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Abstract
Phylogenetics is the study and reconstruction of evolutionary history and is filled with numerous
foundational issues of interest to philosophers. This paper briefly introduces some central concepts
in the field, describes some of the main methods for inferring phylogenies, and provides some
arguments for the superiority of model-based methods such as Likelihood and Bayesian methods over
nonparametric methods such as parsimony. It also raises some underdeveloped issues in the field of
interest to philosophers.

1. Introduction

Biological systematics studies the diversity of life and includes comparative anatomy,
taxonomy, and classification. Since we now understand that this diversity is the result of
evolutionary processes, systematics also includes the task of reconstructing evolutionary
history. Phylogenetics is the study and reconstruction of this history and involves the building
of phylogenies – genealogical histories usually represented by phylogenetic trees, which depict
lineage splits through time. Phylogenetics is central to biology as evidenced by the fact that
the Science Citation Index contains over 13,000 papers published in 2011 alone containing
“phylogeny” (or derivatives like “phylogenetic”) in their abstracts. This paper briefly
introduces how phylogenetics is done and shows how its theories and practices are filled with
numerous issues of interest to general philosophers of science. I will begin (in Section ) by
introducing some relevant terminology and the problem of phylogenetic inference and then
(in Section ), introducing the most common methods of inference and engaging in a brief
discussion of the strengths and weaknesses of these methods.

2. The Central Concepts and Problems in Phylogenetics
2.1. THE INPUT: CHARACTER DATA

An example of a phylogenetic question is “Are humans more closely related to chimps or
gorillas?” Related questions include “When did humans and chimps last share a common
ancestor?” and “What was this common ancestor like?” Biologists draw on various kinds
of evidence for reconstructing phylogenies, and the nature of this evidence can vary
tremendously. In principle, behavioral, morphological, and molecular traits of living
organisms or fossils and even biogeographical and geological data all provide evidence. These
are collectively known as “character data”. Mishler (2005) and Harris and Mishler (2009)
argue that we can think of phylogenetic inference as divided into two parts: the collection
and organization of character data and the construction of phylogenies from these data.
While most work on “phylogenetic methods” treats the character data as given, Mishler
claims that the construction of the data matrix (where the traits are coded as the same or
different) actually constitutes most (or even all) of the important work since the matrix
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already builds in presuppositions such as what the relevant characters and traits even are. For
two different traits to be coded as different states of “the same character” is roughly to assume
that the characters are “homologous”. Although homology can be broadly defined as traits
that have evolved from the same ancestral character, exactly what is meant by “homologous”
is a central topic in biology (Hall 1994) and has been a concern to philosophers as well (e.g.,
Griffiths 2006). It is clear that the careful analysis of characters and hypotheses of homology
play an essential role in phylogenetics, and there is a need for much more philosophical work
in this area.1 Mishler's (completely standard) way of describing the problem treats the analysis
of characters and the construction of a data set as conceptually prior to the application of tree
construction methods. But we should not be so quick to accept this. Hull (1970) and many
others have argued that our trait observations are theory laden, and the application of
phylogenetic methods to character data provides us evidence about our interpretation of
those very data in a way similar to what Hennig (1966) called “reciprocal illumination”.
While observations of limbs are evidence when inferring the phylogeny of the tetrapods,
the phylogeny is itself evidence for which structures in which organisms are modifications
of limbs in the first place. Our best understanding of biological taxa, characters, and
phylogeny is all the result of an ongoing process of back-and-forth inferences reminiscent
of a kind of reflective equilibrium.
2.2. THE OUTPUT: A PHYLOGENY

While it is not at all clear what is the best way to infer a phylogeny, it is usually assumed that
at least the goal is straightforward: the production of a phylogenetic tree. But this is not
straightforward at all. First, it is not clear what a phylogeny is a representation of and second,
it is not clear how this history should be represented. While phylogenetics is sometimes
described as reconstructing the “Tree of Life”, there is an ongoing debate about whether
such an object even exists.2 Exactly what a phylogeny represents is a matter of debate and
is arguably a context-sensitive matter (Velasco 2012).
Traditionally, a phylogeny represents the history of species and is often defined in this way

