted demonstrations of
conditionalization do not succeed in showing that it is a constraint of
rationality. And in chapter 9, I will argue that Bayesians cannot consis-
tently maintain an attitude of evenhanded neutrality and at the same
time prove merger-of-opinion and convergence-to-certainty results, for a
Bayesianism strong enough to yield these results can be shown to embody
what look suspiciously like substantive assumptions about the world. The
principle at issue here is countable additivity. But even finite additivity
does not enjoy an unquestioned status as a sine qua non of rationality (see
Schick 1986 and the discussion of chapter 2 above).

I am enough of a non-Bayesian that I do not think that any a priori
considerations block a non-Bayesian account of scientific inference. But
when I survey the shortcomings of the non-Bayesian accounts that have
been attempted, I despair that any such approach will work. In the grip of
such despair, one might seek refuge in Goodman’s circle: “An inductive
inference ... is justified by conformity to general rules, and a general rule
by conformity to accepted inductive inferences. Predictions are justified if
they conform to valid canons of induction; and the canons are valid if they
accurately codify accepted inductive practice” (1983, p. 64). I do not doubt
that this circle is virtuous rather than vicious. But the notion that the circle
provides a resting place is an illusion. For the only uniformly accepted
“general rules” or “canons” of induction are so near triviality as to make
Goodman’s circle so small that it cannot encompass any interesting scien-
tific inferences. And it is unclear how to widen the circle without opening
it to the full scope of rampant Bayesian personalism.
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7 A Plea for Eliminative Induction

1 Teaching Dr. Watson to Do Induction

In the midst of the adventure recorded in “The Sign of Four,” Sherlock
Holmes chides his faithful companion, Dr. Watson: “How often have I said
to you that when you have eliminated the impossible, whatever remains,
however improbable, must be the truth?” In an age where confirmation
theory is dominated by Bayesianism, talk of eliminative induction seems
as quaint and unrealistic as. .. well, as a Sherlock Holmes story. I will try
to correct this impression by arguing in section 2 that much of the bad
press eliminative induction has received is unjustified, and that to succeed
at the level of scientific theories, Bayesianism must incorporate elements of
the eliminative view. I illustrate my claims in section 4 with a case study
drawn from the history of twentieth-century gravitational theories. Section
5 draws some tentative morals for the philosophy of the methodology of
science.

2 The Necessity of the Eliminative Element in Induction

Although Sherlock Holmes’s rhetorical question for Dr. Watson has an
odd ring when heard by Bayesian ears, the presupposition of the question
can be given a respectable Bayesian gloss, namely, no matter how small
the prior probability of a hypothesis, the posterior probability of the
hypothesis goes to unity if all of the competing hypotheses are eliminated.
This gloss fails to work if the Bayesian agent has been so unfortunate as
to assign the true hypothesis a zero prior. Moreover, the ability to provide
a Bayesian gloss does not mean that Bayesianism has any real explanatory
power. Indeed, the eliminative inductivist will see the Bayesian apparatus
merely as a tally device used to keep track of a more fundamental process.
If the eliminativist is correct, Popper is turned upside down: Popper’s
account of scientific methodology emphasizes the corroboration of a hy-
pothesis as arising from unsuccessful attempts at falsification of the hypoth-
esis, but for the eliminativist it is successful attempts at falsifying competing
hypotheses that count, and the success of inductivism piggybacks on this
eliminative success.

The classic English detective story is the paradigm of eliminative induc-
tion at work. The suspects in the Colonel’s murder are limited to the guests
and servants at a country estate. The butler is eliminated because two
unimpeachable witnesses saw him in the orangery at the time the Colonel
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was shot in the library. Lady Smyth-Simpson is eliminated because at
the crucial moment she was dallying with the chauffeur in the Daimler. Etc.
Only the guilty party, the Colonel’s nephew, is left.

If S,, S,, ..., Sy are the suspects, Bayes’s theorem can be written

Pr(S,/& E: & K) = Pr(S,/K) x Pr(&<n Ei/Si & K)

i<n ij:l Pr(&i<" E‘/SJ& K) X Pr(Sl/K)’ (7.1)

where K is the background knowledge and &;, E; is the sum of the
evidence collected up to and including the nth stage of the investigation. As
the evidence increases, more and more suspects are eliminated. If an alter-
native S,, is eliminated at stage n (Pr(S,,/&;<, E; & K) = 0), it no longer
appears in the sum in the denominator on the right-hand side of (7.1), and
the probability that S, had at the previous stage (Pr(S,/&;<.-1 E: & K))
is redistributed over the remaining suspects. The Bayesian apparatus
serves as a useful bookkeeping device to keep track of how the probabi-
lities move around in the eliminative process, but in the end it does not
matter, since eventually only one suspect, say S, ,, remains, in which case,
(7.1) implies that the posterior probability of S, , is 1. But Sherlock Holmes
didn’t need Bayes’s theorem to tell him this.

Of course, it is hardly surprising that eliminative induction succeeds in
this detective story, since the author carefully crafted the plot so as to
assure the presence of all the elements needed to make it succeed. But we
should not expect real-world science to be so accommodating. An impor-
tant difference between fact and fiction is that in the real world of science
we may have to confront hypotheses or theories that are not finitely
falsifiable and therefore are not eliminable in Sherlock Holmes’s sense.!
Nevertheless, such a hypothesis or theory may be probabilistically elimin-
able in that accumulating evidence can drive its probability so low that it
is no longer worth considering. Of course, such probabilistic elimination
doesn’t literally eliminate or kill the hypothesis, since it can be revived by
further evidence. But then Sherlock Holmes’s style of elimination doesn’t
literally kill a hypothesis either, since further evidence may reveal that the
former evidence that, say, let the chauffeur off the hook was mistaken.

In any case, I want to emphasize that I am not under Holmes’s illusion
that induction can be turned into deduction from the evidence. Rather my
goal here is to defend the meritorious features of eliminative induction
against some wrongheaded attacks and in so doing to expose a gap be-
tween ideal Bayesianism and its application to real-world science. A prime
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example of the sort of wrongheaded attack I have in mind is to be found
in one of the leading philosophy-of-science textbooks of the 1980s. In
it Ronald Giere wrote,

If the original alternatives are definite enough and few enough, and one can be sure
that they are all there, then one stands some chance of being able to eliminate all
but one. This is almost never the case when the alternatives are THEORETICAL
HYPOTHESES about some complex system. For a complex system there will be
infinitely many different possible hypotheses, only one of which is true. Rarely
would all the possible hypotheses be so neatly ordered that one could in some
way eliminate all but one. Usually, no matter how many possibilities one succeeds
in eliminating, there are still infinitely many left. It is impossible to get down to
only one. (1984, p. 170)

Below I will to take issue with several aspects of this pessimistic assessment
of the prospects for eliminative induction. A major theme of this chapter
is that an important though largely neglected element of scientific progress -
is the laying of the groundwork needed for eliminative induction, the
neat ordering of possible hypotheses, to use Giere’s terminology. 1 will
argue also that when this goal is not within reach, Bayesian inductivism
and allied forms of inductivism will not work. But for the moment I
will focus more narrowly on two of Giere’s claims.

The first claim is that in the case of theoretical hypotheses the eliminat-
ive inductivist is in a position analogous to that of Zeno’s archer whose
arrow can never reach the target, for faced with an infinite number of
hypotheses, he can eliminate one, then two, then three, etc., but no matter
how long he labors, he will never get down to just one. Indeed, it is as if
the arrow never gets half way, or a quarter way, etc. to the target, since
however long the eliminativist labors, he will always be faced with an
infinite list. My response on behalf of the eliminativist has two parts. (1)
Elimination need not proceed in such a plodding fashion, for the alterna-
tives may be so ordered that an infinite number can be eliminated in one
blow. (2) Even if we can never get down to a single hypothesis, progress
occurs if we succeed in eliminating finite or infinite chunks of the possibili-
ty space. This presupposes, of course, that we have some kind of measure,
or at least topology, on the space of possibilities. Whether it is to be
provided by Bayesian or by other means remains to be seen.

The second of Giere’s claims that I want to take issue with is that
eliminative induction is worse off in the case of theoretical hypotheses than
in the case of observational generalizations. On the contrary, I think that
the strict form of eliminative induction cannot succeed in the latter case,
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nor is it needed to make induction work in this case, whereas in the
former case, a modified form of eliminativism that uses elements of
Bayesianism is needed to ground objective inductive progress. The alert
reader will derive these conclusions from results discussed in previous
chapters, but for the less assiduous I will repeat the relevant results here
and draw out the implications for the matter at hand.

Begin with an observational generalization of the form H: (Vi)Pa;,
where ‘P’ is an observational predicate and i = 1, 2, 3, .... If ‘climinate’
means to falsify by a finite number of observations, then the alternative
—1H: (3i) 1 Pa; cannot be eliminated directly, nor can it be partitioned
into subalternatives that can be directly eliminated. Nevertheless, straight-
forward instance induction succeeds in that if the prior probability
Pr(H/K) of H is greater than 0 and if countable additivity holds, then the
accumulation of positive instances drives the probability of H to 1:
Pr(H/&;<n Pa; & K) = 1 as n —» oo (see chapters 2 and 4).

Now consider a theoretical hypothesis T and hypotheticodeductive pos-
itive instances E; of T, ie, {TLK}EE;, i=1, 2, 3, .... As long as
Pr(E,, /&< E: & K) <1, the accumulation of new positive instances of
T will serve to boost the posterior probability of T:

Pr(T/é£1 E & K) < Pr(T/él E & K).

But there is no guarantee that the posterior probability of T will approach
1. To borrow once again an example from Keynes (1962), the use of the
Nautical Almanac by navigators daily provides thousands of positive in-
stances of Newton'’s theory of gravity, but successful navigation, no matter
how often it is accomplished, does not by itself suffice to strongly pro-
babilify Newton’s theory.

In chapter 4 we saw some negative results concerning the probabilifi-
cation of theoretical hypotheses by their positive instances. Suppose that
there is a rival theory T’ that, given K, is incompatible with T (ie.,
K = (T & T')) and that covers the same instances (i.e., {T’, K} = E, for
all i). Then we have the following:

Fact1 If Pr(T’/K) > 0, then Pr(T/&;<, E: & K) A1 as n— .

Fact 2 If Pr(T'/K) > Pr(T/K), then for any n, Pr(T’/&;<. E; & K) >
Pr(T/&i<n E; & K). Thus the probability of T cannot be boosted above .5
by its instances E;.
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By contrast, if we stick to lowly observational generalizations that do not
outrun the data, these negative results do not apply. Thus in the example
given above of hypothesis H: (Vi)Pa;,, there is no rival H' satisfying the
suppositions of the facts above if we take E; to be Pa;.

Under what conditions can it be proved that the probability of the
theoretical hypothesis T, if true, will go to 1 with accumulating positive
evidence? In chapter 6 we investigated an answer that utilizes the powerful
martingale-convergence theorems of Doob. To apply these theorems to
prove convergence to certainty on the true theory T, we found that we
needed to assume that T is part of a partition {T;}, the members of which
are observationally distinguishable in the sense that for any distinct T,,,
T, € {T;}, there is a sentence O,,, whose nonlogical vocabulary is purely
observational such that {T,,K} E O,, while {T,,K} F 110,,. But this
means that the stage is set for a kind of eliminative induction. Of course,
the relevant O,,’s may involve multiple quantifications, in which case
elimination may not succeed in the crude sense of falsification of alterna-
tives by means of a finite number of verifications or falsifications of atomic
observation sentences.> But supposing that atomic observations do suffice
to drive the probability of the O, rapidly to 1 or 0, a kind of synthesis of
Bayesianism and eliminative induction is achieved. Bayesian inductivism
works to probabilify the true theory because of the effective elimination of
alternative theories, and the effective elimination of alternative theories
occurs because pure Bayesian inductivism works with respect to observa-
tional consequences of the theories. No useful formal results about rates of
convergence to certainty on the observational generalizations are to be
expected, but an evolutionary explanation of the fact that actual scientists
do converge rapidly on their degrees of belief in the observational conse-
quences is not out of the question (see chapter 6).

Needless to say, this sophisticated form of eliminativism cannot succeed
without the help of the partition {T;}, and such a partition is not to be had
simply for the asking.* The active exploration of the space of possibilities
and the classification of the alternatives in a manner that paves the way for
eliminative induction is an aspect of scientific methodology that has been
unjustly neglected by historians and philosophers of science. In section 4,
I will present a case study of such an exploration, but before turning to
concrete cases, | want to emphasize that in the absence of the conditions
needed to make sophisticated eliminative induction work, Bayesianism
offers no satisfying account of the probabilifications of scientific theories.
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Both Keynes and Russell, two of the earliest advocates of a probabi-
listic epistemology, employed the following variant of Bayes’s theorem,
which holds in the HD case where {H,K} | E:®

Pr(11T/K)

W) x Pr(E/1T & K)] (7.2)

Pr(T/E & K) = 1/[1 +<
If 71T has a nonnegligible prior, (7.2) shows that the posterior probability
of T is large only if E is such that Pr(E/ 1T & K) is small, which can be
somewhat misleadingly glossed as saying that E would be unlikely to hold
if T were false. This gloss is echoed in Giere’s (1984) “condition 2” for a
good test of T, which requires that E be such that the following holds:

Condition 2 If 71T & K, then very probably TE.®

I find condition 2 awkward, especially since Giere intends an objectivist
interpretation of probability. For although I believe in objective propensi-
ty probabilities for quantum events, I don’t see how objective propensities
can be attached, say, to the outcomes of measuring the centenary advance
of the perihelion of Mercury, save insofar as these propensity probabilities
are 0 or 1. Thus it seems to me that in confirmation contexts what we
need are not conditionals with objective probability consequents (as in
condition 2) but conditional probabilities interpreted as degrees of belief.
How, then, are we to evaluate the crucial conditional probability
Pr(E/1T & K)? The question becomes pressing when we take into ac-
count the fact that flesh-and-blood scientists are not logically omniscient.
In chapter 5, two aspects of the failure of omniscience were distinguished:
first, there may be a failure to recognize logical implications, and second,
there may be a failure to perceive what alternative theories lie in the space
of possibilities. We can acknowledge the second shortcoming by
Shimony’s (1970) device of the “catchall hypothesis.” 71T is then repre-
sented as Ty v T, v ... v T, v Hc, where the T;, i = 1, 2, ..., g, are the
previously constructed alternatives to T and the catchall H says, in effect,
that some as yet uninvented theory is true. Since H stands for terra
incognita, the value of the crucial factor Pr(E/ 1T & K) in Keynes’s and
Russell’s form of Bayes’s theorem is literally anybody’s guess. This may be
acceptable to the thoroughgoing Bayesian personalists, but it is unaccept-
able to anyone who wants to find a modicum of objectivity in scientific
inference. The point here links directly to the material discussed in chapter
6. If H stands for a large chunk of possibility space—in effect, H¢ is a long,
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possibly infinite, conjunction of unarticulated theories—then it may not
be observationally distinguishable from T, T, ..., T,, and consequently
the convergence-to-certainty and merger-of-opinion theorems that are
supposed to underwrite Bayesian objectivity do not apply.

A passage from Harold Jeffreys’s Theory of Probability suggests that the
terra incognita problem can be finessed.

Now in science one of our troubles is that the alternatives available for consider-
ation are not always an exhaustive set. An unconsidered one may escape attention
for centuries.... The unconsidered hypothesis, if it had been thought of, would
either (1) have led to the [same] consequences E,, E,, ... or (2) to different
consequences at some stage. In the latter case the data would have been enough to
dispose of it, and the fact that it was not thought of has done no harm. In the former
case the considered and unconsidered alternatives would have the same conse-
quences, and will presumably continue to have the same consequences. The un-
considered alternative becomes important only when it is explicitly stated and a
type of observation can be found where it would lead to different predictions from
the old one. The rise into importance of the theory of general relativity is a case in
point. Even though we now know that the systems of Euclid and Newton need
modification, it was still legitimate to base inferences on them until we knew what
particular modification was needed. The theory of probability makes it possible to
respect great men on whose shoulders we stand. (1961, p. 44)”

Jeffreys’s point follows from some results on instance confirmation re-
viewed in chapter 4. Suppose, as before, that {T, K} E E;,i=1,2,... and
that Pr(T/K) > 0. Then we have the following:

Fact3 Pr(E,,,/&:<s E;: & K) - 1 as n— oo (Jeffreys).
Fact4 Pr(&,<j<nim Ej/&i<n E: & K) - 1 as m, n - oo (Huzurbazar).

Jeffreys’s point is that although the assumption of a nonzero prior for T is
used in the proofs of facts 3 and 4, T itself is not mentioned in the
conclusions. Thus, whether or not T is true, the correctness of past predic-
tions of T justify confidence that the predictions of T will continue to be
correct.

The Jeffreys and Huzurbazar results establish one precise version of
what the instrumentalists have always urged, namely, that the instrumen-
tal success of theories can be detached from the theoretical superstructure.
But if as noninstrumentalists we are interested in the probable truth of T,
as opposed to its observational predictions, then the alternatives to T,
considered and unconsidered, cannot be ignored.
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In discussing the probabilification of Newton’s theory of gravity, Russell
makes a move similar to Jeffreys’s. In Russell’s illustration, K is the obser-
vation of the planetary motions prior to the discovery of Neptune, and E is
the existence of Neptune at the place where Newtonian calculations
showed that it should be (assuming Neptune to be the only source of
perturbation of the inner planetary orbits). So the crucial factor
Pr(E/T & K) is the probability that Neptune would be where it was,
given that Newton’s law of gravitation is false. Russell then writes, “Here
we must make a proviso as to the sense in which we should use the word
‘false.’ It would not be right to take Einstein’s theory as showing Newton’s
to be ‘false’ in the relevant sense. All quantitative scientific theories, when
asserted, should be asserted with a margin of error; when this is done,
Newton’s theory of gravitation remains true of planetary motion” (1948,
p- 410). Russell’s remark is beside the point if we are concerned, as Russell
professed to be, with the probabilification of Newton’s theory as opposed
to its observational consequences for planetary motions.

It may be useful at this juncture to summarize the gist of the twists and
turns of the discussion of this section. I am not advocating the naive form
of eliminative induction that Sherlock Holmes claimed to follow.
Holmesian eliminativism is deficient in at least two ways. First, not only
does science not have a Vicar on earth; it does not have a Conan Doyle to
neatly list the suspects. But this fact of life cuts just as much against the
Bayesianism form of inductivism, since, I am claiming, a persuasive form
of probabilistic inductivism for scientific theories must be founded upon a
parsing of the suspects. Second, in scientific cases the elimination may not
consist of the simple one-two knockout deduction of a prediction and
falsification of the prediction via direct observation. Some form of induc-
tivism is typically needed to effect a confrontation between a theory and
the raw data of observation and experiment. What I am advocating is a
partnership between Holmes and Bayes. How this partnership might work
is illustrated in section 4.

Furthermore, I would note that some of the (in)famous doctrines of
popular macromethodologies of science can be usefully regarded as arti-
facts of the failure or success of eliminative induction. A theory may
achieve the status of Kuhnian paradigm by default—not because it is the
survivor of a systematic program of eliminative induction but because it
has enjoyed some striking successes and because both strong competitors

:
i

Biwes

fi ke

b

dk i}

§ u&q«ﬂ,!‘ ok

r

A Plea for Eliminative Induction 171

and any idea of how to generate them are lacking. In such circumstances
it will be natural to try to dignify what scientists are doing by saying that
“normal science” consists in “paradigm articulation.” Making a virtue of
necessity is an honorable tactic, but often the “necessity” here is simply a
result of a lack of imagination on the part of scientists. Feyerabend’s call
for a proliferation of theories can be seen as a reaction to this situation,
and although Feyerabend prefers to put an anarchistic or Dadaistic gloss
on his call, it makes more prosaic sense as a first step in the investigation
of the space of alternative theories, the charting of which is essential to
eliminative induction.

3 Salmon’s Retreat from Bayesian Inductivism

Although still professing to be a Bayesian, Wesley Salmon (1990) has come
close to abandoning inductivism. His reasons stem in part from the pro-
blems discussed above in section 2, especially the problem of evaluating
Pr(E/T & K) or Pr(E/H. & K). Salmon recommends that instead
of trying to probabilify theories in absolute terms, we remain content
to compare rival theories that have actually been proposed. For a com-
parison between two rivals T, and T, it suffices to know the ratio
Pr(T,/E & K)/Pr(T,/E & K). The immediate benefit is that in applications
of Bayes’s theorem in the form (2.2), there is a cancellation of the prior
likelihood

Pr(E/K) = Pr(E/T, & K) x Pt(T,/K) + Pr(E/T, & K) x Pr(T,/K) + -+
+ Pr(E/H & K) x Pr(H./K),

which involves the troublesome Pr(E/H. & K), and the evaluation of the
resulting ratio requires only an evaluation of the prior ratio Pr(T,/K)/
Pr(T,/K) and the likelihood ratio Pr(E/T, & K)/Pr(E/T, & K).®

As a fallen Bayesian, I am in no position to chide others for acts of
apostasy. But I do want to note that there is a high price to pay for
Salmon’s form of apostasy. The first cost is that Salmon’s restricted form
of Bayesianism will no longer underwrite commonplace judgments of the
differential-confirmational merits of various pieces of evidence, such as
that the perihelion-advance evidence Ep gives better confirmational value
with respect to GTR than the red-shift evidence Eg. For as noted in
chapter 6, the incremental confirmational values are respectively
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Pr(GTR/K)[(1/Pr(Ep/K)) — 1],
Pr(GTR/K)[(1/Pr(Eg/K)) — 1],

so that the judgment in question depends on a comparison of the prior-
likelihood factors that Salmon wants to avoid. The second and perhaps
greater cost is to strip Bayesianism of its applicability to decision making
involving expected utility calculations, for the ordering of actions via such
calculations can turn on the absolute probabilities of outcomes. And final-
ly, if Bayesianism is to underwrite other commonplace scientific judg-
ments, it must supply absolute as well as relative probabilities, since, for
example, the verdict of the scientific community is that the probability
of Velikovsky’s Worlds in Collision theory is very low.®

Thus, unless Bayesianism is to be severely pruned back, I see no alterna-
tive to the sort of investigation of the possibilities recommended above. In
some instances our grasp of the space of alternatives may seem firm. The
case of the classic detective story is the paradigm example where all the
players are known, but this happy circumstance is the result of artifice. In
other cases, firmly entrenched background theories rather than artifice
may supply the grasp. Thus, as regards the origins of the earth’s moon, in
our present state of knowledge of mechanics and planetary science, we take
the possibilities to be accretion, capture, fission, impact and ejection, and
combinations thereof. In other instances our grasp of the possibilities may
seem infirm but firmable. Thus, nineteenth-century physicists concerned
with the nature of light couldn’t list the possible players, but there seemed
to be a firm starting point for the investigation of theories of light, since it
was assumed that light must be composed of either particles or waves. The
remaining task of investigating the detailed possibilities was daunting but
seemingly manageable, since long experience with particle mechanics sug-
gested ways of treating light as corpuscles, and such phenomena as polar-
ization focused the investigation of wave theorists on transverse waves.
(The relevant possibility space for theories of light was radically altered by
the advent of the quantum theory. A discussion of scientific revolutions
will be postponed until chapter 8.) In still other instances our grasp of
the alternatives may seem irremediably slippery and incomplete. Thus
when Einstein presented his general theory of relativity in 1915, there was
no firm starting point for the investigation of alternative theories of gravi-
ty. Indeed, it was not apparent how to set plausible bounds on the space
of alternatives, much less how to parse the possibilities in a manner that
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would smooth the way for eliminative induction. In the following section
I will study in some detail the self-conscious attempt made by physicists in
the last twenty years to make eliminative induction work for gravitational
theories.