(Wiley, 1981: 2, Edwards 2009). But this view is hard to reconcile with building phylogenies
of populations rather than species (Velasco 2008b, 2013a). In addition, most phylogenies
built today are actually molecular phylogenies, which trace the evolutionary history of
various biological molecules such as DNA sequences. The relationship between these
molecular phylogenies and the phylogenies of groups of organisms is not clear. Some views
of species conceptually link phylogenies and species with genetic histories (Baum 2009;
Velasco 2010), but on more traditional views of species, gene histories and species histories
can differ and a huge area of current research is focused on this “gene tree species tree
problem” (Edwards 2009; Haber 2012).
As for how to represent phylogenies, originally, phylogenies were built in service to the

goal of classification. Thus, there was a focus on the topology of the tree – the evolutionary
branching order of the groups. Finding the topology of a tree is equivalent to the problem
of finding out which groups are monophyletic (all of the descendants of some common
ancestor). The topology certainly is of great importance. But we ought to think of
phylogenetic inference more generically as inferring a number of different aspects of
evolutionary history. Inferring the tree's topology is intertwined with inferring things such
as the rates of change of characters and the length of the branches in time. Reconstructing
these aspects of the history is just as important as reconstructing the topology. Further, a
phylogenetic tree is a specific kind of graph – one with no reticulation: branches split but
never rejoin. But while many of the genealogical patterns in the history of life are tree-like,
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many are not. Inferring hybridizations, lateral gene transfers, genetic recombinations, and
other such non-tree-like events is part of reconstructing the past and is also properly thought
of as part of phylogenetic inference. This is especially clear when we aim to construct
networks representing the phylogenetic histories where we do not know ahead of time
whether the history is best represented by a tree or not (Morrison 2011). Setting aside these
difficult and important preliminary questions, we can move ahead to the second part of
Mishler's division of the problem – the construction of a phylogeny from the character data.

3. Phylogenetic Inference Methods

In the 1860 s, systematists were forced to use their best judgment as to the plausibility of
various evolutionary stories about the origins of groups and traits. Quantitative methods
began to be developed in the 1960s and have dominated the field ever since. Here, I will
introduce three of the most common classes of inference methods: parsimony, maximum
likelihood, and Bayesian methods.3
3.1. PARSIMONY METHODS

Camin and Sokal (1965) described the first parsimony method (though they thought it
unacceptable) and early defenders include Kluge and Farris (1969). There are a number of
variants of parsimony methods, but the basic idea assumes that we have a number of
characters with discrete states. We assume the branching history is a tree, and the different
possible trees are then scored by the minimum number of character state changes required
to map the characters onto that tree. The fewer changes required, the better.
To get a feel for how parsimony works, let's examine Fig. 1. Imagine that we have examined

organisms from three different species A, B, and C. We are considering three possible tree
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Fig. 1. On these diagrams, time flows from the root of the tree at the bottom to the tips. The colored bars represent the
locations for all character state changes on these trees. If there is a change, the change gets inherited up the branch. For
example, on the (AB)C tree in the bottom left, if characters 16–19 all changed from 0 to 1 after C split off but before the
split leading to B and A, then C would still remain in state 0 while B and A would each be in state 1. Any other way of
getting just B and A into state 1 would require more than one change per character.
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hypotheses: that A is closer to B than either is to C, that A and C are closest, and that B and C are
closest. These are represented as (AB)C, (AC)B, and A(BC).
In Fig. 1, we have evidence from 20 characters coded as 0 or 1 (for absent or present) and

assume we know that the ancestral state for all of these characters was absent (0). Characters
1–15 are coded as 100 (meaning that As have this trait while neither Bs nor Cs do), characters
16–19 are 110, and character 20 is 011. Fig. 1 displays one way of getting the minimum number
of character state changes possible for each of the three tree hypotheses. According to parsimony,
tree (AB)C is to be preferred since it is possible for the data to be explained by 21 changes while
the other tree hypotheses would require at minimum 24 and 25 changes. A key lesson to learn
from this example is that characters 1–15 are actually “uninformative”. If we removed them from
the analysis, the absolute scores of each tree would be reduced by 15, but the difference between
each tree would be the same and so importantly, the ordinal ranking of trees, and so the most
parsimonious tree, would be the same. While characters 1–15 seem to imply that species B and
C are more similar to each other than either is to A (since they are both in state 0 while A is in
state 1), they are the same as the ancestral state of the whole group and so no matter where they
are placed on the tree, they provide no evidence of how evolution has proceeded. For this reason,
grouping by a parsimony method leads to different results than grouping by overall similarity.
3.2. LIKELIHOOD METHODS