4 Twentieth-Century Gravitational Theories: A Case Study

Gravitational research in this century does not conform to any of the
currently available models of macromethodology, such as those of Kuhn,
Lakatos, Laudan, and others. In particular, it is not happily fitted into
Kuhn’s dichotomy of normal versus revolutionary science. A “revolution
in science” (as the Times of London declared in a banner headline) did
follow upon the announcement of the British eclipse expeditions of 1919
that Einstein’s GTR had correctly predicted the amount of bending of
starlight as it passed near the sun.!® But over the succeeding decades there
has been nothing in the field that can be described as a major revolution,
though a revolution is now brewing in various attempts to marry gravity
and quantum mechanics. On the other hand, the developments in the field
do not fit comfortably into the framework of Kuhn’s puzzle-solving model
of normal science, for although Einstein’s GTR has played the leading role,
it has never achieved the status of paradigm hegemony, and from 1916
onward competing theories of gravitation have always been available. By
the early 1970s there were literally dozens of competitors—a veritable
“z00” of theories, as research workers in the field were wont to say. This
zoo did not evolve because GTR was beset by anomalies, as Kuhn’s
view would suggest.

As noted above, a theory may become dominant either by default or by
remaining standing when the Sherlock Holmeses of science have “elimi-
nated the impossible.” The explanation of the dominance achieved by
GTR in the decades immediately following its introduction falls some-
where between these extremes. On his way to the GTR, Einstein consid-
ered and found wanting a number of other theories: gravity as a phenome-
non in Minkowski space-time (Minkowski 1908), variable-speed-of-light
theories of his own (Einstein 1912a, 1912b) and of Abraham’s (1912) con-
coction, Nordstrom’s (1912, 1913) conformally flat theories, a mutant
nongenerally covariant theory worked out with the help of his friend
Marcel Grossmann (Einstein and Grossmann 1913), and Mie’s (1914)
theory of everything. Although Einstein did not engage in a systematic
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exploration of alternative theories of gravity, he did offer a heuristic elimi-
nation in the form of arguments that were supposed to show that one
is forced almost uniquely to the GTR if one walks the most natural path,
starting from Newtonian theory and following the guideposts of relativity
theory.'! The first lesson of the special theory of relativity (so the story
goes) is that bodies do not act upon one another at a distance but through
the auspices of a field mechanism. Next, Einstein used the principle of
equivalence to motivate the conclusion that the successful description of
gravitational interactions cannot be carried out in the space-time of special
relativity but must make use of a (pseudo-)Riemannian space-time. The
metric potentials g;, of the latter take the place of the Newtonian gravita-
tional potential, and if one asks for the simplest second-order differential
equation that can be constructed from the g, and that reduces to the
Newtonian field equation (Poisson’s equation) in the weak-field, slow-
motion approximation, one arrives at the field equations of GTR. The
early dominance of Einstein’s theory was the result of the combination of
the power of such naturality arguments, the success of GTR in resolving
the long-standing anomaly in the motion of Mercury’s perihelion, and the
lack of equally natural and equally successful competitors in the years
following 1915.2

But slowly at first and then with increasing volume, alternative theories
began to appear. The reasons were in the main not connected with an-
omalies that beset GTR. Anomalies there were. Red-shift measurements
stubbornly refused for decades to conform to Einstein’s prediction, and the
first solid confirmation of this effect did not come until 1960 with the
experiment of Pound and Rebka using the Mossbauer effect.!® The light-
deflection prediction was not in much better shape, the measured results
being scattered between 1/2 and 2 times the GTR value. But apart from an
early theory by Leon Silberstein (1918) and a few other exceptions, theo-
rists generally did not seek to avoid either the red-shift or the deflection-
of-light prediction. Indeed, many tried to show that their pet theories of
gravity could duplicate the GTR predictions for the three classical tests.

What, then, were the reasons for the proliferation of theories of gravita-
tion? Some theories were proposed as serious competitors to GTR by
physicists who were either unconvinced by Einstein’s naturality arguments
or underwhelmed by the empirical support for GTR. Other theories were
“devised not so much as serious competitors to the general theory of
relativity as foils against which predictions could be compared and con-
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trasted as guides to further experiments” (Will 1974a, p. 33). The point
here is that the design and assessment of experiments often depends on a
knowledge of the predictions of alternative theories. Thus in 1919
Eddington was able to argue that the results of the light-deflection mea-
surements reported by the British eclipse expeditions supported GTR
because he assumed that only three outcomes were possible: the full GTR
deflection value, the Newtonian 1/2 deflection, or no deflection.!* We now
know for sure, and Eddington should well have surmised, that this is a false
trichotomy. Still other theories were products of attempts to explore the
shape of the space of alternative theories and to arrive at a classification
scheme that would lend itself to eliminative induction. Such was Ni’s (1973)
theory, which was constructed specifically to explode the hope that GTR
could be distinguished from all viable metric theories by measuring values
of the parameters that define a certain post-Newtonian limit (see below for
details).

By the 1970s the denizens of this zoo of gravitational theories were so
various as to elude any simple synopsis, and I will simply cite a few
examples to give a flavor of the range of alternatives. There were Poincaré-
type theories with particles acting at a distance in Minkowski space-time;
Whitehead’s theory utilizing a flat background metric # and a dynamic
gravitational field g constructed from # and matter variables; Kustaan-
heimo’s theory with a vector gravitational field on a flat space-time back-
ground; scalar-tensor theories of Brans and Dicke, Bergmann, and others
postulating a scalar field that is generated by matter and nongravitational
fields and that in turn serves as a source for the gravitational field; con-
formally flat theories of Nordstrom, Littlewood and Bergmann, Whitrow
and Morduch, and others that postulate a flat background metric # and a
scalar field y such that the physical metric g = yy; stratified theories with
preferred, conformally flat time slices; and on and on.'®

Trying to coexist with this zoo had unpleasant consequences for astro-
physicists, as described by Thorne and Will:

Since 1963 a number of astronomical discoveries and observations have forced
astrophysicists to make general relativity a working tool in their theoretical model
building: The cosmic microwave radiation, QSOs [quasi-stellar objects], pulsars,
gravitational waves—models for all these are constrained by or involve relativistic
gravity in a fundamental way.

We theorists, who wish to build models for these phenomena, are hamstrung:
Experiment has not yet told us which relativistic theory of gravity is correct—
general relativity, Brans-Dicke theory, one of Bergmann’s ... multitudinous scalar-
tensor theories, a theory which nobody has yet constructed, [etc.]. (1971, p. 595)
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This quotation is taken from a paper entitled “Theoretical Frameworks for
Testing Relativistic Gravity. I. Foundations,” the first in a series of papers
designed to lay the groundwork for systematic eliminative induction for
relativistic theories of gravitation.!® The way the program was conceived
in 1974 was set out in a review article by Will:

Because of the lack of high-precision data favoring general relativity over any other
theory, and because of the large (and growing) number of competing theories,
there is a great need for a theoretical framework which be powerful enough to be
used to design and assess experimental tests in detail, yet be general enough
not to be biased in favor of general relativity. It should also provide a machinery
for analyzing all theories of gravity which have been invented as alternatives to
Einstein’s one in the past 70 years, for classifying them, for elucidating their
similarities and differences, and finally for comparing their predictions with the
results of solar-system experiments. We would like to see experiment force us, with
very few a priori assumptions about the nature of gravity, towards general relativity
or some other theory. (1974b, p. 2)

The program as it evolved was even more ambitious than this passage
makes it seem, for it was supposed to deal not only with the animals
actually in cages in the zoo—the theories of gravity that had been invented
over the past decades—but also with those beasts lurking in the bush—the
theories that have yet to be invented and that may never be explicitly
formulated. In this respect the program has a non-Bayesian dimension.
The business of eliminating chunks of the possibility space can go forward
without explicit articulation of theories in the subspace and certainly
without playing the Bayesian game of assigning prior probabilities to
theories. Such a game is dangerous to play at an early stage of the program,
since at most a countable number of incompatible theories can be assigned
nonzero priors. In effect, the use of the probability apparatus eliminates
most theories (all but a set of measure zero in some natural measure on the
space of possibilities) before any experiment is performed. Thus Sherlock
Holmes would remind us yet again that when we have eliminated the
impossible, whatever remains, however improbable, including theories
that were given zero prior probabilities, must be the truth.

The initial inspiration for Thorne and Will’s “theory of theories of
gravitation” came from Dicke (1964, appendix 4), who assumed, among
other things, that

1. space-time is a four-dimensional manifold,
2. the laws of gravitation must be stated in a generally covariant form,
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3. gravity must be expressed in terms of one or more fields of tensorial
character,

4. the dynamical equations of gravity must be derivable from an invariant
action principle.

Thorne and Will dropped (4) and weakened (3) to a requirement implicit
in (2); namely, the relevant physical quantities are geometric object fields
(not necessarily tensorial in character) on the space-time manifold.'” The
resulting framework encompasses an enormous range of theories. Cer-
tainly every theory that is recognizably a theory of gravity from Newton
through Einstein, all the competitors to GTR that have been invented
since 1915, and an uncountable number of other theories yet to be invented
can all be brought within this framework.

Despite the wide cast of its net, the resulting enterprise was nevertheless
a case of what may properly be termed local induction. First, there was no
pretense of considering all logically possible theories. Second, there was
widespread if tacit agreement on the explanatory domain of a theory of
gravity (i.e., on the phenomena that an adequate theory of gravity should
explain). And third, there was general agreement on what auxiliary theo-
ries may be used in constructing the explanations.'® Bayesian or Bayesian-
like considerations are active in facilitating this locality, especially in help-
ing to set the bounds on possible theories and in choosing allowable
auxiliary theories. But on pain of circularity, no formal Bayesian-induc-
tivist grounding can be given for the choice of the local frame, since, as
argued in chapter 3, confirmation values depend on this choice.

Bayesian considerations also help to move the program forward, espe-
cially in the area of drawing from the raw experimental data useful conclu-
sions with which to confront the theories of gravity. But the main business
of the program, eliminative induction, is propelled by a process typically
ignored in Bayesian accounts: the exploration of the possibility space, the
design of classification schemes for the possible theories, the design and
execution of experiments, and the theoretical analysis of what kinds of
theories are and are not consistent with what experimental results.

The first step in Thorne and Will’s program is to weed out all theories
that do not display basic viabilitv, which demands four features:

Completeness. A viable theory must contain the resources to analyze all the
phenomena in the explanatory domain. Thus a viable theory cannot sim-
ply postulate a value for the red shift; rather, a red shift prediction must be
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derivable from first principles of the theory working in conjunction with
an allowable auxiliary theory of light. Milne’s (1948) kinematic theory of
relativity fails to pass this first hurdle.

Consistency. This means not only that the theory is free of internal self-
contradictions but also that it predicts the same results when they are
calculated by different methods with different allowable auxiliary hypoth-
eses. Thus the theory must yield the same red shift result whether light is
regarded as a particle or a wave. The Kustaanheimo and Nuotio (1967)
theory falls at this hurdle.

Relativistic. In the limit where gravity is turned off, the nongravitational
laws of a viable theory should agree with those of the STR. Of course,
Newtonian and other classical theories fail to pass this hurdle.

Newtonian limit. The theory must agree with the predictions of Newton’s
laws of gravity in the Newtonian limit where gravitational fields are weak
and the motions of gravitating bodies are slow in comparison with the
velocity of light. Birkhoff’s (1943) theory is ruled out, since it predicts that
Usound = Vligne N the Newtonian limit.

The second cut uses a combination of experiment and theoretical argu-
ment to eliminate the large chunk of the possibility space containing
nonmetric theories. Metric theories of gravity postulate that gravity is
expressed through a Lorentz-signature metric tensor g. More precisely, it
is required that the world lines of uncharged test bodies'® are geodesics of
g and that in local Lorentz frames (the local freely falling frames of g)?°
the nongravitational laws reduce to those of STR. Metric theories are
closely connected with the so-called principle of equivalence, two versions
of which are relevant here. The weak equivalence principle (WEP) says that
the world lines of test bodies in a gravitational field are independent of the
composition and internal structure of the bodies. The Einstein equivalence
principle (EEP) demands in addition that all nongravitational laws of
physics are the same in every local Lorentz frame. Leonard Schiff conjec-
tured that any theory of gravity that is complete, self-consistent, and
satisfies WEP must also satisfy EEP. Since a complete and self-consistent
theory is metric if and only if it is relativistic and satisfies the EEP,
it follows from Schiff’s conjecture that among the basically viable theories,
metric theories are precisely those that fulfill WEP. No formal proof of
Schiff’s conjecture exists, but proofs in special cases combined with plausi-
bility arguments make it a “fair confidence” conclusion.

S~

Sho gk &tu-:

%
K
F
*
=+
El
-
bl
bl
#
3
-
z
&3

i &zam‘waa‘« [FEE

ke O

A Plea for Eliminative Induction 179

If we start with this conclusion, experiments that establish WEP would
serve to eliminate all nonmetric theories. The E6tvos experiment, which
uses a torsion balance to compare the accelerations of two differently
composed test bodies in a gravitational field, serves this purpose. Null
results of extreme accuracy have been achieved by Roll, Krotov, and Dicke
(1964) and by Braginski and Panov (1972). We thus arrive at the further
fair-confidence conclusion that only metric theories are viable.?!

The next round of elimination begins by classifying all metric theories
in terms of predictions that can in principle be tested by solar-system
experiments. For this we need an improved post-Newtonian limit that goes
beyond the first-order Newtonian limit used to define basically viable
theories. An initial attempt at defining a post-Newtonian limit was made
by Eddington (1923), who observed that any stationary and spherically
symmetric g field, such as presumably exists to good approximation as the
exterior field of our sun, can to second order in the central mass be written
as a function of three parameters a, B, y (see also Robertson 1962 and Schiff
1967 and see chapters 5 and 6). Einstein’s GTR requires that a = § =
y = 1, while other metric theories require different values. In principle, the
three classical tests—the red shift, perihelion advance, and bending of
light—can be used to pin down the values of all three parameters and thus
to eliminate large ranges of metric theories. A more accurate post-
Newtonian limit was devised by Will (1971a, 1971b). The latest version
of this “parameterized post-Newtonian” (PPN) formalism contains ten
parameters (Will 1984). Solar-system experiments can be used to set limits
on the values of these parameters and thus to squeeze the viable metric
theories into smaller and smaller volumes of the parameter space.

In 1971 Thorne and Will contemplated the ideal limit of experimental
measures of the PPN parameters that lands us at a single point of the
parameter space. Three possibilities then exist:

1. There corresponds to the limit point only one viable metric theory, in
which case the eliminativist program would be complete.

2. There corresponds to the limit point no viable metric theory, in which
case the program would have to be rethought.

3. There corresponds to the limit point many viable metric theories.

We now know that (3) is the most likely outcome since different metric
theories can have the same PPN limit. If (3) is indeed the outcome, we can
contemplate carrying the eliminative program forward by devising an even
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more accurate post-post-Newtonian limit, etc. Here, however, a different
type of fourth-round winnowing will be mentioned.

Metric theories of gravity differ as to their predictions about gravita-
tional radiation. At least four classification schemes can be devised to use
the differences to push forward the eliminativist program. The first and
crudest separates theories into those that do and do not predict the exis-
tence of gravitational waves. Since most metric theories seem to fall on the
do side of the cut, this scheme has little winnowing power by itself. More
useful is the number of independent polarization modes allowed for gravi-
tational waves. Einstein’s GTR says two, while other metric theories say
six or more. A third scheme looks at the speed of gravity waves. GTR
says ¢, while other metric theories predict various values less than c. The
fourth scheme looks at multipole moments of gravitational radiation.
GTR predicts that the lowest multipole of emitted gravitational radiation
is quadripole, while other metric theories imply different results.

Cosmological observations are the source of potentially powerful eli-
minative conclusions, since theories that agree on solar-system predictions
at the PPN limit can diverge widely in the cosmological regime. Unfortu-
nately, the auxiliary hypotheses used to interpret cosmological observa-
tions are both more numerous and more subject to doubt than those used
at any previous stage of the program. To some extent this difficulty can
be overcome by the fact that different theories of gravity often lead to
qualitatively different predictions for cosmology. But even so, the potential
of cosmological tests for winnowing the remaining theories of gravity will
remain unrealized until theorists succeed in designing a classification
scheme useful for comparing gravitational theories at the cosmological
level and confronting them with observations; certainly no analogue of the
PPN scheme for solar-system measurements presently exists for cosmolo-
gy (see Will 1984, p. 414).

A schematic summary of Thorne and Will’s eliminativist program is
given in figure 7.1.22

5 Conclusion

The case study in section 4 is admittedly an extreme example in that
scientists are rarely so self-conscious in the pursuit of eliminative induction
as to publish in leading scientific journals papers whose only purpose is to
discuss the foundations for a theory of ____theories or to tout a framework
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for testing theories of . But any number of other less self-conscious
examples of eliminative induction at work could be cited. Furthermore, the
general strategy can also be discerned in foundational studies. Thus, argu-
ably little progress was made on the problem of hidden-variable interpre-
tations of quantum mechanics until workers in the field devised various
classification schemes that lend themselves to eliminativism. Hidden-vari-
able theories can be divided into local versus nonlocal, deterministic versus
stochastic, contextual versus noncontextual, etc., and a combination of
mathematical results (e.g., Bell’s theorems) and experiments (e.g., Aspect’s
experiments) can be used to rule out a chunk of the possibility space (e.g.,
local, noncontextual theories, whether deterministic or not). More humbly
but no less importantly, having a firm grasp on whether or not to count
the outcome of a measurement process as a genuine value rather than an
artifact presupposes a prior grasp on both the possible sources of malfunc-
tion of the measuring instrument and the means of eliminating these
sources.

The multiplication of such examples is not intended to prove, nor could
it prove, the claim that either science itself or foundational studies of
science typically proceed via eliminative induction, for that claim is false.
A given field may not be ripe for a systematic program of eliminative
induction, and I would suspect that at any given time the majority of fields,
even in the advanced sciences, are unripe. What I do claim is that when
the conditions for eliminative induction are not in place, there typically is
no rational basis for the assignment of a high degree of confidence to some
particular theory in the field. To return to the case study of section 4, my
claim is that physicists of earlier decades were not rationally justified in
according Einstein’s GTR a high probability. And further, to be justified
in this regard, it is not sufficient to get to a position where Brans and
Dicke’s theory, Bergmann’s theories, and all of the other actually proposed
alternative theories of gravity can be rejected. If a belief in GTR is to be
rational, it must be based on a systematic exploration of alternatives that
have yet to be invented.

The form of eliminativism I favor cuts against the variety of Bayesian
personalism that focuses on how warmly one feels toward a theory and
that complacently assumes that some measure of objectivity will emerge
through the washing out of priors as the evidence accumulates. Only an
active exploration and regimentation of the possibilities that sets the stage
for eliminativism will produce the wanted objectivity. At the same time it
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needs to be emphasized that my eliminativism is not identical with the
naive Sherlock Holmes variety with which I started this chapter.?® Nor is
it anti-Bayesian per se; indeed, the numerous places where Bayesian-like
considerations come into play in the case study in section 4 indicate a
partnership that may be properly dubbed Bayesian eliminativism. How-
ever, the process described in this chapter is not compatible with the
accepted Bayesian orthodoxy. The exploration of the space of possibilities
constantly brings into consciousness heretofore unrecognized possibilities.
The resulting shifts in our belief functions cannot be described by means
of any sort of rule of conditionalization. The most dramatic shifts occur
during scientific revolutions when radically new possibilities are intro-
duced, but the same point holds for the less dramatic, workaday cases. This
matter will be discussed in more detail in chapter 8.

In closing, I would like to offer a few remarks about the vexed topics of
scientific progress and scientific realism. As for the first, philosophers have
a penchant for accounts of the nature of scientific progress that can be
encapsulated in some pithy slogan: paradigm articulation, increase in
solved problems, progressive paradigm shift in terms of novel predictions,
etc. I believe that there is no filling for the blank in ‘Scientific progress
consists in " that is both pithy and adequate. Scientific progress con-
sists of all of the above and much more. Part of the more that is too often
left out of standard accounts is the conceptual advance achieved by map-
ping the topography of the space of possible theories that cover the explan-
atory domain in question. Whether significant dividends will accrue from
devoting more attention to this aspect of progress can only be discerned
from the fruits of historical and philosophical case studies.

Finally, I want to pick up one of the threads of the discussion from
chapter 6 on the use of underdetermination as an argument for epistemo-
logical antirealism. There I expressed my suspicion that to the extent that
the underdetermination is interesting, it is not as widespread as is com-
monly assumed. My suspicion can be tested by seeing what degree of
underdetermination remains when the program described in section 4 is
pushed as far as it will go. Suppose first that my suspicion proves wrong
and that a residual underdetermination of interesting scope remains after
all the solar-system and cosmological tests are exhausted. The conclusion
the eliminative inductivist would draw would be the same as that of the
epistemological antirealist: we have no good reason to believe one rather
than another of the remaining theories of gravity. The Bayesian may
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demur on the grounds that the remaining theories may differ in terms of
probabilities. But the only way these theories can differ in probability on
the basis of evidence entailed by the theories together with the background
assumptions is for the theories to differ in prior probabilities. And if the
history of twentieth-century gravitational theories to the present is any
guide, the theories that remain at the end of the program will be assigned
significantly different priors by different scientists, which leaves the Bayes-
ian either to identify the “correct” prior assignments or else to accept a
relativism according to which, on the basis of the same evidence, Jones is
justified in believing T, while Brown is justified in believing T,. The first
alternative is not promising, since no satisfactory account of “correct”
prior assignments is in the offing. The latter alternative is even worse, since
it abandons even the most minimal form of scientific objectivity.
Suppose, on the other hand, that my suspicion proves correct in that the
program of section 4 converges on, say, GTR or some subset of theories
that share with GTR the central theoretical mechanism of gravitation. The
antirealist may respond that since the program of section 4 is a case of local
induction, we have good reason to believe GTR only if the framework
assumptions of the program are correct and, in particular, only if the true
theory of gravity is to be found within the confines of the possibility space
carved out by the framework. But since the history of science is a record
of the demise of one framework after another, the program operates on
unfirm ground. I have two responses to make here. First, I would contend
that all cases of scientific inquiry, whether into the observable or the
unobservable, are cases of local induction. Thus the present form of skepti-
cism of the antirealist is indistinguishable from a blanket form of skepti-
cism about scientific knowledge. This contention requires detailed argu-
mentation, which cannot be provided here. Second, however, I do ac-
knowledge the presuppositional character of the program. And I concede
that there can be no noncircular inductive justification for circumscribing
the possibility space in the fashion presupposed by the program. I am thus
committed to a kind of epistemic relativism where enquiry is conducted
relative to a frame for local induction, and in keeping with the discussion
in section 6 of chapter 3, it seems to me that the choice of frame is best
described as a pragmatic one. Before hackles rise, let me hasten to add that
my relativism is the commonsensical kind entailed by any nonfounda-
tionalist approach to knowledge that recognizes that enquiry moves for-
~ward from where we are rather than backward in search of an indubitable

i .
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basis. And the pragmatic factors that guide the choice of frame can be
much more weighty than mere convenience. In the case in point, the choice
of the frame for investigating theories of gravitation has the full weight of
the history of modern science behind it. But that weight makes itself felt
not in terms of precise inductive arguments but rather in terms of Kuhnian
factors, or so I will argue in the next chapter.
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Normal Science, Scientific Revolutions, and All That:
Thomas Bayes versus Thomas Kuhn

1 Kuhn’s Structure of Scientific Revolutions

Read in the context of the then prevailing orthodoxy of logical empiricism,
the first edition (1962) of Kuhn’s Structure of Scientific Revolutions seemed
to offer a novel and indeed radical account of the nature of scientific
change. For those who do not have a copy of Structure at hand, here is a
sample of a few of the purple passages:

Like the choice between competing political institutions, that between competing
paradigms proves to be a choice between incompatible modes of community life. ...
When paradigms enter, as they must, into a debate about paradigm choice, their
role is necessarily circular. Each group uses its own paradigm to argue in that
paradigm’s defense. (P. 94)

As in political revolutions, so in paradigm choice—there is no standard higher
than the assent of the relevant community. To discover how scientific revolutions
are effected, we shall therefore have to examine not only the impact of nature and
logic, but also the techniques of persuasive argumentation within the quite special
groups that constitute the community of scientists. (P. 94)

The proponents of competing paradigms practice their trades in different
worlds. ... Practicing in different worlds, the two groups of scientists see different
things when they look from the same point in the same direction. (P. 150)

In these matters neither proof nor error is at issue. The transfer of allegiance from
paradigm to paradigm is a conversion experience that cannot be forced. (P. 151)

Before they can hope to communicate fully, one group or the other must experience
the conversion that we have been calling a paradigm shift. Just because it is a shift
between incommensurables, the transition between competing paradigms cannot
be made a step at a time, forced by logic and neutral experience. Like a gestalt
switch, it must occur all at once (though not necessarily at an instant) or not at all.
(P. 150)

Many readers saw in these passages an open invitation to arationality,
if not outright irrationality. Thus Imre Lakatos took Kuhn to be saying
that theory choice is a matter of “mob psychology” (1970, p. 178), while
Dudley Shapere read Kuhn as saying that the decision to adopt a new
paradigm “cannot be based on good reasons” (1966, p. 67). Kuhn, in turn,
was equally shocked by such criticisms. In the Postscript to the second
edition (1970) of Structure he professed surprise that readers could have
imposed such unintended interpretations on the above quoted passages.
Let us agree to leave aside the unfruitful question of whether or not Kuhn
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ought to have anticipated such interpretations and to concentrate instead
on what, upon reflection, he intended to say.

Kuhn’s own explanation in the Postscript begins with the commonplace
that “debate over theory-choice cannot be cast in a form that resembles
logical or mathematical choice” (p. 199). But he hastens to add that this
commonplace does not imply that “there are no good reasons for being
persuaded or that these reasons are not ultimately decisive for the group.” t
The reasons listed in the Postscript are accuracy, simplicity, and fruitful-
ness. The later paper “Objectivity, Value Judgments, and Theory Choice”
(1977) added two further reasons: consistency and scope. And as Kuhn
himself notes, the final list does not differ (with one notable exception to
be discussed later) from similar lists drawn from standard philosophy-of-
science texts (see also Kuhn 1983).

These soothing sentiments serve to deflate charges of arationality and
irrationality, but at the same time they also serve to raise the question of
how Kuhn’s views are to be distinguished from the orthodoxy that Struc-
ture was supposed to upset. The answer given in the Postscript contains
two themes elaborated in “Objectivity.” First, the items on the above list
are said to “function as values” that can “be differently applied, individual-
ly and collectively, by men who concur in honoring them” (p. 199). Thus,
“There is no neutral algorithm for theory-choice, no systematic decision
procedure which, properly applied, must lead each individual in the group
to the same decision.” Second, it follows (supposedly) that “it is the com-
munity of specialists rather than the individual members that makes the
effective decision” (p. 200).

I think that Kuhn is correct in locating objectivity in the community of
specialists, at least in the uncontroversial sense that intersubjective agree-
ment among the relevant experts is a necessary condition for objectivity.?
But how the community of experts reaches a decision when the individual
members differ on the application of shared values is a mystery that to my
mind is not adequately resolved by Structure or by subsequent writings. I
will have more to say about this and related mysteries below.

My strategy will be to explore these and other issues raised by Structure
from the perspective of Bayesian methodology. Before launching the ex-
ploration, I need to make some remarks about two of the most notable and
controversial doctrines of Structure: the incommensurability of paradigms
and the nonexistence of a theory-neutral observation language.

[5
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2 Theory-Ladenness of Observation and the Incommensurability
of Theories

Part of what is meant by the theory-ladenness of observation is embodied
in the thesis that what we see depends upon what we believe, a thesis open
to challenge (see Fodor 1984). I am concerned rather with the related thesis
of the nonexistence of a neutral observation language in which different
theories can be compared. My response, for present purposes, is tactical.
That is to say, without trying to adjudicate the general merits of the
thesis, my claim is that things aren’t so bad for actual historical examples.
Even for cases of major scientific revolutions we can find, without having
to go too far downward toward something like foundations for knowledge,
an observation base that is neutral enough for purposes at hand. A nice
example is provided by Alan Franklin (1986, pp. 110—113), who shows
how to construct an experiment that is theory-neutral enough between
Newtonian and special relativistic mechanics to unambiguously decide
between the predictions of these theories for elastic collisions. The two
theories agree on the procedure for measuring the angle between the
velocity vectors of the scattered particles, and the two theories predict
different angles.

More generally, I claim that in the physical sciences there is in principle
always available a neutral observation base in spatial coincidences, such
as dots on photographic plates, pointer positions on dials, and the like. If
intersubjective agreement on such matters were not routine, then physical
science as we know it would not be possible. I reject, of course, the posi-
tivistic attempt to reduce physics to such coincidences. And I readily
acknowledge that such coincidences by themselves are mute witnesses in
the tribunal for judging theories. But what is required to make these mute
witnesses articulate is not a gestalt experience but a constellation of tech-
niques, hypotheses, and theories: techniques of data analysis, hypotheses
about the operation of measuring instruments, and auxiliary theories
that support bootstrap calculations of values for the relevant theoretical
parameters that test the competing theories. But I again assert that the
practice is not science to the extent that this process cannot be explicitly
articulated but relies on some sui generis form of perception. This is not to
say, however, that the vulgar image of science as a blindly impartial
enterprise is correct, for the articulation uncovers assumptions to which
different scientists may assign very different degrees of confidence. But the
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sense in which different scientists can (misleadingly) be said to “see” differ-
ent things when looking at the same phenomenon is one with which a
probabilistic or Bayesian epistemology must cope on a routine basis, even
in cases far away from the boundaries of scientific revolutions. How these
differences are resolved is part of the Bayesian analogue of Kuhn’s problem
of community decision on theory choice. Kuhn’s problem will be encoun-
tered in the following section, and the Bayesian analogue will be discussed
below in sections 5 and 6.

The matter of incommensurability is much more difficult to discuss for
two reasons. First, it is tied to controversial issues about meaning and
reference, which I cannot broach here. Second, the topic of incommensur-
ability presents an amorphous and shifting target. In Structure, for exam-
ple, incommensurability was a label for the entire constellation of factors
that lead proponents of different paradigms to talk past one another. In
recent years Kuhn has come around to a more Carnapian or linguistic
formulation in which incommensurability is equated with untranslatabi-
lity. More specifically, the focus has shifted from paradigms to theories,
and two theories are said to be incommensurable just in case “there is no
common language into which both can be fully translated” (Kuhn 1989,
p. 10). I have no doubts about Kuhn’s claim that theories on different sides
of a scientific revolution often use different “lexicons,” that differences in
lexicons can make for a kind of untranslatability, and that in turn this
explains why scientists reading out-of-date texts often encounter passages
that “make no sense” (1989, p. 9). But I deny that incommensurability or
untranslatability in a form that makes for insuperable difficulties for con-
firmation or theory choice (a phrase I don’t like for reasons to be given
below) applies to the standardly cited cases of scientific revolutions, such
as the transition from Newtonian to special-relativistic mechanics and the
subsequent transition to general relativity. Newtonian, special-relativistic,
general-relativistic, and theories of many other types can all be formulated
in a common language, the language of differential geometry on a four-
dimensional manifold, and the crucial differences in the theories lie in the
differences in the geometric object fields postulated and the manner in
which these fields relate to such things as particle orbits.® This language
is anachronistic and therefore may not be the best device to use when
trying to decide various historical disputes.* But it does seem to me to be
an appropriate vehicle for framing and answering the sorts of questions of
most concern to working physicists and philosophers of science. For exam-
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ple, on the basis of the available evidence, what is it reasonable to believe
about the structure of space and time and the nature of gravitation? This
is not to say that the common language makes for an easy answer. It is
indeed a difficult business, but it is a business that involves the same sorts
of difficulties already present when testing theories that lie on the same side
of a scientific revolution. Finally, so that there can be no misunderstand-
ing, let me repeat that I am not claiming that what I call a common
language provides what Kuhn means by that term. It does not, for exam-
ple, show that the Newtonian and the Einsteinian can be brought into
agreement about what is and is not a “meaningful” question about si-
multaneity. What I do claim is that these residual elements of incom-
mensurability do not undermine standard accounts of theory testing and
confirmation.

My response to worries about the applicability of the notion of truth to
whole theories is similarly local and tactical. In the Postscript to the
second edition of Structure Kuhn writes, “There is, I think, no theory-
independent way to reconstruct phrases like ‘really there’; the notion of a
match between the ontology of a theory and its ‘real’ counterpart in nature
now seems to me illusive in principle” (1970, p. 206). I need not demur if
‘theory’ is understood in a very broad sense to mean something like a
conceptual framework so minimal that without it “the world” would be
undifferentiated Kantian ooze.’ But I do demur if ‘theory’ is taken in the
ordinary sense, i.c., as Newton’s theory or special relativity or general
relativity. For scientists are currently working in a frame in which they can
say, correctly I think, that the match between the ontology of the theory
and its real counterpart in nature is better for the special theory of relativ-
ity and even better for the general theory than it is for Newton’s theory. Of
course, to get to this position required two major conceptual revolutions.
How such revolutions affect theory choice—or as I would prefer to say
theory testing and confirmation—remains to be discussed.®

3 Tom Bayes and Tom Kuhn: Incommensurability?

Kuhn’s list of criteria for theory choice is conspicuous for its omission of ,

v

any reference to the degree of confirmation or probability of the theories.
This is no oversight, of course, but derives both from explicit doctrines,
such as the nonexistence of a theory-neutral observation language, and the
largely tacit but nevertheless pervasive anti-inductivism in Structure. Just
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as striking from the Bayesian perspective is Kuhn’s emphasis on theory
choice or acceptance, since for the Bayesian, theories are not chosen or
accepted but merely probabilified. Only in the exceptional cases where the
probability is 0 or 1, or so close to one of these values as makes no odds,
would there seem to be a natural commensurability between Tom Kuhn
and Tom Bayes.

For the Bayesian, various problems and puzzles raised in Structure
disappear. For example, consider the illustration Kuhn uses to reveal the
difficulty of applying the criterion of theory choice most closely related to
degree of confirmation: accuracy. Kuhn notes that although accuracy is
the most decisive of his five criteria, it cannot uniformly discriminate
among theories.

Copernicus’s system ... was not more accurate than Ptolemy’s until drastically
revised by Kepler.... If Kepler or someone else had not found other reasons to
choose heliocentric astronomy, those improvements in accuracy would never have
been made, and Copernicus’s work might have been forgotten. More typically, ...
accuracy does permit discriminations, but not of the sort that lead regularly to
unequivocal choice. The oxygen theory, for example, was universally acknowl-
edged to account for observed weight relations in chemical reactions, something
the phlogiston theory had previously scarcely attempted to do. But the phlogiston
theory, unlike its rival, could account for metals’ being much more alike than the
ores from which they were formed. One theory thus matched experience better in
one area, the other in another. (1977, p. 323)

To give a brief Bayesian commentary to this passage, we are dealing here
with different times and thus with different bodies of evidence and different
versions of a theory. There is no puzzle in the fact that if either of the
corresponding members of the pairs (T,E) and (T',E’) are different,
Pr(T/E) and Pr(T/E’) may be different. Nor as a Bayesian should I be
worried by the fact that while on the basis of current evidence I regard the
current form of T as highly probable, I regarded previous forms of T on
the basis of the evidence then available as having a low (but nonzero)

{ probability, for I was never in danger of rejecting T (or of accepting or
| choosing its negation), since acceptance and rejectance of theories is not

my game.
A shotgun marriage of the two Toms could be arranged in either of two
" ways. We could take Bayes to supply the probabilities, Kuhn to supply the
values or utilities, and then we could apply the rule of maximizing expected
utility to render a decision on theory choice. Or we could take the Kuhnian
virtues as helping to determine the probabilities—simplicity presumably
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affects the prior probabilities of the theories, while accuracy affects their
posteriors—and then we could choose the most probable theory. But like
most shotgun marriages, these would be mistakes. For Bayes, they would
be mistakes because they would involve the pretense that the accepted
theory T is true even though one’s degree of belief in T is less than 1,
perhaps substantially so. For Kuhn, they would be mistakes because the
efficacy of his values in no way depends upon the truth of the theories, so
estimates of the probable truth of theories are irrelevant to Kuhnian
theory choice.

Part of the wrangle here derives from the unfortunate phrase ‘theory

choice’. Scientists do choose theories, but on behalf of the Bayesians, 1
would claim that they choose them only in the innocuous sense that they
choose to devote their time and energy to them: to articulating them, to
improving them, to drawing out their consequences, to confronting them
with the results of observation and experiment.” Choice in this sense allows
for a reconciliation of Bayes and Kuhn, since this choice is informed by
both Bayesian and Kuhnian factors: probability and the values of accura-
cy, consistency, scope, simplicity, and fruitfulness.

Alas, this reconciliation is rather shallow. Once we are clear that the sort
of choice involved in “theory choice” is a practical one, then there is
nothing sacred about the list of items on Kuhn’s list of values. Other
values, such as getting an NSF grant or winning the Nobel Prize, can and
do play a role. Further, the kind of choice in question may be bigamous,
since a scientist can choose to work on two or more theories at once, and
it is fickle, since it can oscillate back and forth. The kind of choice Structure
envisioned was much more permanent; indeed, the impression given there
is that normal science is not possible without tying Catholic bonds to a
theory, bonds that may only be broken by leaving the Church, ie., by
creating a revolution.

Is there no way to bridge the gap between the two Toms on this issue?
To explain how baffling the Bayesian finds the notion of theory accep-
tance, consider the case of Einstein’s GTR, arguably the leading theory of
gravitation and thus the top candidate for “acceptance.” Marie, a research
worker in the field familiar with all of the relevant experimental findings,
does some introspection and finds that her degree of belief in GTR is p.

Case 1. Marie’s degree of belief p is 1, or so near 1 as makes no odds. Then,
as already remarked, there is a natural sense in which the Bayesian can say
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that Marie accepts GTR. Such cases, however, are so rare as to constitute
anomalies. Of course, one can cite any number of cases from the history of
science where scientists seem to be saying that for their pet theory they set
p = 1. Here I would reissue the warning of chapter 4 that we must distin-
guish carefully between scientists qua advocates of theories and scientists
qua judges of theories. It is the latter role that concerns us here, and in that
role, scientists know, or should know, that only in very exceptional cases
does the evidence rationally support a full belief in a theory.

Case 2. Marie’s degree of belief p is, say, .75. Subsequently Marie decides,
on the basis of her probability assignments and the values she attaches to
GTR and its competitors, to “accept” GTR. What could this mean?

Subcase 2.a. When she accepts GTR, Marie changes her degree of belief
from .75 to 1. This is nothing short of madness, since she has already made
a considered judgment about evidential support and no new relevant
evidence occasioning a rejudgment has come in.

Subcase 2.b. When she accepts GTR, Marie does not change her degree of
belief from .75 to 1, but she acts as if all doubt were swept away in that she
devotes every waking hour to showing that various puzzling astronomical
observations can be explained by the theory, she assigns her graduate
students research projects that presuppose the correctness of the theory,
she writes a textbook on gravitational research devoted almost exclusively
to GTR, etc. But at this point we have come full circle back to a sense of
theory acceptance that is really a misnomer, for what is involved is a
practical decision about the allocation of personal and institutional re-

—  sources and not a decision about the epistemic status of the theory.®

| This rather pedantic diatribe on theory acceptance would best be forgot-

ten were it not for its implications for the picture of normal science. As we
have seen, theory “choice” or “acceptance” can refer either to adopting an
epistemic attitude or to making a practical choice. As for the former, there
is no natural Bayesian explication of theory acceptance, save in the case
where the probability of the theory is 1. Since scientists qua judges of
theories are almost never in a position to justify such an acceptance, the
Bayesian prediction is that rarely is a theory accepted in the epistemic
sense. Similarly, when theory choice is a matter of deciding what theory to
devote one’s time and energy to, the Bayesian prediction is that in typical
situations where members of the community assign different utilities to
such devotions, they will make different choices. Thus, from either the

Qwﬂi ?‘v

. h;‘s B2 ) }&:

i
i
i
-
: 3
2
Wi
3
1

ol

Normal Science, Scientific Revolutions, and All That 195

epistemic or practical perspective, the Bayesian prediction is for diversity.
This prediction is, I think, borne out by actual scientific practice. Thus in
section 6, I will argue that insofar as normal science implies a shared
paradigm, the paradigm need not, and in fact often is not, so specific as to
include a particular (“accepted”) theory. I will also hazard a proposal for
a minimal sense of ‘shared paradigm’ that yields a less straitjacketed
image of normal science and that also diminishes, without obliterating, the
difference between normal and revolutionary science.

By way of closing this section and introducing the next, let me propose
a final way of reconciling the Kuhnian and Bayesian pictures when scien-
tific revolutions are in the offing. Radically new theories (so the story goes)
carry with them different linguistic or conceptual frameworks. Thus, to
even seriously entertain a new theory involves the decision to adopt, if only
tentatively, the new framework. And this decision is in large part a prag-
matic one, involving the factors emphasized in Kuhn’s account of para-
digm replacement. These considerations certainly impact on Bayesianism,
since, as discussed in chapter 3, probability assignments depend on the
linguistic and conceptual framework adopted. (So while it is not true, as
C. I Lewis claimed, that if anything is to be probable, then something must
be certain, it is true that if anything is to be probable, something must be
accepted. But that something is not a statement, whether of evidence or
theory, but a framework that specifies the possibilities to be considered.)
In response, let me begin by repeating my cautionary claim that major
scientific revolutions need not be seen as forcing a choice between incom-
mensurable linguistic or conceptual frameworks, since it is often possible
to fit the possibilities into a larger conceptual scheme that makes the
theories commensurable to the extent that there is an observation base
that is neutral enough for purposes of assessing the relative confirmation -
of the theories. But I agree that the recognition of the larger possibility set
can produce changes in the probability values and that those changes are
often best described in Kuhnian terms.

4 Revolutions and New Theories

For Bayesians, a scientific revolution is not to be identified with the
replacement of a paradigm in the sense of an accepted theory, since, as
argued in the preceding section, Bayesians eschew theory acceptance. I
suggest rather that revolutions be identified with the introductions of new
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theories. Such revolutions can come in one of two forms. The mildest form
occurs when the new theory articulates a possibility that lay within the
boundaries of the space of theories to be taken seriously but that, because
of the failure of logical omniscience ((LO2) in the language of chapter 5),
had previously been unrecognized as an explicit possibility. The more
radical form occurs when the space of possibilities is itself significantly
altered. In practice, the distinction between the two forms may be blurred,
perhaps even hopelessly so, but I will begin discussion by pretending that
we can separate cases.’

Even the mild form of revolution induces a non-Bayesian shift in belief

functions. By ‘non-Bayesian’ I mean that no form of conditionalization,
whether strict or Jeffrey or some natural extension of these, will suffice to
explain the change. Conditionalizing (in any recognizable sense of the
term) on the information that just now a heretofore unarticulated theory
T has been introduced is literally nonsensical, for such a conditionalization
presupposes that prior to this time there was a well-defined probability for
this information and thus for T, which is exactly what the failure of logical
omniscience rules out.

As previously noted, we can try to acknowledge the failure of logical
omniscience (LO2) by means of Abner Shimony’s (1970) device of a catch-
all hypothesis H, which asserts in effect that something, we know not
what, beyond the previously formulated theories Ty, T, ..., T, is true. Now
suppose that a new theory T is introduced and that as a result the old
degree-of-belief function Pr is changed to Pr'. The most conservative way
the shift from Pr to Pr’ could take place is by the process I will call shaving
off; namely, Pr(T}) =Pr'(T) for i=1, 2, ..., q, Pr'(T)=r>0, and
Pr'(Hc) = Pr(H() — r. That is, under shaving off, H. serves as a well for
initial probabilities for as yet unborn theories, and the actual introduction
of new theories results only in drawing upon this well without disturbing
the probabilities of previously formulated theories. Unfortunately, such a
conservatism eventually leads to the assignment of ever smaller initial
probabilities to successive waves of new theories until a point is reached
where the new theory has such a low initial probability as to stand not
much of a fighting chance.

Certainly shaving off is a factually inadequate description of what hap-
pens in many scientific revolutions, especially of the more radical type.
Think of what happened following the introduction of Einstein’s STR in
1905. Between 1905 and 1915 little new empirical evidence in favor of STR
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was recorded; and yet the probability of competing theories, such as those
of Lorentz and Abraham, set in classical space and time, fell in the esti-
mates of most of the members of the European physics community, and
the probability subtracted from these electron theories was transferred to
Einstein’s STR. The probabilities of auxiliary hypotheses may also be
affected, as illustrated by the introduction of GTR. When Finstein showed
that GTR accounted for the exact amount of the anomalous advance of
Mercury’s perihelion, the hypothesis of an amount of zodiacal matter
sufficient to affect Mercury’s perihelion dropped dramatically in the esti-
mates of most of the physics community.°

In using the term ‘non-Bayesian’ to describe such nonconditionalization
belief changes, whether of the conservative shaving-off type or some more
radical form, I do not mean to imply that the changes are not informed by
Bayesian considerations. Indeed, the problem of the transition from Pr to
Pr’ can be thought of as no more and no less than the familiar Bayesian
problem of assigning initial probabilities, only now with a new initial
situation involving a new set of possibilities and a new information basis.
But the problem we are now facing is quite unlike those allegedly solved
by classical principles of indifference or modern variants thereof, such as
E. T. Jaynes’s maximum entropy principle, where it is assumed that we
know nothing or very little about the possibilities in question. In typical
cases the scientific community will possess a vast store of relevant experi-
mental and theoretical information. Using that information to inform the
redistribution of probabilities over the competing theories on the occasion
of the introduction of the new theory or theories is a process that is, in the
strict sense of the term, arational: it cannot be accomplished by some neat
formal rules or, to use Kuhn’s term, by an algorithm. On the other hand,
the process is far from being irrational, since it is informed by reasons. But
the reasons, as Kuhn has emphasized, come in the form of persuasions
rather than proof. In Bayesian terms, the reasons are marshalled in the
guise of plausibility arguments. The deployment of plausibility arguments
is an art form for which there currently exists no taxonomy. And in view of
the limitless variety of such arguments, is it unlikely that anything more
than a superficial taxonomy can be developed. Einstein, the consummate
master of this art form, appealed to analogies, symmetry considerations,
thought experiments, heuristic principles (such as the principle of equiva-
lence), etc. All of these considerations, I am suggesting on behalf of the
Bayesians, were deployed to nudge assignments of initial probabilities in
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favor of the theories Einstein was introducing in the early decades of this
century. Einstein’s success in this regard is no less important than experi-
mental evidence in explaining the reception of his theories.

There is little to be salvaged from the Bayesian model of learning as
conditionalization by claiming that, although the model fails in periods of
scientific revolutions, it nevertheless holds for periods of normal science.
For normal science defined as the absence of even a weak revolution
shrinks to near the vanishing point. New observations, even of familiar
scenes; conversations with friends; idle speculations; dreams—all of these
and more are constantly introducing heretofore unarticulated possibilities
and with them resultant nonconditionalization shifts in our degrees of
belief, often of a non-shaving-off variety. All that remains of Bayesianism in
its present form is the demand that new degrees of belief be distributed in
conformity with the probability axioms. This is a nontrivial constraint, but
by itself it induces only the uninteresting de Finetti form of subjectivism.

This suggests that the term ‘scientific revolution’ be reserved for the
second and more radical form of revolution I distinguished above. For a
revolution in this sense, Kuhn’s purple passages do not seem overblown.
The persuasions that lead to the adoption of the new shape for the possibil-
ity space cannot amount to proofs. Certainly for the Bayesian, they cannot
consist of inductive proofs, since the very assignment of degrees of belief
presupposes the adoption of such a space. After a revolution has taken
place, the new and old theories can often be fitted into a common frame
that belies any vicious form of incommensurability (as illustrated in section
2 for Newtonian and relativistic theories). But this retrospective view tends
to disguise the shake-up in our system of beliefs occasioned by the adop-
tion of the new shape for the possibility space. Bayesianism brings the
shake-up to light, albeit in a way that undercuts the standard form of the
doctrine.