The method of maximum likelihood estimation (MLE) for statistical inference generally was
first carefully developed and examined in Fisher (1922) and was taken by some early
phylogeneticists to be the – in principle – ideal method for phylogenetic inference. To calcu-
late the likelihood of a tree, we find the probability of the data given that particular tree combined
with a particular model of how the data arose. In the case of DNA sequences, we need a model of
sequence evolution. This model will have a number of adjustable parameters such as mutation
rates. These rates may in turn be constrained by such assumptions as the existence of a molecular
clock (that the number of mutations on a branch is proportional to its length in time) or the as-
sumption that a mutation from any base pair to any other is equally probable (this is the
assumption of the Jukes–Cantor model). Let θ be a set of values for the parameters, which here
will include the tree topology, the branch lengths, the parameters in the model of sequence
evolution, and so on. The likelihood of a particular θ is the probability of the data given that
particular set of parameter values: P(Data|θ). The maximum likelihood estimate is the particular
θ, which maximizes this value.4

Edwards and Cavalli-Sforza (1964) were the first to discuss MLE in the context of
phylogenetics. They attempted to infer the relationships between various human populations
by using the genetic frequencies of various blood group alleles (for example, they estimated the
frequency of the blood-type allele A1 is 29.41% in Eskimos, whereas in the Bantu it is 10.34%,
the English, 20.90% and the Koreans, 22.08%). They felt that an MLE approach would be ideal,
but as this was computationally prohibitive at the time, other methods were used as
approximations. Felsenstein (1981) gave a computationally feasible algorithm for calculating
likelihoods with molecular sequence data and with the combined rise of the amount of sequence
data and the speed and availability of computers; this method has become the most frequently
used in phylogenetics.
3.3. BAYESIAN METHODS

Bayesian inference is also a general method for statistical inference. While its history is quite a
bit older than likelihood methods, it was only in the mid 1990s that Bayesian inference began
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to be used in phylogenetics. In a Bayesian inference, the goal is to infer the probabilities of
particular parameter values such as the tree topology or branch lengths. According to Bayes'
theorem, P θjDatað Þ¼ P Datajθð Þ x P θð Þ

P Datað Þ . P(Data | θ) is the likelihood while P(θ) refers to the
prior probability of the set of parameter values. If we are interested in just one parameter
(say the tree topology), then we want P(tree|Data), and the other parameters become
nuisance parameters. The Bayesian method for dealing with these nuisance parameters is to
integrate them out by taking a weighted average over all of the different possible values of
these parameters.5

Bayesian inference requires filling in prior probabilities – not just for the trees, but for the
nuisance parameters as well (that is how they get integrated out). Once we have these values,
the inference is computationally demanding (analytic solutions are actually impossible for
most cases), but conceptually, the inference is clear and appears justified. But the problem
of what to assign for priors is a difficult one.6 The actual calculation of the posterior
distribution requires summing over all possible values for the hundreds or even thou-
sands of parameters for each of the nearly innumerable possible trees (for 50 taxa there
are over 1076 possible trees), which creates obvious computational difficulties.7 A discussion of
the mathematical and computational issues involved with Bayesian inference is beyond the
scope of this paper. But I do want to point out that there is a need for philosophical work on
scientific methodology where computational limits, speed, and ease of implementation are se-
rious theoretical issues as well as practical problems. This is the situation that Bayesian
phylogeneticists find themselves in.
3.4. WHICH METHODS TO USE?