5 Objectivity, Rationality, and the Problem of Consensus

1 have endorsed a Bayesianized version of Kuhn’s claim that in scientific
revolutions persuasion rather than proof is the order of the day: revolu-
tions involve the introduction of new possibilities, this introduction causes
the redistribution of probabilities, the redistribution is guided by plausibil-
ity arguments, and such arguments belong to the art of persuasion.
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This endorsement is confined to the first stage of the revolution, when
the initial probabilities are established for the expanded possibility set. The
Bayesian folklore would have it that after this first stage, something mose
akm to proof than persuasion operates. The idea is that an evidence-driven
consensus s emerges as a result of the Bayesian learning model: degrees of
bellef change by condltlonahzatlon on the accumulating evidence of obser-
vatlon and experiment, and the long-run result is that a merger of posterior
opmlon must take place for those Bayes1an agents who initially assign
zeros to the same hypotheses. In this chapter I have raised doubts about
the conditionalization model. And in chapter 6, I showed why the mathe-
matically impressive merger of opinion theorems are of dubious applica-
bility to the sorts of cases discussed in Structure.

If honest theorem proving won't suffice, perhaps we can define our way
to a solution. That i is, why not deﬁne sc1ent1ﬁc commumty in terms of de
facto convergence of opinion over a relevant T: range of Ezpotheses" The .
answer is the same as that given by Kuhn in his"Postscript to the threat-
ened cuculanty of tai(mg a paradlgr;; to be what members of the commu-
nity share, while also taking a scientific community to consist of just those
scientists who share the paradigm. Just as scientific communities “can and
should be isolated without prior recourse to paradigms” (p. 176), so they
can and should be isolated without recourse to convergence-of-opinion
behavior. The European physics community in the opening decades of this
century can be identified by well-established historical and sociological
techniques, and one wants to know how and why, for example, this com-
munity so identified reached a consensus about Einstein’s STR. Neverthe-
less, there does seem to be at least this much truth to the definitional
move: repeated failures to achieve merger of opinion on key hypotheses
will most likely lead to a split in, or a disintegration of, the community.

At this juncture, let us recall Kuhn’s idea that since there is “no neutral
algorithm for theory-choice, no systematic procedure which, properly
applied, must lead each individual in the group to the same decision .. ., it
is the community of specialists rather than its individual members that
makes the effective decision.” Even in Kuhn’s own terms, I find this idea
puzzling, since I do not find in Structure a clear account of how the group
decision is to be effected. But since I have argued that there is no need to
choose a theory in the choose-as-true sense and since there is no need to
achieve consensus on theory choice in the choose-to-investigate-and-artic-
ulate sense, this puzzle is moot. However, the Bayesian analogue of this
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puzzle remains; namely, how is the community to operate so as to produce
a Bayesian consensus when its members have divergent degrees of belief?

One mechanism discussed by Lehrer and Wagner in Rational Consensus
in Science and Society (1981) requires that members of the community
change their degrees of belief in accordance with a weighted- aggregatlon
rule Suppose that at the initial moment person i has a degree of belief p?
in the theory in question. Each person i is assumed to assign a weight

w;; > 0 to every person j, which can be taken as an index of i’s opinion as
to the reliability of j’s opinions. According to Lehrer and Wagner’s rule, i
then “improves” her initial opinion p? by changing it to p! =Y ;w;p}. If
there are still differences of opinion, the aggregation process is repeated
with the p} to obtain further “improved” probabilities p?, etc., until eventu-
ally the probabilities for all the members fall into line.!!

Lehrer and Wagner offer a consistency argument for their aggregation
rule: “If a person refuses to aggregate, though he does assign a positive
weight to other members, he is acting as though he assigned a weight of
one to himself and a weight of zero to every other member of the group.
If, in fact, he assigns positive weight to other members of the group, then
he should not behave as if he assigned zero weight to them” (1981, p. 22).
This argument has the flavor of “When are you going to stop.beating your
wife? 1 do assign a positive weight to the opinions of others, but as a
Bayesian I do this not by means of weighted aggregation but by condition-
alization. I conditionalize on information about the opinions of my peers,
and I notice that the result is a shift in my degrees of belief toward the
degrees of belief of those I respect. As a young student these shifts brought
my opinions closely in line with those belonging to people whom I re-
garded as the experts, but as a mature member of the community, I find
that such shifts, while still nonnegligible, do not conform my opinions to
those of others, at least not on matters where I now regard myself as an
expert. And I resist any attempt to bend my carefully considered opinions.

Furthermore, there is a direct clash between Bayesianism and Lehrer
and Wagner’s type of rule for producing consensus. Let the ‘improved’ or
consensus probability Pr be a weighted average Y, B Pr ('), 0 < B, <1
and Y, B, = 1, of the individual probabilities Pr,. Such a rule commutes
with strict conditionalization only if there is dictatorship in the sense
that one of the f;’s is 1 (see Berenstein, Kanal, and Lavine 1986).

Independently of Bayesianism, there are two reasons to be unhappy
with the Lehrer and Wagner proposal and ones like 1t The first is that it
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is descriptively false, as shown by the very example they use to motivate
their proposal. In the 1970s Robert Dicke claimed that optical measure-
ments of the solar disk revealed an oblateness large enough to account for
3” to 5” of arc in Mercury’s centenary perihelion advance and hence to
throw into doubt Einstein’s explanation of the advance. When other astro-
physicists disagreed with Dicke’s conclusions, the differences were not
smoothed over by producing a consensual probability by means of a
weighted-aggregation process. The weight of opinion is now against
Dicke’s interpretation, but this agreement is in fact not due to aggregation
but to the acquisition of additional evidence.

Of course, Lehrer and Wagner are perfectly aware of these facts, and the
descriptive inadequacies of their proposal do not bother them, since they
take themselves to be offering a normative proposal. But even in these
terms, the proposal is to be faulted. It is fundamental to science that
opinions be evidence-driven. Differences of opinion need not constitute an
embarrassment that needs to be quashed, for these differences can serve as
a spur to further theoretical and experimental research, and the new infor-
mation produced may drive a genuine scientific consensus. If not, the
attempt to manufacture a consensus by a weighted-aggregation procedure
smacks of the “mob psychology” for which Kuhn was criticized.

This last point generalizes. Bayesianism, and other approaches to scien-
tific inference as well, suggest that unless there is some evidence-driven
process that operates on the level of individual scientists to produce a
group consensus, the consensus will amount to something that, if not mob
psychology, is nevertheless a social artifact that does not deserve either of
the labels ‘rational’ or ‘scientific’. Thus, contrary to Kuhn’s idea, the group
cannot decide; at least it cannot rationally decide to agree if the individuals
disagree. I do not see how this conclusion can be escaped, unless some yet-
to-be articulated collectivist methodology is shown to be viable.

6 A Partial Resolution of the Problem of Consensus

Part of the answer to the Bayesian version of the problem of consensus is
that quite often a consensus does not exist and does not need to exist for
normal scientific research to take place.!? Structure warned of the danger
of taking textbook science as our image of how real science actually
operates, and in particular, it showed how textbook science tends to make
scientific revolutions invisible by painting an overly rosy picture of a
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smoothly accumulating stockpile of scientific knowledge. But I think that
Structure failed to emphasize how textbook science also disguises the
diversity of opinions and approaches that flourish in nonrevolutionary
science.

Consider again the case study on relativistic gravitational theory devel-
oped in chapter 7. Textbooks in this area have tended to be books on
Einstein’s GTR, thus fostering the illusion that GTR has achieved the
status of paradigm hegemony. In addition, early textbooks not only
downplayed the existence of rival theories but disguised serious difficulties
with two of the principal experimental tests of GTR, the red shift and the
bending of light. Normal scientific research in this field continued in the
face of both a challenge (deriving from Dicke’s solar-oblateness measure-
ments) to the third experimental leg of GTR and also an ever growing
number of rival theories of gravitation. This and similar examples suggest
that for normal science to take place, the community of experts need only
share a paradigm in the weak sense of agreement on the explanatory
domain of the field, on the circumscription of the space of possible theories
to be considered as serious candidates for covering the explanatory do-
main, on exemplars of explanatory success, and on key auxiliary hypoth-
eses. (I am tempted to say that this is the minimal sense of paradigm
needed to underwrite normal science, but historians of science probably
have counterexamples waiting in the wings.)

One could argue that not having a paradigm in the stricter sense of a
shared theory of gravitation has lowered the puzzle-solving efficiency of
normal science. In this regard, one can recall Thorne and Will’s 1971
statement that, faced with a zoo of alternative theories of gravitation,
astrophysicists were hamstrung in their model-building activity. While I
think that this is a fair observation, I also think that there is more to
progress in normal science than puzzle solving. Chapter 7 emphasized the
conceptual advances derived from the exploration of the space of possible
theories, a point that brings me to the second part of the answer to the
problem of consensus.

Insofar as a consensus is established, it is often due to a process akin to
the eliminative induction described in chapter 7. This process is typically
accompanied by a proliferation of theories not as an exercise in
Feyerabendian anarchy or Dadaism but as a means of probing the possi-
bilities and as a preliminary to developing a classification scheme that
makes systématic elimination a tractable exercise. Since such elimination
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is not of the simpleminded Sherlock Holmes variety and involves Bayes-
ian elements, it is well to remind ourselves of the prospects and problems
of achieving a rational consensus in this way. According to the results of
chapter 6, a merger of opinion for a maximal class of equally dogmatic
belief functions will not be achievable, not even in the infinitely long run,
if the possible theories are underdetermined by the data. Despite all of the
philosophers’ talk about underdetermination, its actual extent in real cases
is unclear. Underdetermmatlon aside, a consensus would be achieved by a
convergence > of op1n10n on the (possibly multiply quantified) observational
predictions that separate the competing theories. Whether such a conver-
gence takes place in the short or medium runs depends on the class of belief
functions. Typically, it cannot set in rapidly for a maximal class of mutu-
ally equally dogmatic belief functions. Thus, where the consensus does ob-
tain, one may assume that the class is less than maximal, and the more it
falls below maximality, the lower the déérce of rationality and objectivity
the consensus will carry with it.!3

But neither the lack of a consensus nor the less-than-solid character of
the consensus where it does obtain need concern the Bayesian epistemo-
logist The lack of a consensus may adVersely affect the social cohesion of
termed a minimal paradlg;,n, scnentlﬁc communities are capable of much
more tolerance of diversity of opmlons regardmg pamcular theones than
recent phllOSOphleS of science have 1mag1ned o

7 Conclusion

The philosophy of science is littered with methodologies of science, the best
known of which are associated with the names of Popper, Kuhn, Lakatos,
and Laudan. In this chapter I have offered a critique of the Kuhnian
version, and given the space, I would offer specific complaints about the

other versions. But aside from the specifics, I have two common com-
plaints. The first stems from the fact that each of these methodologies
seizes upon one or another feature of scientific activity and tries to pro-
mote it as the centerpiece of an account of what is distinctive about the
scientific enterprise. The result in each case is a picture that accurately
mirrors some important facets of science but only at the expense of an
overall distortion. The second common complaint is that these philoso-
phers, as well as many of their Critics, are engaged in a snark hunt in trying
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to find The Methodology of Science. The hunt is fueled by a conflation of
three aspects of science and/or by a wrongheaded perspective on one or
more of these aspects.

The first and, to my mind, the most interesting aspect is the epistemic
one. I insist (in my Bayesian mode) that this aspect be explained in Bayes-
ian_termg. This implies that all valid rules of scientific inference must be
derlved from the probability axioms and the rule of conditionalization. It
follows that there is nothing left for the methodologlsts to do in this area.
Another 1mp11cat10n is that the methodologists are wasting théir time in
searching for a demarcation criterion that will draw a bright red line
between science and nonscience in terms of the methodology of belief
formation and validation, for it is just all Bayesianism through and
through, whether the setting is the laboratory or the street. What does
demarcate science as it is now practiced is the professionalized character
of its quest for well-founded belief.

This brings me to the social/institutional aspect of science, which is
responsible for many of the characteristic features of scientific activity.
Why, for example, do scientists display the Mertonian virtue of commu-
nalism, openly sharing information? Not because they also possess the
other Mertonian virtue of disinterestedness and strive selflessly to advance
scientific knowledge rather than their own agendas. On the contrary,
communalism is explained by coupling the selfish desire for recognition,
which obviously does motivate most scientists, with the current institu-
tional arrangement that gives credit for a discovery to the person who first

publishes it in a professional journal.'* Such arrangements are clearly

contingent, since the course of history might well have evolved a different
set of protocols. And if it had evolved a very different set, science as
currently practiced would not exist. Whether the practice that did evolve
would deserve to be called science is a nice question that in general will not
have a definite answer unless one believes, as I do not, that there are
identifiable essences attached to the concept of science. I most certainly do
not draw from this line of reasoning the conclusion that because they are
contingent, the current social/institutional arrangements of science and the
characteristics they foster are not worthy objects of study. But I do caution
against trying to use the results of such a study to build an account of The
Methodology of Science.

Finally, there are decisions about the tactics and strategies of scientific
research, an aspect of science that the methodologists have taken as their
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main theater of operations. A typical issue here might (with only mild
caricature) be posed thus: “My old paradigm has an impressive record of
predictive and explanatory success. But lately it has been unable to gener-
ate any novel predictions that stand up to experimental test, and it has
been unable to resolve several long-standing anomalies. Should I continue
to tinker with it in the hope that its fortunes can be revived, or should I
switch allegiance to a rival paradigm?” I suggest that this and similar issues
should be seen as practical decisions about the allocation of intellectual
and economic resources. From this perspective, there is nothing left for the
methodologists to do except to repeat, perhaps in disguised form, the
advice to choose the action that maximizes expected utility.

" In sum, I agree with Feyerabend that there is no Methodology. But my

reasons do not stem from an ideology of anarchism or Dadaism; nor do
they rely on incommensurability and fellow travelers. A little Bayesmmsm
and a lot of calm reflection are all that is needed. o

It might be complained that the picture I have sketched leaves out the
interactions among the three aspects of science I have identified. I agree
that these interactions generate a number of unresolved problems. I have,
for example, tried to highlight in this chapter and the preceding one the
curious relationship between the epistemic and social aspects as regards
the notion of scientific objectivity. A key component of scientific objectiv-
ity is agreement among members of the relevant scientific communlty But
an objectivity worth having requires an individualism: the consensus must
emerge not from social pressures but from an evidence-driven Qn;“eir‘g*ef(;f
individual opinions operating under Bayesian strlctur res. The account I
have given of the matter is far from complete, and_ T am unsure about
what else is needed to complete the story. But I do not think that Method-
ology is the answer.

1



9 Bayesianism versus Formal-Learning Theory

1 Putnam’s Diagonalization Argument

Putnam (1963a, 1963b) constructed an ingenious argument directed
against Carnap’s system of inductive logic. If effective, the argument would
tell against Bayesianism in general. I will rehearse the argument in a form
that helps to bring out these general implications.

Let me concentrate on hypotheses that can be formulated in language
& constructed from first-order arithmetic equipped with numerals (or
names for all the natural numbers) by adding names a,, a,, ..., intended
to denote a denumerable sequence of concrete objects, and by also adding
empirical predicates intended to denote properties of these objects.! Put-
nam considered two desiderata on the Pr function of any Bayesian agent
who assigns degrees of belief to the propositions of .#. The first desidera-
tum says that the Bayesian agent should be able to learn, if only in the
weak sense of instance confirmation, any effective and true hypothesis.

P1 If His an effective hypothesis and H is true, the Pr instance confirma-
tion of H (as more and more individuals are examined) eventually becomes
and remains above .5.

Some explanation is in order. Recall that instance confirmation focuses not
on the probability of H itself but rather on the probability of the “next
instance.” The use of instance confirmation in (P1) is a concession to
Carnap necessitated by the fact that in his systems of inductive logic,
universal hypotheses have zero priors and thus are unlearnable in the sense
that their posterior probabilities cannot go to 1. We saw in chapter 4 that
this concession does not have to be made for Bayesians in general, but no
harm is done in granting it here, since it only serves to strengthen the moral
Putnam wants to draw. The other bit of explanation needed is that an
effective hypothesis H is one such that (1) H is expressible in %, (2) if
it is a consequence of H that Ma,; (where ‘M’ is a molecular predicate of
&), then H — Ma; is provable in .#, and (3) H is equivalent to a set of
sentences of the form Ma; or 71 Ma, as a; runs through all of the individual
constants.
Putnam’s second desideratum is the following:

P2 For every molecular predicate ‘M’ of £ and any n > 0, there is an
m > 0 such that
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Pr(Ma,,+m+1/ & tMa & Maj) > .5.

i<n n<j<n+m

That is, regardless of which among the first n individuals are M’s or
not, if the next m individuals are all M’s for a large enough m, the probabil-
ity that the next individual a, ., is also an M is greater than .5.

In fact, (P2) follows from (P1). For if (P2) fails, there will be a hypothesis
such as H: a, to a, are red, a, to a,, are nonred, and a,, and all subse-
quent individuals are red, such that no matter how many individuals are
examined and found to conform to H, the probability of the next instance
of H does not rise above .5. Since H is effective and true in some models,
(P1) is violated.

Now consider an empirical predicate ‘R’, intended to denote (say) red-
ness, and consider an infinite class C of integers n,, n,, ... such that the Pr
probability of Ra,, is greater than .5 if all the preceding individuals are red,
the Pr probability of Ra,_ is greater than .5 if all the preceding individuals
after a,, are red, and in general the Pr probability of Ra, is greater
than .5 if all the preceding individuals after a,  are red. That there is such
a C follows from (P2). For if we take ‘R’ for ‘M’ and set n = 0, there is, by
(P2), an n, such that if the first (n, — 1) individuals are all red, the probabil-
ity of Ra, is greater than .5. Then again by (P2), there is an m such that if
a, ., through a, ., are all red, the probability of Ra, .+, is greater than
.5.Call n, + m + 1‘n,. Then iterate the construction endlessly to produce
an infinite class of integers. There are many such C’s, but for purposes at
hand, it is convenient to choose the particular C such that n, is the
smallest number where the probability of Ra, is greater than .5 if all the
preceding individuals are red and such that n;, for j > 1, is the smallest
number where the probability of Ra, is greater than .5 if all the preceding
individuals after a,, _, are red, regardless of the distribution of red and
nonred among the first n;_;.

Now suppose that Pr is effectively computable on truth-functional com-
pounds of atomic empirical sentences. (I will call such a Pr minimally
recursive.) Then C will be a recursive set, and thus by a result of Godel, C
will be the extension of a predicate ‘P’ explicitly definable in terms of ‘+’
and * x’.2 Thus, we can formulate in % the diagonalization hypothesis
Hp: (Vi)(Pi+< T1Ra;), where the quantification ranges over the natural
numbers.> Hy, violates (P1), for it can well be true, it is effective, but by
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Thus Carnapians in particular and Bayesians in general who use mini-
mally recursive Pr functions suffer a limitation on the hypotheses they can
learn, even in the weak sense of instance confirmation.

2 Taking Stock

We know from chapter 4 that the assignment of 0 probabilities to universal
generalizations is an artifact of Carnap’s linguistic inductive logics and not
a result of the probability calculus itself. Thus it is consistent to assign
Pr(Hp) > 0. In this case we know that a long enough unbroken string of
positive instances will eventually drive the instance confirmation of Hp,
above .5; indeed, we know that if countable additivity is imposed, the
probability of Hp, itself must approach 1 in the limit as the number of
positive instances approaches infinity.* So it must be that Putnam’s
assumptions force Pr(Hp) = 0.

Still more follows from (P1) and the assumption that Pr is minimally
recursive. Hy, can be divided into the conjunction of two hypotheses: Hp,,
which says that the individuals in the infinite subsequence a, , a,,, ... are
all nonred, and Hy,,, which says that the individuals in the complementary
subsequence are all red. If Pr treats ‘R’ as exchangeable for the infinite
subsequence a, , a,,, . .., then de Finetti’s representation theorem says that

1
Pr(1Ra, & Ra, & ... & 7IRa, ) = ‘[ 0 du(6)
0

for some uniquely determined normed measure g on 0 < 6 < 1. Then
unless u is closed-minded in the sense that u([0,6*]) = 1 for 8* < .5, the
instance confirmation of Hp, must eventually be boosted above .5 by
enough positive instances (see chapter 4). A parallel remark applies to Hp,.
Thus Putnam’s assumptions imply that Pr cannot treat ‘R’ as being ex-
changeable over each of the two subsequences or else that the corre-
sponding de Finetti measures cannot both be open-minded.

What new lesson does Putnam’s construction teach us? We knew already
that the power of the Bayesian apparatus derives in part from its not
treating all possibilities on a par. When an uncountable number of mutual-
ly exclusive possibilities is involved, to assign positive probabilities to some
is perforce to assign zero probabilities to others. When the possibilities

construction its instance confirmation cannot climb and stay above .5. are countably infinite and when countable additivity holds, then either

- S R e e



210 Chapter 9

some possibilities receive 0 probabilities, or else all receive positive pro-
babilities but for any & > 0 there will be an infinite number that receive a
probability less than ¢. And in general, assigning positive probabilities with
seemingly desirable properties can leave some possibilities with 0 or negli-
gible probabilities. Furthermore, to operate with exchangeability and
open-mindedness with respect to some predicates is perforce to reject ex-
changeability and/or open-mindedness for other predicates (see chapter 4).
What Putnam’s example indicates is that there is an additional price to
be paid for the power of the Bayesian apparatus when the probability
function is required to be minimally recursive. But to fully appreciate what
the price is, it is necessary to trace out the implications of another, only
partly articulated suggestion of Putnam’s paper.

3 Formal Learning Theory

Putnam’s 1963a and 1963b papers were important not only for their
critique of the Carnapian and Bayesian programs but also for suggesting
a new way of thinking about inductive procedures that seemed to lie
outside the ambit of Bayesianism. This suggestion was a source for formal-
learning theory, which is now on its way to becoming a discipline in its own
right.

Let me illustrate some of the central ideas. Consider an evidence sequence
consisting of a countably infinite sequence of sentences drawn from that
fragment of .# containing the sentences that will serve as the evidentiary
basis for inductive conjectures. Thus, in the setup from the preceding
sections, an example of an evidence sequence would be 71Ra;,, 71Ra,,
Ra,,, .... Such sequences are supposed to be complete in that they exhaust
the relevant evidence, which in terms of the present example means that
every a; appears in the sequence. Imagine that an inductive logician is fed
such a sequence and that he is required at each stage to conjecture which
sentences of . (or some chosen fragment of %) are true. Formally, then,
a learning rule is a function F from all initial finite segments of complete
evidence sequences to subsets of sentences of #. If e* stands for an evi-
dence sequence all of whose elements are true in world w and if e,’ stands
for the initial segment of e” of length n, then we can say that F is AE-
successful (i.e., V3-successful) for w and for a set of sentences § just in case
for any ¥ € S, the truth or falsity of y in w is eventually identified by F, i.e.,
for any e* and any ¥ € S, there is an N such that for any m > N, either
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F(e?) = y or F(e)}) ¥ ¥, according as ¢ is true in w or V¥ is false in w. F is
said to be EA-successful for w and S just in case a time arrives at which
F has identified the truth or falsity of every sentence ¥ in S, ie., for any
e”, there is an N such that for any m > N and any y € S, F(e,) = ¥ or
F(e?) B ¥ according as y is true in w or y is false in w. F is said to be AE
(respectively, EA) reliable with respect to S and a set K of worlds just in
case it is AE (respectively, EA) successful for S and for every w € K.

Many modifications and variations suggest themselves. For instance, in
applications to machine learning one would want to focus on F’s that are
recursive or even primitive recursive. We can also contemplate demanding
both more and less of a reliable learning rule. Thus, we may not be happy
unless convergence to the truth takes place sufficiently rapidly. In the other
direction, we may be happy if convergence is to approximate truth. And
we can also contemplate that the evidence presentation is generated by
some stochastic process and demand that convergence take place not
invariably but with high probability.>

Though vague and sketchy, these remarks should suffice to indicate that
Putnam’s suggestions pointed the way to a rich and interesting set of
problems that can be made precise and investigated by formal means. That
investigation is currently under way.®

4 Bayesian-Learning Theory versus Formal-Learning Theory

The results discussed in chapter 6 show that Bayesians can boast of their
own learning theory. Take the worlds K to be the standard models Mod ,
of 2.7 Construct an evidence sequence e* for a world w e Mod o, from an
evidence matrix ® = {¢;}, i = 1, 2, ..., by taking the initial segment ¢,’ to
be &i<n @, Where ¢* is @ or T1¢ according as ¢ is true in w or ¢ is false
in w. If the evidence matrix separates Mod, the martingale convergence
theorems yield a Bayesian-learning theorem. (Recall that @ is said to
separate Mod just in case for any distinct wy, w, € Modg, there is a
@; € @ such that g, is true in one of these worlds but false in the other.) For
then a Bayesian agent who uses a countably additive Pr defined on .# and
who conditionalizes on the successive elements of the evidence sequence
is an almost sure learner of all the true sentences of % in that
Pr(¥/&i<n ) = [¥](w) for every sentence i and almost every w € Mod
as n —» co. What holds for an evidence sequence generated by w and ®
holds for the alternative sequence generated by w and a permutation @’ of
®, since if @ is separating, then so is @. We could make the Bayesian



212 Chapter 9

learner behave more like a formal learner by tacking on a rule that enjoins
him to conjecture Y just in case the probability of  equals or exceeds some
chosen k > .5. But thoroughgoing Bayesians will see no need for such a
device.

There remain various questions about the relation between formal-
learning theory and Bayesian-learning theory that will be taken up in the
remainder of this section and in the next two sections. Here I point out that
there is an obvious quasi equivalence between the two in the context of
first-order-sentence learning for complete evidence sequences. The most
obvious direction is from Bayesian to formal learning. Suppose that there
is a Bayesian agent Pr who, for a set of worlds K & Mod, converges to
1 on every true sentence in a set of sentences S. Then for K and §, there is
a reliable AE learning function F. For given any w € K and any y € S true
in w, the conditional probability of ¥ must eventually be driven perma-
nently above .5. Thus a reliable F is given by the following rule: Conjecture
¥ on any given evidence just in case the conditional probability of y on
that evidence is greater than .5.

Conversely, suppose that there is a formal-learning function F that is
AE-reliable for K = Mod ¢ and S. Then the evidence must separate K with
respect to S; that is, for any w,, w, € K and any y € S, if w;, € mod(y) but
w, ¢ mod(¥), then for any e¥1 and e™2, there must be an n such that
el # er?, since otherwise F would not be reliable. But given this sepa-
rability, we can prove that Bayesian learning takes place for S and for some
K’ < K of measure 1. ‘

5 Does Formal Learning Have an Edge over Bayesian Learning?

Formal-learning theory would have an edge if there were cases where a
formal learner could succeed where no Bayesian learner could. It is con-
ceivable that the way in which the quasi equivalence outlined in the
preceding section falls short of complete equivalence could be exploited to
produce cases where there is a formal-learning rule that is AE-reliable for
a set of sentences S and for all Mod , whereas a Bayesian learner can
reliably converge to certainty on the members of S only for a proper subset
of Mod .. Putnam’s example goes somewhat in this direction. Let S consist
of all sentences of the form H,: (Vi)[(i = n) > Ra;},i=1,2..., and also of
all sentences of the form H2: (Vi)[Qi«> T1Ra;], where ‘Q’ is a monadic
predicate explicitly definable in terms of ‘+’ and ‘ x’ and whose extension
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is a recursive set of numbers. Evidence sequences are of the form
+Ra, & + Ra, & ... or permutations thereof. An effective AE learning
function that reliably identifies the true elements of S is defined as follows.
Enumerate the elements of S in any manner you like; call them s,, s, ....
For any n, let F(e)’) be the subset of those members of {s,,s,,...,s,} that
are consistent with e). Since at each stage n the consistency check can be
made effectively, F is effective. And from the form of the elements of S and
the construction of F, it is evident that for any s; € S and any w € Mod ¢,
there is an N such that for any m > N, F(e) = s; or not according as s; is
true in w or false in w. (Note, however, that this construction does not
produce an effective and reliable EA learning function.) By contrast, there
is no minimally recursive Bayesian who converges to 1 on each true H, and
H2 for every w € Mod . For convergence to 1 on the true H, guarantees
that Putnam’s condition (P2) will hold (i.e., regardless of which among the
first n individuals are red or nonred, if the next m are all red for a large
enough m, then the probability that the (n + m + 1)th individual will also
be red is greater than .5). If the Bayesian learner is minimally recursive,
we can construct his diagonalization hypothesis Hp: (Vi)[Pi— T1Ra;].
But since Hy, is among the H, we get a contradiction, since the probability
of Hy, should approach 1 in a world w € Mod & in which it is true, whereas
by the diagonalization construction, the probability of Hy, cannot be driven
to stay above .5.8

Nevertheless, there may be a Bayesian learner, albeit a nonrecursive one,
who converges to 1 on the true H, and H? for every w € Mod . Indeed,
any Bayesian whose Pr function is countably additive and assigns nonzero
priors to each of the H, and H2 will succeed in this regard. It remains to
be shown that there are such probability functions. I conjecture that they
exist, but I have no proof to offer.

What holds in this example holds quite generally for first-order-sentence
learning over complete evidence sequences. The existence of a formal
learner who reliably AE-detects the truth values for all Mod ¢ of a set S of
contingent sentences of % is matched by the existence of a reliable
Bayesian learner, provided that it is possible to consistently assign nonzero
priors to all members of the set S and to Boolean components of the
member sentences. The proof, which will be given below, follows from a
result that characterizes sentences whose truth values can be reliably
identified by a formal-learning rule for all Mod 4.
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Sentence y is said to be a verifutable sentence just in case it is a truth-
functional combination of sentences each of which has a prenex form
where the quantifier prefix is either purely universal or purely existential.
Evidently, there is a reliable formal-learning rule for any sentence equiva-
lent in Mod . to a verifutable sentence. (For a purely universal ¢, a reliable
rule is this: Conjecture { unless and until a counterexample is found, in
which case conjecture 71y thereafter. For a purely existential ¥, a reliable
rule is this: Conjecture 71y unless and until a verifying instance is found,
in which case conjecture s thereafter. For Boolean combinations of uni-
versals and existentials, do the obvious thing.)

Conversely, if § is not equivalent in Mod , to a verifutable sentence,
there is no formal-learning rule that reliably identifies the truth value of
for Mod .. For example, let ‘R’ now be a binary empirical predicate, and
let y be (3i)(Vj)Ra;a;. Suppose, for purposes of reductio, that there is a
reliable F. Then, following Kelly and Glymour (1989), we proceed to
diagonalize F by defining an evidence sequence e by a bait-and-switch
strategy. Start with an initial finite segment e,, and suppose for simplicity
that e, mentions individuals a,, ..., a,. Then if F(e,) = ¢, add to ¢, a
chunk that fills out in any manner you like any relations among the a, ...,
a, not already fixed by ¢, and that also contains the sentences
{T1Ra;ap i < m}U{T1Ra, a;:i < m}. If, on the other hand, F(e,) b
¥, add to e, a chunk that fills out relations as before but that contains the
additional sentences {Ra;a,,,:i < m} U {Ra,,,a;: i < m}. Iterate ad infi-
nitum. Since F is supposed to identify the truth value of y, it must be the
case that either (1) there is an N such that for all n = N, F(e,) = ¢ or (2)
there is an N such that for all n > N, F(e,) ¥ ¢. In case (1) it follows from
the construction that in e no element is R-related to infinitely many others.
Thus ¢ is false, and F has failed. In case (2) at most a finite number of
individuals fail to be R-related to all others. Thus y is true, and F has failed
again.

To show that a formal learner who reliably detects that the truth value
of a contingent sentence ¥ for all Mod  is matched by a reliable Bayesian
learner, start from the fact that ¥ must be equivalent to a vertifutable
sentence. Choose a Pr function that is countably additive and assigns
nonzero priors to ¥ and to each Boolean component of . The posterior
probability for any such component will converge to the correct value,
since, as we already know, the Pr value for any purely universal or purely
existential sentence goes to 1 or 0 for any complete evidence sequence from
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w € Mod 4 according as the sentence is true in w or false in w. Finally, to
show that the Pr values work out correctly for Boolean combinations, one
appeals to the facts that if Pr(4/E,) — 1 and Pr(B/E,) — 1 as n — oo, then
Pr(4 & B/E,)—» 1 as n— oo, while if Pr(4/E,)—0 as n— oo, then
Pr(4A & B/E,) > 0as n— o0.

To show that a reliable AE formal learner for a set S of contingent
sentences is matched by the existence of a reliable Bayesian learner, it
remains to be demonstrated that there are probability functions that con-
sistently assign nonzero priors to all of the sentences of S and to their
Boolean components. Here I have only a vague conjecture to offer: there
exist such probability functions except for “perverse” §’s. Of course, the
label reflects my Bayesian prejudice. Whether or not it is in fact justified is
a judgment that must await concrete results.

6 The Dogmatism of Bayesianism

The fact that a formal learner can reliably identify the truth of y for all
Mod,, only if ¥ is verifutable seems at first blush to condemn formal-
learning theory. For science is concerned not just with such verifutable
hypotheses but also with multiply quantified hypotheses, such as ‘For
every galaxy, there is a star with planets, and for every such planet, there
is a moon such that ....”° It would seem then that any learning theory
worthy of the name should give us a handle on such cases. In a sense,
Bayesian-learning theory does, since the convergence-to-certainty theorem
applies to sentences with as complex a quantificational structure as you
like. But only a little reflection is needed to see that this attempted condem-
nation of formal-learning theory rebounds against Bayesianism.

The Bayesian convergence-to-certainty theorem does indeed apply to a
sentence like ¥: (3i)(Vj)Ra;a;. And it guarantees convergence to 1 or 0
according as y is true in w or false in w for all w in a set K = Modg, of
measure 1. But since the existence of a Bayesian learner who is reliable for
K implies the existence of a formal learner who is also reliable for K and
since there is no formal learner who is reliable in this case for all of Mod ¢,
it follows that K must be a proper subset of Mod . The reliability we
yearn for cannot be achieved even by the use of probabilistic means. And
the reliability that can be achieved by probabilistic means for K can also
be achieved by nonprobabilistic means.
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The Bayesian might try to recoup by asserting that he has a motivated
way to pick out subsets of Mod, for which reliable learning is significant;
namely, pick out subsets of measure 1 (which we may think of as the
subsets of possible worlds of which the agent is probabilistically certain
that they contain the actual world). The formal learner can respond that
being of measure 1 is not sufficient, since there may be many such subsets
on which the Bayesian is not a reliable learner. And the formal learner can
conjecture that any way that the Bayesian has of characterizing the subsets
of worlds on which he is reliable is matched by a nonprobabilistic charac-
terization (e.g., K = mod(A) for some set A of sentences).

While this tit-for-tat game is inconclusive, it does leave an indelible
black mark against the Bayesian side, and it is the convergence-to-certain-
ty theorem, one of the glories of Bayesian methodology, that is the instru-
ment that stamps the stigmata. For the theorem implies that the Bayesian
is probapbilistically certain that the actual world lies in a narrow enough
proper subset of Mod that a sentence of arbitrarily complex quantifica-
tional structure can have its truth value reliably identified in the limit by
a formal learning rule—something not true for Mod, for even the sim-
plest of nonverifutable hypotheses. An astrophysicist, for example, may
bring to the context of inquiry enough information to guarantee that the
world does lie in a narrow enough subset so as to make the truth value of
‘For every galaxy, there is a star with planets, and for every such planet,
there is a moon such that ...” discernible by a formal-learning rule. But it
seems wrong for a method of inquiry to require that the astrophysicist start
with such a priori knowledge.!®

To illustrate what this a priori knowledge involves, I will derive a simple
necessary condition for formal learnability relative to a K < Mod that is
compact in the evidence, which means that for any set § of evidence sen-
tences, if for every finite subset 6’ =, there is a w' e K such that
w’ € mod(d’), then there is a w € K such that w e mod(d). If K consists of
the models of a set of evidence sentences—which is appropriate to the case
of background knowledge that comes entirely from previous observa-
tions—then K will be compact in the evidence.!! Let us say that y is
strongly not finitely verifiable (respectively, falsifiable) relative to K just in
case for any w € K and any finite set E of evidence sentences, if w € mod(E)
and w € mod(¥) (respectively, w € mod(1y)), then there is a w’ € K such
that w’ € mod(E) but w’ ¢ mod(y) (respectively, w’ ¢ mod(1y)).!? If there
is a learning function F that reliably identifies the truth value of ¥ relative
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to K, then ¥ cannot be both strongly not finitely verifiable and strongly
not finitely falsifiable relative to K. For suppose on the contrary that y is
both. Then ¥ is true in some members of K and false in others. Start with
a w € K for which y is true and begin feeding F evidence sentences true in
w. If F is reliable, it must at some point start conjecturing . But since y is
strongly not finitely verifiable, there is a w’ € K in which all the evidence
seen by F so far is true but in which ¥ is false. If F is reliable, it must at
some point start conjecturing ~1y after being fed enough additional evi-
dence true in w’. But since ¥ is strongly not finitely falsifiable, there will be
a w” € K in which all the evidence seen by F so far is true and in which y
is true as well. If F is reliable, it must at some point start conjecturing
after being fed enough additional evidence true in w”. Continuing in this
way, we get an infinite sequence of evidence sentences for which F doesn’t
converge. Since K is compact in the evidence, there will be a member of K
in which all the elements of the evidence sequence are true. Thus F isn’t
reliable after all.

Combining this result with the above discussion, we can conclude that
no matter how complex the quantificational structure of ¥, the Bayesian
is probabilistically certain that the actual world belongs to a narrow
enough K = Modg such that if K is compact in the evidence, then either
there is a finite collection E of evidence sentences that are possibly true
(there is a w € K such that w € mod(E)) and whose truth guarantees the
truth of Y (for any w € K, if w € mod(E), then w € mod(y)) or else there is
a finite collection E of evidence sentences that are possibly true and whose
truth guarantees the falsity of . In the former case this means that to be
a Bayesian I must either have probabilistic certainty to begin with that
observation will never yield the conjunction & E of the sentences in E
(Pr(& E) = 0) or else I lack such certainty and set Pr(y/& E)) = 1 so that
upon observing that the conditions & E obtain, I (being a conditionalizer)
raise my degree of belief in Y to 1. If I were to do astrophysics, however, I
would not want to be committed in advance to certainty that some finite
condition & E about galaxies, stars, and planets would never be found to
obtain, nor would I want to be committed to raising the probability of ‘For
every galaxy, there is a star with planets, and for every such planet, there
is a moon such that ..." to 1 if I were to find that & E did obtain. My
qualms about the latter case are exactly parallel.

When we concentrate on a K = Mod that is measurable by Bayesian
lights, we can bring into play a much more telling result due to Kelly
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(1990). Recall from chapter 6 that the measurable subsets of Mod ¢ lie in
the o field generated by sets of the form mod(y), where ¢ is a sentence of
. Thus, a measurable K will be of the form mod(A), where A is a finite or
countably infinite set of sentences or, more generally, a finite or countable
union of such sets of models. In section 5 we saw that there is a formal-
learning function that reliably identifies the truth of ¥ for all Mod » just in
case y is equivalent in Mod to a verifutable sentence. Kelly strengthens
this result by showing that there is a formal-learning function that reliably
identifies the truth of ¥ for K = mod(A) just in case ¥ is equivalent in K
to a verifutable sentence.

Once again consider a ¢ with a quantifier structure as complex as you
like, and apply the Bayesian convergence-to-certainty result to conclude
that there is a K of measure 1 such that the Bayesian learner converges to
1 (respectively, 0) in any w € K in which ¥ is true (respectively, false). And
again, since a Bayesian learner is matched by a formal learner, it follows
from Kelly’s result that for K of the form mod(A), the Bayesian converges
to certainty because he is probabilistically certain ab initio that the world
is such that the multiple quantification involved in ¥ collapses so that
Y is equivalent to a verifutable sentence.'> Popperians who are willing
to enlarge their focus from refutation to verifutation will feel partially
vindicated.

7 In What Sense Does a Formal Learner Learn?

Having used formal-learning theory to unmask some of the hidden as-
sumptions of Bayesianism, one finds it natural to wonder whether formal-
learning theory can be thought of as a replacement for Bayesianism. I think
the answer is no. Formal-learning theory is best seen as directed toward a
form of knowledge acquisition that, to use the frayed but still useful nomen-
clature, is closer to knowledge how than to knowledge that. Thus, for
example, the seminal work of Osherson, Stob, and Weinstein reported in
Systems That Learn (1986) was motivated by the case of language learning,
where to learn a language means (roughly) to develop the ability to cor-
rectly identify the grammatical strings of the language. Nevertheless,
formal-learning theory can also be put to work in the service of knowledge
that, at least if we accept the tradition, going back as far as Plato, that
holds that knowledge is reliably acquired true belief. For the reliability
clause of the definition of a formal-learning function dovetails nicely with
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this tradition, since it guarantees that the agent following the rule would
still have arrived at the (possibly different) truth even if the world had been
different and she had been presented with different evidence.

I do not wish to review here the currently lively debate about reliabilist
conceptions of knowledge.'* So I will confine myself to two remarks. First,
I am not generally predisposed against reliabilist conceptions. It seems to
me, for example, that a reliabilist account of perceptual knowledge of the
external world is probably the preferred account: I know that there are
three books on the desk I am using to write this passage because this
proposition is true, because I believe it is true, because my belief is the
result of a belief-fixing process that is reliable across the normal range of
perceptual situations, and because this case is in the normal range. Second,
however, it seems to me just as evident that in the realm of scientific
hypotheses and theories, reliabilist considerations are relevant to the sorts
of knowledge claims of interest to scientists and philosophers of science
only insofar as these considerations can be given a Bayesian interpretation.
Indeed, it is not knowledge but justified belief that is the important issue.
And for both the working scientist and the philosopher seeking to under-
stand the methodology of science, the only kind of justification of interest
is articulable justification: the evidence that forms the basis for the justifica-
tion must be capturable in the form of a proposition, and the way in which
the proposition supports the hypothesis in question must be capable of
being made explicit. The burden of the argument of the preceding chapters
is that while all may not be well with orthodox Bayesianism, it nevertheless
offers the best available means for assessing the bearing of evidence on
hypotheses.

Let me illustrate. Suppose (not so implausibly) that the original hand of
nature endowed Einstein with a procedure that, given enough of the rele-
vant data, eventually settles on the true theory of gravity. Then on the
reliabilist conception, Einstein knew that GTR is true (assuming that it is)
when his procedure settled on this theory and he came to believe the
theory as a result. I will not quibble with the ascription of the term
‘knowledge’. The real issue is whether Einstein and others were justified,
either in November 1915 or at a later date, in according GTR a high degree
of belief. Reliabilist considerations may, of course, be relevant to this issue,
but to tell whether and how they are relevant requires viewing them
through the lens of Bayesianism. Einstein’s spectacular track record of
successes is a relevant piece of information, and its relevance gets ex-
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pressed, say, in terms of the prior probability assigned to GTR. If in
addition Einstein or others can explicitly formulate a formal-learning rule
that provably converges on the true theory of gravity and that, when fed
the positive results of the three classical tests, conjectures GTR, that is
additional relevant information that influences the posterior probability of
GTR. But the question arises as to how well the three classical tests
separately and jointly support GTR, and here there is no systematic means
available to answer this and similar questions, save for Bayesianism."*

8 Putnam’s Argument Revisited

This chapter began with a review of Putnam’s 1963a argument and then
moved rapidly through a series of considerations that have taken us a good
distance from Putnam’s original concerns. In closing the chapter, I want
to return to Putnam’s construction. Putnam had the avowed purpose of
convincing Carnap that his approach to inductive logic ought to be aban-
doned. Putnam’s indictment levels the charge that an approach based on ¢
functions (or more generally, a minimally recursive Pr function) cannot
capture the judgments of a “good” or “ideal” inductive judge. The charge
has two parts, the first of which I have already rehearsed, namely, that once
a scientist announces that she is using a particular minimally recursive Pr
function, we can diagonalize to produce an effective hypothesis about the
distribution of redness (say) among the sequence of individuals a,, a,, ...,
whose truth the scientist will never discern by peering through her proba-
bility window. The second part of the charge consists in the claim that if
someone proposes this probabilistically unlearnable hypothesis and if its
predictions are borne out without exception, then eventually the ideal
judge will base her predictions on the hypothesis and will continue to
do so unless the hypothesis fails.

There are two things to be said in response to Putnam’s charge. The first
begins with the remark that the charge has the most sting when posed in
the form suggested in section 5; namely, there is a class of hypotheses
whose truth the judge can reliably identify using a recursive formal-learning
rule but not by using a minimally recursive Pr function. However, the sting
of the charge is considerably dissipated by the discussion at the end of
section 5. For if the conjectures made there are correct, the existence of
a reliable formal learner for Mod . is matched by the existence of a reliable
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Bayesian learner, albeit one using a nonrecursive Pr function. Using such
a function may not create insuperable problems in practical applications if
the brain of the judge is a physical system that can analogue-compute Pr
values.!®

Second, while Putnam’s charge has the merit of highlighting the poten-
tial of a tension between two aims of inductive methods, discovery and
justification, it slights the second aim. Grant for the sake of argument that
after experiencing nothing but positive instances, the ideal judge will even-
tually base her predictions on Hy, and will continue to do so until Hy, fails.
We still want to know how long “eventually” is. Specifically, how many
positive instances are needed to warrant acceptance in the sense of will-
ingness to bet at specified odds that the next instance (or all future in-
stances) will also be positive? Putnam’s inductive judge is silent on this
matter and apparently must remain silent until she learns how to speak in
the Bayesian idiom.

It is useful to turn from these metareflections on methods to the point
of view of a particular inductive agent. Given Putnam’s avowed purpose
of getting the Carnapians or, more broadly, the Bayesians to abandon their
way of doing business, it seems fair to consider his complaint from the
point of view of an inductive judge who is a practicing Bayesian using a
minimally recursive Pr function. It helps to further distinguish two scenar-
ios. If this ideal inductive judge is indeed ideal, we may suppose her to
be logically omniscient (chapter 5). She will therefore have explicitly for-
mulated Putnam’s diabolical hypothesis Hy((Vi)(Pi<— ~1Ra;)) and will
have realized that her prior probability assignments make it impossible for
this hypothesis to achieve and maintain a high probability, even in the
sense of instance confirmation. But being a good Bayesian and having the
courage of her convictions, she sees no awkwardness in deviating from
Putnam’s prescription for an ideal inductive judge. On the other hand, we
may suppose more realistically that our judge, like an actual scientist, is
far from achieving logical omniscience and either does not explicitly for-
mulate Putnam’s hypothesis ab initio'” or else does not realize that her
probability assignments preclude her from learning that it is true. When a
fellow scientist does explicitly propose the hypothesis and notes that it has
been borne out without exception for thousands of cases, our judge may
reassess her original probability assignments so as to make the hypothesis
confirmable. As argued in chapters 5 and 8, this is a real and important
phenomenon in science, but it is one that derives from the failure of logical
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omniscience and has nothing to do per se with Carnapian measure func-
tions, effective computability, and diagonalization.