We have just canvassed three broad phylogenetic inference strategies. Which should we use?
As a matter of sociological fact, systematists will typically use multiple methods and simply
publish the results of all of them. When parsimony and likelihood methods agree on a tree,
this is intuitively extra evidence that the results are correct (and when they disagree, this
signals that we should look more carefully at the details). But philosophical justifications of
this practice are lacking.
If we treat phylogenetic inference as an instance of the general problem of statistical

inference, then we inherit standard statistical methods as well as the well-known general
debates. The justification for likelihood methods is straightforward. Maximum likelihood
estimation is a standard statistical method with a number of virtuous properties. It is
statistically consistent – that is, given a sufficiently accurate model, the MLE converges to
the true value of the parameters. It is also maximally efficient – it has the smallest possible
variance around the true parameter value as the size of the data set increases (Fisher 1922).
The justification for Bayesian methods is also straightforward in the same sense. Bayesian
inference is also a general method that can be defended on generic grounds. Debates about
likelihood vs. Bayesian methods are an instance of the general debate between frequentists
and Bayesians in statistics (e.g., Howson and Urbach 2006). Specific instances of this debate
in phylogenetics include things such as how to interpret probabilities that appear in
phylogenetic statements (Haber 2005) and whether prior probabilities can be justified
(Velasco 2008a).
Both MLE and Bayesian inference are model-based methods. An important part of being a

justified statistical inference from a model is that your model is itself justified in some way. In
the case of DNA sequences, we have a fairly good understanding of some of the basic
principles behind molecular evolution; but we do not know the full details. Usually our lack
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of knowledge manifests in cases where we know what kinds of things can happen (say a
genetic rearrangement), but we do not have a detailed quantitative understanding of the
probability of these things happening in various circumstances. How bad is it to use imperfect
models? We don't know – and central questions such as what it means for a method to be
reliable are up for debate. One kind of reliability depends on the particular robustness
properties of the models we use. Statistical methods have well-developed ways of checking
for robustness. For example, we can slightly alter the model and measure the effects this
has on our inferences; in the case of likelihood inferences, we can do a “bootstrap”
procedure, effectively altering the character input slightly. In Bayesian inference, to check
robustness, we can alter priors or alter models or even do various kinds of averaging
procedure over priors (hyperpriors) or over models (model averaging). These, and closely
related methods are part of the large area of statistical research known as model selection.
For a review of model selection as applied to phylogenetics, see Sullivan and Joyce (2005).
3.5. PARSIMONY VS. STATISTICS

Defenders of parsimony will sometimes argue that parsimony is the logical basis of
phylogenetics and (or) that it is a straight application of general principles of scientific
inference such as falsificationism, the hypothetico-deductive method, Ockham's Razor, or
some kind of principle of explanatory power (Wiley 1981; Farris 1983; Kluge 2005). There
are serious problems with all such justifications (Sober 1988). But this does not mean that
parsimony is not justified. It may, for example, be justified by reference to some other
method such as likelihood. It is known that parsimony will yield identical results to
likelihood methods in a range of cases, but it is known to come apart in a range of others
(Sober 2004). It is sometimes thought that the justification for parsimony stems from an
assumption that evolution is parsimonious, but this is not how defenders see it. What exactly
is assumed by parsimony is unclear (Sober 2005), but it would be wrong to say that just
because parsimony isn't an explicit model-based method that it is not based on any implicit
model either.
While parsimony methods may often deliver the correct answer in the sense of the correct

tree topology, there are several reasons why explicit model based methods are superior.
Model based methods build in assumptions, but these assumptions are flexible and can be
directly tested. For example, parsimony standardly assumes that each character state change
counts equally. But in many cases, we know that this does not accurately measure the
evidential impact of different changes. Some changes are far more probable than others.
The number of limbs that an animal has is a far better guide to genealogical relationships than
the number of teeth, which is itself a better guide than the number of hairs. In the case of
molecular data, we know that some kinds of mutations are more probable than others.
Model based methods easily accommodate such knowledge. Parsimony can take this kind
of information into account as well with a weighting scheme, though this seems to count
against some of the arguments that have been given for Parsimony methods. In fact,
unweighted parsimony is a weighting scheme – it simply weights all possible changes equally.
Seen in this light, equal weights require just as much justification any other particular
weighting scheme, and it is not obvious how to justify such schemes.
The relative inflexibility of the built-in assumptions of parsimony methods lead to other

problems. Holder and Lewis (2003) point out that there are often a number of different
possible scenarios that could have led to the same tree. But whether there is 1 path or 20
to a certain tree, the parsimony score of the tree remains the same. Parsimony also treats
different traits as evolving independently. With model-based methods, models can be created
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to correct for these issues. In principle, there is very little restriction on the kinds of models
that are possible (though they may become non-identifiable if there are too many
parameters). Parsimony methods build in certain assumptions that simply cannot be altered
and so are not flexible enough to capture these, and other specific evidential worries.
The most common criticism of parsimony is due to the phenomena of long-branch