It might be complained that the appeal in the first part of this response
to the agent’s having the courage of her convictions is just so much
braggadocio, for actual inductive agents, even would-be Bayesian agents,
need not behave in this way. Just as the introduction of previously unfor-
mulated hypotheses can cause non-Bayesian shifts in the degree-of-belief
function (see chapters 5 and 8), so the acquisition of new evidence can cause
the reassessment of the original probability assignments. In the case in
point, seeing the pattern of reds and nonreds conform unerringly to the
probability-zero pattern of (Vi)(Pi — ~1Ra;) may eventually lead the agent
to shift to a different degree of belief function, or so the objection would
hold. To admit the force of this objection is to start down a road that leads
very quickly to the evisceration of Bayesian confirmation theory.

All things considered, can we not say that Putnam’s query does at least
produce a pressure for a form of Bayesianism more circumspect than
traditional Bayesian personalism? Specifically, if there are Pr functions
that correctly converge to 1 or 0 on all those true hypotheses that are of
interest and are learnable by means of the non-Bayesian formal-learning
paradigm (suggested by Putnam’s remarks) for every possible evidence
sequence drawn from any w € Mod , should not the wise Bayesian oper-
ate with one of these Pr functions? All things being equal, the answer seems
to be yes. But as usual, all other things may not be equal. Choosing a
certain prior distribution may preclude universal learning, but this choice
may have the compensating virtue of getting one very quickly to the truth
for hypotheses that are taken to matter. Similarly, using a recursive Pr
function may preclude the learning of some hypotheses, but these hypoth-
eses may be regarded as relatively unimportant, and in any case, com-
putability may make life so much more pleasant that the diminution in the
range of learning may be a price worth paying. Such considerations have
not received much attention in standard discussions of Bayesian method-
ology. It is a virtue of Putnam’s query that it has forced us to pay attention
to them.

9 Conclusion

The original exchange between Putnam and Carnap was inconclusive, and
reading that exchange when it first appeared left one uncertain as to who
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had scored any significant point.'8 In the light of formal learning theory,
however, Putnam’s diagonalization argument can be construed so as to
score at least one point against the Carnapian approach and, more gener-
ally, the Bayesian approach to induction. That score comes from examples
of learning problems that can be solved by an effective formal learner but
not by any effective Bayesian learner.

More important, in a sort of judo move in which the strength of
Bayesianism is used against itself, formal learning theory reveals that the
convergence-to-certainty theorem that links Bayesianism to truth and
reliability is underwritten by dogmatism of a kind in the form of substan-
tive a priori knowledge. We thus seem to be faced with a dilemma. On the
one hand, Bayesian considerations seem indispensable in formulating and
evaluating scientific inferences. But on the other hand, the use of the full
Bayesian apparatus seems to commit the user to a form of dogmatism.
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1 O A Dialogue

Sol, a young philosopher of science from an Ivy League university, joins
Sue and Sam, two colleagues from the University of Nevada at Las Vegas.
Here we catch them at lunch at the Golden Nugget during a break from
their gambling spree.

Sol The games of chance in your wonderful casinos suggest to the studi-
ous mind a large field for investigation, especially in the area of probability
and inductive inference.

Sam You're right. Being studious by nature, I frequently read not only
books about how to improve my odds at the tables but also more theoreti-
cal works concerned with the foundations of probability and ampliative
inference.

Sol Then perhaps you’ve looked at Bayes or Bust?

Sam 1 have. Sue and I have spent many hours poring over this difficult
and disturbing work.

Sol 1 can readily understand why you say it is difficult, but why do you
say it is disturbing?

Sam The author convinces me that Bayesianism holds the best hope for
constructing a unified and comprehensive account of scientific inference.
But at the same time he also convinces me that Bayesian confirmation
theory faces some thorny if not crippling difficulties. Isn’t this your reading
too, Sue?

Sue Yeah.
Sol Tell me more.

Sue One worry concerns the status of Bayesianism. You can’t view it as
descriptive of the actual beliefs scientists hold. And in view of the recent
results of formal-learning theory, you also can’t view it as a normative
theory. Those results imply that using the Bayesian apparatus commits the
scientist to what look suspiciously like substantive assumptions about the
world. For instance, when the Bayesian’s background knowledge can be
expressed in terms of a set of sentences, it follows that she must be prob-
abilistically certain that a hypothesis with a quantifier structure as compli-
cated as you like is equivalent to a “verifutable” statement, a statement that
is a truth-functional compound of statements each of which can either be
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verified or falsified by finite data. For astronomical hypotheses such as
‘For every galaxy, there is a star with planets, and for every such planet,
etc’, such certainty seems to amount to substantive astronomical knowl-
edge. While an astronomer might bring such knowledge to an investiga-
tion of some problem, it seems misguided to require that she start the
inquiry with such knowledge.

Sol 'Well spoken, Sue. But surely there must be a way out for the Bayesians,
who always seem to have multiple escape routes from any objection.

Sam If I remember correctly, the result Sue refers to depends on the
assumption that the agent’s degree-of-belief function satisfies countable
additivity. Some Bayesians are already leery of this requirement for other
reasons, and they may see this difficulty as a further reason for rejecting
this requirement.

Sol What say you to that, Sue?

Sue The difficulty I see with this way out is that Bayesians will no longer
be able to prove their famous convergence-to-certainty and merger-of-
opinion theorems. But even if this problem is solved, there remain further
challenges to the normative status of Bayesianism. For instance, the rule
of belief change by conditionalization cannot be seen as a rationality
constraint; or to put it more cautiously, this rule does not have the same
firm grounding in Dutch-book considerations as do the axioms of proba-
bility. Even more fundamentally, the norms of orthodox Bayesianism
require logical omniscience, a demand that actual scientists with their
computational limits cannot hope to satisfy. Thus, insofar as ‘ought’ im-
plies ‘can’, the ‘oughts’ of Bayesianism are suspect.

Sol 1seem to recall from Bayes or Bust? that there are two relevant senses
of logical omniscience involved here. Can you remind me of what they
are?

Sue Yes. The first sense requires that the Bayesian agent recognize all
logicomathematical truths, in particular, truths about logicomathematical
implications. You can easily appreciate why actual scientists cannot live
up to this requirement. Not even Einstein himself recognized all of the
implications of, say, his own theories of relativity, and what knowledge of
this sort he did have was often gained only through difficult calculations.
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Sam Before we continue, I think we need to clarify the sense in which
Bayesianism requires logical omniscience. It is part of the probability
calculus that if |= 4, then Pr(4) = 1, and in that sense, degrees of belief
that conform to the probability calculus must respect logical truth. But
normally, statements of the form ‘= A’ are not themselves members of the
set of propositions to which probabilities are assigned, so it is not required
that if = A4, then Pr(= A) = 1.

Sol Iam not sure where your observation is leading us, Sam.

Sam To elaborate Sue’s example, let 4 be (GTR — P). [Sam writes this
down on a napkin.] ‘GTR’ stands for Einstein’s general theory of relativity,
and P is the statement that the anomalous advance of Mercury’s perihelion
is 43 seconds of arc per century. At first Einstein did not recognize that this
conditional is a theorem of the appropriate mathematical system for GTR.
Nevertheless, we may plausibly take him to have assigned a probability of
1 to this conditional. For he knew P to be true, and so Pr(P) equaled 1 for
him. Thus, if his degrees of belief respected some transparent truths of
propositional logic, Pr(GTR — P) must also have been 1 for him.

Sue Very clever, Sam. But there will be other cases where your observa-
tion does not apply. For example, if P is a prediction of the gravitational-
lens effect, then presumably in 1915 Einstein set Pr(P) # 1 # Pr(GTR — P),
even though GTR does in fact entail this effect. Thus in 1915 Einstein’s
degrees of belief violated the probability calculus. Moreover, if we concen-
trate on the examples of your sort where Pr(P) = 1, then the problem of
old evidence rears its ugly head.

Sol This conversation is going too fast for me. I do want to hear about
the problem of old evidence, but let me suggest that we first concentrate
on the problem that Sue initially raised; namely, even the best of scientists,
Einstein included, cannot be expected to have “coherent” degrees of belief,
because they are not logically omniscient in the sense that Sue gave. And
I would add that scientists do logical as well as mathematical learning, so
that it would seem reasonable to demand that a realistic Bayesianism
should account for both forms of learning.

Sam Daniel Garber has shown how logical learning can be accommo-
dated by the model of learning as conditionalization if we work in a
language built up like this. The basic sentences consist of atomic sentences.
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Among them are ‘GTR’ and ‘P’ from our working example, plus sentences
of the form ‘A |- B’, where A and B are atomic. [Sam is again writing on
his napkin.] Then we take arbitrary finite truth-functional combinations
of the basic sentences. Within this language, ‘" is a primitive, though
extrasystematically it will be interpreted as the form of logicomathematical
implication appropriate to general relativity. With /=" interpreted appro-
priately to the truth-functional language I just sketched, it will not be true
cither that = (GTR — P) or that = (GTR |- P). Hence, for a probability
function defined on this language, there is no incoherence in setting
Pr(GTR - P) # 1 # Pr(GTR |- P). And when the Bayesian agent does
learn that GTR entails P, he can represent this new knowledge in terms of
a shift from Pr to Pr'(-) = Pr(-/GTR |- P).

Sue You have a penchant for the clever, Sam. But it is not clear to me
how these clever formal results resolve our worries, since the results rest
on the pretenses, which the Bayesian agent well knows to be false, that
the sentence ‘GTR’ is atomic and that a possible world is just an assign-
ment of truth values to the basic sentences of the toy truth-functional
language. And there remains the nagging doubt that this apparatus con-
tains lurking inconsistencies, or at least lurking inadequacies, such as the
inability to handle conditional proofs.!

Sol All this is very interesting, but I fear that it is leading us off on a
tangent. To continue us down the main thread of my question, let me ask
you to remind me of the second sense of logical omniscience and how its
failure can be accommodated in a realistic Bayesianism.

Sam Logical omniscience in the second sense requires that the agent
parse all of the possibilities at the start. And the standard way to take
note of the failure is to introduce a catchall hypothesis H¢. This hypothesis
says, in effect, that some hypothesis is true that we cannot now explicitly
articulate and that lies beyond the hypotheses articulated to date.

Sue It is one thing to pay lip service to the failure of this second form of
logical omniscience by introducing the catchall, and it is quite another to
show that the Bayesian apparatus can continue to function after this
introduction. For example, the denominator on the right-hand side of
Bayes’s theorem is typically written as

Pr(E/K) = Y. Pr(E/H; & K) x Pr(H,/K).
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[Here Sue takes to writing on a napkin.] If the summation is taken to
include the catchall, as apparently it must be, then the Bayesian agent
needs to evaluate the factor Pr(E/H¢ & K). But such an evaluation would
of necessity seem to be ill informed, since H¢ stands for unexplored
territory.

Sam Can’t we avoid this embarrassment by concentrating on the ratios
Pr(H,/E & K)/Pr(H;/E & K), where H; and H; are two of the explicitly
formulated hypotheses? For then the troublesome factor Pr(E/K) is
canceled out.

Sue This is a move recommended by Wesley Salmon. It works if what
we are trying to do is to choose among the explicitly formulated
hypotheses. But this move seems most un-Bayesian, since Bayesian
epistemologists don’t want to choose hypotheses, in the sense of
accepting or rejecting them, but rather aim to probabilify them.
Moreover, the Bayesian needs the probability values of the hypotheses,
not just the ratios of these values, if she is to supply one of the essential
ingredients needed in decision making under uncertainty. Nor can the
factor Pr(E/K) be ignored if the Bayesian hopes to explain judgments to
the effect that one piece of evidence confirms a hypothesis better than
another.

Sol Another reaction would be to get a better fix on Pr(E/H¢ & E) by
actively exploring the region of possibility space for which Hc is a name.

Sue This option is discussed in Bayes or Bust? in terms of some very
interesting case studies. But the results of such an exploration cannot be
modeled by any of the standard Bayesian paradigms.

Sam Why doesn’t the catchall serve us here? As each new explicitly
formulated hypothesis is introduced, some of the probability previously
attached to H, is transferred to the new hypothesis. This is hardly a
radical departure from standard Bayesianism.

Sue As a matter of actual historical fact, the introduction of new
hypotheses can result in a much more radical redistribution of
probabilities than your simple model of shaving off probability from the
catchall would suggest. For example, Einstein’s introduction of his
special theory of relativity was accompanied by a redistribution of
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probability over the previously formulated theories. In particular, the
introduction resulted in a subtraction of probability from classical
electron theories.

Sam But this is an example of a major scientific revolution. Why
shouldn’t the Bayesian candidly admit that his apparatus fails to apply
to the discontinuities encountered as one crosses the frontiers of a
scientific revolution while maintaining that his doctrine applies in
normal science?

Sue If a redistribution of probabilities not equivalent to shaving off
from the catchall is taken to be a definition of a scientific revolution, then
such revolutions occur with monotonous frequency, and the applicability
of Bayesianism threatens to shrink to the vanishing point.

Sol If I-may change the subject somewhat, isn’t the problem of old
evidence linked to the issues we are now discussing?

Sue You are quite correct, Sol. To revert once more to our earlier exam-
ple, Einstein knew the value of the anomalous advance of Mercury’s
perihelion (P) long before he invented his general theory, and in this
sense it was old evidence. When he formulated the theory in November
1915, he had to shift to a new probability function Pr,.,(-) either by
shaving off from the catchall or by some more radical means. However
this was accomplished, Pr,.,(GTR/P) = Pr,,(GTR) if Pr,,(P) remained
equal to 1, as it presumably did for Einstein and others. Thus on the
Bayesian analysis it would seem that P does not incrementally confirm
GTR, which flies in the face of strongly held intuition.

Sol If I understand you correctly, Sue, the failure of logical omniscience
in the second sense is responsible for the sticky version of the problem of
old evidence. For example, the fact that the data P for perihelion advance
is now old news does not by itself prevent us from saying that P con-
firms GTR. For imagine that GTR had been explicitly formulated at the
beginning of inquiry and that no nonlogical learning has taken place in
the meantime. Then Pr,,,, arises from a series of conditionalizations on
empirical evidence statements that have been learned along the way, and
we can simply trace back to the stage when P was first learned to find an
incremental confirmation of GTR by P.
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Sue Correct. But when logical omniscience in the second sense fails, it
seems that to accommodate the assertions that the perihelion phenomenon
confirms GTR, that it confirms GTR more than either the bending of light
or the red shift, etc., the Bayesian must appeal to counterfactual beliefs, for
example, to degrees of belief that Einstein and others would have had if
they hadn’t known the evidence P prior to the formulation of GTR. But it
is far from evident that such appeals will validate our clear and strong
intuitions on this matter.

Sam Earlier 1 sketched Garber’s device for handling the failure of the
first form of logical omniscience. I suggest that the same device can be
used here to resolve the problem of old evidence. When Einstein proved
in November of 1915 that his GTR entailed the observed advance of the
perihelion of Mercury (P), he did a piece of logicomathematical learning.
In Garber’s system it is possible to have that Pr(GTR |- P) < 1 and thus
that Pr(GTR/GTR |- P) > Pr(GTR). So learning the entailment can boost
confidence in the theory.

Sue This may be the solution to some problem, but it is not a solution
to the original problem of old evidence. That problem is to account in
Bayesian terms for the generally accepted notion that the previously known
evidence P has strong confirmatory value for GTR.

Sol As interesting as this cluster of problems is, I think it is time to
move on. Let me ask Sue, who seems to be the most pessimistic among
us, what it is that worries her the most about the Bayesian approach to
confirmation.

Sue My major worry transcends the problems we have been discussing
so far and concerns the significance of the little numbers the Bayesians
assign to hypotheses. I of course endorse Bayesian personalism as part of
a theory of individual decision making under uncertainty. When a person
decides which course of action to take, it is her assessments of the utilities
and the probabilities of the outcomes that count. But when it comes to
assessing how well a scientific hypothesis is confirmed, it is harder to see
how these little numbers, which measure how warmly the person feels
about hypotheses, can have the kind of rational and objective significance
supposed to be part of scientific inference.
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Sam You have raised a major problem that we cannot hope to resolve
today. But to make a start, I urge that we divide the problem. As the
author of Bayes or Bust? notes, one threat to objectivity arises from the
conjunction of the facts that confirmation values seem to depend on the
choice of language or possibility set and that this choice is in significant
part a pragmatic affair. He seems to feel that the relativism involved here
is inevitable in any nonfoundational approach to knowledge and also
that it is relatively harmless. I am not at all sure that I agree with him.
But here T want to concentrate on the second aspect of the objectivity
problem that arises once we have settled on a language or a possibility
set. In this case, I suggest, part of the answer to your worry is provided
by the convergence-to-certainty and merger-of-opinion theorems, which
the Bayesians are justly proud of. The latter shows that the Bayesian
method leads to objectivity in the sense of intersubjective agreement, and
the former shows that the method reliably leads to truth.

Sue Don’tforget what we learned near the beginning of our conversation:
the very apparatus that generates these results commits the Bayesian to
making substantive knowledge claims at the very beginning of inquiry, a
commitment that looks very much like a form of dogmatism. The Bayesians
therefore seem to be impaled on a dilemma: dogmatism or else no reliable
connection to the truth. Furthermore, the theorems in question do not
apply to theoretical hypotheses that are underdetermined by the data. And
the theorems, where they do apply, are in the form of limit results, which
in general are unaccompanied by any useful estimates of how fast the
convergence takes place.

Sam Could we not argue on evolutionary grounds that for various prop-
ositions our degrees of belief rapidly converge to reliable estimates of
objective probabilities or relative frequencies, or else we would not have
survived? In this way the little numbers take on an objective significance
even in the short and medium runs.

Sol In some instances this may be plausible. But it is hard to see how to
regard the degrees of belief we assign to the esoteric hypotheses of modern
science as estimates of frequencies, and it is hard to understand why
accuracy in such estimates confers evolutionary advantages. And as noted
in Bayes or Bust? even for lowly observational hypotheses that have direct
survival value, we may survive and prosper not because of the accuracy of
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our estimates of relative frequencies but because we have evolved the
ability to tolerate or to creatively cope with the consequences of our
inaccurate estimates.

Sue 1 agree with you, Sol. But I don’t think that I have made sufficiently
clear the core of my worry about the significance of the little numbers the
Bayesians use. Grant for the sake of argument that the Bayesians can
represent features of confirmation by means of their little numbers. What
still nags at me is the sense that underneath the little numbers are factors
that need to be analyzed in non-Bayesian terms. Thus, for example, I grant
that the confirmation a hypothesis receives from a positive instance can be
represented in terms of an incremental increase in probability. But the
underlying reason that there is confirmation is to be found in the non-
probabilistic structural relation between the evidence statement and the
hypothesis. Hempel, Glymour, and others have tried to analyze this rela-
tion, and although they may not have succeeded, my feeling is that they
are onto a crucial feature of confirmation that does need spelling out. As
another example, we all know that in science and everyday life there are
many possibilities that we don’t take seriously. Bayesians can represent
this by saying that low prior probabilities are being assigned. But I think
that this is representation and not explanation. For in some cases we can
back up our dismissal of various possibilities by giving plausibility argu-
ments, and on pain of circularity or regress, these arguments cannot be
given a Bayesian analysis. I could go on and on in this manner.

Sam 1 know you could, Sue, because I have heard you do it on many
occasions. And for Sol’s benefit, I will repeat what I always say in response.
If you are correct and Bayesianism is just a tally device used to keep track
of a more fundamental process, then you ought to be able to produce a
non-Bayesian analysis of confirmation and induction. But I hardly need to
remind you that what you have produced consists mainly of promissory
notes.

Sol And I would add that it doesn’t seem entirely fair to say that Baye-
sianism gives representation without explanation. For instance, it seems to
me that Bayesianism does explain why (the problem of old evidence aside)
hypotheticodeductive evidence is confirmatory, and why (relative to plau-
sible assumptions about the sizes of reference classes) the observation of a
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black raven confirms ‘All ravens are black’ more than does the observation
of a white shoe.

Sue True enough. Bayesianism is not without its successes. But it doesn’t
seem to live up to its billing as the be-all and end-all of scientific inference.
As we Las Vegans would say, Bayesian confirmation theory pretends to be
a main attraction when it is really just a lounge act.

Sam 1 think that is being a bit unfair, Sue. In view of the lack of competi-
tion, I think it is more accurate to say that Bayesian confirmation theory
is a main attraction but admittedly one that has not quite gotten its act
worked out.

Sol My brain is recling from our discussion. My mind, like a cloud
momentarily illuminated by a lightning flash, is sparking all sorts of
strange, crude ideas. Let us agree to meet again tomorrow at the same
time to discuss these matters further.

Sue Agreed. And when we meet, let us confront more directly what I
take to be the overarching problem that has emerged from our discussion.
T can set the problem up by noting that there is a strong consensus in the
scientific community to the effect that on the basis of the available evidence
the earth is much older than the ten to twenty thousand years the cre-
ationists posit, that Velikovsky’s Worlds in Collision scenario is bunk, that
there is no ether, and that space and time are relativistic rather than
absolute, etc. Now one attitude we can take is that an account of scientific
inference that does not underwrite these firm judgments is at best incom-
plete and at worst bankrupt. The contrasting attitude of some of the
Bayesian high priests is that these beliefs may not be so rational and
objective as we would like to think. For surely the available evidence does
not force a tight merger of opinion on these matters for a maximal class of
equally dogmatic prior-belief functions, and it seems a reasonable surmise
that the merger will materialize only if the starting class is very circum-
scribed. If we hew to the former attitude, we will need to supplement the
principles of Bayesianism or else to give a different account of the rational-
ity and objectivity of our shared beliefs. The Bayesian priests would re-
spond that their doctrine supplies the principles of inductive logic, that to
go beyond this logic one must invoke substantive assumptions, and that
such assumptions cannot be part of a theory of rationality. Our discussion
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has revealed that the priests are wrong on this point. For a Bayesianism
worth its salt must invoke a rule of conditionalization and must use
countable additivity to prove the reliability of the method in the form of
convergence to the truth, but as we have seen, these invocations involve
substantive assumptions. The way is thus open for developing a more
appealing account of scientific inference by adding other substantive as-
sumptions. But what should they be? And what shape should the account
take? I suggest that we start with these questions when we reconvene.

Sam I cannot agree to your slanted version of the agenda. We should
keep a more open mind, for example, by keeping ourselves open to the
possibility that the explanation of consensus in a scientific community
typically has a large historical and sociological component.

Sue By all means keep an open mind, but not so open that your brain
falls out.

Sam In referring to a sociological component, I am not suggesting any-
thing as crude as brainwashing. Rather, I am pointing to the common-
places that a scientific community is not a community unless there is a
consensus about the shape of the explanatory domain, about what instru-
ments are reliable, etc., and that the training of neophyte scientists consists
in part in transmitting to them this shared wisdom. At least some of this
wisdom can be expressed in terms of degrees of belief, and so, becoming
part of the community means aligning one’s degrees of belief with the
consensual degrees of belief of the community.

Sue Sure. But we come back again to the question of from whence arise
these consensual degrees of belief. If they have arisen from a wide class of
initial belief functions via conditionalization on the accumulated evidence
of observation and experiment, then the indoctrination of neophyte scien-
tists is just a shortcut method of learning. But we have agreed that this is
not likely to be the explanation, and to the extent that it is not the
explanation, the indoctrination of neophyte scientists begins to look like
brainwashing.

Sam Throwing terms like ‘brainwashing’ around doesn’t advance the
discussion. I am suggesting, for example, that the explanation of why the
present physics community assigns a high degree of belief to the proposi-
tion that space-time is relativistic rather than Newtonian has a large
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historical and sociological component. Once the details of this component
are laid out—and the laying out would involve telling much of the history
of physics from Galileo to Einstein—you will see that there is nothing
sinister in what I am proposing.

Sue Sinister or not, it seems muddleheaded to me. I thought that you
were favorably inclined toward Bayesianism, but your last remarks make
me wonder about where your loyalties really lie.

Sol 1 fear that our conversation has degenerated into bickering. Let’s
discuss the agenda after we have given it some thought. In the meantime,
I want to get back to the casino.

Sue Try the slot machines nearest the door. They have higher odds of
paying off.
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Notes

Introduction

1. See Barnard’s (1958) biographical sketch of Bayes.

2. See Stigler 1982, 1986 for an account of the influence of Bayes on the development of
statistical thinking.

3. For recent commentaries on Bayes’s essay, see Dale 1982; Edwards 1978; Gillies 1987;
Hacking 1965, 1970, 1975; Pearson 1978; Pitman 1965; and Stigler 1982, 1986.

Chapter 1

1. Answer: 25, as first shown by De Moivre.
2. Page references are to the Biometrika edition of Bayes’s essay.

3. Actually, Bayes simply says ‘table’, not ‘billiard table.” But the tendency to use the latter
has been so strong that few commentators have been able to resist it. Nor can I.

4. Rule 1 was composed by Bayes. Rules 2 and 3 and the appendix were supplied by Price.
We do not know to what extent Price relied on Bayes’s notes and to what extent his additions
are original.

5. Of course, Bayes did not use integral notation but expressed his results in terms of areas
under curves and ratios of areas. Modern notation will be used here.

6. Because belief takes propositions as its object, I will assign probabilities qua degrees of
belief to propositions. The point about Bayes’s definition of probability now becomes that
the formula Pr(A4) = x makes sense only if what proposition A asserts can be ascertained to
hold or to fail. For ease of presentation, I will often speak of A as an event rather than
the proposition asserting that the event occurs.

7. One could take the point of view that being bilked by a bookie who catches the violator
of the probability axiom in a no-win, must-lose situation is only window dressing. Rather,
what the Dutch-book arguments really reveal is a structural incoherency of preferences in the
form of a finite series of bets, each of which is preferred to the status quo while the package
of bets is less preferred than the status quo. Viewed in this way, Bayes’s proof of proposition
1 is a species of Dutch-book argumentation. See chapter 2 for a fuller discussion of Dutch
book.

8. Shafer asks, “Why does Bayes, in the statement of his third proposition, refer to the two
events he is considering as ‘subsequent’?” He answers, “Imagine a situation in which it is
not known beforehand which of two events A and B will happen (or fail) first. In such a
situation we cannot say beforehand what the probability of B will be immediately after A
happens; that probability will be one if B has already happened by then, zero if B has already
failed by then, and something in between if B has not happened or failed. Saying that B is
subsequent to 4 may be an attempt on Bayes’s part to resolve this ambiguity” (1982, p. 1078).
I disagree, since, given a degree-of-belief conception of probability, the probability of B need
not be 1 if B has already happened and 0 if B has already failed. Bayes’s reference to
subsequent events anticipates his billiard-table model, discussed below.

9. Unless it is assumed that a B event does eventually occur, the E; will not be events in the
sense of contingencies that can be ascertained at some finite time to hold or fail.

10. See Geisser 1980 for an overview of the predictivist point of view.

11. The timing was right. The best available evidence indicates that Bayes reached his resu]t
sometime between 1746 and 1749. Hume’s Treatise appeared in 1739, and his Enquiry in
1748. For more on this matter, see Dale 1986, Gillies 1987, and Zabell 1989.
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12. For an illuminating discussion of the relation between Hume’s problem of induction and
symmetry principles, see Zabell 1988.

13. Klibansky and Mosser (1954, p. 234). The cordiality of the correspondence was undoubt-
edly one factor in Price’s decision to tone down his criticism of Hume in the second and later
editions of Four Dissertations. In the second edition Hume is lauded as “a writer whose genius
and abilities are so distinguished, as to be above my commendation” (1768, p. 382).

14. For an analysis of Price’s criticism of Hume’s view on miracles, see Dawid and Gillies
1989.

15. See also Edwards 1978. Another concrete illustration of the point is found in Fisher’s
(1956, pp. 123-126) “observations of two kinds.” I am indebted to Sandy Zabell for this
reference.

16. Dale seems to have been overly influenced by Karl Pearson’s professed puzzlement over
this case; see Pearson 1978, pp. 365-369.

17. From Biometrika 45 (1958): 296-315.
Chapter 2

1. Levi (1980) draws a subtle distinction between such temporal or dynamic condition-
alization and what he calls confirmational conditionalization. The latter is atemporal in that
it is a constraint on the agent’s confirmational commitments at time ¢. It requires that the
agent relate via conditionalization his current belief states to the hypothetical belief states
that can arise by accepting new evidence. Levi himself accepts confirmational condition-
alization but rejects temporal conditionalization, whereas Kyburg (1974) rejects both. The
views of these authors are recommended to the reader for consideration, but they will not be
discussed here.

2. This example is taken from Richard Jeffrey and Brian Skyrms.
3. For other approaches to conditionalization, see Field (1978) and Garber (1980).

4. Thus, if one wishes to be pedantic, a Bayesian probability space is a triple (#", o/, Pr), where
W is a set of possible worlds, .o/ is a set of sentences or propositions, and Pr is a map
from & to R satisfying the probability axioms.

5. In particular, if 4 is a tautology, then = A.

6. See, however, Seidenfeld and Schervish 1983 for the problems this causes for Savage and
de Finetti.

7. If the maximum odds an agent is willing to take on a proposition are less than the minimum
odds she is willing to take against the same proposition, then Dutch book cannot be made
against her. The resulting calculus of belief involves either subadditivity or interval valued
degrees of belief. See Smith 1961 and Williams 1976.

8. Howson (1990a) attempts to overcome some of the above mentioned difficulties by focusing
on some idealized contexts where there is a natural connection between subjective pro-
babilities and propensities to bet and where the Dutch-book construction is sound. Howson
seems to feel that although the conditions needed to run the Dutch-book construction fail
outside of these idealized contexts, still “the constraints imposed as a consequence of Dutch
Book considerations generalize quite naturally out of these simple contexts, for no other
reason than because probability is a general guide, invoked impartially in all contexts” (p. 8).
1 leave it to the reader to evaluate the plausibility of this claim. Tim Maudlin (private
communication) has noted that a thoroughgoing Bayesian ought to take into account the
probability that the bet will be paid off. But when this is done, the connection between degree
of belief and maximum betting odds may be severed. For example, I may assign a low
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probability to the proposition that the world will end tomorrow, but since if it does end, I
won’t have to pay the bet, I am willing to bet against the proposition at any odds.

9. Suppose that an agent’s utility U is a function from wealth to R and that U is twice
differentiable. Economists typically assume that rational economic agents display both non-
satiation and risk aversion for all levels of wealth (see Arrow 1971). In terms of U, these
assumptions amount respectively to U’(w) > 0 and U”(w) < 0 for all w. To understand the
economic implications of risk aversion, let X be a random variable that represents a risky
asset in the minimal sense that X has a nondegenerate probability distribution, and let
E(X) = r*.From U” < 0 and Jensen’s inequality it follows that E(U(X)) < U(E(X)) = U(r*).
Furthermore, if we define the cash equivalent of the risky asset X to be the amount of cold
cash $r** such that U(r**) = E(U(X)), then r** <r*. For again by Jensen’s inequality,
U(r**) < U(r*), and the result follows from nonsatiation.

10. Here ‘estimate’ must be taken in some primitive sense rather than in the probabilistic sense
of expected value (see Shimony 1988).

The problem of the appropriate choice of reference class has bedeviled the frequency
interpretation from the beginning. In this instance, however, the problem can be finessed (see
van Fraassen 1983a).

11. Change of probability via conditionalization Pr,, (‘) = Pr,,(-/E) is not reasonable, and
the Dutch-book arguments for the change reduce to nonsense unless E is the strongest
proposition learned (see Mellor 1971).

12. The reader should be aware that Diaconis and Zabell (1982) assume, in effect, that the
sensory stimulation relevant to the partition in question determines the probabilities over the
elements of the partition independently of all prior experiences. Formally, this means that for
any {F}, Prgg(E;) = Prg(E;). Field (1978) wants to allow that the probabilities attached to the
elements of a partition depend not only on sensory stimulation but also on prior probabi-
lities.

13. Burks (1977) tries to seize the first horn.

Chapter 3

1. For a thoroughgoing criticism of HD methodology, see Glymour 1980. For a defense, see
Horwich 1983, but see also Gemes 1990a.

2. Throughout this chapter it is assumed that standard first-order logic is operating.
3. Showing this is left as an exercise to the reader.

4. See Hempel’s (1945) discussion of the Nicod criterion of instance confirmation; see also the
discussion of the ravens paradox in section 3. :

5. Thus, although Ra & Ba does not directly Hempel-confirm Rb — Bb, it does Hempel
confirm it, since Ra & Ba directly confirms (¥x)(Rx — Bx), which entails Rb — Bb.

6. John Norton has provided a neat technique for constructing counterexamples. Suppose
that an airplane has crashed in the jungle. Consider hypotheses that postulate that the crash
took place in specified areas, and consider evidence statements that delimit the possibilities
for the crash site. By representing these hypotheses and evidence statements on a Venn
diagram, the reader can easily produce counterexamples to the special consequence condition
and to each of the following seemingly plausible principles: (1) if E confirms H; and E
confirms H,, then E confirms H, & H,; (2) if E, and E, each confirm H and E, & E, is
self-consistent, then E, & E, confirms H; (3) if E refutes H, & H,, then E does not confirm
each of H, and H,. The reader should also note that the Popper and Miller argument studied
below in chapter 4 inadvertently provides another type of counterexample to Hempel's
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special consequence condition, namely, H = H v 7E, but under minimal conditions, E
incrementally disconfirms H v T1E, even though it may confirm H.

7. Such uninteresting cases include those in which H can be written as H, v H,, where H, is
not a logical truth and its nonlogical vocabulary is purely observational.

8. In early versions of bootstrapping, the very hypothesis at issue was allowed to play the role
of one of the auxiliaries in the bootstrap calculations. Edidin (1983) and van Fraassen
(1983b) have argued that such macho bootstrapping is both undesirable and unneeded.

9. In this section I ignore Goodman’s problems. Thus, assume that all the predicates are
non-Goodmanized and “projectable.”

10. An exercise for the reader: prove these facts.

11. Suppose that the background knowledge K* specifies that the individuals a and c are
random selections respectively from the class of ravens and the class of black things. It is
subsequently found that a is black and that c is a raven. Object a was a potential falsifier of
the ravens hypothesis H, while ¢ was not. Does Ra & Ba give better confirmational value than
Rc & Bc? The reader is invited to explore this question in the Bayesian manner. Interpret
‘confirmational value’ in the incremental sense, and then begin (as always!) by writing out
Bayes’s theorem to determine the conditions under which

Pr(H/Ra & Ba & K*) > Pr(H/Rc & Bc & K*).

12. The ravens paradox remains one of the most contentious topics in all of confirmation
theory, and it would be naive to think that my remarks will dissolve the controversy.
However, I do hope that they serve to illustrate the fruitfulness of the Bayesian approach. For
a sampling of some recent opinions on the ravens paradox, see Lawson 1985, Watkins 1987,
French 1988, and Aronson 1989.

13. Similar examples can be worked out for van Fraassen’s (1983b) semantic version of
bootstrapping. To illustrate, take a theory T to be the closure under arithmetic operations of
a set of linear equations, and take a data set E to be an assignment of values to the directly
measurable quantities. Van Fraassen’s conditions for bootstrap testing are as follows. E tests
H relative to T just in case there is a T, = T and an alternative E’ to E such that (1) TUE
has a solution, (2) Tp U E’ has a solution, (3) all solutions of T, U E are solutions of H, and (4)
no solution of T, U E’ is a solution of H. Take the axioms of T to be H,: A = B + C, and
H,: D = X, where X is the theoretical quantity and A, B, C, D are the directly measurable
quantities. Intuitively, H, should not be testable relative to T. But the formal definition is
satisfied by taking Tytobe A — B— C + D = X,Etobe{A=2, B=1, C=1, D =3},and
E'tobe {4=2 B=1, C=2, D=3}.Itis no good to complain that E’ contradicts H,,
since in bootstrap testing in general E’ will contradict some consequence of T.

14. This idea was developed by Grover Maxwell and myself in the mid 1970s and circulated
as a memo to members of the Minnesota Center for the Philosophy of Science. Similar ideas
were developed by Franklin and Howson (1984) and Franklin (1990).

15. Elliott Sober (private communication) has pointed out that the idea that
Pr(E,/&:<n-1 E: & K) increases more slowly when the E; are various is generally not correct
outside of the context of HD testing. By making the likelihood factor equal to 1, the HD
condition guarantees that the likelihood is independent of how varied the E, are. But as Sober
notes, in general this independence may fail, and when it fails, no conclusion can be drawn
about the connection between the variety of the E; and the value of ratios of the likelihood
and prior likelihood factors without knowing more about the details of the case.

16. A more sophisticated Bayesian analysis of variety of evidence might exploit the notion of
partial exchangeability (Diaconis and Freedman 1980). Roughly, there wpuld be exchange-
ability (see chapter 4) within but not across different kinds. Variety of evidence would thep
involve instances from the different kinds. The confirmational virtues of such evidence is
currently under study by Elizabeth Lloyd.
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17. The connection between variety of evidence and eliminative induction is not a new idea;
see Horwich 1982, chapter 6. The two aspects of variety of evidence mentioned above may be
considered to belong to two different perspectives on evidence: posttrial evaluation (e.g., given
the outcomes, how is information about their variety relevant to how much they boost
the probability of the hypothesis?) versus experimental design (e.g., how is variety relevant to
the design of experiments whose outcomes are most likely to boost the probability of the
hypothesis?). A more detailed discussion of variety should pay careful attention to these
perspectives. Here again I am indebted to Elliott Sober.

18. The symbolism c(H, E) was Carnap’s notation for the degree of confirmation of H on E;
see chapter 4 for more details about Carnap’s systems of inductive logic. Putnam thought
that Carnap’s inductive logic was subject to the following bind. “With respect to the actual
universe, each method of the second kind [where c(H, E) may not be independent of predi-
cates that occur in the language but not in H or E] coincides with some method of the first
kind.... Thus, if there is any adequate method of the second kind ..., there is also some
adequate method of the first kind” (1963a, p. 781). But we have seen above that methods of
the first kind are inadequate. I leave it to the reader to evaluate the force of this objection.

19. The existence of Oy assumes that the observational consequences of T are finitely axio-
matizable. When this assumption fails, the second condition can be stated only if conditional
probability functions are defined for pairs of sets of sentences. It can be argued that for many
interesting theories, Oy is a tautology because no nontrivial observational consequences are
derivable without the help of theoretical initial/boundary conditions. In this case the second
condition reduces to the first.

20. Carnap might have been taken as having endorsed the possibility of such a utopian
scheme through his requirement of completeness. But that requirement applies only to the
observational language, as is made clear by the following fomulation taken from “On the
Application of Inductive Logic™: “Every qualitative property or relation of the individuals,

.that is, every respect in which the positions of the universe may be found to differ by direct
observation, must be expressible in L” (Carnap 1947, p. 138). And Carnap’s views on the
incommensurability of different theoretical frameworks would seem to entail that a universal
language for all of science—past, present, and future—is impossible; see “Truth and Confir-
mation” (1949).

21. K implies that the atoms A and B decay independently; that in the decay process each
may emit exactly one of three particles, an « particle, an e”, or an e*; that the objective
probabilities of these three decay modes are respectively .7, .2, and .1; and that an annihilation
event occurs just in case one atom emits an e~ and the other an e*. T, asserts that 4 emits
ane”, T, that B emits an e~, and E that an annihilation event occurs. The device reported in
note 6 can also be used to construct other examples of this sort.

22. T have suppressed the background K to simplify the notation.

23. Additional historical cases are given a similar Bayesian reconstruction in Howson and
Urbach 1989.

24. A point emphasized by John Worrall (1991).

Chapter 4

1. The p in de Finetti’s representation theorem (4.2) is the prior distribution over the limiting
relative frequency of P’s among the a,, a,, ... That this limit exists with probability 1 follows
from some deep results of Birkhoff and von Neumann on stationary process, since an
exchangeable process in necessarily stationary (see von Plato 1982). Making these ideas
precise requires some of the apparatus not developed until chapter 6 below. For present
purposes, the interpretation of y is not relevant.
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For results using concepts of partial exchangeability, see Diaconis and Freedman 1980. For
results using ergodicity, see von Plato (1982).

2. For simplicity I have suppressed reference to the background knowledge.
3. But see section 7 for a discussion of just how weak this notion of instance induction is.

4. For another response to Gillies’s form of the Popper and Miller argument, see Dunn and
Hellman 1986. Yet another move the inductivist can make is to use a different measure of
inductive support (see Redhead 1985). Popper and Miller’s responses to criticism are to be
found in their 1987 paper. See also Howson 1990b.

5. This apt phrase of ‘content cutting’ is due to Ken Gemes.
6. But see chapter 6, where cases of the nonobjectivity of likelihoods are discussed.

7. Here I am indebted to Philip Kitcher. However, we differ on what philosophy of science
can be expected to provide by way of a solution (see chapter 8).

8. The definitions of ‘grue’ given in the literature are confusing. Goodman defines ‘grue’ so
that “it applies to all things examined before ¢ just in case they are green but to other
things just in case they are blue” (1983, p. 74). In the preface to the fourth edition of Fact,
Fiction, and Forecast Hilary Putnam says that an object is grue “if it is either observed before
a certain date and is green, or it is not observed before that date and is blue” (Goodman 1983,
p. vii). To get the effect of a shift in color after the magic date that most readers expect from
grue, we can employ two-place predicates: Ext, meaning that x is an emerald at ¢, and Gxt,
meaning that x is grue at ¢, that is, that either ¢ is no later than 2000 and x is green or else ¢
is later than 2000 and x is blue. The hypothesis that all emeralds are grue then reads,
(Vx)(Yt)(Ext — Gxt). Alternatively, we can consider a temporally ordered series of objects a,,
a,, ... and take the grue hypothesis to be (Vi)(Ea; — Ga;), where Ga; means that i < 2000 and
a; is green or else i > 2000 and g is blue. The latter alternative is followed here.

9. Goodman might be read as making a stronger demand on genuine confirmation, namely,
that it be homogeneous. One way to unpack the notion of homogeneity is through Hempel’s
special consequence condition: if E confirms H, then E confirms any logical consequence of
H. But as argued in chapter 3, this condition is in general unacceptable if confirmation is
interpreted in terms of incremental boosts in probability. A more attractive explication of
homogeneity is in terms of exchangeability of the instances of H. But to see Goodmanization
whenever there is a failure of homogeneity in this sense is to see Goodmanization throughout
science (see the discussion below for more about the connection between exchangeability and
Goodman’s problem). Ken Gemes (1990b) defines a notion of “real confirmation” requiring
that for E to really confirm H, it must incrementally confirm each “content part” of H. Gemes
attempts to provide a syntactical definition of the notion of content part that does justice to
the intuition that not every logical consequence of H is a genuine content part. To leave aside
technical problems with Gemes’s definition, my main concern is that his notion of real
confirmation is too demanding to be of much use in real scientific examples. For instance,
none of the classical tests of Einstein’s general theory of relativity or any of the more recent
tests I am aware of can plausibly be said to confirm every content part of the theory, and this
even though these tests are commonly held to provide good confirmation of the theory. Of
course, one could say that individually or collectively these pieces of evidence do confirm
every content subpart of some significant part of Einstein’s theory. But by the same token,
green emeralds confirm every subcontent part of some significant part of ‘All emeralds are
grue’. In sum, I am unconvinced that there is any workable and useful notion of homogeneous
confirmation to be had. And I am convinced that the tools already developed are adequate
to capture the valid lessons to be drawn from Goodman’s examples.

10. The reason for the qualification ‘future-moving’ will become evident below.

11. A few years later Carnap abandoned the notion that there is a unique correct confirmation
function (e.g., ¢*), and in his later years he tended more and more toward personalism.
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Notes to Pages 111-123 243

However, he remained a tempered personalist, for he thought that inductive common sense
supplied constraints over and above those of the probability calculus (see Carnap 1980). The
problem, of course, is that Carnap’s inductive common sense did not agree with the inductive
common sense of others. Did he think that there is some overriding inductive common sense
to which, by some special faculty, he had access? I discuss below how a Carnap aligned with
Bayesian personalism should have responded to Goodman’s treatment of induction.

12. One of the earliest expressions of this point is to be found in Teller 1969.
13. The word ‘grue’ was introduced only at a later date.

14. Carnap’s papers are part of the Archives for Scientific Philosophy, University of Pitts-
burgh. The quotation is from document no. 084-19-34, dated January 27, 1946. Quoted by
permission of the University of Pittsburgh and C. G. Hempel. All rights reserved.

15. Carnap refereed the manuscript of Fact, Fiction, and Forecast for Harvard University
Press. He recommended it for publication. Carnap’s letter to the press is prt?served as
document no. 084-19-02 in the Archives for Scientific Philosophy, University of Pittsburgh.

Chapter 5

1. The background knowledge K is suppressed here for the sake of simplicity.

2. The present account skates over some of the historical details. For a full account, see
Earman and Glymour 1991.

3. Temporal subscripts on the Pr function will be dropped whenever no confusion will result.
4. The doubts are discussed in detail in chapter 6 below.

5. Pr(T & E/7E) = Pr(1E/1E) x Pr(T/ M E) = Pr(T/ 1 E) (by ((;P3) aqq (CP2) of ap-
pendix 1 of chapter 2). Thus Pr(T/1E) =0 when T |= E. When in addition Pr(E) =1,
Pr(T/E) = Pr(T & E)/Pr(E) = Pr(T). So under the stated conditions, C(T; E) = Pr(T).

6. See van Fraassen (1988) who mentions this line without advocating it.
7. See Earman and Glymour 1991 for details and references.

8. Similar problems arise if confirmatory power is measured in other ways, e.g., by Gaifman’s
(1985) (1 — Pr(T))/(1 — Pr(T/E)).

9. Here I am using the terminology of Eells 1985. The approach sketched here can also be
found in Skyrms 1983.

10. That this was a genuine piece of learning for Einstein is indicated by the fact that he spent
about a week of hectic calculation to derive the prediction of perihelion advance from GTR
(see Earman and Glymour 1991). And when he found his prediction matched the observed
anomaly, he suffered heart palpitations (see Pais 1982, p. 253).

11. Horwich (1982) and Howson (1984, 1985) both advocate that for old evidence, incremental
support should be measured in terms of counterfactual degrees of belief. It is not clear,
however, at which version of the old-evidence problem their constructions are aimed. If they
are aimed at the problem of old new evidence—i.e., T was formulated before the discovery of
E but it is now later and Pr(E) = 1—then the constructions amount to much the same
thing as recommended by Skyrms (1983) and Eells (1985). But if the constructions are aimed
at the problem of new old evidence—i.e., E was known before the formulation of T and it is
now the time of the formulation of T (or barely after it)—or the problem of old old evi-
dence—i.e., E was known before the formulation of T and it is now some time subsequeng to
the formulation—then they are subject to the difficulties discussed in the present section
and also in section 7 below.
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12. For present purposes, nested iterations of ‘- will be ignored.

13. For various opinions on this matter, see Howson 1984 and Worrall 1978, 1989. See also
the discussion in section 8 of chapter 4.

14. See Hermann 1968, p. 32.
15. See R. Miller 1987, chap. 7, for similar sentiments.
16. For details, see Roseveare 1982 and Earman and Glymour 1991.

17. The problem posed by new theories for orthodox Bayesianism is touched upon by Teller
(1975, pp. 173-174). It is discussed explicitly by Chihara (1987). One of the few references in
the statistics literature I know of is Leamer 1978, where the problem is discussed under the
rubric of “data instigated” hypotheses.

18. See Leamer 1978 for a discussion of the prohibition against doubly counting evidence.

19. Some further remarks about Howson’s K — {E} are in order. Sometimes he seems to
think of K as a discrete set of elements from which E can be plucked. But normally K is
treated as being closed under logical implication. (If (LO1) fails, this is an unrealistic assump-
tion, of course.) In this case we might try to get at the relevant sense of K — {E} along the
following lines. Call K’ an intermediary between K and E just in case K’ is stated in the
vocabulary of K, K = K’, and K’  E. If there is a unique strongest intermediary, take this
to be K — {E}. There seems to be no guarantee, however, that there will be a unique strongest
intermediary. See also Chihara 1987, pp. 553-554.