attraction (Felsenstein 1978). Parsimony assumes that the same change counts the same
regardless of which branch it occurs on. But we should obviously expect more changes on lon-
ger branches so the evidential value of such changes should be less. This phenomenon leads to
the problem that parsimony can be statistically inconsistent – that is, the method can converge
on a false answer in specific cases. Imagine that there are two non-sister taxa where the rates of
change on the branches leading to these taxa have been much higher than on other branches.
Sheer chance alone will guarantee that some of these changes are convergences and parsimony
will count these convergent traits as evidence that these two branches are closely related (as it
should). However, if the branches are long enough relative to the other branches, then we
would actually expect there to be more of these coincidentally convergent matches than gen-
uine homologous matches with the other branches that they are actually closer to. Thus, the
two long branches will tend to be “pulled together” in that we infer they are closely related.
As we increase the amount of data, this pull will get stronger, and thus, parsimony will con-
verge on the wrong answer. In cases where we expect the branches to be long (say a phylog-
eny of distinct bacterial phyla), chance variation alone will virtually guarantee that some
branches are much longer than others, and the problem will arise.
Parsimony as a phylogenetic method has statistical properties. We can measure its robustness

in terms of accuracy across various kinds of cases, we can test its statistical properties (like
consistency and efficiency), and we can directly compare it to model based methods such as
maximum likelihood. Just because parsimony does not use explicit parametric models of
evolution doesn't mean that it is somehow a priori a more general (or better!) method than
explicit model based accounts (contra Farris 1983; Kluge 2005, and others). In fact, as I have
argued, by being inflexible in a certain way, it makes matters worse.
4. Conclusion

We have canvassed just a few of the philosophical issues that arise in phylogenetic inference.
There are of course numerous issues worthy of study that we did not delve into such as
understanding the connection between phylogenetics and other fields such as taxonomy
and classification (e.g., Rieppel and Kearney 2007). In this piece, I hope to have shown that
traditional problems in the philosophy of science relating to confirmation and evidence arise
in the particular case of phylogenetics, and so philosophers are well posed to make
contributions, but also that by examining phylogenetics on its own terms, we can make
contributions to a discipline of enormous scientific importance while at the same time,
gaining some perspective and insight into these broader issues or more general concern.
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1 But see, e.g., Richards (2003), Griffiths (2006), Rieppel and Kearney (2007), and Ereshefsky (2009, 2012).
2 For detailed arguments, see the special issues on the tree of life in Biology and Philosophy (2010) and Biology Direct
(2011). For brief overviews, see O'Malley et al. (2010) and Velasco (2013b).
3 Helpful introductory reading on phylogenetic methods includes Swofford et al. (1996), Huelsenbeck and Crandall
(1997), Holder and Lewis (2003), and Felsenstein (2004). For a philosophical take, see Haber (2009)
4 Since we are often especially interested in the tree topology, we sometimes say that P(Data|θ) is the likelihood of the
tree which is part of θ. This is technically correct if we fix the value of the nuisance parameters at their MLE values.
5 In the frequentist MLE method, for each tree, nuisance parameters are set at the value that would maximize the
probability of the data on that particular tree. Suboptimal parameter values are irrelevant on this view, but they factor
into the likelihood on the Bayesian view. Thus, confusingly, the likelihood of the tree used in Bayes' theorem is not
the same as the tree's likelihood score used for maximum likelihood inferences.
6 Pickett and Randle (2005) claim that it is impossible to assign priors in a consistent way. While this particular
argument is based on a mistake (Velasco 2008a), the problem remains a difficult one. Velasco (2008a) advocates priors
on tree topologies based on the Yule birth–death process, but leaves open the more difficult problem of priors on branch
lengths or model parameters. Alfaro and Holder (2006) attempt to address some of these issues.
7 Markov Chain Monte Carlo methods (MCMC) attempt to solve this problem with simulation and sampling.
While MCMC methods had been used for several decades to solve other problems in Bayesian statistics, they
were introduced by example into the phylogenetics literature with Yang and Rannala (1997) and in more detail
in Larget and Simon (1999).
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