Chapter 6

1. Here I am indebted to an unpublished lecture of Peter Railton’s, delivered at the Pittsburgh
Center for the Philosophy of Science in spring 1990.

2. On this matter, see the discussion in chapters 5 and 8.

3. See Jaynes 1957, 1968. For a critical assessment of the maximum entropy principle, see
Seidenfeld 1979, 1986.

4. This is a point that has been repeatedly stressed by Wes Salmon. The Bayesian must deny
that these plausibility arguments represent a logically prior form of reasoning that delivers
plausibility assessments (see chapter 2).

5. Moving to a rule that determines Pr values not just on a partition but on the entire
probability space would be a big step toward apriorism.

6. I have borrowed this example from Wes Salmon.

7. For a discussion of this form of tempered personalism, see Shimony 1970. Note, however,
that the sort of criticism given in chapter 8 of Lehrer and Wagner’s (1981) proposal for a rule
that forms a consensus by means of a weighted aggregation of opinions also applies to this
form of tempered personalism.

8. This move falls in with the definitional solution mentioned below in section 9 and discussed
critically in chapter 8.

9. As explained in appendix 2 to chapter 2, the strong law of large numbers relies on the
countable additivity of the measure on the space of infinite sequences of coin flips. But
countable additivity of the degree of belief function Pr is not assumed here. If one wanted to
eschew countable additivity altogether, one could fall back on the form of the weak law of
large numbers that says that as the number of flips goes to infinity, the probability that the
observed frequency of heads differs from the true chance value by any & > 0 goes to zero. The
reader is invited to try to apply this fact to derive a conclusion about merger of opinion.
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10. A random variable isa map X :  — R such that for every Borel set A = R, {w € Q: x(w) € 4}
is in &. Recall that a field is a collection of subsets of Q2 closed under complementation and
finite unions, and that a o field is closed under countable unions. See appendix 2 of chapter
2 for more details.

11. E(X) is the expectation value of the rv X. E(X/#,) stands for the conditional expectation
value of X on %,. If &, is the o field generated by the partition {B;} of Q, then E(X/#,) is
defined as the rv such that E(X/B;) has constant value on each set of the partition.

12. For a different derivation of results similar to those in the theorem, see Schervish and
Seidenfeld 1990.

13. The difference between the strong and the weak forms of merger of opinion lies. in the
order of the quantifiers. For an evidence matrix ® = {¢,}, define the conditional distance
measure on probability functions as

diste, (P — Pr) = sup, [Pr(¥/& o) — Pry/& o)l

i<n i<n
Then part (2) of the theorem proves weak merger: for any separating @, for a.e. w e Mod ¢,
any & > 0, and for any equally dogmatic Pr and Pr’, there exists an N such that forany m > N,
distg ma(PT — Pr') < &. Strong merger requires that ... there exists an N such that for any
equally dogmatic Prand Pr'....

14. See, however, the discussion below in section 7. An atomic observation sentence is a
formula of the form Pi,i, ... i, or f(i,,is,...,i;) where ‘P’ and f” are respectively a k-ary
observation predicate and a k-ary function symbol and the i’s are numerals.

15. It is conceivable that the opinions of Bayesian agents regarding a hypothesis could merge
in the sense that the absolute difference of the posterior probabilities of any two agents goes
to 0 without there being a convergence to certainty on the hypothesis. This raises the question
of what conditions need to be assumed in order to prove that merger implies convergence to
certainty. As a simple illustration, suppose that H, and H, are treated as mutually exclusive
and exhaustive. And suppose that the class of probability functions {Pr} is rich enough that it
contains Pr, and Pr,, which differ on the prior odds but agree on the posterior odds for any
evidence from the evidence matrix ® = {¢;}. That is,

¢, = Pry(H,)/Pry(H,) # Pry(H,)/Pry(Hy) = ¢,
but

R,=Pr (& + @/H,) / Pr, (& + rp,/Hz) = Pr, (§. + <p.~/H1) / Pr, (& + sz)

for all n. Now suppose that merger of posterior opinion takes place in the sense that there
is an r such that Pr, ,(H,/&;<. + ¢;) - r as n — co. (Note that this is stronger than requiring
merger, in the sense that the absolute value of the difference of the posterior probabilities goes
to 0, which would allow the opinions to oscillate without settling down to a definite value.)

Then r must be 1 or 0. For

Pr, (HI/& + qa) —Pr, (H,/& e q»i) = (e — ca)fley + €2+ Ry + €1¢/Ry).
i<n ign

Since this quantity goes to 0 as the limit r is approached, R, must go either to 0 or to o, which

imply respectively that the posterior probability of H, goes to 0 or 1. For details and a

generalization to a countable number of hypotheses, see Hawthorne 1988. Under what other

conditions does merger of opinion imply convergence to certainty?

16. 1 implicitly assumed in section 2 and will explicitly assume in this section that the
observational/theoretical distinction can be drawn linguistically by means of a bifurcation of
the empirical vocabulary of the language into observational and theoretical terms, the !‘ormer
of which denote directly observable properties or relations. An observation sentence is then

P el o T

- g oa




246 Notes to Pages 150-152

any sentence (not necessarily atomic) all of whose empirical terms are observational. As is
well known, this is not the best way to think about the observational/theoretical distinction.
Moreover, the further implicit assumption of this section—that the distinction can be drawn
in a theory-neutral manner—is also suspect. The justification for using these assumptions
here is that they make for a tractable discussion of the merger-of-opinion results. It remains
to rework the results when these suspect assumptions are relaxed.

17. Suppose for simplicity that the observational consequences of theory T are finitely
axiomatizable and thus representable by an observation sentence Oy. Antirealists have some-
times tried to draw comfort from the fact that the probability calculus implies that one’s
degree of belief in O, must be greater than or equal to one’s degree of belief in 7. But from
the Bayesian perspective, it is not a question of whether to “prefer” or “choose” T over Oy
but rather whether degrees of belief in T can be justified and in particular whether we are ever
justified in giving high degrees of belief to interesting theories. See Dorling 1990.

18. Some antirealists, such as van Fraassen (1980), are committed to inductivism with respect
to observables, since they hold that we can have good reason to believe that a theory saves
all the phenomena.

19. Separation is a necessary condition for the convergence-to-certainty results. Suppose that
the evidence matrix ® = {¢;} is such that for all sentences ¥, Pr(y/ &<, ) = [¥](w) for
all w in a set of models K € Mod of measure 1. If ® didn’t separate K, we could choose
distinct w,, w,€ K and a sentence n such that w, € mod(n) and w, € mod(T1n). Then
Pr(n/&i<n @*) = 1 and Pr(n/&;<, ¢**) — 0. This is a contradiction, since if ® does not
separate K, then ¢;** = ¢;** for all i.

20. Take the g-algebra )# < F generated by mod(T;) and mod(¢), where ¢ is an observation
sentence. The martingale convergence results can then be applied to (Mod &, #, 2:*), where
P1* is the restriction of 21 to ), and then transferred down to Z.

~
21. Suppose that wod in the sense of Mod,, holds for T; and T,. Consider the collections T,
and T, of observational consequences of T; and T, respectively. If these collections were
compatible, there would be a common model w (in the observational sublanguage). This
common model W need not be extendible to models of T, and T, but there will exist
models w, of T; and w, of T, whose reducts to the observational sublanguage will be
elementarily equivalent to W. This contradicts the assumption of wod. Since 7, and T, are
incompatible, therg will be a ser;tenoe Y such that;l‘, uj} = ¢ & Y. By compactness, there
are finite subsets T < T, aEd T, = T, such that T, U T |= ¥ & 1. Let O, be the conjunc-
tion of the sentences in 7, and let O, be the conjunction of the sentences in ’fz Then

O, = 110,,s0 T, and T, have respectively the incompatible observational consequences O,
and 0,. I am indebted to R. A. Rynasiewicz for this demonstration.

22. Let ‘P’ be an observational predicate, and let the axioms of T; consist of (3i) 1 Pi and all
sentences Pn, where n is a member of a certain set of integers. Let the axioms of T, consist of
(3i) 1 Pi and all sentences Pm, where m is a member of the complement set. T; and T, are wod,

relative to Mod. They would also be sod relative to mé, if the set of integers in ques-
tion were definable in % so that T, would entail (3i}( Qi & 1Pi) while T, would entail
(Vi)(11Qi — Pi) for an arithmetic ‘Q’. But there are many sets of integers not definable in .%.
It is doubtful, however, whether T, and T, deserve to be called theories, since they are
not recursively axiomatizable. I thank R. A. Rynasiewicz for helping me to clarify these
matters.

23. However, we will see in chapter 9 that the Bayesian convergence-to-certainty theorem
commits the Bayesian to probabilistic certainty that a multiply quantified observational
hypothesis is equivalent to a truth-functional compound of hypotheses each of which is either
finitely verifiable or falsifiable.
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24. As a concrete case of what I find to be an interesting example of underdetermination, I
mention flat and nonflat versions of Newtonian gravitational theory that predict the same
particle orbits (see Anderson 1967). For an argument against underdetermination in an
important incident in the development of the old quantum theory, sce Norton 1990.

25. Recall the discussion in chapter 4 of the past-reaching sense of projectability. Thus que’s
problem of induction and Goodman’s so-called new problem can both be seen as a species of
the problem of underdetermination.

26. Hans Reichenbach consistently maintained the latter criterion, which is still defended by
Salmon (1979). In Experience and Prediction Reichenbach wrote, “The probability thgory of
meaning ... allows us to maintain propositions as meaningful which concern facts outside the
domain of the immediately verifiable facts; it allows us to pass beyond the domain of given
facts. This overreaching character of probability inferences is the basic method .of the knoyvl-
edge of nature” (1961, p. 127). My point here is that on the Bayesian personalist interpretation
of probability, this overreaching character threatens to extend into areas the positivists and
logical empiricists wanted to exclude. Of course, Reichenbach maintained a relgtwe-frcquen-
cy interpretation of probability. Whether this interpretation is defensible and, 1f so, whether
it provides a resolution of the problems raised above remain to be seen. In his la}er years
Carnap moved toward a subjectivist criterion of meaningfulness: “I regard as meaningful for
me whatever I can, in principle, confirm subjectively” (1963c, p. 882). ‘I'his_ approach threatens
to open the floodgates. However, Carnap also espoused a form of 'phys1cahsm that he took
to imply, “Whatever is subjectively confirmable, is also intersubjectively confirmable” (1963c,
p. 883).

27. It might be objected that this is an unfair example, since the weather is unpredictaple. I
suspect, however, that this complaint amounts to the claim ghat, say, my degree of _behef of
1/2 that it will rain in Pittsburgh tomorrow has no natural interpretation as an estimate of
frequencies. If true, this would undermine the present attempt to interpret the objectivity (?f
degrees of belief. In any case, the point of the example stands: the ability to tolerate unanti-
cipated circumstances may be as advantageous in evolutionary terms as the ability to antici-
pate. In criticism of the evolutionary explanation I have also heard it said that overcstimating
the probabilities of dangers may be evolutionary advantageous. I am not persuaded of this
point, since, for example, the behavior of an animal that shges at every apparent danger can
be explained by assuming accurate estimates of the likelihood of the dangers and large
negative utilities for having to face the dangers.

28. Another difficulty here stems from the utopian assumption that the agent can list a
complete partition of theories (see chapter 7).

Chapter 7

1. Or perhaps the hypothesis or theory is falsifiable, but only with the help of auxiliary
assumptions that themselves are not finitely verifiable and that therefore are known at best
only with a high probability.

2. This passage does not appear in the third edition of Giere’s book. My purpose here is not
to pick on my friend Ron for a view that he may no longer hold but rather to probe what is
a widely shared prejudice against eliminative induction.

3. However, we will see in chapter 9 that the Bayesian convergence-to-certainty the9rem
commits the Bayesian to probabilistic certainty that a multiply quantified observat'lom.ll
hypothesis is equivalent to a truth-functional compound of hypotheses each of which is
finitely verifiable or falsifiable.

S S S S ————
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4. If antirealists are to be believed, it can never be had, because theory is underdetermined by
observational evidence precisely in the sense that there exist theories not observationally
distinguishable from their rivals. For some remarks on this matter, see chapter 6 and section
4 below.

5.1n A Treatise on Probability Keynes wrote, “The conception of having some reason, though
not a conclusive one, for certain beliefs, arising out of direct inspection, may prove important
to the theory of epistemology. The old metaphysics has been greatly hindered by reason of
its having always demanded demonstrative certainty.... When we allow that probable
knowledge is, nevertheless, real, a new method of argument can be introduced into metaphys-
ical discussions” (1962, pp. 239-240). It is this “new method of argument” that Russell
attempted to clarify in Human Knowledge: Its Scope and Limits (1948).

6. 1 have changed Giere’s notation to conform to mine and have included the “initial
conditions” in K. Again, my purpose here is not to pick on Giere but to criticize what I take
to be a vain hope about theory testing. The hope goes back to Keynes and Russell and is still
widely shared.

7. 1 have changed Jeffreys’s notation to conform to mine.
8. There are still problems aplenty here (see chapter 6).

9. In fairness to my revered colleague Wes Salmon, I should point out that his proposal was
made in the context of trying to understand Kuhn’s account of theory choice. However, I
would note that Bayesians should not get sucked into playing the game of choosing among
theories (see chapter 8).

10. See Earman and Glymour 1980b for an account of the British eclipse expeditions and their
role in the early reception of GTR.

11. See Norton 1989 for a detailed account of how Einstein discovered and justified GTR to
himself. According to Norton, Einstein’s reasoning follows eliminativist lines.

12. For an analysis of Einstein’s derivation of the perihelion shift, see Earman and Glymour
1991.

13. See Earman and Glymour 1980a for a review of the early red-shift tests.
14. For more details of Eddington’s analysis, see Earman and Glymour 1980b.

15. For a comprehensive review of these and other members of the zoo of gravitational
theories, see Will 1981.

16. Other relevant references describing the program include Will 1971a, 1971b, 1972, 1974a,
1974b, 1981, 1984; Ni 1972, 1973; Thorne, Lee, and Lightman 1973.

17. For a definition of this and other terms relevant to Thorne and Will’s program, see
Thorne, Lee, and Lightman 1973.

18. For example, to explain the influence of gravity on light, either Maxwell’s theory or the
photon theory may be used.

19. Will defines a test body as one “that has negligible self-gravitational energy (as estimated
in Newtonian theory) and is small enough in size so that its coupling to the inhomogeneities
of external fields can be ignored” (1984, p. 351).

20. This is a reference frame that falls along one of the geodesics of g and is small enough that
the inhomogeneities of the gravitational field can be ignored.

21.Inrecent years there has been some speculation about a “fifth force.” The existence of such
a force would undermine the weak principle of equivalence, since it is supposed to moderate
the gravitational attraction of bodies in a manner that depends upon the chemical composi-
tion of the bodies. The evidence is now deemed to be overwhelmingly against such a force. It
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would be interesting to see how this judgment can be rationalized in terms of the Bayesian-
eliminative scheme proposed here.

22. This figure is adapted from Will 1972, 1974b.

23. Apologies may be due to Sherlock Holmes for using him as a foil. Although many passages
suggest that he believed in a crude form of eliminative induction, other passages indicate a
more sophisticated view. (Here I am indebted to Prof. Soschichi Uchii) In The Sign of
Four Holmes speaks of the “balance of probability,” indicating that his method involves
probabilistic elements. And even more intriguing, in The Hound of the Baskervilles he speaks
of “the scientific use of the imagination.” With a little charity we can read this as the ability
to articulate all of the relevant possibilities. Thus Holmes’s success may be seen as the result
of carrying out the version of eliminative induction discussed above.

Chapter 8

1. Structure, p. 199. This already serves to separate Kuhn from Quine’s epistemology and all
of its disastrous consequences.

2. For Bayesianism, the emergence of a sharp consensus (in the degree-of-belief sense) from
widely differing prior probabilities is at the heart of scientific objectivity (see chapter 6 for a
discussion of objectivity and rationality within the Bayesian framework).

3. See Friedman 1983 and Earman 1989 for details.

4. While the use of this language may not be the appropriate device for understanding all of
the historical disputes, it does illuminate those having to do with the long-running debate
between the absolute versus relational conceptions of space and time (see my 1989 book).
There may be some sense in which Newton’s theory, translated into space-time language, is
no longer Newton’s theory. But I deny that there is any interesting sense in which this
translation fails to accurately capture the physical content of Newton’s theory. Nevertheless,
I acknowledge that the adoption of the new language influences probability assignments. I
will return to this point in sections 3 and 6.

5. Since I have never been able to understand exactly what is at issue here, I don’t know
whether I should demur or not.

6. My response to incommensurability and relativism has been tactical. A more radical
response is given by Kelly and Glymour (1990), who argue that there are inductive metho-
dologies powerful enough to take into account shifting frameworks, paradigms, and whatnot.

7. At some junctures Giere (1988) distinguishes between choosing to pursue a theory and
accepting the theory as true; at other places, however, it is hard to tell what he has in mind.
The issues discussed here have played themselves out before in philosophy of science (see, for
example, Bar-Hillel 1968, Carnap 1968, and Kyburg 1968).

8. It might be complained that successful puzzle solving in normal science requires a commit-
ment to or an embrace of a theory that goes beyond a practical decision to allocate a
portion of one’s research time to the theory. This complaint may or may not be correct as a
psychological account of the motivation of individual scientists. I think that it is true for
some scientists but false for others.

I should also note that there is a sentiment in favor of theory acceptance on the grounds
that it is needed to produce scientific explanations (see, for example, Salmon 1968). I must
confess that I find this sentiment nearly incomprehensible. Without attending to the truth
of a theory T, we can check the various conditions of Hempel and Oppenheim’s account (or
your favorite alternative account) of scientific explanation to make sure that T is a potential
explanation of the phenomenon under scrutiny, that is, that T, if true, would be an explana-
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tion. The notion that we should then accept T, or some other rival potential explainer, to turn
the potential into an actuality strikes me as being akin to thinking that wishing it were so
makes it so. If on the basis of the available evidence the probability of T and each of its rivals
is less than 1, as it almost always is, then that’s the way things are, and wishing it were
otherwise is futile.

Finally, I want to comment on the notion of accepting a theory in the sense of “acting on
it.” Thus scientists may be said to act on Newton’s theory when they use it to calculate the
orbit of a lunar rocket probe. But the very same scientists, without any change of cognitive
attitudes, may act on Einstein’s GTR rather than Newton’s theory in calculating planetary
perihelia. What we again have are practical decisions whose different outcomes turn on the
different utilities assigned to accuracy of prediction and ease of calculation in the two
contexts.

9. Which form of revolution was occasioned by the introduction of Einstein’s GTR? Argu-
ments can be made in favor of both the weak and strong forms.

10. For details, see Earman and Glymour 1991.

11. Lehrer and Wagner prove various results about the conditions under which iterated
weighted aggregation produces a consensual probability; the details are not relevant here.

12. Donald Gillies (1990) has argued for what he calls “intersubjective probabilities” on the
grounds that Dutch book can be made against a community whose members have differing
degrees of belief. This argument proves too much, since it would entail the unhealthy conse-
quence that the members of a scientific community are not allowed to disagree. The way to
escape the conclusion is to deny that a scientific community acts as a corporate or economic
body in discharging its basic role of discovering and testing scientific hypotheses. In addition,
Gillies’s communal Dutch-book construction is not amenable to the more pristine inter-
pretation (recommended in chapter 2) that relegates Dutch bookies to the role of window
dressing.

13. That is, unless it could be shown that the class of belief functions has been narrowed for
evolutionary reasons that enhance the reliability of the degrees of belief, an option I found
unattractive in chapter 6.

14. As I learned from David Hull’s lecture “Why Scientists Behave Scientifically,” delivered
in the Pittsburgh Series in the Philosophy of Science, September 1990. Philip Kitcher pointed
out to me that Merton himself offered an explanation along these lines (see Merton 1973).

Chapter 9

1. This is a slight modification of the setup used in chapter 6.
2. See chapter 14 of Rogers 1987.

3. A “positive instance” I(n) of Hy, will have the form Pn & ~1Ra, or “1Pn & Ra,. Since
evidence statements are assumed to be true and since if Pn is true (false) in any w € Mod,, it
is true (false) in every we Modg, it follows that for positive instances we can set
Pr(Pn & 1Ra,) = Pr(71Ra,) and Pr(1Pn & Ra,) = Pr(Ra,). Thus Pr(Hp/& <, I(n)) =
Pr(Hp/&;<n I'(n)), where I'(n) is —1Ra, or Ra, according as I(n) is Pn& T1Ra, or
“1Pn & Ra,. As a result, we can continue to take evidence sequences to be of the
form Ra, & 71Ra & ....

4. From note 3 we know that
Pr(Hp/ :& I(n)) = Pr(Hyp/ ‘& I'(n))
<n <n

_ Pr(Hp)
Pr(I’(1)) x Pr(I' @/ (D) x -+ x Pr(l(m/& et I D)
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The results of chapter 4 can now be applied to conclude that if Hy, is true and Pr(Hp) > 0,
the instance confirmation goes to 1 as the number of positive instances goes to infinity and
that if countable additivity holds, the probability of Hy, itself goes to 1 in the limit. Recall that
in this context, countable additivity means that
Pr((Vi)n(i)) = lim Pr(& n(j)).

n—w j&n
5. For results relevant to the PAC (or probable approximate convergence) model of learning,
see Blumer, Ehrenfeucht, Haussler, and Warmuth 1987 and Rivest et al. 1989.

6. For more careful and detailed formulations of formal-learning problems, see Osherson,
Stob, and Weinstein 1986; Osherson and Weinstein 1989a, 1989b; and Kelly and Glymour
1989. The paradigm adopted here of truth detection in the limit is from Kelly and Gly-
mour 1989.

7. The domain of any w € Mod, is the disjoint union of two parts D, and D,, each of which
is countably infinite. Each element of D, is named by a numeral, each element of D, is named
by an a;, and n-ary arithmetic and empirical predicates are interpreted subsets of the n-fold
Cartesian products D, x D, x --- x D, and D, x D, x -*- x D, respectively.

8. In a different setting, Osherson, Stob, and Weinstein (1988) show that effective Bayesian
learners must pay a price.

9. The term “verifutable’ introduced above is due to Kelly and Glymour (1989). The example
used here is due to Kelly (1990).

10. To my knowledge, Kevin Kelly was the first to use formal-learning theory to show how
Bayesianism contains a concealed dogmatism. I am grateful to him for sharing his work with
me prior to its publication.

11.1f, say, K = mod((3i) 71Pa;), then K is not compact in the evidence, since every finite subset
of {Pa,, Pa,,...} is satisfiable in K, even though the entire set is not.

12. Compatre this to the usual notion of not finitely verifiable/falsifiable obtaim?d by negating
the condition that y is finitely verifiable (respectively, falsifiable) relative to K just in case for
any w e K such that w e mod(y) (respectively, w € mod(71y)), there is a finite E such' that
w € mod(E) and such that for any w’ € K, if w’ e mod(E), then w’ € mod(y) (respectively,
w’ € mod(T1y)).

13. In the general case where K = ( J;mod(A;), the Bayesian agent is probabilistically certain
at the outset that the actual world models one of the A;, and that relative to any such A;, ¥
is equivalent to a verifutable sentence.

14. For a sampling of recent opinions on the reliabilist conception of knowledge, see Alston
1986, Bonjour 1985, Foley 1985, and Goldman 1986.

15. The formal learner may be unmoved by this line of argument in view of the fact that, short
of the infinite limit, the Bayesians have not been able to give any objective significance to the
little numbers they assign (see chapter 6).

16. See Earman 1986 and Penrose 1989 for suggestions along this line.

17. This seems to be what Putnam has in mind when he says that somebody proposes the
hypothesis.

18. See Carnap’s 1963b response to Putnam.

Chapter 10

1. Here Sue seems to be referring to van Fraassen’s objection, discussed in section 3 of chapter
5 of Bayes or Bust?
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